WO2014155680A1 - 電圧測定装置 - Google Patents

電圧測定装置 Download PDF

Info

Publication number
WO2014155680A1
WO2014155680A1 PCT/JP2013/059559 JP2013059559W WO2014155680A1 WO 2014155680 A1 WO2014155680 A1 WO 2014155680A1 JP 2013059559 W JP2013059559 W JP 2013059559W WO 2014155680 A1 WO2014155680 A1 WO 2014155680A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switch
voltage
electrode
voltage measurement
Prior art date
Application number
PCT/JP2013/059559
Other languages
English (en)
French (fr)
Inventor
健郎 鈴木
茂彦 松田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020157022763A priority Critical patent/KR20150110717A/ko
Priority to CN201380075019.6A priority patent/CN105051549B/zh
Priority to JP2015507876A priority patent/JP6172264B2/ja
Priority to PCT/JP2013/059559 priority patent/WO2014155680A1/ja
Priority to US14/768,064 priority patent/US20150377928A1/en
Priority to TW102121876A priority patent/TWI490505B/zh
Publication of WO2014155680A1 publication Critical patent/WO2014155680A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only

Definitions

  • the present invention relates to a voltage measurement device.
  • a voltage measurement apparatus provided with a detection electrode, first to fourth variable capacitance elements, and a voltage generation circuit.
  • the detection electrode capacitively couples with the object to be measured.
  • the capacitance of each variable capacitive element changes so that the product of the impedances of the first variable capacitive element and the third variable capacitive element and the product of the respective impedances of the second variable capacitive element and the fourth variable capacitive element are equal.
  • the voltage generation circuit generates a voltage such that the current flowing from the detection electrode to the ground via the junction between the second variable capacitance element and the fourth variable capacitance element is zero.
  • the voltage is taken as the voltage to be measured. According to the voltage measuring device, the voltage can be measured contactlessly with respect to the object to be measured (see, for example, Patent Document 1).
  • This invention was made in order to solve the above-mentioned subject,
  • the objective is to provide the voltage measuring apparatus which can measure a DC voltage non-contactingly with respect to a measuring object.
  • a voltage measurement device comprises a dielectric provided to be able to face a conductor to be measured, an electrode provided on the dielectric, and a potential of the electrode when connected to the electrode.
  • a capacitor holding a potential correlated to one-to-one, and the electrode and the capacitor can be connected, and when the connection between the electrode and the capacitor is disconnected, the voltage across the capacitor can be output.
  • a switch provided as described above.
  • the direct current voltage can be measured in a noncontact manner with respect to the measurement object.
  • Embodiment 1 of this invention It is a circuit diagram of the voltage measuring device in Embodiment 1 of this invention. It is a figure of the voltage measurement circuit of the voltage measurement apparatus in Embodiment 1 of this invention. It is a figure of the equivalent circuit containing the voltage measurement apparatus in Embodiment 1 of this invention. It is a circuit diagram of the voltage measuring device in Embodiment 2 of this invention. It is a circuit diagram of the voltage measuring device in Embodiment 4 of this invention. It is a circuit diagram of the voltage measuring device in Embodiment 5 of this invention. It is a circuit diagram of the voltage measuring device in Embodiment 7 of this invention.
  • FIG. 1 is a circuit diagram of a voltage measurement device according to a first embodiment of the present invention.
  • a conductor 1 to be measured is a wire of an electronic control device or the like that controls an electronic device.
  • the conductor 1 is a control power supply line of the electronic control unit, a control signal line, an earth line or the like.
  • the voltage measurement apparatus includes a dielectric 2, an electrode 3, a capacitor 4, a switch 5, a switch 6, a signal common 7, and a voltage measurement circuit 8.
  • the dielectric 2 is provided to face the conductor 1.
  • the electrode 3 is connected to the dielectric 2.
  • the electrode 3 is not in contact with the conductor 1 because the electrode 3 is interposed between the conductor 1 and the dielectric 2.
  • the capacitor 4 has a capacitance Ca.
  • One of the front end sides of the switch 5 is connected to the electrode 3.
  • the rear end side of the switch 5 is connected to the front end side of the capacitor 4.
  • the front end side of the switch 6 is connected to the rear end side of the capacitor 4.
  • the signal common 7 is connected to one of the rear end sides of the switch 6.
  • the voltage measurement circuit 8 includes a differential amplifier or the like.
  • One of the front ends of the voltage measurement circuit 8 is connected to the other of the front ends of the switch 5.
  • the other of the front end sides of the voltage measurement circuit 8 is connected to the other of the rear end sides of the switch 6.
  • the conductor 1 When the conductor 1 has the potential V, the conductor 1, the dielectric 2 and the electrode 3 function as a capacitor 9.
  • the capacitor 9 has a capacitance C.
  • the front end of the switch 5 is turned to the electrode 3 side.
  • the rear end of the switch 6 is turned to the signal common 7 side.
  • the potential V of the conductor 1 is divided by a circuit formed between the capacitor 9 and the signal common 7.
  • the potentials of the capacitors 4 and 9 are divided by the ratio of the capacitance C to the capacitance Ca . That is, the potentials of the capacitors 4 and 9 have a one-to-one correlation with the potential V of the conductor 1.
  • the capacitor 4 When the capacitor 4 holds a part of the voltage division as the potential Va, the front end of the switch 5 is turned to the voltage measurement circuit 8 side. At the same time, the rear end of the switch 6 is turned to the voltage measurement circuit 8 side. At this time, the capacitor 4 discharges the charge toward the voltage measurement circuit 8.
  • the voltage measurement circuit 8 measures the potential Va based on the charge.
  • the voltage measurement circuit 8 calculates the potential V of the conductor 1 based on the potential Va.
  • the change of the potential Va is determined according to the input impedance of the time constant Ca * of the voltage measurement circuit 8. For example, as shown in FIG. 1, when using a differential amplifier for the voltage measurement circuit 8, the input impedance becomes high. In this case, the change in the potential Va is small.
  • FIG. 2 is a diagram of a voltage measurement circuit of the voltage measurement device according to the first embodiment of the present invention.
  • the voltage measurement circuit 8 includes a differential amplifier 8a, a switch 8b, a hold capacitor 8c, and a buffer amplifier 8d.
  • One of the front ends of the differential amplifier 8 a is connected to the other of the front ends of the switch 5.
  • the other on the front end side of the differential amplifier 8 a is connected to the other on the rear end side of the switch 6.
  • the front end side of the switch 8b is connected to the rear end side of the differential amplifier 8a.
  • the front end side of the hold capacitor 8c is connected to the rear end side of the switch 8b.
  • the rear end side of the hold capacitor 8 c is connected to the common of the voltage measurement circuit 8.
  • the front end side of the buffer amplifier 8d is connected to the rear end side of the switch 8b.
  • the switch 8b is closed after the front end of the switch 5 and the rear end of the switch 6 are simultaneously turned to the voltage measurement circuit 8 side.
  • the buffer amplifier 8d outputs the potential Va at the rear end of the differential amplifier 8a.
  • the hold capacitor 8c holds the potential Va at the rear end of the differential amplifier 8a.
  • the switch 8b is opened.
  • the buffer amplifier 8d outputs the potential Va held by the hold capacitor 8c. That is, the output of the buffer amplifier 8d will not be indefinite.
  • the front end of the switch 5 is connected to the electrode 3 side.
  • the rear end of the switch 6 is turned to the signal common 7 side.
  • FIG. 3 is a diagram of an equivalent circuit including the voltage measurement device according to the first embodiment of the present invention.
  • R ′ is the impedance of the circuit of the measuring object 10.
  • C ′ is the capacitance of the capacitor 11 obtained by combining the capacitor 4 and the capacitor 9.
  • r is the impedance of the line resistor 12;
  • V is an output potential of a voltage generation source such as a DC power supply having a voltage regulator, a logic element which outputs a digital signal, and the like.
  • the impedance Z is r + R '/ (1 + j ⁇ R'C'). That is, the output potential V is affected by the load of the circuit to be measured 10 and the capacitor 11.
  • the front end of the switch 5 is turned to the electrode 3 side.
  • the rear end of the switch 6 is connected to the signal common 7 side. This state continues only for time t1.
  • the capacitors 4 and 9 store charge.
  • the front end of the switch 5 is turned to the voltage measurement circuit 8 side.
  • the rear end of the switch 6 is turned to the voltage measurement circuit 8 side. This state continues only for time t2.
  • the voltage measurement circuit 8 measures the output potential Va.
  • the interval between the charge storage and the measurement of the output potential Va is set at time t3. That is, during the time t3, the front end of the switch 5 and the rear end of the switch 6 are continuously opened for the time t3.
  • time t1 and time t2 are set sufficiently shorter than time t3. Therefore, the output potential Va can be handled as direct current microscopically. That is, the change in output potential Va is small.
  • time t3 may be ten or more ns and time t1 and time t2 may be several ns or less.
  • the capacitance C ' is about several pF, the voltage measuring device has sufficient measurement performance.
  • the capacitor 4 holds the potential V correlated with the potential V of the conductor 1 in a one-to-one manner. After disconnecting the connection between the capacitor 4 and the capacitor 9, the potential Va of the capacitor 4 is measured. At this time, it is not necessary to consider the impedance of the measurement circuit. Therefore, frequency-independent voltage measurement can be performed without contact. That is, the direct current voltage can be measured without contact with the conductor 1.
  • the measured potential is not a continuous value. At this time, the resolution of the measured potential is determined by the operating speed of the switches 5, 6, 8b. A response speed of several tens of MHz required for noise measurement can provide sufficient response performance even when measuring an AC voltage.
  • shielding may be performed between the conductor 1 and the electrode 3. That is, the conductor 1 may be surrounded by another conductor or the like in a sufficient area. In this case, the influence from the surrounding electric field is suppressed. As a result, the electric field generated from the potential V of the conductor 1 can be accurately received by the electrode 3.
  • the value of the potential Va held by the capacitor 4 may be read directly by an AD converter (not shown).
  • AD converter it is not necessary to perform AD conversion when the switch 5 is turned to the electrode 3 side and the switch 6 is turned to the signal common 7 side at the same time. Also in this case, the output of the buffer amplifier 8d does not become unstable.
  • FIG. 4 is a circuit diagram of a voltage measurement device according to a second embodiment of the present invention.
  • the same or corresponding portions as in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • the simplest voltage measurement circuit 13 is used.
  • the switch 6 is not used. That is, the rear end of the capacitor 4 is directly connected to the signal common 7.
  • the common 14 of the voltage measurement circuit 13 is the same as the signal common 7.
  • the potential of the common 14 is obtained by bringing a voltage measuring device into contact.
  • the switch 5 is turned to the electrode 3 side. In this case, a series circuit of the capacitor 4 and the capacitor 9 is formed. At this time, the potential Va of the capacitor 4 is VC / (C + Ca). Thereafter, the switch 5 is turned to the voltage measurement circuit 13 side. In this case, the voltage measurement circuit 13 measures the potential Va of the capacitor 4.
  • the capacitance C is a fixed value.
  • the voltage measurement circuit 13 uniquely calculates Va (1 + Ca / C) as the potential V of the conductor 1.
  • the switch 6 is not used. That is, when the measurement situation does not change, the potential V of the conductor 1 can be uniquely determined by the simple voltage measurement circuit 13.
  • the voltage measurement device of the third embodiment is substantially the same as the voltage measurement device of the second embodiment.
  • the same or corresponding portions as in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • dielectric 2 and electrode 3 are formed sufficiently large.
  • the capacitance C becomes sufficiently larger than the capacitance Ca.
  • Va (1 + Ca / C) is approximately equal to Va. That is, the potential V of the conductor 1 is substantially equal to the potential Va of the capacitor 4.
  • the capacitance C is sufficiently larger than the capacitance Ca. For this reason, unlike the second embodiment, even when the measurement condition changes, the measurement error of the potential V of the conductor 1 can be made smaller than a preset value.
  • the capacitance C and the capacitance Ca affect the voltage itself of the measurement target by the load of the measurement target. Therefore, for example, when observing the DC power supply voltage of the electronic device, it can be considered that the electrostatic capacitance C and the electrostatic capacitance Ca are sufficiently small compared to the smoothing capacitor on the output side of the DC power supply.
  • the capacitance C may be increased.
  • FIG. 5 is a circuit diagram of a voltage measurement device according to a fourth embodiment of the present invention.
  • the same or corresponding portions as in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the circuit between the electrode 3 and the voltage measurement circuit 13 is different from the circuit of the second embodiment. Specifically, a switch 15, a switch 16, a capacitor 17, a switch 18, a capacitor 19, and a switch 20 are provided between the electrode 3 and the voltage measurement circuit 13.
  • the front end side of the switch 15 is connected to the rear end side of the electrode 3.
  • One of the front end sides of the switch 16 is connected to one of the rear end sides of the switch 15.
  • the capacitor 17 has a capacitance Ca.
  • the front end side of the capacitor 17 is connected to the rear end side of the switch 16.
  • the rear end side of the capacitor 17 is connected to the signal common 7.
  • One of the front end sides of the switch 18 is connected to the other of the rear end sides of the switch 15.
  • the capacitor 19 has a capacitance Cb.
  • the front end side of the capacitor 19 is connected to the rear end side of the switch 18.
  • the rear end side of the capacitor 19 is connected to the signal common 7.
  • One of the front end sides of the switch 20 is connected to the other of the front end sides of the switch 16.
  • the other of the front end side of the switch 20 is connected to the other of the front end side of the switch 18.
  • the rear end side of the switch 20 is connected to the front end side of the voltage measurement circuit 13.
  • the potential Va of the capacitor 17 is VC / (C + Ca).
  • the potential Vb of the capacitor 19 is VC / (C + Cb).
  • the voltage measurement circuit 13 erases the electrostatic capacitance C from the potential Va of the capacitor 17 and the potential Vb of the capacitor 19. That is, the voltage measurement circuit 13 calculates Va (1 + Ca (Vb ⁇ Va) / (Va ⁇ Ca ⁇ Vb ⁇ Cb) as the potential V of the conductor 1.
  • the potential V of the conductor 1 is calculated without including the capacitance C. Therefore, even if the capacitance C of the capacitor 9 changes or becomes unstable, the potential V of the conductor 1 is accurately calculated. That is, unlike the second embodiment, even when the measurement condition changes, the potential V of the conductor 1 can be accurately measured.
  • FIG. 6 is a circuit diagram of a voltage measurement device according to a fifth embodiment of the present invention.
  • the same or corresponding portions as in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • the voltage measurement device of the fifth embodiment measures the potential of the conductor 21 of the signal common without contact. Specifically, the voltage measurement device of the fifth embodiment is obtained by adding the dielectric 22 and the electrode 23 to the voltage measurement device of the first embodiment.
  • the dielectric 22 is provided to face the conductor 21.
  • the electrode 23 is connected to the dielectric 22.
  • the electrode 23 is not in contact with the conductor 21 because the electrode 21 and the dielectric 22 are interposed.
  • the front end side of the electrode 23 is connected to the other of the rear end side of the switch 6.
  • the conductor 1, the dielectric 2 and the electrode 3 function as a capacitor 9.
  • the capacitor 9 has a capacitance C1.
  • the conductor 21, the dielectric 22 and the electrode 23 function as a capacitor 24.
  • the capacitor 24 has a capacitance C2.
  • the potential of the conductor 1 is Vp.
  • the potential of the conductor 21 is Vg.
  • the switch 5 is turned to the electrode 3 side.
  • the switch 6 is turned to the electrode 23 side.
  • the impedance between the potential Vp and the potential Vg is 1 / ( ⁇ C1) + 1 / ( ⁇ Ca) + 1 / ( ⁇ C2).
  • the current flowing through the capacitor 4 is (Vp ⁇ Vg) / (1 / ( ⁇ C1) + 1 / ( ⁇ Ca) + 1 / ( ⁇ C2)).
  • the voltage Va across the capacitor 4 is ((Vp ⁇ Vg) / (1 / ( ⁇ C1) + 1 / ( ⁇ Ca) + 1 / ( ⁇ C2))) (1 / j ⁇ Ca).
  • the end-to-end voltage Va is reduced to (Vp ⁇ Vg) ⁇ (1 / j ⁇ Ca) / (1 / j ⁇ C1 + 1 / j ⁇ Ca + 1 / j ⁇ C2).
  • the end-to-end voltage Va is reduced to (Vp ⁇ Vg) / (Ca / C1 + 1 + Ca / C2). That is, the voltage Va at both ends does not depend on the frequency.
  • the switch 5 is turned to the voltage measurement circuit 8 side.
  • the switch 6 is turned to the voltage measurement circuit 8 side.
  • the voltage measurement circuit 8 measures the voltage Va across the capacitor 4.
  • the voltage measurement circuit 8 calculates Va (Ca / C1 + 1 + Ca / C2) as the potential difference (Vp ⁇ Vg) to be measured.
  • the dielectric 22 and the electrode 23 are also provided on the signal common side. For this reason, the potential Vg of the conductor 21 on the signal common side can also be measured without contact.
  • the voltage measurement device of the sixth embodiment is substantially equivalent to the voltage measurement device of the fifth embodiment.
  • the same or corresponding portions as those of the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • dielectric 2 and electrode 3 are formed sufficiently large.
  • the dielectric 22 and the electrode 23 are formed sufficiently large.
  • the capacitance C1 and the capacitance C2 become sufficiently larger than the capacitance Ca.
  • the potential difference (Vp ⁇ Vg) to be measured is substantially equal to the potential Va of the capacitor 4.
  • the capacitance C1 and the capacitance C2 are sufficiently larger than the capacitance Ca. Therefore, as in the third embodiment, even when the measurement condition changes, the measurement error of the potential difference (Vp ⁇ Vg) to be measured can be made smaller than the preset value.
  • the electrostatic capacitance C1, the electrostatic capacitance C2, and the electrostatic capacitance Ca affect the voltage itself to be measured by the load to be measured. Therefore, for example, in a case where the DC power supply voltage of the electronic device is observed or the like, the capacitance C and the capacitance Ca can be considered to be sufficiently small compared to the smoothing capacitor on the output side of the DC power supply.
  • the capacitance C1 and the capacitance C2 may be increased.
  • FIG. 7 is a circuit diagram of a voltage measuring device in a seventh embodiment of the present invention.
  • the same or corresponding portions as in the fourth embodiment and the fifth embodiment are denoted by the same reference numerals, and the description will be omitted.
  • the voltage measurement device of the seventh embodiment is a combination of the features of the voltage measurement device of the fourth embodiment and the features of the voltage measurement device of the fifth embodiment.
  • a switch 25, a switch 26, a switch 27, a switch 28, and a switch 29 are provided.
  • One of the front end sides of the switch 25 is connected to one of the rear end sides of the switch 15.
  • the other of the front end side of the switch 25 is connected to the front end side of the voltage measurement circuit 8.
  • the rear end side of the switch 25 is connected to the front end side of the capacitor 17.
  • the front end side of the switch 26 is connected to the rear end side of the capacitor 17.
  • the other of the rear end side of the switch 26 is connected to the front end side of the voltage measurement circuit 8.
  • One of the front end sides of the switch 27 is connected to the other of the rear end sides of the switch 15.
  • the other of the front end side of the switch 27 is connected to the front end side of the voltage measurement circuit 8.
  • the rear end side of the switch 27 is connected to the front end side of the capacitor 19.
  • the front end side of the switch 28 is connected to the rear end side of the capacitor 19.
  • the other of the rear end sides of the switch 28 is connected to the front end side of the voltage measurement circuit 8.
  • One of the front end sides of the switch 29 is connected to one of the rear end sides of the switch 26.
  • the other of the front end sides of the switches 29 is connected to one of the rear end sides of the switches 28.
  • the rear end side of the switch 29 is connected to the front end side of the electrode 23.
  • the switch 15 is turned to the switch 25 side.
  • the switch 25 is turned to the switch 15 side.
  • the switch 26 is turned to the switch 29 side.
  • the switch 29 is turned to the switch 26 side.
  • the capacitor 17 has a potential Va due to the potential Vp and the potential Vg.
  • the switch 25 and the switch 26 are turned to the voltage measurement circuit 8 side.
  • the voltage measurement circuit 8 calculates (Vp ⁇ Vg) / (Ca / C1 + 1 + Ca / C2) as the potential Va.
  • the switch 15 is turned to the switch 27 side.
  • the switch 27 is turned to the switch 15 side.
  • the switch 28 is turned to the switch 29 side.
  • the switch 29 is turned to the switch 28 side.
  • the capacitor 19 has the potential Vb due to the potential Vp and the potential Vg.
  • the switch 27 and the switch 28 are turned to the voltage measurement circuit 8 side.
  • the voltage measurement circuit 8 calculates (Vp ⁇ Vg) / (Cb / C1 + 1 + Cb / C2) as the potential Vb.
  • the voltage measurement circuit 8 erases the electrostatic capacitance C1 and the electrostatic capacitance C2 from the potential Va and the potential Vc. Specifically, the voltage measurement circuit 8 calculates Va / (Ca ((1 / Vb-1 / Va) / (Ca / Va-Cb / Vb)) + 1) as the potential difference (Vp-Vg) to be measured. Do.
  • the potential Vp on the signal common side is also measured in a noncontact manner, and the potential difference (Vp-Vg) to be measured is obtained even when the measurement situation changes as in the third embodiment. Can be reduced.
  • the voltage measurement circuit 8 may be configured in the same manner as in the first embodiment, and switches (not shown) may be switched to measure the potential Va and the potential Vb alternately. Also, two voltage measurement circuits 8 may be provided corresponding to each of the capacitors 17 and 19.
  • the voltage measuring device can be used when measuring a DC voltage in a noncontact manner with respect to the object to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 測定対象に対し、非接触で直流電圧を測定することができる電圧測定装置を提供する。このため、電圧測定装置は、測定対象の導電体に対向し得るように設けられた誘電体と、前記誘電体に設けられた電極と、前記電極と接続された際に前記電極の電位と1対1に相関する電位を保持するコンデンサと、前記電極と前記コンデンサとを接続し得るように設けられ、前記電極と前記コンデンサとの接続を切り離した際に前記コンデンサの両端電圧を出力し得るように設けられたスイッチと、を備えた。

Description

電圧測定装置
 この発明は、電圧測定装置に関するものである。
 検出電極と第1~第4可変容量要素と電圧生成回路とを備えた電圧測定装置が提案されている。当該電圧測定装置において、検出電極は、測定対象と容量結合する。各可変容量要素の容量は、第1可変容量要素と第3可変容量要素の各インピーダンスの積と第2可変容量要素と第4可変容量要素の各インピーダンスの積とが同一となるように変化する。電圧生成回路は、検出電極から第2可変容量要素と第4可変容量要素との接合点を経て接地点に流れる電流が0となるように電圧を生成する。当該電圧が測定対象の電圧とされる。当該電圧測定装置よれば、測定対象に対し、非接触で電圧を測定することができる(例えば、特許文献1参照)。
日本特許第4607752号公報
 しかしながら、当該電圧測定装置においては、電流が最終的に0となるまで、検出電極に接続される回路の入力インピーダンスは有限である。このため、直流電圧を測定することができない。
 この発明は、上述の課題を解決するためになされたもので、その目的は、測定対象に対し、非接触で直流電圧を測定することができる電圧測定装置を提供することである。
 この発明に係る電圧測定装置は、測定対象の導電体に対向し得るように設けられた誘電体と、前記誘電体に設けられた電極と、前記電極と接続された際に前記電極の電位と1対1に相関する電位を保持するコンデンサと、前記電極と前記コンデンサとを接続し得るように設けられ、前記電極と前記コンデンサとの接続を切り離した際に前記コンデンサの両端電圧を出力し得るように設けられたスイッチと、を備えたものである。
 この発明によれば、測定対象に対し、非接触で直流電圧を測定することができる。
この発明の実施の形態1における電圧測定装置の回路図である。 この発明の実施の形態1における電圧測定装置の電圧測定回路の図である。 この発明の実施の形態1における電圧測定装置を含む等価回路の図である。 この発明の実施の形態2における電圧測定装置の回路図である。 この発明の実施の形態4における電圧測定装置の回路図である。 この発明の実施の形態5における電圧測定装置の回路図である。 この発明の実施の形態7における電圧測定装置の回路図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1における電圧測定装置の回路図である。
 図1において、測定対象の導電体1は、電子装置を制御する電子制御装置等の配線である。例えば、導電体1は、電子制御装置の制御電源線、制御信号線、アース線等である。
 図1に示すように、電圧測定装置は、誘電体2、電極3、コンデンサ4、スイッチ5、スイッチ6、信号コモン7、電圧測定回路8を備える。
 誘電体2は、導電体1に対向するように設けられる。電極3は、誘電体2に接続される。電極3は、導電体1と誘電体2を介しているため導電体1とは接触しない。コンデンサ4は、静電容量Caを有する。スイッチ5の前端側の一方は、電極3に接続される。スイッチ5の後端側は、コンデンサ4の前端側に接続される。スイッチ6の前端側は、コンデンサ4の後端側に接続される。信号コモン7は、スイッチ6の後端側の一方に接続される。電圧測定回路8は、差動アンプ等を備える。電圧測定回路8の前端側の一方は、スイッチ5の前端側の他方に接続される。電圧測定回路8の前端側の他方は、スイッチ6の後端側の他方に接続される。
 導電体1が電位Vを持っている際、導電体1と誘電体2と電極3とは、コンデンサ9として機能する。コンデンサ9は、静電容量Cを有する。電圧測定装置においては、スイッチ5の前端が電極3側に倒される。これと同時に、スイッチ6の後端が信号コモン7側に倒される。この際、導電体1の電位Vは、コンデンサ9と信号コモン7のとの間に形成される回路により分圧される。
 例えば、図1に示すように、回路が直列のコンデンサ4、9のみで形成されている場合は、コンデンサ4、9の電位は、静電容量Cと静電容量Caの比で分圧される。すなわち、コンデンサ4、9の電位は、導電体1の電位Vと1対1の相関を持つ。
 コンデンサ4が分圧の一部を電位Vaとして保持している際、スイッチ5の前端が電圧測定回路8側に倒される。これと同時に、スイッチ6の後端が電圧測定回路8側に倒される。この際、コンデンサ4は、電圧測定回路8に向かって電荷を放出する。電圧測定回路8は、当該電荷に基づいて電位Vaを測定する。電圧測定回路8は、電位Vaに基づいて導電体1の電位Vを演算する。
 この際、電位Vaの変化は、電圧測定回路8の時定数Ca*の入力インピーダンスに応じて決まる。例えば、図1に示すように、電圧測定回路8に差動アンプを用いる場合は、入力インピーダンスが高くなる。この場合、電位Vaの変化は小さくなる。
 次に、図2を用いて、電圧測定回路8の例を説明する。
 図2はこの発明の実施の形態1における電圧測定装置の電圧測定回路の図である。
 図2に示すように、電圧測定回路8は、差動アンプ8a、スイッチ8b、ホールドコンデンサ8c、バッファアンプ8dを備える。
 差動アンプ8aの前端側の一方は、スイッチ5の前端側の他方に接続される。差動アンプ8aの前端側の他方は、スイッチ6の後端側の他方に接続される。スイッチ8bの前端側は、差動アンプ8aの後端側に接続される。ホールドコンデンサ8cの前端側は、スイッチ8bの後端側に接続される。ホールドコンデンサ8cの後端側は、電圧測定回路8のコモンに接続される。バッファアンプ8dの前端側は、スイッチ8bの後端側に接続される。
 電圧測定回路8においては、スイッチ5の前端とスイッチ6の後端とが同時に電圧測定回路8側に倒された後、スイッチ8bが閉じられる。この際、バッファアンプ8dは、差動アンプ8aの後端の電位Vaを出力する。この際、ホールドコンデンサ8cは、差動アンプ8aの後端の電位Vaを保持する。その後、スイッチ8bが開かれる。この際、バッファアンプ8dは、ホールドコンデンサ8cに保持された電位Vaを出力する。すなわち、バッファアンプ8dの出力が不定となることはない。この間に、スイッチ5の前端が電極3側に接続される。これと同時に、スイッチ6の後端が信号コモン7側に倒される。
 次に、図3を用いて、静電容量Caと測定対象全体の等価回路を説明する。
 図3はこの発明の実施の形態1における電圧測定装置を含む等価回路の図である。
 図3において、R’は測定対象10の回路のインピーダンスである。C’はコンデンサ4とコンデンサ9とを合成したコンデンサ11の静電容量である。rは線路抵抗12のインピーダンスである。Vは電圧レギュレータを持つDC電源、デジタル信号を出力するロジック素子等、電圧発生源の出力電位である。
 交流の出力電位Vから見た際、インピーダンスZは、r+R’/(1+jωR’C’)となる。すなわち、出力電位Vは、測定対象10の回路の負荷とコンデンサ11とから影響を受ける。
 電圧測定装置においては、スイッチ5の前端が電極3側に倒される。これと同時に、スイッチ6の後端が信号コモン7側に接続される。この状態が時間t1だけ継続する。この間に、コンデンサ4とコンデンサ9とが電荷を蓄える。その後、スイッチ5の前端が電圧測定回路8側に倒される。これと同時に、スイッチ6の後端が電圧測定回路8側に倒される。この状態が時間t2だけ継続する。この間に、電圧測定回路8が出力電位Vaを測定する。
 電荷の蓄えと出力電位Vaの測定との間隔は、時間t3に設定される。すなわち、時間t3の間に、スイッチ5の前端とスイッチ6の後端とは時間t3だけ継続して開放される。
 電圧測定装置において、時間t1と時間t2とは、時間t3よりも十分短く設定される。このため、出力電位Vaは、微視的に直流として扱える。すなわち、出力電位Vaの変化は小さい。
 例えば、測定対象信号が数10MHzの高周波のノイズ信号である場合、時間t3を10数ns以上とし、時間t1と時間t2とを数ns以下とすればよい。この場合、静電容量C’が数pF程度であれば、電圧測定装置は十分な測定性能を持つ。
 以上で説明した実施の形態1によれば、コンデンサ4は、導電体1の電位Vと1対1に相関する電位Vaを保持する。コンデンサ4とコンデンサ9との接続を切り離した後、コンデンサ4の電位Vaが測定される。この際、測定回路のインピーダンスを考慮しなくてよい。このため、周波数依存のない電圧測定を非接触で行うことができる。すなわち、導電体1に対し、非接触で直流電圧を測定することができる。
 なお、測定電位は連続値ではない。この際、測定電位の分解能は、スイッチ5、6、8bの動作速度で決まる。ノイズ測定に要求される数10MHzの応答速度であれば、交流電圧を測定する際でも十分な応答性能を得ることができる。
 また、数V程度の低い電圧を測定する場合、導電体1と電極3との間に対してシールドを行えばよい。すなわち、十分な面積で導電体1を他の導電体等で囲めばよい。この場合、周囲の電界からの影響が抑制される。その結果、導電体1の電位Vから発せられる電界を電極3で精度よく受けることができる。
 また、スイッチ5とスイッチ6とが電圧測定回路8側に倒された際、コンデンサ4に保持された電位Vaの値をADコンバータ(図示せず)により直接読み取ってもよい。この場合、スイッチ5が電極3側に倒されると同時にスイッチ6が信号コモン7側に倒されている際に、AD変換しなければよい。この場合も、バッファアンプ8dの出力が不定となることはない。
実施の形態2.
 図4はこの発明の実施の形態2における電圧測定装置の回路図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態2においては、最も簡素な電圧測定回路13が用いられる。電圧測定回路13においては、スイッチ6が用いられない。すなわち、コンデンサ4の後端は、信号コモン7に直接接続される。電圧測定回路13のコモン14は、信号コモン7と同一である。コモン14の電位は、電圧測定装置を接触させることにより得られる。
 電圧測定装置においては、スイッチ5が電極3側に倒される。この場合、コンデンサ4とコンデンサ9との直列回路が形成される。この際、コンデンサ4の電位Vaは、VC/(C+Ca)となる。その後、スイッチ5が電圧測定回路13側に倒される。この場合、電圧測定回路13がコンデンサ4の電位Vaを測定する。
 導電体1の形状、導電体1の被覆、誘電体2の取り付け等、測定状況が変化しない場合、静電容量Cは固定値である。この場合、電圧測定回路13は、Va(1+Ca/C)を導電体1の電位Vとして一意的に演算する。
 以上で説明した実施の形態2によれば、スイッチ6は用いられない。すなわち、測定状況が変化しない場合、簡素な電圧測定回路13で導電体1の電位Vを一意的に求めることができる。
実施の形態3.
 実施の形態3の電圧測定装置は、実施の形態2の電圧測定装置とほぼ同等である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態3においては、誘電体2と電極3とが十分に大きく形成される。その結果、静電容量Cは、静電容量Caよりも十分に大きくなる。この場合、Va(1+Ca/C)は、Vaとほぼ同等となる。すなわち、導電体1の電位Vは、コンデンサ4の電位Vaとほぼ同等となる。
 以上で説明した実施の形態3によれば、静電容量Cは、静電容量Caよりも十分に大きい。このため、実施の形態2とは異なり、測定状況が変化する場合でも、導電体1の電位Vの測定誤差を予め設定された値よりも小さくすることができる。
 なお、実施の形態1で説明したように、静電容量Cと静電容量Caとは、測定対象の負荷により測定対象の電圧自身に影響を与える。このため、例えば、電子装置のDC電源電圧を観測する場合には、DC電源の出力側の平滑コンデンサと比べ、静電容量Cと静電容量Caとが十分に小さいと見做せる範囲で、静電容量Cを大きくすればよい。
実施の形態4.
 図5はこの発明の実施の形態4における電圧測定装置の回路図である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態4においては、電極3と電圧測定回路13との間の回路が実施の形態2の回路と異なる。具体的には、電極3と電圧測定回路13との間には、スイッチ15、スイッチ16、コンデンサ17、スイッチ18、コンデンサ19、スイッチ20が設けられる。
 スイッチ15の前端側は、電極3の後端側に接続される。スイッチ16の前端側の一方は、スイッチ15の後端側の一方に接続される。コンデンサ17は、静電容量Caを有する。コンデンサ17の前端側は、スイッチ16の後端側に接続される。コンデンサ17の後端側は、信号コモン7に接続される。スイッチ18の前端側の一方は、スイッチ15の後端側の他方に接続される。コンデンサ19は、静電容量Cbを有する。コンデンサ19の前端側は、スイッチ18の後端側に接続される。コンデンサ19の後端側は、信号コモン7に接続される。スイッチ20の前端側の一方は、スイッチ16の前端側の他方に接続される。スイッチ20の前端側の他方は、スイッチ18の前端側の他方に接続される。スイッチ20の後端側は、電圧測定回路13の前端側に接続される。
 電圧測定装置において、スイッチ15がコンデンサ17側に倒された場合は、コンデンサ17の電位Vaは、VC/(C+Ca)である。これに対し、スイッチ15がコンデンサ19側に倒された場合は、コンデンサ19の電位Vbは、VC/(C+Cb)である。
 電圧測定回路13は、コンデンサ17の電位Vaとコンデンサ19の電位Vbとから静電容量Cを消去する。すなわち、電圧測定回路13は、Va(1+Ca(Vb-Va)/(Va・Ca-Vb・Cb)を導電体1の電位Vとして演算する。
 以上で説明した実施の形態4によれば、導電体1の電位Vは、静電容量Cを含まないで演算される。このため、コンデンサ9の静電容量Cが変化したり不安定であったりしても、導電体1の電位Vは正確に演算される。すなわち、実施の形態2と異なり、測定状況が変化する場合でも、導電体1の電位Vを正確に測定することができる。
実施の形態5.
 図6はこの発明の実施の形態5における電圧測定装置の回路図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態5の電圧測定装置は、信号コモンの導電体21の電位も非接触で測定するものである。具体的には、実施の形態5の電圧測定装置は、実施の形態1の電圧測定装置に、誘電体22、電極23を付加したものである。誘電体22は、導電体21に対向するように設けられる。電極23は、誘電体22に接続される。電極23は、導電体21と誘電体22を介しているため導電体21とは接触しない。電極23の前端側は、スイッチ6の後端側の他方に接続される。
 実施の形態5において、導電体1と誘電体2と電極3とは、コンデンサ9として機能する。コンデンサ9は、静電容量C1を有する。これに対し、導電体21と誘電体22と電極23とは、コンデンサ24として機能する。コンデンサ24は、静電容量C2を有する。
 図6においては、導電体1の電位はVpである。導電体21の電位はVgである。この状態で、スイッチ5が電極3側に倒される。これと同時に、スイッチ6が電極23側に倒される。この場合、電位Vpから電位Vgの間のインピーダンスは1/(ωC1)+1/(ωCa)+1/(ωC2)である。
 この場合、コンデンサ4に流れる電流は、(Vp-Vg)/(1/(ωC1)+1/(ωCa)+1/(ωC2))となる。
 この場合、コンデンサ4の両端電圧Vaは、((Vp-Vg)/(1/(ωC1)+1/(ωCa)+1/(ωC2)))・(1/jωCa)となる。両端電圧Vaは、(Vp-Vg)・(1/jωCa)/(1/jωC1+ 1/jωCa + 1/jωC2)に整理される。両端電圧Vaは、(Vp-Vg)/(Ca/C1+1+Ca/C2)に整理される。すなわち、両端電圧Vaは、周波数に依存しない。
 その後、スイッチ5が電圧測定回路8側に倒される。これと同時に、スイッチ6が電圧測定回路8側に倒される。この際、電圧測定回路8は、コンデンサ4の両端電圧Vaを測定する。電圧測定回路8は、Va(Ca/C1+1+Ca/C2)を測定対象の電位差(Vp-Vg)として演算する。
 以上で説明した実施の形態5によれば、信号コモン側にも、誘電体22と電極23とが設けられる。このため、信号コモン側の導電体21の電位Vgも非接触で測定することができる。
実施の形態6.
 実施の形態6の電圧測定装置は、実施の形態5の電圧測定装置とほぼ同等である。なお、実施の形態5と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態6においては、誘電体2と電極3とが十分に大きく形成される。誘電体22と電極23とが十分に大きく形成される。その結果、静電容量C1と静電容量C2とは、静電容量Caよりも十分に大きくなる。この場合、測定対象の電位差(Vp-Vg)は、コンデンサ4の電位Vaとほぼ同等となる。
 以上で説明した実施の形態6によれば、静電容量C1と静電容量C2とは、静電容量Caよりも十分に大きい。このため、実施の形態3と同様に、測定状況が変化する場合でも、測定対象の電位差(Vp-Vg)の測定誤差を予め設定された値よりも少なくすることができる。
 なお、実施の形態1で説明したように、静電容量C1と静電容量C2と静電容量Caとは、測定対象の負荷により測定対象の電圧自身に影響を与える。このため、例えば、電子装置のDC電源電圧を観測するケース等においては、DC電源の出力側の平滑コンデンサと比べ、静電容量Cと静電容量Caとが十分に小さいと見做せる範囲で、静電容量C1と静電容量C2とを大きくすればよい。
実施の形態7.
 図7はこの発明の実施の形態7における電圧測定装置の回路図である。なお、実施の形態4と実施の形態5と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態7の電圧測定装置は、実施の形態4の電圧測定装置の特徴と実施の形態5の電圧測定装置の特徴とを組み合わせたものである。実施の形態7においては、スイッチ25、スイッチ26、スイッチ27、スイッチ28、スイッチ29が設けられる。
 スイッチ25の前端側の一方は、スイッチ15の後端側の一方に接続される。スイッチ25の前端側の他方は、電圧測定回路8の前端側に接続される。スイッチ25の後端側は、コンデンサ17の前端側に接続される。スイッチ26の前端側は、コンデンサ17の後端側に接続される。スイッチ26の後端側の他方は、電圧測定回路8の前端側に接続される。
 スイッチ27の前端側の一方は、スイッチ15の後端側の他方に接続される。スイッチ27の前端側の他方は、電圧測定回路8の前端側に接続される。スイッチ27の後端側は、コンデンサ19の前端側に接続される。スイッチ28の前端側は、コンデンサ19の後端側に接続される。スイッチ28の後端側の他方は、電圧測定回路8の前端側に接続される。
 スイッチ29の前端側の一方は、スイッチ26の後端側の一方に接続される。スイッチ29の前端側の他方は、スイッチ28の後端側の一方に接続される。スイッチ29の後端側は、電極23の前端側に接続される。
 電圧測定装置においては、スイッチ15がスイッチ25側に倒される。これと同時に、スイッチ25がスイッチ15側に倒される。これと同時に、スイッチ26がスイッチ29側に倒される。これと同時に、スイッチ29がスイッチ26側に倒される。
 この際、コンデンサ17は、電位Vpと電位Vgとにより電位Vaを持つ。その後、スイッチ25とスイッチ26とが電圧測定回路8側に倒される。この際、電圧測定回路8は、(Vp-Vg)/(Ca/C1+1+Ca/C2)を電位Vaとして演算する。
 電圧測定装置においては、スイッチ15がスイッチ27側に倒される。これと同時に、スイッチ27がスイッチ15側に倒される。これと同時に、スイッチ28がスイッチ29側に倒される。これと同時に、スイッチ29がスイッチ28側に倒される。
 この際、コンデンサ19は、電位Vpと電位Vgとにより電位Vbを持つ。その後、スイッチ27とスイッチ28とが電圧測定回路8側に倒される。この際、電圧測定回路8は、(Vp-Vg)/(Cb/C1+1+Cb/C2)を電位Vbとして演算する。
 その後、電圧測定回路8は、電位Vaと電位Vcとから静電容量C1と静電容量C2とを消去する。具体的には、電圧測定回路8は、Va/(Ca((1/Vb-1/Va)/(Ca/Va-Cb/Vb))+1)を測定対象の電位差(Vp-Vg)として演算する。
 以上で説明した実施の形態7によれば、信号コモン側の電位Vpも非接触で測定しつつ、実施の形態3と同様に、測定状況が変化する場合でも、測定対象の電位差(Vp-Vg)の測定誤差を小さくすることができる。
 なお、電圧測定回路8は、実施例1と同様に構成し、スイッチ(図示せず)を切り替えて、電位Vaと電位Vbとを交互に測定してもよい。また、コンデンサ17とコンデンサ19との各々に対応して、2つの電圧測定回路8を設けてもよい。
 以上のように、この発明に係る電圧測定装置は、測定対象に対し、非接触で直流電圧を測定する際に利用できる。
 1 導電体、 2 誘電体、 3 電極、 4 コンデンサ、 5 スイッチ、 6 スイッチ、 7 信号コモン、 8 電圧測定回路、 8a 差動アンプ、 8b スイッチ、 8c ホールドコンデンサ、 8d バッファアンプ、 9 コンデンサ、 10 測定対象、 11 コンデンサ、 12 線路抵抗、 13 電圧測定回路、 14 コモン、 15 スイッチ、 16 スイッチ、 17 コンデンサ、 18 スイッチ、 19 コンデンサ、 20 スイッチ、 21 導電体、 22 誘電体、 23 電極、 24 コンデンサ、 25 スイッチ、 26 スイッチ、 27 スイッチ、 28 スイッチ、29 スイッチ

Claims (8)

  1.  測定対象の導電体に対向し得るように設けられた誘電体と、
     前記誘電体に設けられた電極と、
     前記電極と接続された際に前記電極の電位と1対1に相関する電位を保持するコンデンサと、
     前記電極と前記コンデンサとを接続し得るように設けられ、前記電極と前記コンデンサとの接続を切り離した際に前記コンデンサの両端電圧を出力し得るように設けられたスイッチと、
    を備えた電圧測定装置。
  2.  前記スイッチは、前記電極及び前記第コンデンサの接続と前記コンデンサの両端電圧の出力とを繰り返す請求項1に記載の電圧測定装置。
  3.  前記導電体と前記誘電体と前記電極とで決まる容量と前記コンデンサの容量と前記第コンデンサの両端電圧とに基づいて、前記導電体の電位を測定する電圧測定回路、
    を備えた請求項1又は請求項2に記載の電圧測定装置。
  4.  前記コンデンサは、前記導電体の電位と当該コンデンサの両端電圧との差が予め設定された値以下となるように、前記導電体と前記誘電体と前記電極とで決まる容量よりも小さい容量を有した請求項3に記載の電圧測定装置。
  5.  前記コンデンサは、前記電極に選択的に接続される2つのコンデンサを有し、
     前記スイッチは、
     前記電極と前記2つのコンデンサの一方とを接続し得るように設けられ、前記電極と前記2つのコンデンサの一方との接続を切り離した際に前記2つのコンデンサの一方の両端電圧を出力し得るように設けられた第1スイッチと、
     前記電極と前記2つのコンデンサの他方とを接続し得るように設けられ、前記電極と前記2つのコンデンサの他方との接続を切り離した際に前記2つのコンデンサの他方の両端電圧を出力し得るように設けられた第2スイッチと、
    を備えた請求項1~請求項4のいずれか一項に記載の電圧測定装置。
  6.  前記誘電体は、測定対象の2つの導電体にそれぞれ対向し得るように設けられた2つの誘電体を有し、
     前記電極は、前記2つの誘電体にそれぞれ設けられた2つの電極を有した請求項1又は請求項2に記載の電圧測定装置。
  7.  前記コンデンサは、前記2つの導電体の電位差と当該コンデンサの両端電圧との差が予め設定された値以下となるように、前記2つの導電体の一方と前記誘電体の一方と前記電極の一方とで決まる容量及び前記2つの導電体の他方と前記誘電体の他方と前記電極の他方とで決まる容量よりも小さい容量を有した請求項6に記載の電圧測定装置。
  8.  前記コンデンサは、前記2つの電極に選択的に接続される2つのコンデンサを有し、
     前記スイッチは、
     前記2つの電極と前記2つのコンデンサの一方とを接続し得るように設けられ、前記2つの電極と前記2つのコンデンサの一方との接続を切り離した際に前記2つのコンデンサの一方の両端電圧を出力し得るように設けられた第1スイッチと、
     前記2つ電極と前記2つのコンデンサの他方とを接続し得るように設けられ、前記2つの電極と前記2つのコンデンサの他方との接続を切り離した際に前記2つのコンデンサの他方の両端電圧を出力し得るように設けられた第2スイッチと、
    を備えた請求項6又は請求項7に記載の電圧測定装置。
PCT/JP2013/059559 2013-03-29 2013-03-29 電圧測定装置 WO2014155680A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157022763A KR20150110717A (ko) 2013-03-29 2013-03-29 전압 측정 장치
CN201380075019.6A CN105051549B (zh) 2013-03-29 2013-03-29 电压测定装置
JP2015507876A JP6172264B2 (ja) 2013-03-29 2013-03-29 電圧測定装置
PCT/JP2013/059559 WO2014155680A1 (ja) 2013-03-29 2013-03-29 電圧測定装置
US14/768,064 US20150377928A1 (en) 2013-03-29 2013-03-29 Voltage measuring device
TW102121876A TWI490505B (zh) 2013-03-29 2013-06-20 電壓測量裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059559 WO2014155680A1 (ja) 2013-03-29 2013-03-29 電圧測定装置

Publications (1)

Publication Number Publication Date
WO2014155680A1 true WO2014155680A1 (ja) 2014-10-02

Family

ID=51622738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059559 WO2014155680A1 (ja) 2013-03-29 2013-03-29 電圧測定装置

Country Status (6)

Country Link
US (1) US20150377928A1 (ja)
JP (1) JP6172264B2 (ja)
KR (1) KR20150110717A (ja)
CN (1) CN105051549B (ja)
TW (1) TWI490505B (ja)
WO (1) WO2014155680A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119998B2 (en) * 2016-11-07 2018-11-06 Fluke Corporation Variable capacitance non-contact AC voltage measurement system
US10139435B2 (en) * 2016-11-11 2018-11-27 Fluke Corporation Non-contact voltage measurement system using reference signal
US10677876B2 (en) * 2018-05-09 2020-06-09 Fluke Corporation Position dependent non-contact voltage and current measurement
GB2609458A (en) * 2021-08-02 2023-02-08 Young John Contactless voltage measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273465A (ja) * 1993-03-18 1994-09-30 Ricoh Co Ltd 電位測定装置
JP2003028900A (ja) * 2001-07-11 2003-01-29 Yokogawa Electric Corp 非接触電圧測定方法およびその装置
JP2010175412A (ja) * 2009-01-30 2010-08-12 Hioki Ee Corp 電圧測定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548409A1 (en) * 2003-12-23 2005-06-29 Dialog Semiconductor GmbH Differential capacitance measurement
JP4344667B2 (ja) * 2004-09-17 2009-10-14 横河電機株式会社 非接触電圧測定装置
JP2007132734A (ja) * 2005-11-09 2007-05-31 Hitachi Computer Peripherals Co Ltd 回転体の非接触式電位測定方法、および、同装置
JP2010127725A (ja) * 2008-11-27 2010-06-10 Hioki Ee Corp 非接触電圧測定装置および非接触電圧測定方法
CN101881791B (zh) * 2009-04-30 2015-08-05 日置电机株式会社 电压检测装置
US8294477B2 (en) * 2009-11-20 2012-10-23 Smc Electrical Products, Inc. High voltage sensing capacitor and indicator device
CN101852823B (zh) * 2010-02-08 2012-04-18 广东电网公司电力科学研究院 无接触式电压测量装置及无接触式电压测量方法
JP2011191183A (ja) * 2010-03-15 2011-09-29 Alps Electric Co Ltd 容量検出装置
TWI427927B (zh) * 2010-06-14 2014-02-21 Au Optronics Corp 讀出電路與其感測電壓的轉換方法
TWI428612B (zh) * 2010-12-10 2014-03-01 Elan Microelectronics Corp A circuit for sensing a capacitance to be measured and a method thereof
TW201232371A (en) * 2011-01-28 2012-08-01 Focaltech Systems Ltd Inspection circuit for capacitive touch screens and the boost circuit thereof
TWI490456B (zh) * 2011-04-29 2015-07-01 Elan Microelectronics Corp Differential Capacitance Sensing Circuit and Method
GB201114258D0 (en) * 2011-08-18 2011-10-05 Ultra Electronics Ltd Method and apparatus for measurement of a DC voltage
US9552893B2 (en) * 2012-08-08 2017-01-24 Nxp Usa, Inc. Sample-and-hold circuit and capacitive sensing device that includes the sample-and-hold circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273465A (ja) * 1993-03-18 1994-09-30 Ricoh Co Ltd 電位測定装置
JP2003028900A (ja) * 2001-07-11 2003-01-29 Yokogawa Electric Corp 非接触電圧測定方法およびその装置
JP2010175412A (ja) * 2009-01-30 2010-08-12 Hioki Ee Corp 電圧測定装置

Also Published As

Publication number Publication date
TW201437644A (zh) 2014-10-01
CN105051549A (zh) 2015-11-11
US20150377928A1 (en) 2015-12-31
JPWO2014155680A1 (ja) 2017-02-16
KR20150110717A (ko) 2015-10-02
CN105051549B (zh) 2017-09-26
TWI490505B (zh) 2015-07-01
JP6172264B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
US10228395B2 (en) Non-contact voltage measurement device
US10790822B2 (en) Switching arrangement and method for a capacitive sensor
JP5529881B2 (ja) 静電容量式センサシステム
US9658270B2 (en) Inspection method of sensor device and sensor device
US10254313B2 (en) Noncontact voltage measurement apparatus
TW201224472A (en) Circuit and method for sensing a capacitor under test
US9613247B2 (en) Sensing method and circuit of fingerprint sensor
WO2014155680A1 (ja) 電圧測定装置
JP2015111087A (ja) 非接触電圧測定装置および非接触電圧測定方法
JP2011242370A (ja) インピーダンス検出回路及びインピーダンス検出回路の調整方法
CN111771109B (zh) 静电电容检测装置
JP4344667B2 (ja) 非接触電圧測定装置
JP2015224886A (ja) 電圧計測装置および電圧計測方法
JP4251961B2 (ja) 非接触電圧測定装置
EP3104182A1 (en) Current detecting circuit
WO2015133212A1 (ja) 電圧測定装置および電圧測定方法
JP6690868B2 (ja) ノイズ検出回路
JP5687311B2 (ja) 電圧測定回路
WO2019187515A1 (ja) 静電容量検出装置
US20190094261A1 (en) Differential charge transfer based accelerometer
WO2022224325A1 (ja) 非接触電圧センサ装置
JP7215303B2 (ja) 測定装置
KR20220167250A (ko) 활선 상태에서 절연저항을 측정하는 장치
EP1555535A1 (en) Potential fixing device, potential fixing method, and capacitance mearuing instrument
CN103245840A (zh) 一种用于电容式传感器的端口复用接口电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075019.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768064

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157022763

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880341

Country of ref document: EP

Kind code of ref document: A1