WO2007029649A1 - Filter for display device - Google Patents

Filter for display device Download PDF

Info

Publication number
WO2007029649A1
WO2007029649A1 PCT/JP2006/317465 JP2006317465W WO2007029649A1 WO 2007029649 A1 WO2007029649 A1 WO 2007029649A1 JP 2006317465 W JP2006317465 W JP 2006317465W WO 2007029649 A1 WO2007029649 A1 WO 2007029649A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
display device
selective transmission
transmittance
display
Prior art date
Application number
PCT/JP2006/317465
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Ono
Shougo Nasu
Toshiyuki Aoyama
Masaru Odagiri
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007029649A1 publication Critical patent/WO2007029649A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • FIG. 12 is a side sectional view showing a state in which Tint glass is mounted on a plasma display panel as a conventional front filter. Tint glass has a certain transmittance over the entire visible light region. For example, if there is Tint glass 60 with a transmittance of 50% here, the display light 31B (blue), 31G (green), 31R (red) (with intensity L) from the plasma display panel 62 is Tint glass.
  • the present invention has been made in view of the above-mentioned problems of the prior art.
  • the present invention is based on indoor lighting that impairs the original light emission of a display image.
  • the object is to provide good contrast, light emission luminance, color purity, and image clarity even in the presence of external light.
  • a filter for a display device comprises a transparent support
  • a selectively permeable layer provided on at least one surface of the transparent support
  • the minimum value of the transmittance is preferably in the range of 0.01% to 30%.
  • the selective transmission layer may have a single-layer structure including two or more kinds of organic dyes or derivatives of organic dyes.
  • the selective transmission layer may have a sub-structure divided in units of pixels of red (R), green (G), and blue (B).
  • each of the substructures of R, G, and B may contain two or more kinds of organic dyes or organic dye derivatives.
  • the permselective layer may contain perylene and copper phthalocyanine as organic dyes.
  • the selective transmission layer further has a wavelength of 850 ⁇ ! ⁇ L It may have lOOnm infrared absorption function. Furthermore, the selective transmission layer further has a wavelength of 200 ⁇ ! It may have an ultraviolet absorption function of up to 380 nm.
  • an antireflection layer may be further provided on the surface on the viewer side.
  • an antiglare layer may be further provided on the surface on the viewer side.
  • a lenticular lens sheet and a Fresnel lens sheet are provided on opposite surfaces.
  • the display device filter according to the present invention can be used in a reflection type projection screen dedicated to a laser projector capable of color display.
  • the reflective projection screen dedicated to this laser projector has the display device filter on the viewer side,
  • the display device filter according to the present invention can be used for an EL display capable of color display.
  • This EL display uses the display device filter as an observer. Prepare on the side surface.
  • FIG. 1 is a side sectional view showing a state where the selective transmission filter 10 of the present invention is mounted on the front surface of the plasma display panel 20.
  • the selective transmission filter 10 is a structure in which a selective transmission layer 12 is formed on a filter substrate 11 and is fixed to the front surface of the plasma display panel 20 via an adhesive layer 13. Further, an antireflection layer 14 may be provided on the forefront.
  • the structure of the plasma display panel 20 is such that, for example, a plurality of rows of striped transparent display electrodes 22 are formed on a transparent front substrate 21 such as a glass substrate, and a scan electrode and a sustain electrode are paired. Furthermore, a front dielectric layer 23 is formed so as to cover these display electrode groups. Further, a protective layer may be provided on the front dielectric layer 23 (omitted in FIG. 1). In addition, on the rear substrate 28 arranged to face the front substrate 21, stripe-shaped address electrodes 27 are formed so as to be orthogonal to the display electrodes 22, and so as to cover these address electrodes 27. Thus, the dielectric layer 26 is formed.
  • a plurality of stripe barrier ribs 25 are provided in parallel with the address electrodes 27, and a phosphor layer 24 is provided on a side surface between the barrier ribs and on the surface of the dielectric layer 26.
  • the front substrate 21 and the rear substrate 28 are arranged opposite each other with a minute discharge space so that the display electrode 22 and the address electrode 27 are orthogonal to each other, and helium, neon, argon, and xenon are included in the discharge space. Of these, one or more kinds of mixtures are filled as a discharge gas, and the periphery is sealed.
  • the discharge space is partitioned into a plurality of stripe-shaped sections by the partition walls 25, and discharge cells are formed at the intersections of the display electrodes 22 and the address electrodes 27.
  • R, G, and B phosphor layers 24 are formed in different colors.
  • a write pulse is applied between the scan electrode (shown as the display electrode 22 in FIG. 1) and the address electrode 27 according to desired display data.
  • a periodic sustaining pulse that is alternately inverted is applied between the scan electrode and the sustain electrode, so that Sustain discharge is performed.
  • Electrons ionized by this discharge collide with discharge gas atoms and are excited to emit light.
  • the light emission of the discharge gas excites the phosphor in the discharge cell to generate visible light, and a predetermined display is performed.
  • the filter substrate 11 may support the layers formed on the upper and lower sides thereof, and may be made of a material having a high transmittance in the visible light region.
  • the transmittance in the visible light region is preferably 80% or more, and more preferably 85% or more. Furthermore, it is preferable that the adhesiveness with each layer formed up and down is excellent.
  • an inorganic compound such as glass, a transparent resin sheet, or the like can be used.
  • the glass base material is a force that can be used for various commercially available glass materials such as soda lime glass (blue plate), low expansion glass, non-alkali glass (NA), and quartz glass. It is not something.
  • the thickness can be set as appropriate in consideration of transparency, strength, etc., but is about 0.3mn! About 10 mm is preferable.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polystyrene, polyarylate, polycarbonate, polyethylene, polypropylene and other polyolefins, nylon 6 and other polyamides, polyimide and triacetyl cellulose and other cellulose-based resins, Fluorine resins such as polysulfone, polyethersulfone, polyetherketone, polyetherimide, polyoxyethylene, polyurethane, polytetrafluoroethylene, vinyl compounds such as polyvinyl chloride, polyacrylic acid, polyacrylic ester, poly Addition polymer of acrylonitrile, bur compound, polymethacrylic acid, polymethacrylic acid ester, polyvinylidene compound such as polyvinylidene, vinylidene fluoride Z trifluoro Forces including, but
  • these resin sheets may be in the form of a film as long as the main surface is smooth.
  • the thickness can be appropriately set in consideration of permeability, strength, etc. About 00 / zm is preferable.
  • the surface of the filter substrate 11 is preferably subjected to a surface treatment in order to improve the adhesion with each layer.
  • Surface treatment methods include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment, and ozone oxidation treatment.
  • the selective transmission layer 12 For the selective transmission layer 12, an organic dye (including an organic pigment or an organic dye) or an inorganic pigment having absorption in a specific wavelength region can be used. Further, in the permselective layer 12, at least one kind of organic dye or its derivative is fixed in a state in which the interaction is suppressed as much as possible, that is, in a non-association state. The action of fixing the organic dye derivative in a non-associated state in this way will be described below.
  • an organic dye exhibits a steep absorption spectrum in the liquid phase, but forms an association state due to interaction between molecules in the solid phase, and exhibits a broad absorption spectrum.
  • this is used for a front filter of a display device, even if the absorption maximum is in the desired wavelength region, the absorption at the bottom of the peak reduces the display light generated by the display device, causing a decrease in luminance. It was. Therefore, the selective transmission layer 12 according to the embodiment of the present invention suppresses the interaction as much as possible by immobilizing in the non-association state, and realizes the selective transmission in the above wavelength range.
  • a method of realizing the above-mentioned non-association state there is a method of introducing a substituent that becomes a steric hindrance in the binding state of the organic dye derivative.
  • a method for introducing a substituent that causes such steric hindrance into a derivative of an organic dye for example, there is a method of introducing an organic dye into a side chain of a linear polymer compound.
  • the linear polymer skeleton inhibits the association of dyes, and as a result, a steep absorption spectrum can be maintained.
  • the side chain of the dye is introduced by a synthesis method such as dehydration (such as esterification) or desalting (such as Friedel-Crafts reaction).
  • a synthesis method such as dehydration (such as esterification) or desalting (such as Friedel-Crafts reaction).
  • Another example of the permselective layer 12 is a method of introducing an alkyl group into the skeleton end of an organic dye. In this case, the alkyl group becomes a steric hindrance and inhibits the association of the organic dye, resulting in maintaining a steep absorption spectrum.
  • the alkyl group preferably has a chain length in the range of C to C in view of the effect as a steric hindrance and problems such as film-forming properties.
  • an organic color is used as another example of the selective transmission layer 12.
  • FIGS. 3 and 4 show the molecular structures of molecular unit A and molecular unit B, which are derivatives of the azobenzene molecule as two kinds of starting materials.
  • molecular unit A shown in FIG. 3 a hydrophobic hydrocarbon group is bonded to one branched end and a carboxylic acid group is bonded to the other end.
  • a second-generation molecular unit consisting of two molecular units A and one molecular unit B as shown in Fig. 5 by esterification with the carboxylic acid group of molecular unit A and the hydroxyl group of molecular unit B Produces.
  • a deprotection reaction generates a carboxylic acid group on the molecular unit B side as shown in FIG. 6 (third generation molecular unit).
  • the dendrimer structure in the present invention includes all structures having a structure in which at least one or more repeating unit units are repeated at least two or more stages, as in the above-described example.
  • the external shape may be various shapes as shown in (b) or (c) with respect to the core shown in (a) of FIG. Note that the synthesis method is not limited to the above-described example.
  • Examples of the organic dye used in the selective transmission layer 12 include polycyclic aromatic hydrocarbon compounds such as naphthalene, perylene, rubrene, anthracene, pyrene, naphthacene, and derivatives thereof. And heteroaromatic compounds such as coumarin, quinoline, oxadiazole, oral fin, Nile red, 4H-bila-lidene propanedi-tolyl, phenoxazone, quinacridone, and derivatives thereof, polymethines such as cyanine, oxol, azulenium, pyrylium, etc.
  • polycyclic aromatic hydrocarbon compounds such as naphthalene, perylene, rubrene, anthracene, pyrene, naphthacene, and derivatives thereof.
  • heteroaromatic compounds such as coumarin, quinoline, oxadiazole, oral fin, Nile red, 4H-bila-lidene propanedi-tolyl, phen
  • styryl compounds such as bis (diphenyl) biphenyl, borphyrin compounds such as chlorophyll, chelate metal complexes, chelate lanthanide complexes, phenolphthalein, malachite green, fluorescein, rhodamine B, rhodamine 6G, etc.
  • Xanthene compounds diketopyrrolopyrrole compounds, anthraquinone compounds, benzoquinone compounds, naphthoquinone compounds, benzidine compounds, bisazo compounds, phthalocyanine compounds, naphthalocyanine compounds , Dioxazine compounds, perylene compounds, irgazine compounds, triarylmethane compounds, indigo compounds, styryl compounds, spiropyran compounds, spiroxazine compounds, scyllium compounds, chrome compounds, and derivatives thereof. It is not limited to these. Furthermore, additives such as a binder resin and a dispersant may be mixed as necessary, such as chromaticity adjustment and viscosity adjustment.
  • oxide pigments, hydroxide pigments, sulfide pigments, silicate pigments, phosphate pigments, carbonate pigments, metals It may be a powder-based pigment, a carbon-based pigment or the like, or a mixed crystal thereof. Examples include, but are not limited to, complex oxides such as Zn, Ti, Ni, Bi, V, and Y.
  • the selective transmission layer 12 is formed by dispersing or dissolving the organic dye, or its derivative, additive, binder resin, etc. in an arbitrary organic solvent, and then ink jet.
  • Dating method spin coating method, screen printing method, bar coating method, and other known solvent casting methods can be used.
  • other film forming methods methods such as thermal transfer and pressure transfer, and vapor deposition methods may be used, but are not limited thereto.
  • FIGS. Figure 9 shows the spectral characteristics of a typical fluorescent lamp (three-wavelength fluorescent tube).
  • the fluorescent light has a peak of ⁇ near 440 nm, a G peak near 550 nm, and an R peak near 610 nm, while it also peaks around 490 nm between BG and 580 nm between GR.
  • FIG. 10 shows spectral characteristics of a general plasma display. Generally used for plasma displays, B and G phosphors have a broad emission spectrum. Because of the overlapping of the bottoms of both peaks, light emission can be seen around 490nm. That is, unnecessary light emission is a factor that lowers the color purity.
  • the selective transmission filter attached to the plasma display panel is provided with absorption bands near 490 nm and 580 nm, the light emitted from the plasma display panel can be transmitted efficiently.
  • the reflection of the wavelength component is suppressed, and the external light contrast is improved.
  • the maximum value of the transmittance around 530 nm (G light) sandwiched between the absorption bands around 490 ⁇ m and 580 nm is preferably in the range of 65% to 99%.
  • the maximum value of the transmittance is low, the display light having the power of the plasma display panel is attenuated, and the luminance is remarkably lowered.
  • the half-value width of the maximum peak of the transmittance is in the range of lOnm to 50 nm. When it is 10 nm or less, the amount of display light near 530 nm (G light) decreases, and when it is 50 nm or more, the color purity is significantly reduced. Furthermore, it is preferable that the maximum values of the three points including the maximum values of transmittance around 450 nm (B light) and 620 nm (R light) are within a range of 10%. When a difference of 10% or more occurs, the object color of the filter is markedly colored. Furthermore, it is preferable that the minimum value of the transmittance of the absorber near the absorption band near 490 nm and around 580 nm is in the range of 0.01% to 30%. When it exceeds 30%, the external light contrast is significantly reduced.
  • the contrast (LZR) in the bright place is 4 times that without the front filter and 2 times when the conventional front filter is used.
  • the brightness of the display device is doubled compared to the case of using a conventional front filter, and the color purity is improved because light emission other than RGB is selectively cut.
  • the absorption in the wavelength region includes perylene, and the absorption in the wavelength region between GR includes a combination of copper phthalocyanine.
  • FIG. 13 shows a transmission projection screen provided with the selective transmission filter 10 of the present invention.
  • This transmission type projection screen 40 is composed of a combination of a Fresnel lens sheet 42 and a lenticular sheet 41, and a selective transmission filter 10 similar to that of the first embodiment is disposed on the outermost surface on the observer side. And fixed via an adhesive layer 13. Since the external light 33 incident on the transmission projection staline is absorbed only in the wavelength region other than RGB by the selective transmission layer 12, reflection is suppressed (reflected light 34).
  • the display lights 31R, 31G, and 3IB from the projector are passed through the selective transmission layer 12 efficiently only by the RGB components, and are viewed by the observer as display lights 32R, 32G, and 32B. Therefore, it is possible to realize a display with good external light contrast without reducing the luminance of the display light. In addition, the color purity of the display is improved.
  • the permselective layer 12 is preferably a solid film.
  • FIG. 14 shows a screen for a laser projector provided with the selective transmission filter 10 of the present invention.
  • This screen for a laser projector is configured by combining a selective transmission filter 10 similar to that in Embodiment 1 with a reflective film 15 that reflects the laser with high efficiency, and is particularly suitable for color display applications using an RGB laser. Is suitable.
  • a reflective film 15 As the reflective film 15, a diffuse reflective film coated with an aluminum vapor deposition film or titanium oxide titanium can be used. Since the external light 33 incident on the laser projector screen is absorbed by the selective transmission layer 12 only in the wavelength region other than RGB, reflection is suppressed (reflected light 34).
  • the permselective layer 12 is preferably a solid film.
  • FIG. 15 is a side sectional view showing a state where the selective transmission filter of the present invention is mounted on the front surface of the plasma display panel.
  • the fourth embodiment is a modification of the first embodiment, and differs from the first embodiment in that the selective transmission layer 12 of the selective transmission filter 10a is color-coded for RGB.
  • the selective transmission layers 12R, 12G, and 12B are respectively arranged corresponding to the RGB light emitting cells of the plasma display panel 20.
  • the selective transmission layer 12R transmits only R light emission
  • the selective transmission layer 12G transmits only G light emission.
  • the selective transmission layer 12B transmits only B light emission.
  • the display light 31 from the plasma display panel 20 is visually recognized by the observer as the display light 32 with a high transmittance as in the first embodiment.
  • the external light 33 is absorbed by the selective transmission layer 12R in the wavelength region other than R, and the selective transmission layers 12G and 12B are also absorbed in the wavelength regions other than G and B by the reflected light per unit area. 34 is suppressed to about 1Z3 in the first embodiment, and as a result, the external light contrast is improved three times.
  • the selective transmission filter 10a may include a partition wall 16.
  • the partition wall 16 may be a black matrix.
  • an antireflection layer 14 or the like may be provided on the foreground on the viewer side.
  • FIG. 16 is a side sectional view showing a state where the selective transmission filter of the present invention is mounted on the front surface of a three-color juxtaposition type color EL display panel.
  • a selective transmission filter 10b similar to that in the first embodiment is fixed to the front surface of the EL display panel 50 via an adhesive layer 13.
  • the general structure of the EL display panel 50 is such that a plurality of transparent electrodes 52 are formed on a transparent front substrate 51 such as a glass substrate, and a hole transport layer 5 is formed on the transparent electrode 52. 3.
  • a light emitting layer 54 is sequentially laminated, and a metal electrode 55 is formed thereon.
  • the transparent electrode 52 may be connected to a switching element such as a thin film transistor (not shown in FIG. 16). This enables active driving, while determining a certain aperture ratio.
  • the display light 31 from the EL display panel 50 is visually recognized by the observer as the display light 32 with a high transmittance as in the first embodiment.
  • the external light 33 is absorbed only in the wavelength region other than RGB by the selective transmission layer 12, the reflected light 34 is suppressed. Therefore, it is possible to realize a display with good external light contrast without reducing the luminance of the display light.
  • the color purity of the display is improved.
  • an antireflection layer 14 or the like may be provided on the foreground on the viewer side.
  • FIG. 17 is a side sectional view showing a state in which the selective transmission filter of the present invention is mounted on the front surface of a three-color juxtaposition type color EL display panel.
  • the sixth embodiment is a modification of the fifth embodiment, and is different from the fifth embodiment in that the selective transmission layer 12 of the selective transmission filter 10b is color-coded for RGB.
  • the selective transmission filter 10c is substantially the same as the selective transmission filter 10b of the display device according to Embodiment 4, and detailed description thereof is omitted.
  • the display light 31 from the EL display panel 50 is visually recognized by the observer as the display light 32 with high transmittance as in the first embodiment.
  • the external light 33 is absorbed by the selective transmission layer 12R in the wavelength region other than R, and the selective transmission layers 12G and 12B are also absorbed in the wavelength region other than G and other than B, respectively.
  • the light 34 is suppressed to about 1Z3 in the fifth embodiment, and as a result, the external light contrast is improved about three times.
  • the filter for a display device is provided with a narrow band selective absorption band at around 490 nm and around 580 nm, so that the original light emission of the display device can be reduced without impairing the original light emission of the display image. Even in the presence of external light, etc., it is possible to achieve a good contrast display, achieving both high brightness and high external light contrast, and improving the color purity of the display device and the sharpness of the display image. can do. In particular, it is useful as a display device such as a television.
  • FIG. 1 is a side sectional view showing a state where a filter for a display device according to a first embodiment of the present invention is attached to the front surface of a plasma display.
  • FIG. 2 is a graph showing an example of the change in absorption spectrum when a substituent causing steric hindrance is introduced into a rhodamine dye.
  • FIG. 3 is a diagram showing the molecular structure of molecular unit A, which is a derivative of an azobenzene molecule.
  • FIG. 5 is a diagram showing the molecular structure of the second generation molecular unit.
  • FIG. 6 is a diagram showing the molecular structure of the third generation molecular unit.
  • FIG. 7 (a) is a conceptual diagram showing a core of a dendrimer structure, and (b) and (c) are conceptual diagrams showing an example of a dendrimer.
  • FIG. 8 is a spectral characteristic diagram showing an example of light transmittance of the filter for a display device of the present invention.
  • FIG. 9 is a spectral characteristic diagram showing an example of a fluorescent lamp.
  • FIG. 10 is a spectral characteristic diagram showing an example of light emission by the plasma display panel force.
  • FIG. 11 is a schematic view for explaining the operation of the filter for a display device of the present invention.
  • FIG. 12 is a side sectional view showing a conventional front filter for a plasma display.
  • FIG. 13 is a side sectional view showing a state in which a display device filter according to a second embodiment of the present invention is mounted on a transmission type projection screen.
  • FIG. 14 is a side cross-sectional view showing a state in which a filter for a display device according to a third embodiment of the present invention is attached to a reflection type process screen.
  • FIG. 15 is a side sectional view showing a state where a filter for a display device according to a fourth embodiment of the present invention is attached to the front surface of the plasma display.
  • FIG. 16 is a side sectional view showing a state in which a display device filter according to a fifth embodiment of the present invention is attached to the front surface of an EL display panel.
  • FIG. 17 is a side sectional view showing a state in which a display device filter according to a sixth embodiment of the present invention is attached to the front surface of an EL display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Optical Filters (AREA)

Abstract

A filter for a display device is provided with a transparent supporting body, and a selective transmitting layer arranged at least on one plane of the transparent supporting body. The selective transmitting layer has at least one minimum transmittance in each of wavelength ranges of 480nm-530nm and 570nm-600nm, and at least one maximum transmittance in a wavelength range of 530nm-570nm. The maximum transmittance is within a range of 65%-99% and a half-value width of a peak including the maximum transmittance is within a range of 10nm-50nm.

Description

明 細 書  Specification

表示装置用フィルタ  Filter for display device

技術分野  Technical field

[0001] 本発明は、表示装置用フィルタ及び表示装置用のスクリーンに関する。  [0001] The present invention relates to a filter for a display device and a screen for the display device.

背景技術  Background art

[0002] 近年、テレビジョン用、パーソナルコンピューター用の表示装置は、フラット化、薄型 ィ匕が進んで 、る。プラズマディスプレイを初めとするこれらのフラット型の表示装置で は、一般に室内照明等による外光が存在する明所においては暗所に比べコントラス トが悪くなる。これは、照明などからの外光によって表示面において外光反射が発生 し、この影響により、表示画像の黒部分の輝度が高くなりコントラストが低くなつてしま う。例えば、プラズマディスプレイの場合、表示面の蛍光体等が外光を反射し、表示 画像としての蛍光体からの発光に不必要な光が混在して色純度が低下する。  [0002] In recent years, display devices for televisions and personal computers have been flattened and thinned. In these flat display devices such as a plasma display, the contrast is generally worse in a bright place where there is external light due to room lighting or the like than in a dark place. This is because external light is reflected on the display surface due to external light from lighting, etc., and this influence increases the brightness of the black part of the display image and lowers the contrast. For example, in the case of a plasma display, the phosphor on the display surface reflects external light, and light unnecessary for light emission from the phosphor as a display image is mixed to reduce color purity.

[0003] 明所でのコントラストを改善するために、ある一定の透過率を持った前面フィルタに よって可視光線透過率を下げ、蛍光体における外光反射等の透過光を少なくする方 法がある (例えば、特許文献 1参照。 ) oこの原理を、図 12を用いて説明する。図 12 は、従来の前面フィルタとして Tintガラスをプラズマディスプレイパネルに装着した状 態を示す側断面図である。 Tintガラスは全可視光領域にぉ ヽてある一定の透過率を 有している。例えば、ここに透過率 50%の Tintガラス 60がある場合、プラズマデイス プレイパネル 62からの表示光 31B (青)、 31G (緑)、 31R (赤)(強度を Lとする)は、 Tintガラス 60を通って、強度比 50%の表示光 32B、 32G、 32Rとなる。一方、外光 3 3 (強度を Rとする)が蛍光体面に全反射すると仮定して、その反射光 34は、 Tintガラ ス 60を通って蛍光体表面に達し、反射して再び Tintガラス 60を裏側力 通過して、 観察者に視認される。その結果、反射光 34はもとの外光 33に対して強度比 25% (5 0% X 50%)となる。この Tintガラス 60によって下記式(1)に示すように、明所でのコ ントラスト(LZR)は Tintガラス 60がない場合の 2倍になるものの、可視光領域全体 の透過率を下げているために、発光輝度や画像の鮮明さが低下することになる。  [0003] In order to improve contrast in bright places, there is a method to reduce the visible light transmittance by using a front filter having a certain transmittance and reduce the transmitted light such as external light reflection in the phosphor. (For example, see Patent Document 1.) o This principle will be described with reference to FIG. FIG. 12 is a side sectional view showing a state in which Tint glass is mounted on a plasma display panel as a conventional front filter. Tint glass has a certain transmittance over the entire visible light region. For example, if there is Tint glass 60 with a transmittance of 50% here, the display light 31B (blue), 31G (green), 31R (red) (with intensity L) from the plasma display panel 62 is Tint glass. Through 60, display light 32B, 32G, 32R with an intensity ratio of 50% is obtained. On the other hand, assuming that the external light 3 3 (intensity is R) is totally reflected on the phosphor surface, the reflected light 34 passes through the Tint glass 60 and reaches the phosphor surface, and is reflected and reflected again. Passing through the backside force, it is visible to the observer. As a result, the reflected light 34 has an intensity ratio of 25% (50% × 50%) with respect to the original outside light 33. As shown in the following formula (1), the contrast (LZR) in the light place is double that of the Tint glass 60 without the Tint glass 60, but the transmittance of the entire visible light region is lowered. In addition, the light emission brightness and the sharpness of the image are reduced.

[0004] 0. 5L/0. 25R= 2L/R (1) [0005] 特許文献 1 :特開平 01— 307797号公報 [0004] 0.5L / 0.25R = 2L / R (1) Patent Document 1: Japanese Patent Application Laid-Open No. 01-307797

発明の開示  Disclosure of the invention

発明が解決しょうとする課題  Problems to be solved by the invention

[0006] 本発明は、上記従来技術の課題に鑑みなされたもので、プラズマディスプレイを始 めとするフラット型の表示装置用前面フィルタとして、表示画像本来の発光を損なうこ となぐ室内照明等による外光の存在下でも、良好なコントラスト、発光輝度、色純度 や画像の鮮明さを提供することを目的とする。 [0006] The present invention has been made in view of the above-mentioned problems of the prior art. As a front filter for a flat display device such as a plasma display, the present invention is based on indoor lighting that impairs the original light emission of a display image. The object is to provide good contrast, light emission luminance, color purity, and image clarity even in the presence of external light.

課題を解決するための手段  Means for solving the problem

[0007] 本発明に係る表示装置用フィルタは、透明支持体と、 [0007] A filter for a display device according to the present invention comprises a transparent support,

前記透明支持体の少なくとも一方の面に設けられた選択透過層と  A selectively permeable layer provided on at least one surface of the transparent support;

を備え、  With

前記選択透過層は、波長 480nm〜530nmの範囲と、波長 570nm〜600nmの 範囲とに、それぞれ少なくとも 1つの透過率の極小値を有すると共に、波長 530nm 〜570nmの範囲に少なくとも一つの透過率の極大値を有し、前記透過率の極大値 力 S65%〜99%の範囲内であって、且つ、前記透過率の極大値を含むピークの半値 幅が 10nm〜50nmの範囲内であることを特徴とする。  The selective transmission layer has at least one minimum transmittance in a wavelength range of 480 nm to 530 nm and a wavelength range of 570 nm to 600 nm, and at least one maximum transmittance in a wavelength range of 530 nm to 570 nm. And the maximum value of the transmittance is in the range of S65% to 99%, and the half width of the peak including the maximum value of the transmittance is in the range of 10 nm to 50 nm. And

[0008] なお、前記透過率の極小値は、 0. 01%〜30%の範囲内にあることが好ましい。  [0008] The minimum value of the transmittance is preferably in the range of 0.01% to 30%.

[0009] さらに、前記選択透過層は、波長 400nm〜480nmの範囲と、波長 600nm〜650 nmの範囲とに、それぞれ少なくとも 1つの透過率の極大値をさらに有し、それぞれの 前記透過率の極大値が 65%〜99%の範囲内であって、且つ、前記透過率の各極 大値における最大値と最小値との差が 10%の範囲内にあることが好ましい。  [0009] Further, the selective transmission layer further has at least one maximum value of transmittance in a wavelength range of 400 nm to 480 nm and a wavelength range of 600 nm to 650 nm, respectively, It is preferable that the value is in the range of 65% to 99%, and the difference between the maximum value and the minimum value in each maximum value of the transmittance is in the range of 10%.

[0010] また、前記選択透過層は、 2種類以上の有機色素、又は、有機色素の誘導体を含 む単層構造であってもよ 、。  [0010] The selective transmission layer may have a single-layer structure including two or more kinds of organic dyes or derivatives of organic dyes.

[0011] さらに、前記選択透過層は、赤 (R)、緑 (G)、青 (B)の各画素単位で区分けされた サブ構造を有してもよい。この場合、 R、 G、 Bの各々のサブ構造ごとに、 2種類以上 の有機色素、若しくは有機色素の誘導体を含んで 、てもよ 、。  [0011] Further, the selective transmission layer may have a sub-structure divided in units of pixels of red (R), green (G), and blue (B). In this case, each of the substructures of R, G, and B may contain two or more kinds of organic dyes or organic dye derivatives.

[0012] またさらに、前記選択透過層は、少なくとも一つの前記有機色素の誘導体が非会 合状態で固定化されていることを特徴とする。 [0013] また、前記選択透過層は、波長 480ηπ!〜 530nmの範囲、又は、波長 570ηπ!〜 6 OOnmの範囲の少なくとも一方に少なくとも 1つの透過率の極小値を有する有機色素 又は有機色素の誘導体を含むことを特徴とする。 [0012] Still further, the selective transmission layer is characterized in that at least one derivative of the organic dye is immobilized in a non-associated state. [0013] The selective transmission layer has a wavelength of 480ηπ! ~ 530nm range, or wavelength 570ηπ! It is characterized by containing an organic dye or a derivative of an organic dye having at least one minimum value of transmittance in at least one of the range of ˜6 OOnm.

[0014] なお、前記有機色素の誘導体は、結合状態における立体障害となる少なくとも一つ の置換基を有してもよい。また、前記有機色素の誘導体は、有機色素を核としたデン ドリマー構造を有してもよい。さらに、前記有機色素の誘導体は、直鎖状高分子化合 物の側鎖に有機色素を導入した構造を有してもよい。あるいは、前記有機色素の誘 導体は、有機色素に C 〜C のアルキル基を導入した構造を有してもよい。  [0014] The derivative of the organic dye may have at least one substituent that is sterically hindered in a bonded state. The derivative of the organic dye may have a dendrimer structure with the organic dye as a nucleus. Furthermore, the derivative of the organic dye may have a structure in which the organic dye is introduced into the side chain of the linear polymer compound. Alternatively, the organic dye derivative may have a structure in which a C to C alkyl group is introduced into the organic dye.

10 18  10 18

[0015] さらに、前記選択透過層は、有機色素としてペリレン及び銅フタロシアニンを含んで ちょい。  [0015] Further, the permselective layer may contain perylene and copper phthalocyanine as organic dyes.

[0016] また、前記選択透過層は、さらに波長 850ηπ!〜 l lOOnmの赤外線吸収機能を有 してもよい。さらに、前記選択透過層は、さらに波長 200ηπ!〜 380nmの紫外線吸収 機能を有してもよい。  [0016] The selective transmission layer further has a wavelength of 850ηπ! ~ L It may have lOOnm infrared absorption function. Furthermore, the selective transmission layer further has a wavelength of 200ηπ! It may have an ultraviolet absorption function of up to 380 nm.

[0017] またさらに、観察者側の面に、さらに反射防止層を備えてもよい。また、観察者側の 面に、さらに防眩層を備えてもよい。  [0017] Furthermore, an antireflection layer may be further provided on the surface on the viewer side. Further, an antiglare layer may be further provided on the surface on the viewer side.

[0018] また、本発明に係る前記表示装置用フィルタを様々な表示装置、例えば、カラー表 示可能な透過型プロジェクシヨンスクリーンに用いることができる。この透過型プロジェ クシヨンスクリーンは、観察者側の面に前記表示装置用フィルタと、 [0018] The display device filter according to the present invention can be used in various display devices, for example, a transmissive projection screen capable of color display. This transmission type projection screen has the display device filter on the viewer side surface,

対向する面にレンチキュラーレンズシート及びフレネルレンズシートと、 を備える。  A lenticular lens sheet and a Fresnel lens sheet are provided on opposite surfaces.

[0019] さらに、本発明に係る前記表示装置用フィルタをカラー表示可能なレーザープロジ エタター専用の反射型プロジェクシヨンスクリーンに用いることができる。このレーザー プロジェクター専用の反射型プロジェクシヨンスクリーンは、観察者側の面に前記表 示装置用フィルタと、  Furthermore, the display device filter according to the present invention can be used in a reflection type projection screen dedicated to a laser projector capable of color display. The reflective projection screen dedicated to this laser projector has the display device filter on the viewer side,

対向する面に反射膜と、  A reflective film on the opposite surface;

を備える。  Is provided.

[0020] またさらに、本発明に係る前記表示装置用フィルタをカラー表示可能な ELディスプ レイに用いることができる。この ELディスプレイは、前記表示装置用フィルタを観察者 側の面に備える。 Furthermore, the display device filter according to the present invention can be used for an EL display capable of color display. This EL display uses the display device filter as an observer. Prepare on the side surface.

発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION

[0021] 以下、本発明の実施の形態に係る表示装置用フィルタ及びスクリーンについて添 付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符 号を付している。  Hereinafter, a filter for a display device and a screen according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

[0022] (実施の形態 1)  [0022] (Embodiment 1)

本発明の実施の形態 1に係る表示装置について、図 1を用いて説明する。図 1は、 本発明の選択透過フィルタ 10をプラズマディスプレイパネル 20前面に装着した状態 を示す側断面図である。選択透過フィルタ 10は、フィルタ基材 11上に選択透過層 1 2を形成した構造体であり、プラズマディスプレイパネル 20の前面に接着層 13を介し て固定されている。さらに、最前面に反射防止層 14を設けていてもよい。  A display device according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a side sectional view showing a state where the selective transmission filter 10 of the present invention is mounted on the front surface of the plasma display panel 20. The selective transmission filter 10 is a structure in which a selective transmission layer 12 is formed on a filter substrate 11 and is fixed to the front surface of the plasma display panel 20 via an adhesive layer 13. Further, an antireflection layer 14 may be provided on the forefront.

[0023] プラズマディスプレイパネル 20の構造は、例えば、ガラス基板などの透明な前面基 板 21上に、スキャン電極とサスティン電極とで対をなすストライプ状の透明な表示電 極 22が複数列形成され、さらに、これら表示電極群を覆うようにして前面誘電体層 2 3が形成されている。さらに、前面誘電体層 23上に保護層があってもよい(図 1では 省略)。また、前面基板 21に対向して配置される背面基板 28上には、表示電極 22と 直交するように配設されたストライプ状のアドレス電極 27が形成され、さらに、これら アドレス電極 27を覆うようにして、誘電体層 26が形成されている。さらに、この誘電体 層 26上にはアドレス電極 27と並行に複数のストライプ上の隔壁 25が設けられ、この 隔壁間の側面と誘電体層 26の表面とに蛍光体層 24が設けられている。前面基板 21 と背面基板 28とは表示電極 22とアドレス電極 27とが直交するように、微小な放電空 間を挟んで対向配置されるとともに、放電空間内にヘリウム、ネオン、アルゴン、キセ ノンのうち、一種または複数種の混合物が放電ガスとして充填され、周囲が封止され る。この放電空間は、隔壁 25によって複数のストライプ状の区画に仕切られており、 表示電極 22とアドレス電極 27との交点が位置して 、る放電セルが形成される。各放 電セルには、 R、 G、 Bの蛍光体層 24がー色ずつ形成されている。このような構成の プラズマディスプレイパネル 20においては、所望の表示データに応じて、スキャン電 極(図 1では表示電極 22として示す)とアドレス電極 27との間に書き込みパルスを印 加することにより、両電極間でアドレス放電を行い、放電セルを選択した後、スキャン 電極とサスティン電極との間に、交互に反転する周期的な維持パルスを印加すること により、両電極間で維持放電を行う。この放電によって電離した電子が放電ガス原子 に衝突して励起し放電ガスが発光する。この放電ガスの発光が放電セル内の蛍光体 を励起し、可視光を発生させ、所定の表示が行われる。 [0023] The structure of the plasma display panel 20 is such that, for example, a plurality of rows of striped transparent display electrodes 22 are formed on a transparent front substrate 21 such as a glass substrate, and a scan electrode and a sustain electrode are paired. Furthermore, a front dielectric layer 23 is formed so as to cover these display electrode groups. Further, a protective layer may be provided on the front dielectric layer 23 (omitted in FIG. 1). In addition, on the rear substrate 28 arranged to face the front substrate 21, stripe-shaped address electrodes 27 are formed so as to be orthogonal to the display electrodes 22, and so as to cover these address electrodes 27. Thus, the dielectric layer 26 is formed. Further, on the dielectric layer 26, a plurality of stripe barrier ribs 25 are provided in parallel with the address electrodes 27, and a phosphor layer 24 is provided on a side surface between the barrier ribs and on the surface of the dielectric layer 26. . The front substrate 21 and the rear substrate 28 are arranged opposite each other with a minute discharge space so that the display electrode 22 and the address electrode 27 are orthogonal to each other, and helium, neon, argon, and xenon are included in the discharge space. Of these, one or more kinds of mixtures are filled as a discharge gas, and the periphery is sealed. The discharge space is partitioned into a plurality of stripe-shaped sections by the partition walls 25, and discharge cells are formed at the intersections of the display electrodes 22 and the address electrodes 27. In each discharge cell, R, G, and B phosphor layers 24 are formed in different colors. In the plasma display panel 20 having such a configuration, a write pulse is applied between the scan electrode (shown as the display electrode 22 in FIG. 1) and the address electrode 27 according to desired display data. By applying an address discharge between the two electrodes and selecting a discharge cell, a periodic sustaining pulse that is alternately inverted is applied between the scan electrode and the sustain electrode, so that Sustain discharge is performed. Electrons ionized by this discharge collide with discharge gas atoms and are excited to emit light. The light emission of the discharge gas excites the phosphor in the discharge cell to generate visible light, and a predetermined display is performed.

次に、選択透過フィルタ 10の各構成部材について詳細に説明する。  Next, each component of the selective transmission filter 10 will be described in detail.

まず、フィルタ基材 11について説明する。フィルタ基材 11は、その上下に形成する 各層を支持できるものであって、且つ可視光領域にぉ 、て透過性の高 、材質であれ ばよい。可視光領域の透過率は 80%以上であることが好ましぐさらに透過率 85% 以上であることが好ましい。さらには、その上下に形成する各層との密着性に優れて いることが好ましい。フィルタ基材 11としては、ガラス等の無機化合物や透明の榭脂 シート等を用いることができる。ガラス基材としては、ソーダライムガラス (青板)、低膨 張ガラス、ノンアルカリガラス (NA)、石英ガラス等の市販されている各種のガラス材 料力もなる基板が用いられる力 これらに限定されるものではない。その厚みは、透 過性、強度等を考慮して適宜設定することができるが、およそ 0. 3mn!〜 10mm程度 が好ましい。また、榭脂基材としては、ポリエチレンテレフタレート、ポリエチレンナフタ レート等のポリエステル、ポリスチレン、ポリアリレート、ポリカーボネート、ポリエチレン 、ポリプロピレン等のポリオレフイン、ナイロン 6等のポリアミド、ポリイミド、トリァセチル セルロース等のセルロース系榭脂、ポリスルホン、ポリエーテルスルホン、ポリエーテ ルケトン、ポリエーテルイミド、ポリオキシエチレン、ポリウレタン、ポリテトラフルォロェ チレン等のフッ素系榭脂、ポリ塩化ビニル等のビニル化合物、ポリアクリル酸、ポリア クリル酸エステル、ポリアクリロニトリル、ビュル化合物の付加重合体、ポリメタクリル酸 、ポリメタクリル酸エステル、ポリ塩ィ匕ビユリデン等のビ-リデンィ匕合物、フッ化ビ -リデ ン Zトリフルォロエチレン共重合体、エチレン Z酢酸ビュル共重体等のビニル化合物 又はフッ素系化合物の共重合体、ポリエチレンォキシド等のポリエーテル、エポキシ 榭脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる力 これらに限定 されるものではない。これらの榭脂シートは、主面が平滑であればフィルム状であって もよい。その厚みは、透過性、強度等を考慮して適宜設定することができるが、 5〜5 00 /z m程度が好ましい。またさらに、フィルタ基材 11の表面は、各層との接着性を向 上するために表面処理を施すことが好ましい。表面処理方法としては、薬品処理、機 械的処理、コロナ放電処理、火炎処理、紫外線照射処理、高周波処理、グロ一放電 処理、活性プラズマ処理、レーザー処理、混酸処理、およびオゾン酸化処理等があ る。 First, the filter substrate 11 will be described. The filter substrate 11 may support the layers formed on the upper and lower sides thereof, and may be made of a material having a high transmittance in the visible light region. The transmittance in the visible light region is preferably 80% or more, and more preferably 85% or more. Furthermore, it is preferable that the adhesiveness with each layer formed up and down is excellent. As the filter base 11, an inorganic compound such as glass, a transparent resin sheet, or the like can be used. The glass base material is a force that can be used for various commercially available glass materials such as soda lime glass (blue plate), low expansion glass, non-alkali glass (NA), and quartz glass. It is not something. The thickness can be set as appropriate in consideration of transparency, strength, etc., but is about 0.3mn! About 10 mm is preferable. In addition, as the resin base material, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polystyrene, polyarylate, polycarbonate, polyethylene, polypropylene and other polyolefins, nylon 6 and other polyamides, polyimide and triacetyl cellulose and other cellulose-based resins, Fluorine resins such as polysulfone, polyethersulfone, polyetherketone, polyetherimide, polyoxyethylene, polyurethane, polytetrafluoroethylene, vinyl compounds such as polyvinyl chloride, polyacrylic acid, polyacrylic ester, poly Addition polymer of acrylonitrile, bur compound, polymethacrylic acid, polymethacrylic acid ester, polyvinylidene compound such as polyvinylidene, vinylidene fluoride Z trifluoro Forces including, but are not limited to, vinyl compounds such as tyrene copolymers, ethylene Z butyl acetate copolymers, copolymers of fluorine compounds, polyethers such as polyethylene oxide, epoxy resins, polyvinyl alcohol, polyvinyl butyral, etc. It is not something. These resin sheets may be in the form of a film as long as the main surface is smooth. The thickness can be appropriately set in consideration of permeability, strength, etc. About 00 / zm is preferable. Furthermore, the surface of the filter substrate 11 is preferably subjected to a surface treatment in order to improve the adhesion with each layer. Surface treatment methods include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment, and ozone oxidation treatment. The

[0025] 次に、選択透過層 12について説明する。選択透過層 12には、特定の波長領域に 吸収を有する有機色素 (有機顔料または有機染料を含む)や無機顔料を用いること ができる。さらに、この選択透過層 12では、少なくとも一種類の有機色素又はその誘 導体をできるだけ相互作用が抑えられる状態、すなわち非会合状態で固定ィヒしてい る。このように有機色素の誘導体を非会合状態で固定ィ匕する作用につ 、て以下に説 明する。  Next, the selective transmission layer 12 will be described. For the selective transmission layer 12, an organic dye (including an organic pigment or an organic dye) or an inorganic pigment having absorption in a specific wavelength region can be used. Further, in the permselective layer 12, at least one kind of organic dye or its derivative is fixed in a state in which the interaction is suppressed as much as possible, that is, in a non-association state. The action of fixing the organic dye derivative in a non-associated state in this way will be described below.

[0026] 一般に有機色素は、液相では急峻な吸収スペクトルを示すのに対し、固相では分 子間の相互作用のために会合状態を形成し、ブロードな吸収スペクトルを示す。これ を表示装置の前面フィルタに使用した場合、吸収極大が所望の波長領域にあっても 、ピークの裾の吸収によって、表示装置力 発する表示光まで低減してしまい、輝度 の低下を引き起こす要因となっていた。そこで、本発明の実施の形態の選択透過層 12では、非会合状態で固定化することにより、できるだけ相互作用を抑え、上記の波 長範囲の選択透過性を実現して 1ヽる。  [0026] In general, an organic dye exhibits a steep absorption spectrum in the liquid phase, but forms an association state due to interaction between molecules in the solid phase, and exhibits a broad absorption spectrum. When this is used for a front filter of a display device, even if the absorption maximum is in the desired wavelength region, the absorption at the bottom of the peak reduces the display light generated by the display device, causing a decrease in luminance. It was. Therefore, the selective transmission layer 12 according to the embodiment of the present invention suppresses the interaction as much as possible by immobilizing in the non-association state, and realizes the selective transmission in the above wavelength range.

[0027] 上記の非会合状態を実現する方法としては、有機色素の誘導体の結合状態にお いて立体障害となる置換基を導入する方法がある。このような立体障害を引き起こす 置換基を有機色素の誘導体に導入する方法としては、例えば、直鎖状高分子化合 物の側鎖に有機色素を導入する方法がある。この場合、直鎖状の高分子骨格が色 素の会合を阻害し、結果として急峻な吸収スペクトルを維持することができる。  [0027] As a method of realizing the above-mentioned non-association state, there is a method of introducing a substituent that becomes a steric hindrance in the binding state of the organic dye derivative. As a method for introducing a substituent that causes such steric hindrance into a derivative of an organic dye, for example, there is a method of introducing an organic dye into a side chain of a linear polymer compound. In this case, the linear polymer skeleton inhibits the association of dyes, and as a result, a steep absorption spectrum can be maintained.

[0028] 図 2は、立体障害を引き起こす置換基を有機色素の誘導体に導入した場合の吸収 スペクトルの変化の一例を示すグラフである。図 2では、ローダミン系色素のフィルム 中での吸収スペクトル(実線)と、溶液中での吸収スペクトル (破線)と、ローダミン系色 素をコアに取り込んだデンドリマーを含むフィルムでの吸収スペクトル(点線)とを比較 のために挙げている。図 2から、デンドリマー構造の導入により液相の急峻な吸収ス ベクトルを維持して ヽることがわかる。 FIG. 2 is a graph showing an example of a change in absorption spectrum when a substituent causing steric hindrance is introduced into an organic dye derivative. Figure 2 shows the absorption spectrum of rhodamine dye in the film (solid line), the absorption spectrum in solution (broken line), and the absorption spectrum of the film containing dendrimer with rhodamine dye incorporated in the core (dotted line). Are listed for comparison. From Fig. 2, it can be seen that the introduction of the dendrimer structure causes a sharp absorption of the liquid phase. You can see that he keeps the vector.

[0029] 色素の側鎖導入は、脱水反応 (エステル化等)や脱塩反応 (フリーデルクラフツ反 応等)等による合成方法によってなされる。また、別例の選択透過層 12としては、有 機色素の骨格末端にアルキル基を導入する方法がある。この場合、アルキル基が立 体的障害となり、有機色素の会合を阻害して、結果として急峻な吸収スペクトルを維 持する。アルキル基は、立体的障害としての効果と成膜性等の問題から、その鎖長 はじ 〜C の範囲が好ましい。またさらに、別例の選択透過層 12としては、有機色 [0029] The side chain of the dye is introduced by a synthesis method such as dehydration (such as esterification) or desalting (such as Friedel-Crafts reaction). Another example of the permselective layer 12 is a method of introducing an alkyl group into the skeleton end of an organic dye. In this case, the alkyl group becomes a steric hindrance and inhibits the association of the organic dye, resulting in maintaining a steep absorption spectrum. The alkyl group preferably has a chain length in the range of C to C in view of the effect as a steric hindrance and problems such as film-forming properties. Furthermore, as another example of the selective transmission layer 12, an organic color is used.

10 18 10 18

素をコアとして高分子化合物によってデンドリマー構造を形成する方法がある。この 場合、高分子化合物が立体的障害となり、有機色素の会合を阻害する。  There is a method of forming a dendrimer structure with a polymer compound using elemental as a core. In this case, the polymer compound becomes a steric hindrance and inhibits association of organic dyes.

[0030] 次に、有機色素を核としたデンドリマー構造の合成方法の一例として、エステルイ匕 反応を繰り返し行う方法について図 3から図 6を用いて説明する。図 3及び図 4は、 2 種の開始材料としてのァゾベンゼン分子の誘導体である分子ユニット A及び分子ュ ニット Bの分子構造を示す図である。図 3に示す分子ユニット Aは、分岐している一方 の末端に疎水的な炭化水素基が結合しており、他方の末端にはカルボン酸基を有し ている。また、図 4に示す分子ユニット Bは、分岐している一方の末端には水酸基を有 しているが、他方の末端には保護基となる、例えば疎水的な炭化水素基が結合して V、る。分子ユニット Aのカルボン酸基と分子ユニット Bの水酸基とでエステル化反応さ せることにより、図 5に示すような分子ユニット Aが 2個、分子ユニット Bが 1個からなる 第 2世代の分子ユニットが生成する。次に、脱保護反応により、図 6に示すように分子 ユニット B側にカルボン酸基を生成する(第 3世代の分子ユニット)。このように各世代 分子ユニットと分子ユニット Bとの基本的な反応を繰り返すことで高次世代のデンドリ マー構造が形成される。本発明におけるデンドリマー構造とは、前述の一例のように 、少なくとも 1種以上の繰り返しユニット単位を少なくとも 2段以上繰り返した構造を有 するものを全て包含している。また、その外観形状も図 7の(a)に示すコアに対して (b )又は(c)に示すように多様な形状であってよい。なお、その合成方法については前 述の一例に限定されるものではない。  [0030] Next, as an example of a method for synthesizing a dendrimer structure using an organic dye as a nucleus, a method of repeatedly performing an esterification reaction will be described with reference to FIGS. 3 and 4 show the molecular structures of molecular unit A and molecular unit B, which are derivatives of the azobenzene molecule as two kinds of starting materials. In the molecular unit A shown in FIG. 3, a hydrophobic hydrocarbon group is bonded to one branched end and a carboxylic acid group is bonded to the other end. In addition, molecular unit B shown in FIG. 4 has a hydroxyl group at one branched end, but a protective group such as a hydrophobic hydrocarbon group is bonded to the other end. RU A second-generation molecular unit consisting of two molecular units A and one molecular unit B as shown in Fig. 5 by esterification with the carboxylic acid group of molecular unit A and the hydroxyl group of molecular unit B Produces. Next, a deprotection reaction generates a carboxylic acid group on the molecular unit B side as shown in FIG. 6 (third generation molecular unit). By repeating the basic reaction between each generation molecular unit and molecular unit B in this way, a high-generation dendrimer structure is formed. The dendrimer structure in the present invention includes all structures having a structure in which at least one or more repeating unit units are repeated at least two or more stages, as in the above-described example. Further, the external shape may be various shapes as shown in (b) or (c) with respect to the core shown in (a) of FIG. Note that the synthesis method is not limited to the above-described example.

[0031] 選択透過層 12で使用される有機色素としては、ナフタレン、ペリレン、ルブレン、ァ ントラセン、ピレン、ナフタセン等の多環芳香族炭化水素系化合物及びその誘導体 や、クマリン、キノリン、ォキサジァゾール、口フィン、ナイルレッド、 4H—ビラ-リデン プロパンジ-トリル、フエノキサゾン、キナクリドン等のへテロ芳香族系化合物及びそ の誘導体、シァニン、ォキソール、ァズレニウム、ピリリウム等のポリメチン系化合物、 ビス (ジフエ-ルビ-ル)ビフエ-ル等のスチリル系化合物、クロロフィル等のボルフ イリン系化合物、キレート金属錯体、キレートランタノイド錯体、フエノールフタレイン、 マラカイトグリーン、フルォレセイン、ローダミン B、ローダミン 6G等のキサンテン系化 合物、ジケトピロロピロール系化合物、アントラキノン系化合物、ベンゾキノン系化合 物、ナフトキノン系化合物、ベンジジン系化合物、ビスァゾ系化合物、フタロシアニン 系化合物、ナフタロシアニン系化合物、ジォキサジン系化合物、ペリレン系化合物、 ィルガジン系化合物、トリアリールメタン系、インジゴ系、スチリル系、スピロピラン系、 スピロォキサジン系、スクヮリリウム系、クロコ-ゥム系及びこれらの誘導体が挙げられ るが、特にこれらに限定されるものではない。さらに、色度調整、粘度調整等、必要に 応じてバインダ榭脂、分散剤等の添加剤を混合してもよ 、。 [0031] Examples of the organic dye used in the selective transmission layer 12 include polycyclic aromatic hydrocarbon compounds such as naphthalene, perylene, rubrene, anthracene, pyrene, naphthacene, and derivatives thereof. And heteroaromatic compounds such as coumarin, quinoline, oxadiazole, oral fin, Nile red, 4H-bila-lidene propanedi-tolyl, phenoxazone, quinacridone, and derivatives thereof, polymethines such as cyanine, oxol, azulenium, pyrylium, etc. Compounds, styryl compounds such as bis (diphenyl) biphenyl, borphyrin compounds such as chlorophyll, chelate metal complexes, chelate lanthanide complexes, phenolphthalein, malachite green, fluorescein, rhodamine B, rhodamine 6G, etc. Xanthene compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, benzoquinone compounds, naphthoquinone compounds, benzidine compounds, bisazo compounds, phthalocyanine compounds, naphthalocyanine compounds , Dioxazine compounds, perylene compounds, irgazine compounds, triarylmethane compounds, indigo compounds, styryl compounds, spiropyran compounds, spiroxazine compounds, scyllium compounds, chrome compounds, and derivatives thereof. It is not limited to these. Furthermore, additives such as a binder resin and a dispersant may be mixed as necessary, such as chromaticity adjustment and viscosity adjustment.

[0032] 一方、選択透過層 12で使用される無機顔料としては、酸化物系顔料、水酸化物系 顔料、硫化物系顔料、珪酸塩系顔料、燐酸塩系顔料、炭酸塩系顔料、金属粉系顔 料、炭素系顔料等であってよぐまた、これらの混晶であってよい。例えば、 Znや Ti、 Ni、 Bi、 V、 Y等の複合酸ィ匕物等があるが、これらに限定されない。  On the other hand, as the inorganic pigment used in the selective transmission layer 12, oxide pigments, hydroxide pigments, sulfide pigments, silicate pigments, phosphate pigments, carbonate pigments, metals It may be a powder-based pigment, a carbon-based pigment or the like, or a mixed crystal thereof. Examples include, but are not limited to, complex oxides such as Zn, Ti, Ni, Bi, V, and Y.

[0033] また、選択透過層 12の成膜方法としては、任意の有機溶媒等に前記有機色素、若 しくはその誘導体、添加剤、バインダ榭脂等を分散、若しくは溶解した後、インクジヱ ット法、デイツビング法、スピンコート法、スクリーン印刷法、バーコート法、その他公知 の溶剤キャスト法を使用することができる。また他の成膜方法として、熱転写、圧力転 写等の方法や、蒸着法等を用いてもよいが、これらに限定されない。  [0033] The selective transmission layer 12 is formed by dispersing or dissolving the organic dye, or its derivative, additive, binder resin, etc. in an arbitrary organic solvent, and then ink jet. , Dating method, spin coating method, screen printing method, bar coating method, and other known solvent casting methods can be used. Further, as other film forming methods, methods such as thermal transfer and pressure transfer, and vapor deposition methods may be used, but are not limited thereto.

[0034] 次に、本実施形態における選択透過フィルタの作用について、図 8から図 10を用 いて説明する。図 9は、一般的な蛍光灯 (三波長蛍光管)の分光特性である。蛍光灯 の光には、 440nm付近に Βのピーク力 550nm付近に Gのピークが、また、 610nm 付近に Rのピークがある一方で、 BG間の 490nm付近や GR間の 580nm付近にもピ ークがある。また、図 10は、一般的なプラズマディスプレイの分光特性である。一般 的にプラズマディスプレイ使用されて 、る B、 Gの蛍光体は発光スペクトルがブロード であり、両ピークの裾の重なりによって、 490nm付近にも発光が見られる。すなわち 不必要な発光が、色純度を下げる要因となっている。図 8に示すように、プラズマディ スプレイパネルに装着する選択透過フィルタに、 490nm付近と 580nm付近の吸収 帯を設けると、プラズマディスプレイパネルからの発光は効率的に通す力 外光がも たらす RGB以外の波長成分の反射は抑えられ、外光コントラストが向上する。 490η m付近と 580nm付近の吸収帯によって挟まれた 530nm付近(G光)の透過率の極 大値は 65%から 99%の範囲内が好ましい。この透過率の極大値が低いとプラズマ ディスプレイパネル力もの表示光が減衰されてしまい、輝度の低下が著しい。また、こ の透過率の極大ピークの半値幅が lOnmから 50nmの範囲内であることが好ましい。 10nm以下の場合、 530nm付近(G光)の表示光の光量が減少してしまい、 50nm 以上だと色純度の低下が著しい。またさらに、 450nm付近 (B光)と 620nm付近 (R 光)の透過率の極大値を含む 3点の極大値は 10%の範囲内にあることが好ましい。 1 0%以上の差が生じるとフィルタの物体色の色づきが著しい。またさらに、 490nm付 近の吸収帯 580nm付近の吸収体の透過率の極小値が 0. 01%から 30%の範囲内 にあることが好ましい。 30%以上になると、外光コントラストの低下が著しい。 Next, the operation of the selective transmission filter in this embodiment will be described with reference to FIGS. Figure 9 shows the spectral characteristics of a typical fluorescent lamp (three-wavelength fluorescent tube). The fluorescent light has a peak of 力 near 440 nm, a G peak near 550 nm, and an R peak near 610 nm, while it also peaks around 490 nm between BG and 580 nm between GR. There is FIG. 10 shows spectral characteristics of a general plasma display. Generally used for plasma displays, B and G phosphors have a broad emission spectrum. Because of the overlapping of the bottoms of both peaks, light emission can be seen around 490nm. That is, unnecessary light emission is a factor that lowers the color purity. As shown in Figure 8, if the selective transmission filter attached to the plasma display panel is provided with absorption bands near 490 nm and 580 nm, the light emitted from the plasma display panel can be transmitted efficiently. The reflection of the wavelength component is suppressed, and the external light contrast is improved. The maximum value of the transmittance around 530 nm (G light) sandwiched between the absorption bands around 490 η m and 580 nm is preferably in the range of 65% to 99%. When the maximum value of the transmittance is low, the display light having the power of the plasma display panel is attenuated, and the luminance is remarkably lowered. Moreover, it is preferable that the half-value width of the maximum peak of the transmittance is in the range of lOnm to 50 nm. When it is 10 nm or less, the amount of display light near 530 nm (G light) decreases, and when it is 50 nm or more, the color purity is significantly reduced. Furthermore, it is preferable that the maximum values of the three points including the maximum values of transmittance around 450 nm (B light) and 620 nm (R light) are within a range of 10%. When a difference of 10% or more occurs, the object color of the filter is markedly colored. Furthermore, it is preferable that the minimum value of the transmittance of the absorber near the absorption band near 490 nm and around 580 nm is in the range of 0.01% to 30%. When it exceeds 30%, the external light contrast is significantly reduced.

[0035] この作用について、図 11を用いてさらに詳細に説明する。ここでは便宜上、 RGBの 透過率が 100%、 BG間、 GR間の波長領域における吸収によって全透過率で 50% カットされるものとして説明する。プラズマディスプレイパネル 20からの表示光 31R、 3 1G、 31B (強度を Dとする)は、選択透過フィルタ 10を通っても吸収されないので、強 度比 100%の表示光 32となって出射される。一方、外光 33 (強度を Rする)では、プ ラズマディスプレイパネル 20の蛍光体面に全反射すると仮定して、反射光 34は、選 択透過フィルタ 10を 2度通過する際に光量が低下し、強度比 25% (50% X 50%)と なる。従って、下記式(2)に示すように、明所でのコントラスト (LZR)は前面フィルタ がない場合の 4倍、従来の前面フィルタを使用した場合の 2倍となる。その上、従来の 前面フィルタを使用した場合比べて、表示装置の輝度も 2倍となり、さらに RGB以外 の発光が選択的にカットされているため色純度も向上する。  [0035] This action will be described in more detail with reference to FIG. Here, for the sake of convenience, it is assumed that the RGB transmittance is 100%, and the total transmittance is cut by 50% due to absorption in the wavelength region between BG and GR. Display light 31R, 3 1G, 31B from the plasma display panel 20 (in which the intensity is D) is not absorbed even if it passes through the selective transmission filter 10, and is emitted as display light 32 with an intensity ratio of 100%. . On the other hand, it is assumed that the external light 33 (in which the intensity is R) is totally reflected by the phosphor surface of the plasma display panel 20, and the reflected light 34 is reduced in light amount when passing through the selective transmission filter 10 twice. The strength ratio is 25% (50% X 50%). Therefore, as shown in the following formula (2), the contrast (LZR) in the bright place is 4 times that without the front filter and 2 times when the conventional front filter is used. In addition, the brightness of the display device is doubled compared to the case of using a conventional front filter, and the color purity is improved because light emission other than RGB is selectively cut.

[0036] L/0. 25R=4L/R (2)  [0036] L / 0. 25R = 4L / R (2)

[0037] これらの作用を実現する選択透過層 12に用いる有機色素の一例としては、 BG間 の波長領域の吸収にはペリレン、 GR間の波長領域の吸収には銅フタロシアニンの 組合せが挙げられる。 [0037] As an example of the organic dye used in the selective transmission layer 12 that realizes these functions, The absorption in the wavelength region includes perylene, and the absorption in the wavelength region between GR includes a combination of copper phthalocyanine.

[0038] (実施の形態 2)  [0038] (Embodiment 2)

本発明の実施の形態 2に係る表示装置について、図 13を用いて説明する。図 13 は、本発明の選択透過フィルタ 10を備えた透過型プロジェクシヨン用スクリーンである 。この透過型プロジェクシヨン用スクリーン 40は、フレネルレンズシート 42とレンチキュ ラーシート 41との組み合わせにより構成されており、さらに観察者側の最外面に、実 施の形態 1と同様の選択透過フィルタ 10を配置し、接着層 13を介し固定している。こ の透過型プロジェクション用スタリーンに入射する外光 33は、選択透過層 12で RGB 以外の波長領域のみ吸収されるため、反射は抑えられる(反射光 34)。一方、プロジ エタターからの表示光 31R、 31G、 3 IBは、 RGB成分のみが選択透過層 12を効率 的に通過し、表示光 32R、 32G、 32Bとなって観察者に視認される。よって、表示光 の輝度を落とさず、外光コントラストの良好な表示が実現できる。さらに表示の色純度 も向上する。この場合の選択透過層 12はベタ膜であることが好ま 、。  A display device according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 13 shows a transmission projection screen provided with the selective transmission filter 10 of the present invention. This transmission type projection screen 40 is composed of a combination of a Fresnel lens sheet 42 and a lenticular sheet 41, and a selective transmission filter 10 similar to that of the first embodiment is disposed on the outermost surface on the observer side. And fixed via an adhesive layer 13. Since the external light 33 incident on the transmission projection staline is absorbed only in the wavelength region other than RGB by the selective transmission layer 12, reflection is suppressed (reflected light 34). On the other hand, the display lights 31R, 31G, and 3IB from the projector are passed through the selective transmission layer 12 efficiently only by the RGB components, and are viewed by the observer as display lights 32R, 32G, and 32B. Therefore, it is possible to realize a display with good external light contrast without reducing the luminance of the display light. In addition, the color purity of the display is improved. In this case, the permselective layer 12 is preferably a solid film.

[0039] (実施の形態 3)  [0039] (Embodiment 3)

本発明の実施の形態 3に係る表示装置について、図 14を用いて説明する。図 14 は、本発明の選択透過フィルタ 10を備えたレーザープロジェクター用スクリーンであ る。このレーザープロジェクター用スクリーンは、実施の形態 1と同様の選択透過フィ ルタ 10にレーザーを高効率で反射する反射膜 15との組み合わせにより構成されて おり、特に RGBのレーザーを用いたカラー表示用途に適している。反射膜 15として は、アルミニウム蒸着膜や酸ィ匕チタン等を塗布した拡散反射膜を用いることができる 。このレーザープロジェクター用スクリーンに入射した外光 33は、選択透過層 12で R GB以外の波長領域のみ吸収されるため、反射は抑えられる (反射光 34)。一方、レ 一ザ一プロジェクターからの表示光 31R、 31G、 3 IBは、 RGB成分のみが選択透過 層 12を効率的に通過し、反射膜 15で反射され、表示光 32R、 32G、 32Bとなって観 察者に視認される。よって、表示光の輝度を落とさず、外光コントラストの良好な表示 が実現できる。さらに表示の色純度も向上する。この場合の選択透過層 12はベタ膜 であることが好ましい。 [0040] (実施の形態 4) A display device according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 14 shows a screen for a laser projector provided with the selective transmission filter 10 of the present invention. This screen for a laser projector is configured by combining a selective transmission filter 10 similar to that in Embodiment 1 with a reflective film 15 that reflects the laser with high efficiency, and is particularly suitable for color display applications using an RGB laser. Is suitable. As the reflective film 15, a diffuse reflective film coated with an aluminum vapor deposition film or titanium oxide titanium can be used. Since the external light 33 incident on the laser projector screen is absorbed by the selective transmission layer 12 only in the wavelength region other than RGB, reflection is suppressed (reflected light 34). On the other hand, for the display lights 31R, 31G, and 3IB from the laser projector, only the RGB component efficiently passes through the selective transmission layer 12, is reflected by the reflective film 15, and becomes display lights 32R, 32G, and 32B. To be seen by the observer. Therefore, it is possible to realize a display with good external light contrast without reducing the luminance of the display light. Furthermore, the color purity of the display is improved. In this case, the permselective layer 12 is preferably a solid film. [0040] (Embodiment 4)

本発明の実施の形態 4に係る表示装置について、図 15を用いて説明する。図 15 は、本発明の選択透過フィルタをプラズマディスプレイパネル前面に装着した状態を 示す側断面図である。実施の形態 4は、実施の形態 1の変形例であって、実施の形 態 1とは選択透過フィルタ 10aの選択透過層 12が RGB用に色分けされている点で相 違する。選択透過層 12R、 12G、 12Bは、それぞれプラズマディスプレイパネル 20の RGB発光セルに対応して配置されており、選択透過層 12Rは R発光のみが透過、選 択透過層 12Gは G発光のみが透過、選択透過層 12Bは B発光のみが透過する。本 実施の形態によれば、プラズマディスプレイパネル 20からの表示光 31は、実施の形 態 1と同様に高い透過率で表示光 32として観察者に視認される。一方、外光 33は、 選択透過層 12Rで R以外の波長領域が吸収され、選択透過層 12G、 12Bについて もそれぞれ G以外、 B以外の波長領域が吸収されるため、単位面積あたりの反射光 3 4は、実施の形態 1の約 1Z3程度に抑えられ、結果として外光コントラストは 3倍向上 する。なお、選択透過フィルタ 10aには隔壁 16があってもよぐこの隔壁 16はブラック マトリックスであってもよい。これにより、選択透過層 12R、 12G、 12Bの混在防止とさ らなる外光コントラスト向上が実現できる。またさらに観察者側の最前面に反射防止 層 14などを設けてもよい。  A display device according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 15 is a side sectional view showing a state where the selective transmission filter of the present invention is mounted on the front surface of the plasma display panel. The fourth embodiment is a modification of the first embodiment, and differs from the first embodiment in that the selective transmission layer 12 of the selective transmission filter 10a is color-coded for RGB. The selective transmission layers 12R, 12G, and 12B are respectively arranged corresponding to the RGB light emitting cells of the plasma display panel 20. The selective transmission layer 12R transmits only R light emission, and the selective transmission layer 12G transmits only G light emission. The selective transmission layer 12B transmits only B light emission. According to the present embodiment, the display light 31 from the plasma display panel 20 is visually recognized by the observer as the display light 32 with a high transmittance as in the first embodiment. On the other hand, the external light 33 is absorbed by the selective transmission layer 12R in the wavelength region other than R, and the selective transmission layers 12G and 12B are also absorbed in the wavelength regions other than G and B by the reflected light per unit area. 34 is suppressed to about 1Z3 in the first embodiment, and as a result, the external light contrast is improved three times. The selective transmission filter 10a may include a partition wall 16. The partition wall 16 may be a black matrix. As a result, it is possible to prevent the mixture of the selective transmission layers 12R, 12G, and 12B and to further improve the external light contrast. Furthermore, an antireflection layer 14 or the like may be provided on the foreground on the viewer side.

[0041] 選択透過フィルタ 10aは、スパッタ法により金属多層膜をパターン形成する方法や 榭脂材料による塗布膜形成後フォトリソ法、エッチング法などによってパターン形成 することにより、透明のフィルタ基材 11上に隔壁 16を形成し、さらに各選択透過層 12 を形成することにより作成できる。  [0041] The selective transmission filter 10a is formed on the transparent filter substrate 11 by patterning a metal multilayer film by a sputtering method or by forming a pattern by a photolithographic method or an etching method after forming a coating film using a resin material. It can be formed by forming the partition wall 16 and further forming each selectively permeable layer 12.

[0042] (実施の形態 5)  [0042] (Embodiment 5)

本発明の実施の形態 5に係る表示装置について、図 16を用いて説明する。図 16 は、本発明の選択透過フィルタを 3色並置型のカラー ELディスプレイパネル前面に 装着した状態を示す側断面図である。この表示装置は、実施の形態 1と同様の選択 透過フィルタ 10bが ELディスプレイパネル 50の前面に接着層 13を介して固定されて いる。 ELディスプレイパネル 50の一般的な構造は、ガラス基板などの透明な前面基 板 51上に、透明電極 52が複数列形成され、さらに、透明電極 52上に正孔輸送層 5 3、発光層 54を順次積層し、その上に金属電極 55が形成されている。透明電極 52 は、薄膜トランジスタ等のスイッチング素子(図 16では省略)に接続されていてもよぐ これによつてアクティブ駆動が可能となる一方、一定の開口率が決定される。本実施 の形態によれば、 ELディスプレイパネル 50からの表示光 31は、実施の形態 1と同様 に高い透過率で表示光 32として観察者に視認される。一方で外光 33は、選択透過 層 12で RGB以外の波長領域のみ吸収されるため、反射光 34は抑えられる。よって、 表示光の輝度を落とさず、外光コントラストの良好な表示が実現できる。さらに表示の 色純度も向上する。またさらに観察者側の最前面に反射防止層 14などを設けてもよ い。 A display device according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 16 is a side sectional view showing a state where the selective transmission filter of the present invention is mounted on the front surface of a three-color juxtaposition type color EL display panel. In this display device, a selective transmission filter 10b similar to that in the first embodiment is fixed to the front surface of the EL display panel 50 via an adhesive layer 13. The general structure of the EL display panel 50 is such that a plurality of transparent electrodes 52 are formed on a transparent front substrate 51 such as a glass substrate, and a hole transport layer 5 is formed on the transparent electrode 52. 3. A light emitting layer 54 is sequentially laminated, and a metal electrode 55 is formed thereon. The transparent electrode 52 may be connected to a switching element such as a thin film transistor (not shown in FIG. 16). This enables active driving, while determining a certain aperture ratio. According to the present embodiment, the display light 31 from the EL display panel 50 is visually recognized by the observer as the display light 32 with a high transmittance as in the first embodiment. On the other hand, since the external light 33 is absorbed only in the wavelength region other than RGB by the selective transmission layer 12, the reflected light 34 is suppressed. Therefore, it is possible to realize a display with good external light contrast without reducing the luminance of the display light. In addition, the color purity of the display is improved. Furthermore, an antireflection layer 14 or the like may be provided on the foreground on the viewer side.

[0043] (実施の形態 6)  [0043] (Embodiment 6)

本発明の実施の形態 4に係る表示装置について、図 17を用いて説明する。図 17 は、本発明の選択透過フィルタを 3色並置型のカラー ELディスプレイパネル前面に 装着した状態を示す側断面図である。実施の形態 6は、実施の形態 5の変形例であ つて、実施の形態 5とは選択透過フィルタ 10bの選択透過層 12が RGB用に色分けさ れている点で相違する。この選択透過フィルタ 10cは、実施の形態 4に係る表示装置 の選択透過フィルタ 10bと実質的に同一であり、詳細の説明は省略する。本実施の 形態によれば、 ELディスプレイパネル 50からの表示光 31は、実施の形態 1と同様に 高い透過率で表示光 32として観察者に視認される。一方、外光 33は、選択透過層 1 2Rで R以外の波長領域が吸収され、選択透過層 12G、 12Bについてもそれぞれ G 以外、 B以外の波長領域が吸収されるため、単位面積あたりの反射光 34は、実施の 形態 5の約 1Z3程度に抑えられ、結果として外光コントラストは約 3倍向上する。  A display device according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 17 is a side sectional view showing a state in which the selective transmission filter of the present invention is mounted on the front surface of a three-color juxtaposition type color EL display panel. The sixth embodiment is a modification of the fifth embodiment, and is different from the fifth embodiment in that the selective transmission layer 12 of the selective transmission filter 10b is color-coded for RGB. The selective transmission filter 10c is substantially the same as the selective transmission filter 10b of the display device according to Embodiment 4, and detailed description thereof is omitted. According to the present embodiment, the display light 31 from the EL display panel 50 is visually recognized by the observer as the display light 32 with high transmittance as in the first embodiment. On the other hand, the external light 33 is absorbed by the selective transmission layer 12R in the wavelength region other than R, and the selective transmission layers 12G and 12B are also absorbed in the wavelength region other than G and other than B, respectively. The light 34 is suppressed to about 1Z3 in the fifth embodiment, and as a result, the external light contrast is improved about three times.

[0044] 尚、前述の各実施形態は一例を示したものであり、その構成は各実施形態の構成 に限定されるものではない。  Note that each of the above-described embodiments is an example, and the configuration is not limited to the configuration of each embodiment.

産業上の利用可能性  Industrial applicability

[0045] 本発明に係る表示装置用のフィルタは、 490nm付近と 580nm付近とに狭バンドの 選択的吸収帯を設けたことで、表示装置力もの表示画像本来の発光を損なわずに、 室内照明等による外光の存在下でも、良好なコントラストの表示を実現して、高輝度 と高外光コントラストを両立させ、且つ表示装置の色純度や表示画像の鮮明さを改善 することができる。特にテレビ等のディスプレイデバイスとして有用である。 [0045] The filter for a display device according to the present invention is provided with a narrow band selective absorption band at around 490 nm and around 580 nm, so that the original light emission of the display device can be reduced without impairing the original light emission of the display image. Even in the presence of external light, etc., it is possible to achieve a good contrast display, achieving both high brightness and high external light contrast, and improving the color purity of the display device and the sharpness of the display image. can do. In particular, it is useful as a display device such as a television.

図面の簡単な説明 Brief Description of Drawings

[図 1]本発明の第 1実施形態に係る表示装置用フィルタのプラズマディスプレイ前面 への装着状態を示す側断面図である。 FIG. 1 is a side sectional view showing a state where a filter for a display device according to a first embodiment of the present invention is attached to the front surface of a plasma display.

[図 2]立体障害を引き起こす置換基をローダミン系色素に導入した場合の吸収スぺク トルの変化の一例を示すグラフである。  FIG. 2 is a graph showing an example of the change in absorption spectrum when a substituent causing steric hindrance is introduced into a rhodamine dye.

[図 3]ァゾベンゼン分子の誘導体である分子ユニット Aの分子構造を示す図である。  FIG. 3 is a diagram showing the molecular structure of molecular unit A, which is a derivative of an azobenzene molecule.

[図 4]ァゾベンゼン分子の誘導体である分子ユニット Bの分子構造を示す図である。 FIG. 4 is a diagram showing the molecular structure of molecular unit B, which is a derivative of an azobenzene molecule.

[図 5]第 2世代の分子ユニットの分子構造を示す図である。 FIG. 5 is a diagram showing the molecular structure of the second generation molecular unit.

[図 6]第 3世代の分子ユニットの分子構造を示す図である。 FIG. 6 is a diagram showing the molecular structure of the third generation molecular unit.

[図 7] (a)はデンドリマー構造のコアを示す概念図であり、(b)及び (c)は、デンドリマ 一の例を示す概念図である。  [FIG. 7] (a) is a conceptual diagram showing a core of a dendrimer structure, and (b) and (c) are conceptual diagrams showing an example of a dendrimer.

[図 8]本発明の表示装置用フィルタの光線透過率の一例を示す分光特性図である。  FIG. 8 is a spectral characteristic diagram showing an example of light transmittance of the filter for a display device of the present invention.

[図 9]蛍光灯の一例を示す分光特性図である。 FIG. 9 is a spectral characteristic diagram showing an example of a fluorescent lamp.

[図 10]プラズマディスプレイパネル力ゝらの発光の一例を示す分光特性図である。  FIG. 10 is a spectral characteristic diagram showing an example of light emission by the plasma display panel force.

[図 11]本発明の表示装置用フィルタの作用を説明するための概略図である。  FIG. 11 is a schematic view for explaining the operation of the filter for a display device of the present invention.

[図 12]従来のプラズマディスプレイ用前面フィルタを示す側断面図である。  FIG. 12 is a side sectional view showing a conventional front filter for a plasma display.

[図 13]本発明の第 2実施形態に係る表示装置用フィルタの透過型プロジェクシヨンス クリーンへの装着状態を示す側断面図である。  FIG. 13 is a side sectional view showing a state in which a display device filter according to a second embodiment of the present invention is mounted on a transmission type projection screen.

[図 14]本発明の第 3実施形態に係る表示装置用フィルタの反射型プロジヱクシヨンス クリーンへの装着状態を示す側断面図である。  FIG. 14 is a side cross-sectional view showing a state in which a filter for a display device according to a third embodiment of the present invention is attached to a reflection type process screen.

[図 15]本発明の第 4実施形態に係る表示装置用フィルタのプラズマディスプレイ前面 への装着状態を示す側断面図である。  FIG. 15 is a side sectional view showing a state where a filter for a display device according to a fourth embodiment of the present invention is attached to the front surface of the plasma display.

[図 16]本発明の第 5実施形態に係る表示装置用フィルタの ELディスプレイパネル前 面への装着状態を示す側断面図である。  FIG. 16 is a side sectional view showing a state in which a display device filter according to a fifth embodiment of the present invention is attached to the front surface of an EL display panel.

[図 17]本発明の第 6実施形態に係る表示装置用フィルタの ELディスプレイパネル前 面への装着状態を示す側断面図である。  FIG. 17 is a side sectional view showing a state in which a display device filter according to a sixth embodiment of the present invention is attached to the front surface of an EL display panel.

符号の説明 10、 10a、 10b、 10c 選択透過フィルタ、 11 フィルタ基材、 12 選択透過層、 13 接着層、 14 反射防止 (AR)層、 15 反射膜、 16 隔壁、 20 プラズマディスプレイ パネル、 21 前面基板、 22 透明表示電極、 23 絶縁層、 24 蛍光体層、 25 隔壁 、 26 絶縁層、 27 アドレス電極、 28 背面基板、 31B、 31G、 31R 表示光、 32B、 32G、 32R 表示光、 33 外光、 34 反射光、 41 レンチキュラーレンズシート、 42 フレネルレンズシート、 50 ELディスプレイパネル、 51 透明基板、 52 透明電極、 53 正孔輸送層、 54 発光層、 55 金属電極、 60 Tintガラス、 62 プラズマデイス プレイノくネノレ Explanation of symbols 10, 10a, 10b, 10c Selective transmission filter, 11 Filter substrate, 12 Selective transmission layer, 13 Adhesive layer, 14 Anti-reflection (AR) layer, 15 Reflective film, 16 Bulkhead, 20 Plasma display panel, 21 Front substrate, 22 Transparent display electrode, 23 insulating layer, 24 phosphor layer, 25 barrier rib, 26 insulating layer, 27 address electrode, 28 back substrate, 31B, 31G, 31R display light, 32B, 32G, 32R display light, 33 external light, 34 reflection Light, 41 Lenticular lens sheet, 42 Fresnel lens sheet, 50 EL display panel, 51 Transparent substrate, 52 Transparent electrode, 53 Hole transport layer, 54 Light emitting layer, 55 Metal electrode, 60 Tint glass, 62 Plasma display plate

Claims

請求の範囲 The scope of the claims [1] 透明支持体と、  [1] a transparent support; 前記透明支持体の少なくとも一方の面に設けられた選択透過層と  A selectively permeable layer provided on at least one surface of the transparent support; を備え、  With 前記選択透過層は、波長 480nm〜530nmの範囲と、波長 570nm〜600nmの 範囲とに、それぞれ少なくとも 1つの透過率の極小値を有すると共に、波長 530nm 〜570nmの範囲に少なくとも一つの透過率の極大値を有し、前記透過率の極大値 力 S65%〜99%の範囲内であって、且つ、前記透過率の極大値を含むピークの半値 幅が 10nm〜50nmの範囲内であることを特徴とする表示装置用フィルタ。  The selective transmission layer has at least one minimum transmittance in a wavelength range of 480 nm to 530 nm and a wavelength range of 570 nm to 600 nm, and at least one maximum transmittance in a wavelength range of 530 nm to 570 nm. And the maximum value of the transmittance is in the range of S65% to 99%, and the half width of the peak including the maximum value of the transmittance is in the range of 10 nm to 50 nm. Filter for display device. [2] 前記透過率の極小値は、 0. 01%〜30%の範囲内にあることを特徴とする請求項 1に記載の表示装置用フィルタ。  [2] The filter for a display device according to [1], wherein the minimum value of the transmittance is in a range of 0.01% to 30%. [3] 前記選択透過層は、波長 400nm〜480nmの範囲と、波長 600nm〜650nmの 範囲とに、それぞれ少なくとも 1つの透過率の極大値をさらに有し、それぞれの前記 透過率の極大値が 65%〜99%の範囲内であって、且つ、前記透過率の各極大値 における最大値と最小値との差が 10%の範囲内にあることを特徴とする請求項 1又 は 2に記載の表示装置用フィルタ。  [3] The selective transmission layer further has at least one maximum value of transmittance in a wavelength range of 400 nm to 480 nm and a wavelength range of 600 nm to 650 nm, and each maximum value of the transmittance is 65. The range between% and 99%, and the difference between the maximum value and the minimum value at each maximum value of the transmittance is within a range of 10%. Filter for display devices. [4] 前記選択透過層は、 2種類以上の有機色素、又は、有機色素の誘導体を含む単 層構造であることを特徴とする請求項 1から 3のいずれか一項に記載の表示装置用フ イノレタ。  [4] The display device according to any one of claims 1 to 3, wherein the selective transmission layer has a single-layer structure including two or more kinds of organic dyes or derivatives of organic dyes. Fineleta. [5] 前記選択透過層は、赤 (R)、緑 (G)、青 (B)の各画素単位で区分けされたサブ構 造を有し、 R、 G、 Bの各々の前記サブ構造ごとに、 2種類以上の有機色素、若しくは 有機色素の誘導体を含んで 、ることを特徴とする請求項 1から 3の 、ずれか一項に 記載の表示装置用フィルタ。  [5] The selective transmission layer has a sub-structure divided in units of pixels of red (R), green (G), and blue (B), and each of the sub-structures of R, G, and B The display device filter according to any one of claims 1 to 3, further comprising two or more kinds of organic dyes or derivatives of organic dyes. [6] 前記選択透過層は、少なくとも一種類の前記有機色素の誘導体が非会合状態で 固定ィ匕されていることを特徴とする請求項 4又は 5に記載の表示装置用フィルタ。  6. The display device filter according to claim 4 or 5, wherein at least one kind of the organic dye derivative is fixed in a non-associated state in the selective transmission layer. [7] 前記選択透過層は、波長 480nm〜530nmの範囲、又は、波長 570nm〜600nm の範囲の少なくとも一方に少なくとも 1つの透過率の極小値を有する有機色素又は 有機色素の誘導体を含むことを特徴とする請求項 6に記載の表示装置用フィルタ。 [7] The selective transmission layer includes an organic dye or a derivative of an organic dye having a minimum value of at least one transmittance in a wavelength range of 480 nm to 530 nm or in a wavelength range of 570 nm to 600 nm. The display device filter according to claim 6. [8] 前記有機色素の誘導体は、結合状態における立体障害となる少なくとも一つの置 換基を有することを特徴とする請求項 6又は 7に記載の表示装置用フィルタ。 8. The filter for a display device according to claim 6, wherein the derivative of the organic dye has at least one substituent that becomes a steric hindrance in a bonded state. [9] 前記有機色素の誘導体は、有機色素を核としたデンドリマー構造を有することを特 徴とする請求項 4から 8のいずれか一項に記載の表示装置用フィルタ。 [9] The display device filter according to any one of [4] to [8], wherein the derivative of the organic dye has a dendrimer structure having the organic dye as a nucleus. [10] 前記有機色素の誘導体は、直鎖状高分子化合物の側鎖に有機色素を導入した構 造を有することを特徴とする請求項 4から 8のいずれか一項に記載の表示装置用フィ ルタ。 [10] The display device according to any one of [4] to [8], wherein the derivative of the organic dye has a structure in which the organic dye is introduced into a side chain of the linear polymer compound. Filter. [11] 前記有機色素の誘導体は、有機色素に C 〜C のアルキル基を導入した構造を  [11] The organic pigment derivative has a structure in which a C to C alkyl group is introduced into the organic pigment. 10 18  10 18 有することを特徴とする請求項 4力 8のいずれか一項に記載の表示装置用フィルタ  The filter for a display device according to any one of claims 4 to 8, characterized by comprising: [12] 前記選択透過層は、有機色素としてペリレン及び銅フタロシアニンを含むことを特 徴とする請求項 1から 11のいずれか一項に記載の表示装置用フィルタ。 [12] The filter for a display device according to any one of [1] to [11], wherein the selective transmission layer contains perylene and copper phthalocyanine as organic dyes. [13] 前記選択透過層は、さらに波長 850ηπ!〜 l lOOnmの赤外線吸収機能を有する請 求項 1から 11のいずれか一項に記載の表示装置用フィルタ。 [13] The selective transmission layer further has a wavelength of 850ηπ! The filter for a display device according to any one of claims 1 to 11, having an infrared absorption function of ~ l lOOnm. [14] 前記選択透過層は、さらに波長 200ηπ!〜 380nmの紫外線吸収機能を有する請 求項 1から 13のいずれか一項に記載の表示装置用フィルタ。 [14] The selective transmission layer further has a wavelength of 200ηπ! The filter for a display device according to any one of claims 1 to 13, having an ultraviolet absorption function of 380 nm. [15] 観察者側の面に、さらに反射防止層を備えたことを特徴とする請求項 1から 14のい ずれか一項に記載の表示装置用フィルタ。 [15] The filter for a display device according to any one of [1] to [14], further comprising an antireflection layer on the surface on the viewer side. [16] 観察者側の面に、さらに防眩層を備えたことを特徴とする請求項 1から 15のいずれ か一項に記載の表示装置用フィルタ。 [16] The filter for a display device according to any one of [1] to [15], further comprising an antiglare layer on the surface on the viewer side. [17] 観察者側の面に請求項 1から 16のいずれか一項に記載の前記表示装置用フィル タと、 [17] The filter for a display device according to any one of claims 1 to 16, on a surface on an observer side, 対向する面にレンチキュラーレンズシート及びフレネルレンズシートと、 を備えたカラー表示可能な透過型プロジェクシヨンスクリーン。  A transmissive projection screen capable of color display, comprising a lenticular lens sheet and a Fresnel lens sheet on opposite surfaces. [18] 観察者側の面に請求項 1から 16のいずれか一項に記載の前記表示装置用フィル タと、 [18] The display device filter according to any one of claims 1 to 16, on a viewer side surface; 対向する面に反射膜と、  A reflective film on the opposite surface; を備えたカラー表示可能なレーザープロジェクター専用の反射型プロジヱクシヨンス クリーン。 Reflective projector for color projectors with color display clean. 請求項 1から 16のいずれか一項に記載の前記表示装置用フィルタを観察者側の 面に備えたカラー表示可能な ELディスプレイ。  An EL display capable of color display, comprising the display device filter according to any one of claims 1 to 16 on a viewer-side surface.
PCT/JP2006/317465 2005-09-05 2006-09-04 Filter for display device WO2007029649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-256101 2005-09-05
JP2005256101 2005-09-05

Publications (1)

Publication Number Publication Date
WO2007029649A1 true WO2007029649A1 (en) 2007-03-15

Family

ID=37835768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317465 WO2007029649A1 (en) 2005-09-05 2006-09-04 Filter for display device

Country Status (1)

Country Link
WO (1) WO2007029649A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085245A1 (en) * 2007-12-28 2009-07-09 Alcatel-Lucent Usa Inc. A front projection screen, a method of constructing the same and a front projection system including the same
JP2009163197A (en) * 2008-01-09 2009-07-23 Samsung Sdi Co Ltd Display device
JP2011018554A (en) * 2009-07-09 2011-01-27 Casio Computer Co Ltd Display device
WO2012165050A1 (en) * 2011-06-02 2012-12-06 伊藤光学工業株式会社 Anti-glare optical element
US8421844B2 (en) 2010-08-13 2013-04-16 Alcatel Lucent Apparatus for correcting gaze, a method of videoconferencing and a system therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044824A (en) * 1998-07-28 2000-02-15 Idemitsu Kosan Co Ltd Color conversion film and organic electroluminescence device
JP2001267552A (en) * 2000-03-14 2001-09-28 Communication Research Laboratory Single electron tunneling device
JP2002090521A (en) * 2000-07-06 2002-03-27 Fuji Photo Film Co Ltd Optical filter
JP2002333517A (en) * 2001-05-09 2002-11-22 Mitsubishi Chemicals Corp Electronic display filter and electronic display device using the filter
JP2003337334A (en) * 2002-03-14 2003-11-28 Nitto Denko Corp Backlight and liquid crystal display device using the same
JP2003344648A (en) * 2002-05-22 2003-12-03 Canon Inc Trimming filter, optical system having the trimming filter, and optical display device
JP2005150087A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Organic EL device manufacturing method, organic EL device, and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044824A (en) * 1998-07-28 2000-02-15 Idemitsu Kosan Co Ltd Color conversion film and organic electroluminescence device
JP2001267552A (en) * 2000-03-14 2001-09-28 Communication Research Laboratory Single electron tunneling device
JP2002090521A (en) * 2000-07-06 2002-03-27 Fuji Photo Film Co Ltd Optical filter
JP2002333517A (en) * 2001-05-09 2002-11-22 Mitsubishi Chemicals Corp Electronic display filter and electronic display device using the filter
JP2003337334A (en) * 2002-03-14 2003-11-28 Nitto Denko Corp Backlight and liquid crystal display device using the same
JP2003344648A (en) * 2002-05-22 2003-12-03 Canon Inc Trimming filter, optical system having the trimming filter, and optical display device
JP2005150087A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Organic EL device manufacturing method, organic EL device, and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085245A1 (en) * 2007-12-28 2009-07-09 Alcatel-Lucent Usa Inc. A front projection screen, a method of constructing the same and a front projection system including the same
JP2009163197A (en) * 2008-01-09 2009-07-23 Samsung Sdi Co Ltd Display device
JP2011018554A (en) * 2009-07-09 2011-01-27 Casio Computer Co Ltd Display device
US8421844B2 (en) 2010-08-13 2013-04-16 Alcatel Lucent Apparatus for correcting gaze, a method of videoconferencing and a system therefor
WO2012165050A1 (en) * 2011-06-02 2012-12-06 伊藤光学工業株式会社 Anti-glare optical element

Similar Documents

Publication Publication Date Title
JP5306451B2 (en) Organic electroluminescence display device
TWI365006B (en) Green light-emitting microcavity oled
JP3946671B2 (en) Image display device based on photon emission suppression element and image display method using the same
WO2007029649A1 (en) Filter for display device
JP2004006308A (en) Plasma display panel using carbon nanotubes and method for manufacturing front panel thereof
JP2008108706A (en) Display device
WO2012063864A1 (en) Light emitting element and display device
JP6552100B2 (en) Organic electroluminescent device
WO2013039027A1 (en) Display apparatus, electronic device, and illumination apparatus
JPH05205643A (en) Plasma display panel
US8675150B2 (en) Lighting device for liquid crystal screen
KR20030030084A (en) ORGANIC ELECTRO LuMINESCENCE DEVICE AND FABRICATING METHOD THEREOF
JP2006228677A (en) Polychromatic light emitting device
KR100800502B1 (en) Manufacturing method of plasma display panel and plasma display panel
US20090200915A1 (en) Method light emitting device with a eu(iii)-activated phosphor and second phosphor
JP2004070094A (en) Contrast increasing device
JPH11238464A (en) Plasma display panel
JP2005135739A (en) Plasma display device and manufacturing method thereof
JP2000294148A (en) Plasma display panel
JP2001215886A (en) Plasma display panel
TW591244B (en) Color changeable pixel
JP4971767B2 (en) Plasma display device
JP4560316B2 (en) Display device
US20070116897A1 (en) Liquid crystal display apparatus
JP5023458B2 (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP