JP5967795B2 - Optical products and glasses - Google Patents
Optical products and glasses Download PDFInfo
- Publication number
- JP5967795B2 JP5967795B2 JP2011225136A JP2011225136A JP5967795B2 JP 5967795 B2 JP5967795 B2 JP 5967795B2 JP 2011225136 A JP2011225136 A JP 2011225136A JP 2011225136 A JP2011225136 A JP 2011225136A JP 5967795 B2 JP5967795 B2 JP 5967795B2
- Authority
- JP
- Japan
- Prior art keywords
- polarized light
- wavelength
- transmittance
- maximum value
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Eyeglasses (AREA)
- Polarising Elements (AREA)
Description
本発明は、眼鏡レンズを始めとする光学製品、ないしその光学製品を用いた眼鏡に関する。 The present invention relates to an optical product such as a spectacle lens, or spectacles using the optical product.
眼鏡の一例であるゴルフ用サングラスにおいては、遮光性に加え、緑色の芝目のコントラスト向上の観点から、ブラウンに着色されたカラーレンズが広く用いられている。かようなブラウンレンズにおいては、その着色により、可視領域における短波長側の光がカットされ、高い遮光性が得られる。又、その着色により、短波長域から中間波長域にかけて次第に透過率が上昇するような特性となり、グリーンの芝目のコントラストが強調される。なお、ブラウンの着色により、ユーザーに受け入れられやすい美観に優れた外観とすることもできる。 In golf sunglasses, which is an example of eyeglasses, a color lens colored brown is widely used from the viewpoint of improving the contrast of green grass in addition to light shielding properties. In such a brown lens, the light on the short wavelength side in the visible region is cut by the coloring, and a high light shielding property is obtained. Further, due to the coloring, the transmittance gradually increases from the short wavelength region to the intermediate wavelength region, and the green lawn contrast is enhanced. In addition, it can also be set as the external appearance excellent in the aesthetics which a user can accept by coloring of brown.
しかし、ブラウンレンズにおいては、その着色により、芝目のみならず視界全体が赤茶けて見えてしまう。又、グリーンのコントラストが向上することと引き替えに、その鮮明さが抑制されることとなる。 However, in a brown lens, the entire field of vision, not just the turf eyes, appears reddish due to the coloring. In addition, the sharpness is suppressed in exchange for the improvement of the green contrast.
そこで、着色に対し、偏光を組み合わせることで、遮光性及び芝目の視認性と、視界全体の視認性ないし芝目の鮮明さの両立あるいは向上を図ることが考えられる。従来、着色と偏光を組み合わせたものとして、特許文献1に記載の光学積層成形品が知られている。 In view of this, it is conceivable to combine or improve the shading and the visibility of the turf and the visibility of the entire field of view or the vividness of the turf by combining polarized light with coloring. Conventionally, an optical laminated molded article described in Patent Document 1 is known as a combination of coloring and polarized light.
しかし、特許文献1では、偏光シートに対し透明インクのカラー印刷で着色し、そのシートを用いてレンズを成型することで、特定の全光線透過率で所定色となるレンズを得ることしか開示されておらず、どのように着色と偏光を組み合わせると遮光性や芝目の視認性ないし全体の視認性の両立や向上を図れるかは開示されていない。 However, Patent Document 1 discloses only obtaining a lens having a predetermined color with a specific total light transmittance by coloring a polarizing sheet by color printing with a transparent ink and molding the lens using the sheet. However, it is not disclosed how the combination of coloring and polarization can achieve both the light shielding property and the visibility of the grass or the overall visibility.
又、着色と偏光を組み合わせることで、芝目と全体の視認性を両立・向上することと同様にして(ゴルフ用レンズ)、雪面と全体の視認性を両立・向上したり(ウィンター用レンズ)、液晶モニタの画面と他部分の視認性を両立・向上したり(モニタ用レンズ)する等、他の光学製品の性能の向上を具体的に図ることも考えられるが、そのようなことも当然開示されていない。 Also, by combining coloring and polarized light, it is possible to achieve and improve both the visibility of the turf and the entire surface (golf lens), and to improve the compatibility of both the snow surface and the overall visibility (winter lens). ), Improving the performance of other optical products, such as improving and improving the visibility of the LCD monitor screen and other parts (monitor lens). Of course, it is not disclosed.
そこで、請求項1〜6,7に記載の発明は、所定箇所と全体の視認性を両立・向上することができる光学製品、あるいはこれを用いた眼鏡を提供することを目的としたものである。 Accordingly, the inventions described in claims 1 to 6 and 7 are intended to provide an optical product capable of achieving and improving both the predetermined location and the overall visibility, or spectacles using the optical product. .
上記目的を達成するために、請求項1に記載の発明は、光学製品にあって、S偏光光を可視領域(波長400nm以上800nm以下)における所定の分光透過率分布においてフィルタリングする偏光基材に対し、当該分布の極大値と、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均の極大値が、互いに異なる波長又は互いに異なる波長範囲に属するように、着色が施されていることを特徴とするものである。 In order to achieve the above object, the invention according to claim 1 is an optical product, comprising : a polarizing substrate that filters S-polarized light in a predetermined spectral transmittance distribution in a visible region (wavelength of 400 nm to 800 nm) . On the other hand, coloring is applied so that the maximum value of the distribution and the average maximum value of the spectral transmittance distribution in the visible region with respect to P-polarized light and S-polarized light belong to different wavelengths or different wavelength ranges. It is characterized by this.
請求項2に記載の発明は、上記発明において、S偏光光に係る分光透過率分布の極大値が400nm以上550nm未満の波長の範囲内にあり、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均に係る極大値が550nm以上800nm以下の波長の範囲内にあることを特徴とするものである。 The invention according to claim 2 is the above-mentioned invention, wherein the maximum value of the spectral transmittance distribution relating to S-polarized light is in the wavelength range of 400 nm or more and less than 550 nm, and the spectrum in the visible region with respect to P-polarized light and S-polarized light. The maximum value related to the average of the transmittance distribution is in the wavelength range of 550 nm to 800 nm .
請求項3に記載の発明は、上記発明において、S偏光光に係る分光透過率分布の極大値が450nm以上550nm未満の波長の範囲内にあり、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均に係る極大値が650nm以上700nm未満の波長の範囲内にあることを特徴とするものである。 The invention according to claim 3 is the above-mentioned invention, wherein the maximum value of the spectral transmittance distribution relating to the S-polarized light is in the wavelength range of 450 nm or more and less than 550 nm, and the spectral in the visible region with respect to the P-polarized light and the S-polarized light. The maximum value related to the average of the transmittance distribution is in the wavelength range of 650 nm or more and less than 700 nm.
請求項4に記載の発明は、上記発明において、S偏光光に係る分光透過率分布の極大値が400nm以上500nm未満の波長の範囲内にあり、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均に係る極小値が400nm以上450nm未満の波長の範囲内にあることを特徴とするものである。 The invention according to claim 4 is the above-mentioned invention, wherein the maximum value of the spectral transmittance distribution relating to the S-polarized light is in the wavelength range of 400 nm or more and less than 500 nm, and the spectral in the visible region with respect to the P-polarized light and the S-polarized light. The minimum value related to the average of the transmittance distribution is in the wavelength range of 400 nm or more and less than 450 nm.
請求項5に記載の発明は、上記発明において、S偏光光に係る分光透過率分布の極小値が600nm以上700nm未満の波長の範囲内にあり、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均に係る極大値が500nm以上550nm未満の波長の範囲内にあることを特徴とするものである。 According to a fifth aspect of the present invention, in the above invention, the minimum value of the spectral transmittance distribution relating to the S-polarized light is in a wavelength range of 600 nm or more and less than 700 nm, and the spectral in the visible region with respect to the P-polarized light and the S-polarized light. The maximum value relating to the average of the transmittance distribution is in the wavelength range of 500 nm or more and less than 550 nm.
請求項6に記載の発明は、上記目的を達成するため、眼鏡にあって、上記の光学製品を用いて作成されていることを特徴とする。 According to a sixth aspect of the present invention, in order to achieve the above object, the present invention is provided in eyeglasses, which is produced using the above optical product.
本発明によれば、偏光基材を、S偏光光に対する可視領域における分光透過率分布の極大値と、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均の極大値が、互いに異なる波長に属するように着色し、あるいは、偏光基材を、S偏光光における透過光の色調と、S偏光光及びP偏光光における透過光の色調とが異なるように着色したので、所定箇所(S偏光光の発生元)と全体(S偏光光とP偏光光の双方を含む光の発生元、所定箇所以外)の視認性を両立・向上することができる。 According to the present invention, the polarization substrate has the maximum value of the spectral transmittance distribution in the visible region with respect to the S-polarized light and the average maximum value of the spectral transmittance distribution in the visible region with respect to the P-polarized light and the S-polarized light. Since it is colored so as to belong to different wavelengths, or the polarizing substrate is colored so that the color tone of transmitted light in S-polarized light is different from the color tone of transmitted light in S-polarized light and P-polarized light, a predetermined location ( The visibility of the generation source of S-polarized light) and the whole (the generation source of light including both S-polarized light and P-polarized light, other than the predetermined location) can be both improved and improved.
以下、本発明に係る実施の形態の例につき説明する。なお、本発明の形態は、以下のものに限定されない。 Hereinafter, examples of embodiments according to the present invention will be described. In addition, the form of this invention is not limited to the following.
本発明に係る光学製品では、偏光基材に着色が施されている。偏光基材は、透光性を有しており、主に電場が入射光面に垂直に振動するS偏光光をフィルタリングする偏光フィルタの機能を備えている。偏光フィルタの機能は、偏光基材の全部又は一部を吸収型偏光子としてのポリマーや複屈折性の結晶等により形成することで付与されて良いが、好適には、所定方向の偏光を反射あるいはカットする偏光膜を偏光基材に含めることで付与される。 In the optical product according to the present invention, the polarizing substrate is colored. The polarizing substrate has translucency and mainly has a function of a polarizing filter that filters S-polarized light whose electric field vibrates perpendicularly to the incident light surface. The function of the polarizing filter may be imparted by forming all or part of the polarizing substrate with a polymer as an absorbing polarizer, a birefringent crystal, or the like, but preferably reflects polarized light in a predetermined direction. Or it provides by including the polarizing film to cut in a polarizing substrate.
具体例としては、偏光基材が表レンズ基材と裏レンズ基材と偏光膜を備えており、表レンズ基材と裏レンズ基材の間に偏光膜を配置して互いに固定するレンズを挙げることができる。なお、偏光膜を複数として良く、このときに互いに異なるフィルタリングを施すものとして良いし、重ね合わせたり異なる位置に配置したりして良い。又、偏光基材に1枚のレンズ基材と偏光膜を含ませ、レンズ基材の表側及び/又は裏側に偏光膜を配置して良い。更に、偏光膜は、偏光基材の表面全体に亘っても良いし、一部を覆うものであっても良い。又更に、偏光膜における一部分と他部分とでフィルタリング特性を異ならせるようにして良い。加えて、偏光膜をブロック状とした偏光ブロックを採用しても良い。 As a specific example, a polarizing base material includes a front lens base material, a back lens base material, and a polarizing film, and a polarizing film is disposed between the front lens base material and the back lens base material and fixed to each other. be able to. Note that a plurality of polarizing films may be provided, and at this time, different filtering may be performed, or they may be overlapped or arranged at different positions. Further, the polarizing base material may include one lens base material and a polarizing film, and the polarizing film may be disposed on the front side and / or the back side of the lens base material. Furthermore, the polarizing film may extend over the entire surface of the polarizing substrate, or may cover a part thereof. Furthermore, the filtering characteristics may be different between a part and another part of the polarizing film. In addition, a polarizing block having a polarizing film in a block shape may be employed.
偏光基材による偏光のフィルタリングは、例えばグリーン系、イエロー系、あるいはブルー系である。グリーン系の偏光のフィルタリングは、可視領域(例えば400〜800ナノメートル(nm)、あるいは400〜780nmの波長領域)における中間域(例えば400〜500nm)の偏光透過率(の平均)が他の域より高いものであり、換言すれば緑色に認識される波長域における偏光透過率(の平均)が他の域より高いものである。なお、例えば併せて600〜700nmの領域で偏光透過率(の平均)が高くなる場合もあるが、この波長範囲は視感度が比較的に低いために中間域に比して問題とならない。一方、イエロー系の偏光のフィルタリングは、可視領域における短波長域(例えば400〜500nm)の偏光透過率(の平均)が他の域より低いものであり、換言すれば黄色に認識される偏光透過率分布となっているものである。他方、ブルー系の偏光のフィルタリングは、可視領域における短波長域(例えば400〜500nm)の偏光透過率(の平均)が他の域より高いものであり、換言すれば青色に認識される波長域における偏光透過率(の平均)が他の域より高いものである。 Polarization filtering by the polarizing substrate is, for example, green, yellow, or blue. In the filtering of green-based polarized light, the polarization transmittance (average) of the intermediate region (for example, 400 to 500 nm) in the visible region (for example, the wavelength region of 400 to 800 nanometers (nm) or 400 to 780 nm) is the other region. In other words, the polarization transmittance (average) in the wavelength range recognized as green is higher than the other ranges. Note that, for example, the polarization transmittance (average) may be high in the region of 600 to 700 nm, but this wavelength range has no problem as compared with the intermediate region because the visibility is relatively low. On the other hand, in the filtering of yellow-based polarized light, the polarization transmittance in the short wavelength region (for example, 400 to 500 nm) in the visible region (average) is lower than the other regions, in other words, polarized light transmission recognized as yellow. It is a rate distribution. On the other hand, filtering of blue polarized light has a higher polarization transmittance (average) in a short wavelength region (for example, 400 to 500 nm) in the visible region than other regions, in other words, a wavelength region recognized as blue. The polarization transmittance (average) is higher than that of other regions.
又、偏光基材への着色は、例えば全体として(S偏光光のフィルタリングを合わせて考慮して)ブラウン系、あるいはグリーン系となるようにするものである。ブラウン系の着色は、例えば、可視領域における短波長域及び長波長域(例えば700〜800nm)の透過率(の平均)が他の域より低く、中間域(グリーン系より長波長側、例えば500〜700nm)の透過率(の平均)が総じて高いものである。あるいは、別のブラウン系の着色として、可視領域における短波長域の透過率(の平均)が他の域より低いものであり、短波長域以外の透過率(の平均)が総じて高いものがあげられる。なお、偏光基材への着色は、偏光膜と合わせて考慮して決定可能である。即ち、最終的に、偏光基材により減光されたS偏光光と、着色により減光されたS偏光光及びP偏光光が、着色偏光基材を通過することを考慮して、着色における色の種類を決定することができる。例えば、ブルー系の偏光膜を採用する場合において、全体としてグリーン系とするとき、イエロー系の着色を合わせることとなる。 Further, the coloring of the polarizing substrate is, for example, a brown system or a green system as a whole (considering filtering of S-polarized light). The brown coloration is, for example, the transmittance (average) of the short wavelength region and the long wavelength region (for example, 700 to 800 nm) in the visible region is lower than the other regions, and the intermediate region (the longer wavelength side than the green system, for example, 500 The transmittance (average of -700 nm) is generally high. Alternatively, as another brown coloration, the transmittance (average) in the short wavelength region in the visible region is lower than the other regions, and the transmittance (average) in other regions than the short wavelength region is generally high. It is done. In addition, the coloring to a polarizing base material can be determined in consideration with a polarizing film. That is, in consideration of the fact that S-polarized light attenuated by the polarizing substrate and S-polarized light and P-polarized light attenuated by coloring pass through the colored polarizing substrate, the color in coloring The type of can be determined. For example, in the case of adopting a blue polarizing film, when the entire system is green, yellow coloring is combined.
偏光基材への着色は、好適には、偏光基材がレンズ基材と偏光膜を含む場合のレンズ基材に対する染色により行われる。レンズ基材が表裏に分かれるとき、何れか一方へ着色しても良いし、双方に着色しても良い。双方に着色する際、着色手法や分光透過率分布を互いに異ならせても良い。又、偏光フィルタ(偏光膜)自体に着色しても良く、この場合に透明なレンズ基材あるいは着色したレンズ基材等と組み合わせて良い。 The coloring of the polarizing substrate is preferably performed by dyeing the lens substrate when the polarizing substrate includes a lens substrate and a polarizing film. When the lens substrate is divided into the front and back sides, either one may be colored, or both may be colored. When coloring both, the coloring method and the spectral transmittance distribution may be different from each other. Further, the polarizing filter (polarizing film) itself may be colored, and in this case, it may be combined with a transparent lens substrate or a colored lens substrate.
そして、このような偏光と着色の組合せにより、本発明の光学製品におけるS偏光光の分光透過率分布と、S偏光光及びP偏光光の分光透過率分布の平均が、互いに相違することとなる。従って、S偏光光の透過率の極大値と、S偏光光及びP偏光光の平均透過率の極大値が、互いに異なる波長に属することとなり、あるいは、S偏光光の透過率の極大値範囲と、S偏光光及びP偏光光の平均透過率の極大値範囲が、互いに異なる波長範囲に属することとなる。なお、互いに異なる波長範囲の場合について更に詳述すると、S偏光光の透過率の極大値が所定範囲において一定値をとり、又S偏光光及びP偏光光の平均透過率の極大値が特定範囲について別のあるいは同じ一定値をとる場合、当該所定範囲の始め及び/又は終わりの波長と、当該特定範囲の始め及び/又は終わりの波長が異なる場合を含むものである。更に、互いに異なる波長又は互いに異なる波長範囲に属することには、S偏光光の透過率の極大値、又はS偏光光及びP偏光光の平均透過率の極大値の一方のみがとある範囲で一定値をとるときが含まれる。 And by such a combination of polarization and coloring, the spectral transmittance distribution of S-polarized light and the average of spectral transmittance distributions of S-polarized light and P-polarized light in the optical product of the present invention are different from each other. . Therefore, the maximum value of the transmittance of S-polarized light and the maximum value of the average transmittance of S-polarized light and P-polarized light belong to mutually different wavelengths, or the maximum value range of the transmittance of S-polarized light and The maximum value range of the average transmittance of S-polarized light and P-polarized light belongs to different wavelength ranges. Further, in the case of different wavelength ranges, the maximum value of the transmittance of S-polarized light takes a constant value within a predetermined range, and the maximum value of the average transmittance of S-polarized light and P-polarized light is a specific range. When taking another or the same constant value, the case where the wavelength at the start and / or end of the predetermined range is different from the wavelength at the start and / or end of the specific range is included. Furthermore, to belong to different wavelengths or different wavelength ranges, only one of the maximum value of the transmittance of S-polarized light or the maximum value of the average transmittance of S-polarized light and P-polarized light is constant within a certain range. Includes taking a value.
具体的には、芝目や雪面、樹木等の自然物(紙や樹脂等の自然物加工品を含む)において反射した自然反射光や、液晶モニタからの光は、その殆ど全てがS偏光光であり、本発明の光学製品に入射すると、主にS偏光光をフィルタリングする偏光基材による偏光透過率分布に強く従うこととなり、その透過光のみ適宜更に着色による透過率分布の影響を受ける。 Specifically, almost all of the natural reflected light reflected from natural objects such as turf, snow, and trees (including processed natural products such as paper and resin) and light from the liquid crystal monitor are S-polarized light. When incident on the optical product of the present invention, the polarization transmittance distribution by the polarizing base material mainly filtering S-polarized light is strongly followed, and only the transmitted light is further affected by the transmittance distribution due to coloring.
これに対し、本発明の光学製品に直接入射する直接光を始めとする自然反射光以外の光は、S偏光光とP偏光光の双方を含む光であり、本発明の光学製品に入射すると、S偏光光は偏光透過率分布(及びその透過後における着色による透過率分布)に従うこととなるものの、P偏光光は偏光透過率分布に従わず着色による透過率分布に従うこととなり、自然反射光以外の光ではS偏光光とP偏光光が合わさっているので、S偏光光単独の場合に比較して着色による透過率分布に強く従うこととなる。 On the other hand, light other than naturally reflected light including direct light directly incident on the optical product of the present invention is light including both S-polarized light and P-polarized light, and enters the optical product of the present invention. , S-polarized light follows the polarization transmittance distribution (and the transmittance distribution due to coloring after the transmission), but P-polarized light follows the transmittance distribution due to coloring without following the polarization transmittance distribution. In other light, S-polarized light and P-polarized light are combined, and thus the transmittance distribution due to coloring is more strongly followed than in the case of S-polarized light alone.
そして、本発明では、偏光フィルタの透過光と、偏光フィルタ及び着色の透過光とで色調をずらしているため(例えばグリーン系に対するブラウン系や、イエロー系に対するブラウン系、ブルー系に対するグリーン系)、S偏光光の分光透過率分布と、S偏光光及びP偏光光の分光透過率分布が、互いに異なっており、S偏光光の透過率の極大値と、S偏光光及びP偏光光の透過率の極大値が、互いに異なる波長あるいは波長範囲に位置する。 In the present invention, since the color tone is shifted between the transmitted light of the polarizing filter and the transmitted light of the polarizing filter and the colored light (for example, the brown system for the green system, the brown system for the yellow system, the green system for the blue system), The spectral transmittance distribution of S-polarized light and the spectral transmittance distribution of S-polarized light and P-polarized light are different from each other, the maximum value of the transmittance of S-polarized light, and the transmittance of S-polarized light and P-polarized light. Are located at different wavelengths or wavelength ranges.
このように、S偏光光の透過率の分布(極大値)と、S偏光光及びP偏光光の透過率の分布(極大値)を、互いに異なるもの(波長・波長範囲)とすると、自然反射光やモニタ光の透過光と、それ以外の透過光で、見え方を相違させることができ、ゴルフ、ウィンタースポーツ、液晶モニタ等に適したものとすることができる。 As described above, when the distribution of S-polarized light transmittance (maximum value) and the distribution of the transmittance of S-polarized light and P-polarized light (maximum value) are different from each other (wavelength / wavelength range), natural reflection occurs. The transmitted light of the light or monitor light and the other transmitted light can be made different in appearance, and can be suitable for golf, winter sports, liquid crystal monitors, and the like.
次いで、本発明の好適な実施例等につき、数例説明する。なお、これら実施例等においては、可視領域を400〜780nmとする。 Next, several examples of the preferred embodiment of the present invention will be described. In these examples, the visible region is 400 to 780 nm.
実施例1に係る光学製品として、グリーンの偏光膜を、これと合わせて全体としてブラウンとなるような着色を施したほぼ同じ広さの表裏のレンズ基材で挟んだゴルフ用レンズを作成した。このような作成により、主として偏光膜及び着色の作用によるS偏光光の透過光(グリーン系)と、主として着色の作用によるP偏光光及びS偏光光を合わせた透過光とで(ブラウン系)、色調が互いに異なることとなる。 As an optical product according to Example 1, a golf lens was prepared in which a green polarizing film was sandwiched between front and back lens substrates of approximately the same size, which were colored together with the green polarizing film. With such a creation, the transmitted light of S-polarized light mainly due to the polarizing film and coloring action (green system) and the transmitted light combining P-polarized light and S-polarized light mainly due to the coloring action (Brown system), The tone will be different from each other.
偏光膜は、450〜550nm内の波長(例えば500nm)にS偏光光に対する透過率の極大値があり、その他の波長の光の透過率が可視領域の両脇に近づくに従い順次低く(吸収率が順次高く)なる分光透過率特性を持っている。 The polarizing film has a maximum value of transmittance with respect to S-polarized light at a wavelength within 450 to 550 nm (for example, 500 nm), and gradually decreases as the transmittance of light of other wavelengths approaches both sides of the visible region (absorbance decreases). (Sequentially higher).
一方、着色は、次の2〜3の段階により行った。まず、レッド染料による染色を行った。この染色は、吸収率が500〜550nm内の波長においてピークとなり、その両脇で順次小さくなる特性の分散染料を、溶剤に分散させた染色液に対して、表裏のレンズ基材をそれぞれ浸漬することで行った。 On the other hand, coloring was performed in the following steps 2-3. First, dyeing with a red dye was performed. In this dyeing, the front and back lens base materials are immersed in a dyeing solution in which a disperse dye having a characteristic that the absorption rate reaches a peak at a wavelength within a range of 500 to 550 nm and gradually decreases on both sides thereof is dispersed in a solvent. I went there.
次に、イエロー染料による染色を行った。この染色は、吸収率が350〜400nm内の波長においてピークとなり、500〜550nm内の波長まで順次小さくなる特性の分散染料を、溶剤に分散させた染色液に対して、表裏のレンズ基材をそれぞれ浸漬することで行った。 Next, dyeing with a yellow dye was performed. This dyeing has a peak absorption at a wavelength in the range of 350 to 400 nm, and the lens substrate on the front and back sides of the dye solution in which a disperse dye having a characteristic that gradually decreases to a wavelength in the range of 500 to 550 nm is dispersed in a solvent. It was performed by immersing each.
続いて、適宜色調整を行った。色調整は、前2段階の染料濃度や浸漬時間等を様々に変えて行い、レンズ全体(S偏光透過率とP偏光透過率の平均)において、400〜450nm内の波長の光の透過率が最も小さく、600nm付近において透過率の極大値を持ち、650〜700nmにかけて順次透過率が高くなる(650〜700nmの波長範囲内に極大値が位置する)分光透過率特性を得る目的で行った。 Subsequently, color adjustment was performed as appropriate. The color adjustment is performed by changing the dye concentration, the immersion time, etc. in the previous two stages in various ways, and the transmittance of light having a wavelength within 400 to 450 nm is obtained in the entire lens (average of S-polarized light transmittance and P-polarized light transmittance). The measurement was performed for the purpose of obtaining a spectral transmittance characteristic that is the smallest, has a maximum value of transmittance in the vicinity of 600 nm, and gradually increases in transmittance from 650 to 700 nm (maximum value is located in a wavelength range of 650 to 700 nm).
これに対し、本発明に属さない比較例1として、当該ゴルフ用レンズと同寸で、同じ着色を施したものではあるが、偏光膜を有しない一体のブラウン系着色レンズを作成した。 On the other hand, as Comparative Example 1 not belonging to the present invention, an integral brown colored lens having the same size and the same color as the golf lens but having no polarizing film was prepared.
このように形成した実施例1の分光透過率分布(P偏光透過率,S偏光透過率,及びこれらの平均)と、比較例1と異なる従来の一般的なブラウン系ゴルフ用サングラスの分光透過率分布のグラフを、図1に示す。 The spectral transmittance distribution (P-polarized light transmittance, S-polarized light transmittance, and the average of these) of Example 1 formed in this way, and the spectral transmittance of conventional general brown golf sunglasses different from Comparative Example 1 A distribution graph is shown in FIG.
これら実施例1及び比較例1に対し、次のように視認性をそれぞれ確認した。即ち、デジタルスチルカメラのレンズの直前に、ゴルフ用レンズ又は着色レンズを固定した状態で、使用場面(ゴルフ場)を模した風景を撮影した。そして、撮影画像をコンピュータ(画像処理ソフトウェア)で解析した。 Visibility was confirmed for each of Example 1 and Comparative Example 1 as follows. That is, a landscape imitating a scene of use (golf course) was photographed with a golf lens or a colored lens fixed immediately before the lens of a digital still camera. The photographed image was analyzed with a computer (image processing software).
ここで、カメラの露出やホワイトバランスは固定されており、その他の機能は切ってある。又、前記風景は、図2に示すようなものであり、建物の屋上面に白い箱X(紙製)と緑色の人工芝のマットG(樹脂製・自然物加工品)を置いたものである。箱Xはその側面Dに影がかかるように配置されており、当該側面Dからの光は偏光の影響を受けない。更に、画像解析は、箱Xの当該側面D及び人工芝マットG上面における各画素のR値・G値・B値の各平均値をそれぞれ算出することで行う。なお、R値は、ここでは着目画素における赤色成分の強さを0〜255の整数で表すものであり、大きいほど強く、0では成分のないことを示す。同様に、G値は、緑色成分の強さを表し、B値は、青色成分の強さを表す。そして、(R値,G値,B値)=(0,0,0)であると着目画素が真黒であることが示され、(R値,G値,B値)=(255,255,255)であると着目画素が真白であることが示される。 Here, the camera's exposure and white balance are fixed, and other functions are turned off. The landscape is as shown in FIG. 2, and a white box X (made of paper) and a green artificial turf mat G (made of resin and natural products) are placed on the roof of the building. . The box X is arranged so that the side surface D is shaded, and the light from the side surface D is not affected by the polarization. Further, the image analysis is performed by calculating respective average values of the R value, G value, and B value of each pixel on the side surface D of the box X and the upper surface of the artificial grass mat G. Here, the R value represents the strength of the red component in the pixel of interest by an integer of 0 to 255, and the larger the value, the stronger the value, and 0 indicating no component. Similarly, the G value represents the strength of the green component, and the B value represents the strength of the blue component. When (R value, G value, B value) = (0, 0, 0), it is indicated that the pixel of interest is true black, and (R value, G value, B value) = (255, 255). 255) indicates that the pixel of interest is pure white.
視認性の確認結果を次の[表1]に示す。 The visibility confirmation results are shown in the following [Table 1].
比較例1では、ブラウンの着色により、影のかかった白い箱Xの側面Dが、真のグレーではなく茶色がかって捉えられている。即ち、B値(44)に比べ、G値が高くなっており(95)、R値が更に高くなっていて(113)、茶色がかったグレーとして認識されている。又、芝(マットG)は、G値が突出して高く(113)、緑色として認識されているが、B値が抑えられている(8)ことに対してR値が比較的に高く(65)、若干赤みを帯びたようにも捉えられ、従来のブラウンレンズにおける緑色に対するコントラスト強調の効果につながっているようである。 In Comparative Example 1, the side face D of the shaded white box X is captured as brown rather than true gray due to the coloring of brown. That is, the G value is higher than the B value (44) (95), the R value is further higher (113), and it is recognized as a brownish gray. The grass (mat G) has a high G value (113) and is recognized as green, but is recognized as green, but the R value is relatively high (65) while the B value is suppressed (8). ), It seems to be slightly reddish, and seems to have led to the effect of contrast enhancement for green in conventional brown lenses.
なお、緑色に対するコントラスト強調の効果は、緑葉の分光反射率分布と枯葉の分光反射率分布(図3参照)が520〜700nmで大きく異なっており(520〜560nmにおいて緑葉の反射率0.15〜0.2程度に対し枯葉0.1〜0.15程度,560〜700nmにおいて緑葉の反射率0.05〜0.3程度に対し枯葉0.15〜0.4程度・内600〜680nmで同波長で0.1〜0.3の差あり)、これ以外の波長域でさほど異なっていないことに応じ発揮される。即ち、ブラウン系に着色することで、緑葉と枯葉で分光反射率分布が大きく相違する520〜700nmでの透過率を比較的に大きくし、これ以外の波長域での透過率を比較的に小さく(入射光をカット)することが可能となり、結果芝のコントラストが強調される。 Note that the contrast enhancement effect for green is greatly different between the spectral reflectance distribution of green leaves and the spectral reflectance distribution of dead leaves (see FIG. 3) at 520 to 700 nm (the reflectance of green leaves is 0.15 at 520 to 560 nm). About 0.2 to 0.1 to 0.15 dead leaves, and about 560 to 700 nm, the reflectance of green leaves is about 0.05 to 0.3, and about 0.15 to 0.4 dead leaves, the same at 600 to 680 nm. The difference is 0.1 to 0.3 in wavelength), and it is exhibited according to the fact that it is not so different in other wavelength regions. That is, by coloring brown, the transmittance at 520 to 700 nm, where the spectral reflectance distribution differs greatly between green leaves and dead leaves, is relatively large, and the transmittance in other wavelength ranges is relatively small. (Incident light can be cut), and as a result, the contrast of the turf is enhanced.
これに対し、実施例1では、箱Xの側面Dについては(R値,G値,B値)=(112,92,42)となっており、比較例1の(113,95,44)とさほど変わらない状況となっている。これは、箱Xの側面Dからの光がS偏光光のみならず偏光膜の影響を殆ど受けないP偏光光をも含み、かつ全体としてブラウンとなるように着色した影響はP偏光光にも及ぶことによる。又、芝(マットG)について、R値が比較例1から上昇しているものの(71,比較例1から6増加)、G値が比較例1から更に上昇している(121,比較例1から8増加)と共に、B値も比較例1から一層上昇しており(19,比較例1から11増加)、緑み・青みが強い状態となっている。これは、主にS偏光光となる芝の反射光がグリーンの偏光膜の影響を強く受けることによる。なお、偏光あるいは着色の極大値等の属する波長(範囲)が、実施例1に係る範囲から外れると、芝に対する視認性が比較的に良好ではなくなり、あるいは芝以外の見え方が比較的に自然でなくなる。 On the other hand, in Example 1, (R value, G value, B value) = (112, 92, 42) for the side surface D of the box X, which is (113, 95, 44) of Comparative Example 1. The situation is not so different. This includes not only the S-polarized light but also the P-polarized light that is hardly affected by the polarizing film, and the influence of the coloration so as to be brown as a whole also affects the P-polarized light. By reaching. Further, regarding the turf (mat G), although the R value increased from Comparative Example 1 (71, increased by 6 from Comparative Example 1), the G value further increased from Comparative Example 1 (121, Comparative Example 1). In addition, the B value is further increased from Comparative Example 1 (19, increased from Comparative Example 1 to 11), and green and blue are strong. This is mainly because the reflected light of the turf, which becomes S-polarized light, is strongly influenced by the green polarizing film. If the wavelength (range) to which the maximum value of polarization or coloring belongs is outside the range according to the first embodiment, the visibility with respect to the turf is not relatively good, or the appearance other than the turf is relatively natural. Not.
よって、実施例1のゴルフ用レンズにあっては、従来のブラウンレンズ(比較例1)と同等の全体視認性を有しながら、従来に比べ芝を緑みないし青みの強い状態で視認することができるといえ、芝とそれ以外の視認性をいずれも良好な状態で両立することが可能となっている。 Therefore, in the golf lens of Example 1, the turf is visually recognized in a greener or more bluish state than the conventional one while having the same overall visibility as the conventional brown lens (Comparative Example 1). However, both the lawn and the other visibility can be achieved in good condition.
なお、ゴルフ用レンズを(2枚)用いて、ゴルフ用眼鏡(ゴルフ用サングラス)を形成することができる。又、実施例1につきゴルフ用としているが、ハイキング用・アウトドアスポーツ用・アウトドアアクティビティー用・マリンスポーツ用・屋内スポーツ用等の、緑色や青色の自然物を見る他の用途に用いて良い。 Golf glasses (golf sunglasses) can be formed using two golf lenses. Further, although it is used for golf according to the first embodiment, it may be used for other purposes such as hiking, outdoor sports, outdoor activities, marine sports, indoor sports, etc. for viewing green and blue natural objects.
実施例2に係る光学製品として、イエローの偏光膜を、これと合わせて全体としてブラウンとなるような着色を施したほぼ同じ広さの表裏のレンズ基材で挟んだスキー用レンズを作成した。このような作成により、主として偏光膜及び着色の作用によるS偏光光の透過光(イエロー系)と、主として着色の作用によるP偏光光及びS偏光光を合わせた透過光とで(ブラウン系)、色調が互いに異なることとなる。 As an optical product according to Example 2, a ski lens was produced in which a yellow polarizing film was sandwiched between front and back lens substrates of approximately the same size, which were colored in combination with the yellow polarizing film. By such a creation, the transmitted light of the S-polarized light mainly due to the polarizing film and the coloring action (yellow series) and the transmitted light combining the P-polarized light and the S-polarized light mainly due to the coloring action (Brown series), The tone will be different from each other.
偏光膜は、400〜500nm内(例えば400nm)の波長のS偏光光に対する吸収率が最も高く(透過率が最も低く)、その他の波長の光の吸収率が可視領域の長波長側あるいは両脇に近づくに従い順次低く(透過率が順次高く)なる分光透過率特性を持っている。即ち、400〜500nm内の何れかの波長において、S偏光光に対する分光透過率分布における透過率の極小値が位置する。なお、偏光膜に係るS偏光光に対する分光透過率分布における透過率の極大値は、例えば780nmにある。 The polarizing film has the highest absorptance for S-polarized light having a wavelength within 400 to 500 nm (for example, 400 nm) (lowest transmittance), and the absorptance of light of other wavelengths is longer wavelength side or both sides of the visible region. It has a spectral transmittance characteristic that gradually decreases (transmittance increases sequentially) as it approaches. That is, the minimum value of the transmittance in the spectral transmittance distribution for S-polarized light is located at any wavelength within 400 to 500 nm. Note that the maximum value of the transmittance in the spectral transmittance distribution for the S-polarized light of the polarizing film is, for example, 780 nm.
一方、着色は、次の2〜3の段階により行った。まず、レッド染料による染色を行った。この染色は、吸収率が500〜550nm内の波長においてピークとなり、その両脇で順次小さくなる特性の分散染料を、溶剤に分散させた染色液に対して、表裏のレンズ基材をそれぞれ浸漬することで行った。 On the other hand, coloring was performed in the following steps 2-3. First, dyeing with a red dye was performed. In this dyeing, the front and back lens base materials are immersed in a dyeing solution in which a disperse dye having a characteristic that the absorption rate reaches a peak at a wavelength within a range of 500 to 550 nm and gradually decreases on both sides thereof is dispersed in a solvent. I went there.
次に、ブルー染料による染色を行った。この染色は、吸収率が600〜650nm内の波長においてピークとなり、その両脇の波長域においてそれぞれ順次小さくなる特性の分散染料を、溶剤に分散させた染色液に対して、表裏のレンズ基材をそれぞれ浸漬することで行った。 Next, dyeing with a blue dye was performed. This dyeing has a peak absorption at a wavelength in the range of 600 to 650 nm, and the front and back lens base materials are dispersed with respect to a dyeing liquid in which a disperse dye having a characteristic that gradually decreases in both wavelength ranges. Each was carried out by immersing.
続いて、適宜色調整を行った。色調整は、前2段階の染料濃度や浸漬時間等を様々に変えて行い、レンズ全体で、400〜450nm内の波長の光の透過率が最も小さく、650〜700nmにかけて順次透過率が高くなる分光透過率特性を得る目的で行った。即ち、400〜450nm内の何れかの波長において、S偏光光及びP偏光光に対する平均分光透過率分布における透過率の極小値が位置し、650〜700nm内の何れかの波長において、S偏光光及びP偏光光に対する平均分光透過率分布における透過率の極大値が位置する。 Subsequently, color adjustment was performed as appropriate. Color adjustment is performed by changing the dye concentration and immersion time in the previous two stages in various ways, and the entire lens has the smallest transmittance for light having a wavelength within 400 to 450 nm, and the transmittance gradually increases from 650 to 700 nm. The purpose was to obtain spectral transmittance characteristics. That is, the minimum value of the transmittance in the average spectral transmittance distribution for S-polarized light and P-polarized light is located at any wavelength within 400 to 450 nm, and S-polarized light at any wavelength within 650 to 700 nm. And the maximum value of the transmittance in the average spectral transmittance distribution for the P-polarized light is located.
これに対し、比較例2として、当該スキー用レンズと同寸で、同じ着色を施したものではあるが、偏光膜を有しない一体のブラウン系着色レンズを作成した。 On the other hand, as Comparative Example 2, an integral brown colored lens having the same size and the same color as the ski lens but having no polarizing film was prepared.
これら実施例2及び比較例2に対し、実施例1等と同様に視認性をそれぞれ確認した。ここで、風景は、実施例1と同様であるが、人工芝マットGに代えて真白に極めて近い白紙をほぼ同範囲において敷き詰めたものである。視認性の確認結果を次の[表2]に示す。 For these Example 2 and Comparative Example 2, the visibility was confirmed in the same manner as in Example 1 and the like. Here, the scenery is the same as in Example 1, but instead of the artificial turf mat G, white paper extremely close to pure white is laid out in almost the same range. The visibility confirmation results are shown in the following [Table 2].
比較例2では、ブラウンの着色により、影のかかった白い箱Xの側面Dが、真のグレーではなく茶色がかって捉えられている。即ち、B値(55)に比べ、G値が高くなっており(86)、R値が更に高くなっており(106)、茶色がかったグレーとして認識されている。又、雪を模した白紙の表面は、何れの値も高く白色として認識されるものの、比較的にR値とG値が高く(209,175)、B値は134と比較的に低くなっていて、若干黄みを帯びたようにも捉えられ、従来のイエローレンズにおける白色に対するコントラスト強調や眼の保護の効果と同様の効果の発揮につながっているようである。なお、コントラスト強調や眼の保護は、短波長側(青色側)のカットにより、雪面からの青い反射を抑え、又眼球への短波長光の入射を抑えることで行われるところ、ブラウンでもイエロー同様短波長側の透過率は低減される。 In Comparative Example 2, the side face D of the shaded white box X is captured as brown rather than true gray due to the coloring of brown. That is, the G value is higher than the B value (55) (86), the R value is further higher (106), and it is recognized as a brownish gray. Moreover, although the surface of the white paper simulating snow is recognized as white with high values, the R and G values are relatively high (209, 175), and the B value is relatively low at 134. It seems to be slightly yellowish, and seems to have led to the same effects as the contrast enhancement and eye protection effects of white in conventional yellow lenses. Note that contrast enhancement and eye protection are performed by cutting the short wavelength side (blue side) to suppress blue reflection from the snow surface and suppressing the incidence of short wavelength light on the eyeball. Similarly, the transmittance on the short wavelength side is reduced.
これに対し、実施例2では、箱Xの側面Dについては(R値,G値,B値)=(105,85,56)となっており、比較例1の(106,86,55)とさほど変わらない状況となっている。これは、箱Xの側面Dからの光がS偏光光のみならず偏光膜の影響を殆ど受けないP偏光光をも含み、かつ全体としてブラウンとなるように着色した影響はP偏光光にも及ぶことによる。又、白紙について、R値・G値は比較例1と変わらず(209,175)、B値が比較例1から大きく減少しており(126,比較例1から8減少)、より青みを抑えてコントラスト強調や眼の保護の効果を一層発揮させることができている。これは、主にS偏光光となる白紙表面からの反射光がイエローの偏光膜の影響を強く受けることによる。なお、偏光あるいは着色の極大値等の属する波長(範囲)が、実施例2に係る範囲から外れると、雪に対する視認性が比較的に良好ではなくなり、あるいは雪以外の見え方が比較的に自然でなくなる。 On the other hand, in Example 2, (R value, G value, B value) = (105, 85, 56) for the side surface D of the box X, which is (106, 86, 55) of Comparative Example 1. The situation is not so different. This includes not only the S-polarized light but also the P-polarized light that is hardly affected by the polarizing film, and the influence of the coloration so as to be brown as a whole also affects the P-polarized light. By reaching. Further, for the blank paper, the R value and G value are not different from those of Comparative Example 1 (209, 175), and the B value is greatly decreased from Comparative Example 1 (126, 8 decreased from Comparative Example 1), thereby suppressing the blueness more. Thus, the effects of contrast enhancement and eye protection can be further exhibited. This is mainly because the reflected light from the white paper surface, which is mainly S-polarized light, is strongly influenced by the yellow polarizing film. If the wavelength (range) to which the maximum value of polarization or coloring belongs is out of the range according to the second embodiment, the visibility with respect to snow is not relatively good, or the appearance other than snow is relatively natural. Not.
よって、実施例2のスキー用レンズにあっては、従来のブラウンレンズ(比較例2)と同等の全体視認性を有しながら、従来に比べ雪面を青みのより抑制された状態で視認することができるといえ、雪面とそれ以外の視認性をいずれも良好な状態で両立することが可能となっている。 Therefore, in the ski lens of Example 2, the snow surface is visually recognized in a state where the bluishness is suppressed more than the conventional one while having the same overall visibility as the conventional brown lens (Comparative Example 2). It can be said that both the snow surface and the other visibility can be achieved in good condition.
なお、スキー用レンズを(2枚)用いて、スキー用サングラス(スキー用眼鏡)を形成することができるし、スキー用レンズを1枚又は複数枚用いて、スキー用ゴーグル(スキー用眼鏡)を形成することができる。又、実施例2につきスキー用としているが、スノーボード用・スノートレッキング用・ウィンタースポーツ用・ウィンターアクティビティー用・砂浜用等の、白色の自然物を見る他の用途に用いて良い。 In addition, ski sunglasses (ski glasses) can be formed using (two) ski lenses, and ski goggles (ski glasses) using one or more ski lenses. Can be formed. Further, although it is used for skiing according to the second embodiment, it may be used for other purposes such as snowboarding, snow trekking, winter sports, winter activity, sandy beach, etc. for viewing white natural objects.
実施例3に係る光学製品として、ブルーの偏光膜を、これと合わせて全体としてグリーンとなるような着色を施したほぼ同じ広さの表裏のレンズ基材で挟んだ液晶モニタ用レンズを作成した。このような作成により、主として偏光膜及び着色の作用によるS偏光光の透過光(ブルー系)と、主として着色の作用によるP偏光光及びS偏光光を合わせた透過光とで(グリーン系)、色調が互いに異なることとなる。なお、ブルー系の偏光膜にイエロー系の着色を合わせると、全体としてグリーン系となる。 As an optical product according to Example 3, a lens for a liquid crystal monitor was prepared in which a blue polarizing film was sandwiched between front and back lens substrates of approximately the same size, which were colored together with the polarizing film. . With such a creation, transmitted light of S-polarized light mainly due to the polarizing film and coloring action (blue system) and transmitted light combining P-polarized light and S-polarized light mainly due to the coloring action (green system), The tone will be different from each other. Note that when a yellow-based coloring is combined with a blue-based polarizing film, the whole becomes a green-based film.
偏光膜は、600〜700nm内(例えば650nm)の波長のS偏光光に対する吸収率が最も高く(透過率が最も低く)、その他の波長の光の吸収率が可視領域の長波長側あるいは両脇に近づくに従い順次低く(透過率が順次高く)なる分光透過率特性を持っている。即ち、600〜700nm内の何れかの波長において、S偏光光に対する分光透過率分布における透過率の極小値が位置する。なお、S偏光光に対する分光透過率分布における透過率の極大値は、例えば、420nm、480nmの何れか、あるいはこれらの組合せとなる。 The polarizing film has the highest absorptance with respect to S-polarized light having a wavelength in the range of 600 to 700 nm (for example, 650 nm) (the transmittance is the lowest), and the absorptance of light of other wavelengths is on the long wavelength side or both sides of the visible region. It has a spectral transmittance characteristic that gradually decreases (transmittance increases sequentially) as it approaches. That is, the minimum value of the transmittance in the spectral transmittance distribution for S-polarized light is located at any wavelength within 600 to 700 nm. Note that the maximum value of the transmittance in the spectral transmittance distribution for the S-polarized light is, for example, either 420 nm or 480 nm, or a combination thereof.
一方、着色は、次のように行った。即ち、吸収率が350〜450nm内でピークとなり(透過率が最低となり)、500〜550nmまでの波長の光に対して吸収率が順次小さくなる(透過率が大きくなる)特性の分散染料を、溶剤に分散させた染色液に対して、表裏のレンズ基材をそれぞれ浸漬することで行った。即ち、可視領域(ここでは400〜800nm)では400〜450nm内の何れかの波長においてP偏光光及びS偏光光に対する平均分光透過率分布における透過率の極小値が位置し、500〜550nm内の何れかの波長において、P偏光光及びS偏光光に対する平均分光透過率分布における透過率の極大値が位置する。 On the other hand, coloring was performed as follows. That is, a disperse dye having a characteristic that the absorption rate becomes a peak within 350 to 450 nm (the transmittance becomes the lowest), and the absorption rate gradually decreases (the transmittance increases) with respect to light having a wavelength of 500 to 550 nm. This was performed by immersing the front and back lens base materials in the dyeing solution dispersed in the solvent. That is, in the visible region (here, 400 to 800 nm), the minimum value of the transmittance in the average spectral transmittance distribution for P-polarized light and S-polarized light is located at any wavelength within 400 to 450 nm, and within 500 to 550 nm. At any wavelength, the maximum value of transmittance in the average spectral transmittance distribution for P-polarized light and S-polarized light is located.
これに対し、比較例3として、当該液晶モニタ用レンズと同寸で、同じ偏光膜を用いたものではあるが、着色を施さない表裏レンズとした偏光レンズを作成した。 On the other hand, as Comparative Example 3, a polarizing lens having the same size as the liquid crystal monitor lens and using the same polarizing film was used as a front and back lens without coloring.
これら実施例3及び比較例3に対し、実施例1等と同様に視認性をそれぞれ確認した。ここで、風景は、図4に示すように、机上の液晶モニタ一体型パソコン(PC)の画面Mないし白色の筐体Cの全体が大きく収まるものとした。なお、画面Mにおいては、紫色の枠内に白色無地の画像が配置される状態で、表示がなされている。又、何れのレンズも装着しない場合(レンズなし)についても、同条件で撮像し、画像解析した。このような視認性の確認結果を、次の[表3]に示す。 For these Example 3 and Comparative Example 3, visibility was confirmed in the same manner as in Example 1 and the like. Here, as shown in FIG. 4, the scenery is such that the entire screen M or white casing C of the personal computer (PC) with a built-in liquid crystal monitor on the desk is large. Note that the screen M is displayed in a state in which a white plain image is arranged in a purple frame. In addition, even when no lens was attached (no lens), images were taken under the same conditions and analyzed. The results of such visibility confirmation are shown in [Table 3] below.
画面M部分のB値について、レンズなしに対し実施例3及び比較例3共に同程度大きくなっており、実施例3及び比較例3においてブルー偏光の効果が現れている。液晶モニタ(画面M)からの光は、その動作原理によりS偏光光となっているため、実施例3及び比較例3の偏光膜の影響を強く受ける。よって、実施例3及び比較例3においては、液晶モニタからの光を(軸方向の調整により)効率良く減光することができる。 About the B value of the screen M portion, both the example 3 and the comparative example 3 have the same magnitude as compared to the case without the lens, and the effect of blue polarization appears in the example 3 and the comparative example 3. Since the light from the liquid crystal monitor (screen M) is S-polarized light due to its operating principle, it is strongly influenced by the polarizing films of Example 3 and Comparative Example 3. Therefore, in Example 3 and Comparative Example 3, light from the liquid crystal monitor can be efficiently reduced (by adjusting in the axial direction).
一方、PC筐体Cについて、B値はレンズなしよりも比較例3の方が大きくなっているが、R値・G値はレンズなしと比較例3で変化がない。従って、比較例3では、S偏光光だけではなくP偏光光も含む白色についても青みがかって見える。これに対し、実施例3では、レンズなしよりもB値・R値・G値全てにおいて同程度だけ大きくなっている。従って、実施例3では、P偏光光も含む白色について色の見えの変化は少なく、画面以外の部分の色合いが自然となる。なお、偏光あるいは着色の極大値等の属する波長(範囲)が、実施例3に係る範囲から外れると、モニタ光の減光が比較的に十分ではなくなり、あるいはモニタ以外の見え方が比較的に自然でなくなる。 On the other hand, regarding the PC housing C, the B value is larger in the comparative example 3 than in the case without the lens, but the R value and the G value are unchanged between the case without the lens and the comparative example 3. Therefore, in Comparative Example 3, the white color including not only S-polarized light but also P-polarized light looks bluish. On the other hand, in Example 3, all of the B value, the R value, and the G value are larger by the same degree than those without the lens. Therefore, in Example 3, there is little change in the color appearance of white color including P-polarized light, and the color tone of portions other than the screen becomes natural. It should be noted that if the wavelength (range) to which the maximum value of polarization or coloring belongs is outside the range according to the third embodiment, the monitor light is not sufficiently dimmed, or the view other than the monitor is relatively invisible. It is not natural.
よって、実施例3の液晶モニタ用レンズにあっては、従来のPC用レンズ(比較例3)と同等のモニタ光の減光効果を得ながら、従来に比べ周辺の様子を色合いの変化のより少ない状態で視認することができるといえ、画面とそれ以外の視認性をいずれも良好な状態で両立することが可能となっている。 Therefore, in the liquid crystal monitor lens of Example 3, while the monitor light dimming effect equivalent to that of the conventional PC lens (Comparative Example 3) is obtained, the surrounding state is changed by the change in hue compared with the conventional lens. Although it can be visually recognized in a small state, both the screen and the other visibility can be compatible in a good state.
なお、液晶モニタ用レンズを(2枚)用いて、液晶モニタ用サングラス(液晶モニタ用眼鏡)を形成することができる。又、実施例3につき液晶モニタ用としているが、主にS偏光光を発する他のモニタ用等に用いて良い。 Note that liquid crystal monitor sunglasses (liquid crystal monitor glasses) can be formed using two liquid crystal monitor lenses. Further, although the liquid crystal monitor is used in the third embodiment, it may be used for other monitors that mainly emit S-polarized light.
C (PC)筐体(周辺の視認)
G (人工芝)マット(所定箇所の視認)
M 画面(所定箇所の視認)
X 箱(周辺の視認)
C (PC) housing (viewing the surroundings)
G (artificial turf) mat (visual recognition of a predetermined location)
M screen (visual recognition of a predetermined location)
X box (view around)
Claims (6)
当該分布の極大値と、P偏光光及びS偏光光に対する可視領域における分光透過率分布の平均の極大値が、互いに異なる波長又は互いに異なる波長範囲に属するように、着色が施されている
ことを特徴とする光学製品。 For a polarizing substrate that filters S-polarized light in a predetermined spectral transmittance distribution in the visible region (wavelength 400 nm or more and 800 nm or less) ,
Coloring is performed so that the maximum value of the distribution and the average maximum value of the spectral transmittance distribution in the visible region with respect to P-polarized light and S-polarized light belong to different wavelengths or different wavelength ranges. Features optical products.
ことを特徴とする請求項1に記載の光学製品。 The maximum value of the spectral transmittance distribution related to the S-polarized light is in the wavelength range of 400 nm to less than 550 nm, and the maximum value related to the average of the spectral transmittance distribution in the visible region with respect to the P-polarized light and the S-polarized light is 550 nm to 800 nm. The optical product according to claim 1, wherein the optical product is within the following wavelength range.
ことを特徴とする請求項1に記載の光学製品。 The maximum value of the spectral transmittance distribution related to the S-polarized light is in the wavelength range of 450 nm to less than 550 nm, and the maximum value related to the average of the spectral transmittance distribution in the visible region with respect to the P-polarized light and the S-polarized light is 650 nm to 700 nm. The optical product according to claim 1, wherein the optical product is in a range of less than a wavelength.
ことを特徴とする請求項1に記載の光学製品。 The maximum value of the spectral transmittance distribution related to S-polarized light is in the wavelength range of 400 nm to less than 500 nm, and the minimum value related to the average of the spectral transmittance distribution in the visible region for P-polarized light and S-polarized light is 400 nm to 450 nm. The optical product according to claim 1, wherein the optical product is in a range of less than a wavelength.
ことを特徴とする請求項1に記載の光学製品。 The minimum value of the spectral transmittance distribution related to the S-polarized light is in the wavelength range of 600 nm to less than 700 nm, and the maximum value related to the average of the spectral transmittance distribution in the visible region with respect to the P-polarized light and S-polarized light is 500 nm to 550 nm. The optical product according to claim 1, wherein the optical product is in a range of less than a wavelength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225136A JP5967795B2 (en) | 2011-10-12 | 2011-10-12 | Optical products and glasses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225136A JP5967795B2 (en) | 2011-10-12 | 2011-10-12 | Optical products and glasses |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013083892A JP2013083892A (en) | 2013-05-09 |
JP5967795B2 true JP5967795B2 (en) | 2016-08-10 |
Family
ID=48529119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011225136A Active JP5967795B2 (en) | 2011-10-12 | 2011-10-12 | Optical products and glasses |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5967795B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988002871A1 (en) * | 1986-10-16 | 1988-04-21 | Suntiger, Incorporated | Ultraviolet radiation and blue light blocking polarizing lens |
US5517356A (en) * | 1993-12-15 | 1996-05-14 | Corning Incorporated | Glass polarizer for visible light |
US5625427A (en) * | 1993-12-15 | 1997-04-29 | Corning Incorporated | Ophthalmic lens |
JP4220652B2 (en) * | 2000-05-02 | 2009-02-04 | 山本光学株式会社 | Manufacturing method of sunglasses, goggles or correction lenses |
US7468148B2 (en) * | 2005-10-24 | 2008-12-23 | Corning Incorporated | Visible polarizing glass and process |
US8654444B2 (en) * | 2008-11-19 | 2014-02-18 | 3M Innovative Properties Company | Polarization converting color combiner |
JP5985167B2 (en) * | 2011-06-02 | 2016-09-06 | 伊藤光学工業株式会社 | Anti-glare optical element |
-
2011
- 2011-10-12 JP JP2011225136A patent/JP5967795B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013083892A (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108474886B (en) | Optical filter with color enhancement | |
US7393100B2 (en) | Eyewear for viewing liquid crystal displays | |
JP6165749B2 (en) | Glasses with saturation enhancement | |
CA2890882C (en) | Tinted polarized lenses having selective frequency filtering | |
AU2011240610B2 (en) | Eyewear with chroma enhancement | |
US10895675B2 (en) | Chromatic polarization filtering that is input specific | |
US10371967B2 (en) | Predefined reflective appearance eyewear lens with balance chroma enhancement visual perception | |
US10437079B2 (en) | Predefined reflective appearance eyewear lens with neutral balance visual perception | |
CN106646917A (en) | Color-enhanced sun lenses, sun glasses and equipment, and manufacturing method thereof | |
JP5807237B2 (en) | Shade glasses | |
CN106772744A (en) | A kind of anti-blue light eyeglass of colour balance, glasses, equipment and its manufacture method | |
WO2020239104A1 (en) | Chroma-enhanced optical product and application thereof in field of lenses | |
TW202018337A (en) | Color vision correction filter and optical component | |
WO2017099800A1 (en) | Eyewear with reflective filters | |
US6561646B2 (en) | Viewing of an anaglyph with improved stereoscopic image perception | |
JP5967795B2 (en) | Optical products and glasses | |
CN208013559U (en) | A kind of augmented reality AR glasses | |
CN113168032B (en) | Optical article with specific color glare | |
CN103837922A (en) | Transparent optical element with dual light-polarizing effect | |
CN1858629B (en) | Telescope | |
CN114730030A (en) | Sunglasses with hyper-colour enhancement properties | |
CN206270612U (en) | A kind of Sunglasses lenses sun clips of color enhancement, sunglasses and equipment | |
CN203287634U (en) | Plano colored radiation-proof ultraviolet-proof filtering computer goggles | |
WO2024002916A1 (en) | Polarized lens with color enhancing properties | |
CN117501169A (en) | Ophthalmic article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5967795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |