WO2014153863A1 - 移位寄存器单元、栅极驱动电路及显示装置 - Google Patents

移位寄存器单元、栅极驱动电路及显示装置 Download PDF

Info

Publication number
WO2014153863A1
WO2014153863A1 PCT/CN2013/077497 CN2013077497W WO2014153863A1 WO 2014153863 A1 WO2014153863 A1 WO 2014153863A1 CN 2013077497 W CN2013077497 W CN 2013077497W WO 2014153863 A1 WO2014153863 A1 WO 2014153863A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
gate
shift register
register unit
Prior art date
Application number
PCT/CN2013/077497
Other languages
English (en)
French (fr)
Inventor
胡祖权
王国磊
马睿
胡明
Original Assignee
合肥京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 合肥京东方光电科技有限公司
Priority to US14/235,957 priority Critical patent/US9666152B2/en
Publication of WO2014153863A1 publication Critical patent/WO2014153863A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0283Arrangement of drivers for different directions of scanning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • Shift register unit gate drive circuit and display device
  • the present invention relates to the field of display technologies, and in particular, to a shift register unit, a gate driving circuit, and a display device. Background technique
  • the liquid crystal display panel mainly comprises: a liquid crystal cell formed by an array substrate and a color film substrate pair, a polarizer, a backlight module, and the like.
  • a plurality of thin film transistors (TFTs) located at intersections of gate lines and data lines are distributed on the array substrate, and the gate lines control the on and off of the TFTs.
  • TFTs thin film transistors
  • the pixel electrodes are charged or discharged through the data lines.
  • the voltage on the data line controls the magnitude of the voltage applied to the liquid crystal molecules and in turn controls the deflection angle of the liquid crystal molecules so that light transmitted through the liquid crystal molecules can exhibit different gray levels.
  • the circuit for driving the gate line is called a gate driving circuit, and the gate driving circuit sequentially outputs a scanning signal to the gate line, and the generation of the scanning signal is usually generated by a shift register. Due to the continuous development of the demand, the liquid crystal display panel sometimes needs to be displayed in reverse, which requires a two-way scanning function as a gate-driven shift register.
  • FIG. 1 is a schematic structural diagram of a gate driving circuit commonly used in the prior art, the gate driving circuit including a plurality of cascaded bidirectional scanning shift register units SRI, SR2, . . . , SRN, from SR2 to SRN-1, the output signal of each stage shift register unit is connected to its adjacent upper and lower stage shift register units except for being connected to the gate line, and the output signal is input to the upper stage shift
  • the bit register unit functions as a reset signal, and the input to the next stage shift register unit functions as a start signal.
  • the gate driving circuit further includes control signal lines V_F, V_R for controlling forward and reverse scanning connected to each stage of the shift register unit, clock signal lines CLK1, CLK2, and a low level signal line VSS (not shown) And a start pulse signal line VST (not shown) connected to the first stage shift register unit SR1.
  • control signal lines V_F, V_R for controlling forward and reverse scanning connected to each stage of the shift register unit, clock signal lines CLK1, CLK2, and a low level signal line VSS (not shown) And a start pulse signal line VST (not shown) connected to the first stage shift register unit SR1.
  • the output of the Nth stage shift register unit SRN does not need to be connected to its next layer.
  • FIG. 2 is a schematic structural diagram of a bidirectional scan shift register unit (ie, an i-th shift register unit (i is greater than 1)) commonly used in the prior art, and the structure mainly includes a control module 20 and an output buffer module 30.
  • Control module 20 internally includes forward and reverse sweeps of the shift register unit
  • the specific control circuit, the output buffer unit 30 is mainly composed of a pull-up TFT Tpu and a pull-down TFT Tpd, and their gates are respectively connected to the pull-up node PU and the pull-down node PD of the control module 20, and the drain of the TFT Tpu is connected to the CLK2.
  • the source of the TFT Tpd is connected to VSS.
  • the input terminals of the control module 20 are respectively connected to the signal output terminals Vout(il), CLK1, and V_F, V_R of the shift stage unit of the previous stage (i.e., the i-1th stage).
  • the operation of the shift register unit (ie, the i-th stage) is generally as follows: When the forward-scanning control signal line V_F outputs a high level and the signal output terminal Vout(il) of the previous-stage shift register unit outputs a high level
  • the control module 20 charges the pull-up node PU, the TFT Tpu is turned on, and simultaneously discharges the pull-down node PD, and the TFT Tpd is turned off.
  • the TFT Tpu passes through the shift register unit (ie, the i-th stage).
  • the signal output terminal Vouti outputs the high level signal.
  • the control module 20 will discharge the pull-up node PU and the pull-down node PD, the TFT Tpu is turned off, the TFT Tpd is turned on, and the TFT Tpd is outputted from the signal.
  • Vouti outputs a low level VSS.
  • the above bidirectional scan shift register usually has the following problems in the specific design:
  • the gate of the pull-down TFT Tpd may be over-biased, causing the threshold voltage of the TFT Tpd to change, thereby causing the stability of the shift register to be lowered.
  • the specific description is as follows: As shown in FIG. 2, in order to make the signal output terminal Vouti output a low level VSS at a subsequent time, it is necessary to charge the pull-down node PD by the control module 20 when CLK2 is in a high level state, and to guide the TFT Tpd.
  • the low level VSS is outputted from the signal output terminal Vouti through the TFT Tpd, and the potential of the pull-down node PD is maintained by the control module 20 when the CLK2 is in the low state, so that the gate of the TFT Tpd is always in a high voltage.
  • the gate of the TFT Tpd is over-biased so that its threshold voltage changes, which greatly affects the stability of the shift register unit.
  • the liquid crystal display panel but also the shift register unit and the gate drive circuit of other types of display panels using an array display substrate have the above problems. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a shift register unit, a gate drive circuit, and a display device capable of effectively reducing the gate over-bias of a pull-down TFT.
  • an embodiment of the present invention provides a shift register unit, including: a pull-up module connected to a clock signal line and a signal output end; at least two pull-down modules, each having a low-level signal line and the signal
  • the output terminal is connected to the control module, and is connected to the pull-up module and the pull-down module, and is configured to control the pull-up module to be turned on, and input a high-level signal input by the clock signal line.
  • the at least two pull-down modules comprise a first thin film transistor and a second thin film transistor, and the drains of the first thin film transistor and the second thin film transistor are both connected to the signal output end, and the source is a low-level signal line is connected, a gate of the first thin film transistor is connected to a first signal line, a gate of the second thin film transistor is connected to a second signal line, and a signal and a signal input by the first signal line are The signal input by the second signal line is a level signal of opposite height.
  • the control module includes: a third thin film transistor and a fourth thin film transistor, a gate of the third thin film transistor is connected to a gate of the first thin film transistor, and a drain and a second thin film transistor a gate connection, a source connected to the low level signal line, a gate of the fourth thin film transistor being connected to a gate of the second thin film transistor, and a drain connected to a gate of the first thin film transistor The source is connected to the low level signal line.
  • control module further includes: a scan control submodule, the pull-up module includes a fifth thin film transistor and a capacitor, and a gate of the fifth thin film transistor is connected to the scan control sub-module, and a drain and a drain a clock signal line is connected, a source is connected to the signal output end, one end of the capacitor is connected to a gate of the fifth thin film transistor, and the other end is connected to the first thin film transistor and the second thin film transistor Drain connection.
  • the pull-up module includes a fifth thin film transistor and a capacitor, and a gate of the fifth thin film transistor is connected to the scan control sub-module, and a drain and a drain a clock signal line is connected, a source is connected to the signal output end, one end of the capacitor is connected to a gate of the fifth thin film transistor, and the other end is connected to the first thin film transistor and the second thin film transistor Drain connection.
  • control module includes: a sixth thin film transistor, a gate of the sixth thin film transistor is connected to a gate of the first thin film transistor, and a drain is connected to a gate of the fifth thin film transistor, a source The pole is connected to the low level signal line.
  • control module further includes: a seventh thin film transistor, a gate of the seventh thin film transistor is connected to a gate of the second thin film transistor, and a drain is connected to a gate of the fifth thin film transistor, The source is connected to the low level signal line.
  • Embodiments of the present invention also provide a gate driving circuit including a plurality of cascaded shift register units, wherein the shift register unit is the shift register unit.
  • the gate of the first thin film transistor is connected to the gate of the second thin film transistor of the shift register unit of the next stage, and the second thin film transistor thereof The gate is connected to the gate of the first thin film transistor of the next stage shift register unit;
  • the first thin film transistor thereof The gate is connected to the gate of the second thin film transistor of the shift register unit of the upper stage, and the gate of the second thin film transistor is connected to the gate of the first thin film transistor of the shift register unit of the previous stage, and the odd-numbered shift A gate of the first thin film transistor of the register unit is connected to the first signal line, and a gate of the first thin film transistor of the even-numbered shift register unit is connected to the second signal line.
  • the control module further includes: a tenth thin film transistor, an eleventh thin film transistor, and a twelfth thin film transistor, wherein the shift register unit is an odd-order shift register unit, and the gate of the tenth thin film transistor a drain and a drain are connected to the first signal line, a source is connected to a drain of the twelfth thin film transistor, a signal of a gate of the twelfth thin film transistor and a signal of an odd-numbered shift register unit The output terminal is connected, the source is connected to the low-level signal line, the gate of the eleventh thin film transistor is connected to the drain of the twelfth thin film transistor, and the drain is connected to the first signal line.
  • the source is connected to the gate of the first thin film transistor; when the shift register unit is an even-numbered shift register unit, the gate and the drain of the tenth thin film transistor are both connected to the second signal line a source is connected to a drain of the twelfth thin film transistor, and a gate of the twelfth thin film transistor is connected to a signal output end of the last even-stage shift register unit, and the source and the a low-level signal line connection, a gate of the eleventh thin film transistor is connected to a drain of the twelfth thin film transistor, a drain is connected to the second signal line, and a source and the second film are connected The gate of the transistor is connected.
  • the scan control sub-module comprises: an eighth thin film transistor and a ninth thin film transistor, wherein the shift register unit is an odd-numbered shift register unit, the gate of the eighth thin film transistor and the last odd-numbered stage The signal output end of the shift register unit is connected, the drain is connected to the forward scan control signal line, the source is connected to the gate of the fifth thin film transistor, and the gate of the ninth thin film transistor is shifted to the next odd number a signal output terminal of the bit register unit is connected, a drain is connected to the reverse scan control signal line, a source is connected to a gate of the fifth thin film transistor, and the shift register unit is an even-numbered shift register unit.
  • the gate of the eighth thin film transistor is connected to the signal output end of the last even-stage shift register unit, the drain is connected to the forward scan control signal line, and the source is connected to the gate of the fifth thin film transistor, a gate of the ninth thin film transistor is connected to a signal output end of the next even-numbered shift register unit, and a drain is connected to the reverse scan control signal line.
  • the source is connected to the gate of the fifth thin film transistor.
  • the shift register unit further includes: a thirteenth thin film transistor and a fourteenth thin film transistor, wherein the shift register unit is an odd-order shift register unit, the thirteenth thin film transistor and the fourteenth
  • the gate of the thin film transistor is connected to the fifth thin film crystal of the shift register unit of the upper stage
  • the gate of the body tube is connected, the source is connected to the low-level signal line, and the drain of the thirteenth thin film transistor is connected to the gate of the first thin film transistor of the shift register unit of the stage
  • the drain of the fourteenth thin film transistor is connected to the gate of the second thin film transistor of the shift register unit of the present stage, and the gate of the fifth thin film transistor of the shift register unit of the present stage and the thirteenth of the shift register unit of the previous stage a gate of the thin film transistor and the fourteenth thin film transistor are connected, and when the shift register unit is an even shift register unit, the gates of the thirteenth thin film transistor and the fourteenth thin film transistor are shifted from the next stage a gate of the fifth thin film transistor of the
  • the gate driving circuit includes four of the clock signal lines, and the four clock signal lines are sequentially connected to four adjacent shift register units.
  • Embodiments of the present invention also provide a display device including the above-described gate driving circuit.
  • the shift register unit in the gate drive circuit is turned on by at least two potential pull-down modules, and when one of the potential pull-down modules is turned on, the other potential pull-down modules are discharged, thereby reducing the potential.
  • the over-bias of the gate of the pull-down TFT improves the stability of the shift register unit.
  • FIG. 1 is a schematic structural view of a gate driving circuit commonly used in the prior art
  • FIG. 2 is a schematic structural diagram of a bidirectional scan shift register unit commonly used in the prior art
  • FIG. 3 is a schematic structural diagram of a shift register unit according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a shift register unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a gate driving circuit according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a shift register unit according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural diagram of a shift register unit of an SR0 stage according to Embodiment 5 of the present invention
  • FIG. 8 is a schematic structural diagram of a shift register unit of an SR2N+1 stage according to Embodiment 5 of the present invention
  • Operation timing diagram of the forward scan of the shift register unit
  • Figure 10 is a timing chart showing the operation of the reverse scan of the shift register unit of the fifth embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a shift register unit according to Embodiment 1 of the present invention.
  • the shift register unit includes: a pull-up module, two pull-down modules, and a control module.
  • the pull-up module is connected to the clock signal line CLK, the signal output terminal Vout, and the control module, and is configured to be turned on under the control of the control module, and output a high-level signal input by the clock signal line CLK to the signal output. End Vout.
  • the two pull-down modules are connected to the low-level signal line VSS, the signal output terminal Vout, and the control module, and are used to turn on the low-voltage input of the low-level signal line VSS under the control of the control module.
  • the flat signal is output to the signal output terminal Vout, and when one of the pull-down modules is turned on, the other pull-down module is discharged.
  • the control module is connected to the pull-up module and the two pull-down modules, and is configured to control the pull-up module to be turned on, so that the pull-up module outputs a high-level signal input by the clock signal line to the a signal output terminal; and controlling the two pull-down modules to be turned on, such that the two pull-down modules output a low-level signal input by the low-level signal line to the signal output terminal, and in controlling the When one of the two pull-down modules is turned on, another drop-down module is controlled to discharge.
  • the shift register provided by the above embodiment can control the two pull-down modules to be turned on during the discharge time, and discharge the other pull-down module when one of the pull-down modules is turned on, preventing each pull-down module from being subjected to
  • the bias voltage improves the stability of the shift register unit.
  • the shift register unit may further include more than two pull-down modules, and the pull-down modules are turned on in turn. When one of the switches is turned on, the other pull-down modules are discharged, and the circuit connection relationship is similar to the circuit connection relationship in the first embodiment, and will not be described in detail herein.
  • the pull-down module in the embodiment of the present invention may be implemented by using a thin film transistor.
  • it may be implemented in other manners, as long as the low-level signal input from the low-level signal line VSS can be output to the signal output terminal Vout, the following implementation
  • the pull-down module is implemented by using a thin film transistor as an example.
  • the shift register unit of the second embodiment of the present invention includes a pull-up module, two pull-down modules, and a control module.
  • the two pull-down modules are a first thin film transistor T1 and a second thin film transistor T2, respectively.
  • the drains of the first thin film transistor T1 and the second thin film transistor T2 are both connected to the signal output terminal Vout, the source is connected to the low-level signal line VSS, and the gate of the first thin film transistor T1 is connected to the first signal line Vacl.
  • the gate of the second thin film transistor T2 is connected to the second signal line Vac2, and the signal input by the first signal line Vac and the signal input by the second signal line Vac2 are level signals of opposite heights.
  • the first thin film transistor T1 and the second thin film transistor T2 described above may be turned on in turn. Specifically, it is assumed that: in the first time period, the signal input by the first signal line Vac1 is a high level signal, and the signal input by the second signal line Vac2 is a low level signal, then the first thin film transistor T1 is turned on, The second thin film transistor T2 is turned off; in the second period, the signal input by the second signal line Vac2 becomes a high level signal, and the signal input by the first signal line Vacl becomes a low level signal, then the second thin film transistor T2 leads The first thin film transistor T1 is turned off.
  • the control module of the embodiment of the present invention further includes: a third thin film transistor T3 and a fourth thin film transistor T4, wherein a gate of the third thin film transistor T3 is connected to a gate of the first thin film transistor T1, The drain is connected to the gate of the second thin film transistor T2, the source is connected to the low level signal line VSS, and the gate of the fourth thin film transistor T4 is connected to the gate of the second thin film transistor T2. The drain is connected to the gate of the first thin film transistor T1, and the source is connected to the low level signal line VSS.
  • the third thin film transistor T3 is turned on, so that the gate of the second thin film transistor T2 can be discharged, when the gate of the second thin film transistor T2 is at a high level.
  • the fourth thin film transistor T4 is turned on, so that the gate of the first thin film transistor T1 can be discharged.
  • the two pull-down modules can be turned on in turn, and when one of them is turned on, the other is discharged.
  • the pull-up module can be discharged when any of the pull-down modules is turned on.
  • control module may further include a scan control submodule
  • the pull-up module includes a fifth thin film transistor and a capacitor
  • a gate of the fifth thin film transistor is connected to the scan control sub-module, and the drain and the a clock signal line is connected, a source is connected to the signal output end, one end of the capacitor is connected to a gate of the fifth thin film transistor, and the other end is connected to the first thin film transistor T1 Connected to the drain of the second thin film transistor T2.
  • the first thin film transistor T1 When the gate of the first thin film transistor T1 (or the second thin film transistor T2) is at a high level, the first thin film transistor T1 (or the second thin film transistor T2) is turned on, and the low level signal input from the low level signal line is input to The gate of the fifth thin film transistor discharges the gate of the fifth thin film transistor, so that the charge accumulated on the gate of the fifth thin film transistor can be effectively released, thereby further improving the stability of the shift register unit.
  • control module of the embodiment of the present invention may further include: a sixth thin film transistor and a seventh thin film transistor, a gate of the sixth thin film transistor and a gate of the first thin film transistor T1 a drain connection, a drain connected to a gate of the fifth thin film transistor, a source connected to the low level signal line, and a gate of the seventh thin film transistor connected to a gate of the second thin film transistor T2
  • the drain is connected to the gate of the fifth thin film transistor, and the source is connected to the low level signal line.
  • the fifth thin film transistor is discharged through the sixth thin film transistor, and when the gate of the first thin film transistor ⁇ 2 is at a high level, the seventh thin film transistor is a fifth. The thin film transistor is discharged.
  • the embodiment of the invention further provides a gate driving circuit comprising a plurality of cascaded shift register units, each shift register unit comprising: a pull-up module, two pull-down modules and a control module.
  • the pull-up module is connected to the clock signal line, the signal output end and the control module, and is configured to be turned on under the control of the control module, and output a high-level signal input by the clock signal line to the signal output end.
  • the two pull-down modules are respectively connected to the low-level signal line, the signal output end, and the control module, and are used for alternately outputting the low-level signal inputting the low-level signal line under the control of the control module. To the signal output, and when one of the pull-down modules is turned on, the other pull-down module is discharged.
  • the control module is connected to the pull-up module and the two pull-down modules, and is configured to control the pull-up module to be turned on, so that the pull-up module outputs a high-level signal input by the clock signal line to the a signal output terminal; and controlling the two pull-down modules to be turned on, such that the two pull-down modules output a low-level signal input by the low-level signal line to the signal output terminal, and in controlling the When one of the two pull-down modules is turned on, another drop-down module is controlled to discharge.
  • the above shift register unit can control two pull-down modules to be turned on in turn at the time of discharge, and discharge discharge to another pull-down module when one of the pull-down modules is turned on, preventing each pull-down mode
  • the block is over-biased for improved stability.
  • the shift register unit may further include more than two pull-down modules, and the pull-down modules are turned on in turn. When one of the switches is turned on, the other pull-down modules are discharged, and the circuit connection relationship is similar to the circuit connection relationship in the first embodiment, and will not be described in detail herein.
  • the pull-down module in the embodiment of the present invention may be implemented by using a thin film transistor.
  • it may be implemented in other manners, as long as the low-level signal input from the low-level signal line VSS can be output to the signal output terminal Vout, the following implementation
  • the pull-down module is implemented by using a thin film transistor as an example.
  • the gate driving circuit of the fourth embodiment of the present invention includes a plurality of cascaded shift register units, each shift register unit includes a pull-up module, two pull-down modules, and a control module, wherein the two pull-down modules are respectively the first a thin film transistor and a second thin film transistor, wherein drains of the first thin film transistor and the second thin film transistor are connected to the signal output terminal, and a source is connected to the low level signal line, and the shift register unit is In the odd-numbered shift register unit, the gate of the first thin film transistor is connected to the gate of the second thin film transistor of the shift register unit of the next stage, and the gate of the second thin film transistor and the shift register unit of the next stage The gate of the first thin film transistor is connected, and when the shift register unit is an even-numbered shift register unit, the gate of the first thin film transistor is connected to the gate of the second thin film transistor of the shift register unit of the previous stage.
  • the gate of the second thin film transistor is connected to the gate of the first thin film transistor of the shift register unit of the previous stage, and the odd-number shift register a gate of the first thin film transistor of the cell is connected to the first signal line, a gate of the first thin film transistor of the even-numbered shift register unit is connected to the second signal line, and the signal input by the first signal line and the first The signals input by the two signal lines are high and low level signals.
  • the first thin film transistor and the second thin film transistor described above may be turned on in turn. Specifically, it is assumed that: in the first time period, the signal input by the first signal line is a high level signal, and the signal input by the second signal line is a low level signal, then the first thin film transistor is turned on, and the second thin film transistor is turned on. The second thin film transistor is turned on, and the first thin film transistor is turned off. .
  • the above shift register unit can control the first thin film transistor and the second thin film transistor to be turned on in a plurality of ways, which will be described below by way of example.
  • the control module may further include: a tenth thin film transistor, an eleventh thin film transistor, and a tenth a thin film transistor, wherein the shift register unit is an odd-numbered shift register unit, the gate and the drain of the tenth thin film transistor are both connected to the first signal line, and the source and the twelfth film a drain of the transistor is connected, a gate of the twelfth thin film transistor is connected to a signal output end of the last odd-numbered shift register unit, and a source is connected to the low-level signal line, the eleventh thin film transistor a gate connected to a drain of the twelfth thin film transistor, a drain connected to the first alternating current signal line, a source connected to a gate of the first thin film transistor; the shift register unit being an even number a stage shift register unit, wherein a gate and a drain of the tenth thin film transistor are both connected to the second signal line, and a source is connected to a drain of the twelfth thin film transistor, the
  • the control module of the embodiment of the present invention further includes: a third thin film transistor and a fourth thin film transistor, a gate of the third thin film transistor is connected to a gate of the first thin film transistor, a drain and the second thin film transistor a gate connection, a source connected to the low level signal line, a gate of the fourth thin film transistor being connected to a gate of the second thin film transistor, a drain and a gate of the first thin film transistor Connected, the source is connected to the low level signal line.
  • the third thin film transistor when the gate of the first thin film transistor is at a high level, the third thin film transistor is turned on, so that the second thin film transistor can be discharged, and when the gate of the second thin film transistor is at a high level, the fourth thin film transistor is turned on. Thereby, the first thin film transistor can be discharged.
  • the two pull-down modules can be turned on in turn, and when one of them is turned on, the other is discharged, and in addition, the potential pull-up module can be discharged when any of the pull-down modules is turned on.
  • control module may further include a scan control submodule
  • the pull-up module includes a fifth thin film transistor and a capacitor
  • a gate of the fifth thin film transistor is connected to the scan control sub-module, and the drain and the a clock signal line is connected, a source is connected to the signal output end, one end of the capacitor is connected to a gate of the fifth thin film transistor, and the other end is connected to the first thin film transistor and the second thin film transistor Drain connection.
  • the gate of the first thin film transistor (or the second thin film transistor) is at a high level
  • the first film The transistor (or the second thin film transistor) is turned on, and the low level signal input from the low level signal line is input to the gate of the fifth thin film transistor, and the fifth thin film transistor is discharged, so that the fifth thin film transistor can be effectively applied.
  • the accumulated charge release further improves the stability of the shift register unit.
  • the shift register unit in the embodiment of the present invention may be a bidirectional scan shift register unit.
  • the scan control submodule may include: an eighth thin film transistor and a ninth thin film transistor, wherein the shift register unit is In the odd-numbered shift register unit, the gate of the eighth thin film transistor is connected to the signal output end of the last odd-numbered shift register unit, the drain is connected to the forward scan control signal line, and the source and the fifth a gate of the thin film transistor, a gate of the ninth thin film transistor is connected to a signal output end of the next odd-numbered shift register unit, a drain is connected to the reverse scan control signal line, and the source and the fifth film are connected
  • the gate of the transistor is connected; when the shift register unit is an even-numbered shift register unit, the gate of the eighth thin film transistor is connected to the signal output end of the last even-stage shift register unit, and the drain and the forward direction are a scan control signal line is connected, a source is connected to a gate of the fifth thin film transistor, and a gate of the ninth thin
  • control module of the embodiment of the present invention may further include: a sixth thin film transistor and a seventh thin film transistor, a gate of the sixth thin film transistor and a gate of the first thin film transistor Connected, a drain connected to a gate of the fifth thin film transistor, a source connected to the low level signal line, a gate of the seventh thin film transistor being connected to a gate of the second thin film transistor, and a drain The pole is connected to the gate of the fifth thin film transistor, and the source is connected to the low level signal line.
  • the fifth thin film transistor is discharged through the sixth thin film transistor, and when the gate of the first thin film transistor is at a high level, the seventh thin film transistor is a fifth thin film transistor. Discharge.
  • the shift register unit may further include: a thirteenth thin film transistor and a fourteenth thin film transistor, when the shifting When the bit register unit is an odd-order shift register unit, the gates of the thirteenth thin film transistor and the fourteenth thin film transistor are both connected to the gate of the fifth thin film transistor of the shift register unit of the previous stage, and the source is Connected to the low-level signal line, the drain of the thirteenth thin film transistor is connected to the gate of the first thin film transistor of the shift register unit of the current stage, and the drain of the fourteenth thin film transistor and the current level
  • the gate of the second thin film transistor of the shift register unit is connected, the gate of the fifth thin film transistor of the shift register unit of the present stage and the shift register unit of the upper stage And connecting a gate of the thirteenth thin film transistor and the fourteenth thin film transistor; when the shift register unit is an even shift register unit, the gates of the thirteenth thin film transistor and the fourteenth thin film transistor and the fourteenth thin film transistor
  • the gate driving circuit may include four clock signal lines, which are sequentially connected to adjacent four shift register units. .
  • FIG. 5 is a schematic structural diagram of a gate driving circuit according to Embodiment 5 of the present invention.
  • the gate driving circuit of the embodiment of the present invention uses four clock control signal lines CLK1-CLK4, and the clock control signal line is increased to reduce the occurrence of pulses. Frequency, to achieve the purpose of reducing the power consumption of the gate drive circuit.
  • two signal control lines Vacl, Vac2 are added, which function to alternately discharge the pull-down unit in the shift register unit at different time periods (such as two adjacent frames) at a subsequent discharge time.
  • V_F, V_R are control signal lines that control forward and reverse scan.
  • the upper stage pseudo stage SR0 and the lower side dummy stage SR2N+1 are added, and the dummy stage is designed to prevent the forward or reverse scanning.
  • the external error signal is input to SR1 or SR2N.
  • the coupling of the odd-numbered stages and the even-numbered stages is added from the upper end to the lower end, that is, the odd-numbered pull-down nodes PD_P, PD_N are respectively connected to the even-numbered pull-down nodes PD_N, PD_P.
  • PD_P in the SR1 level, PD_N are respectively connected to PD_N and PD_P in the SR2 level, and PD_P and PD_N in the SR3 level are respectively connected to PD_N, PD_P in the SR4 level.
  • the nodes T and PU are respectively connected to the nodes PU and T of the upper or lower level.
  • the T and PU of the SR0 level are respectively connected to the PU and T of the SR1 level, and the T of the SR2 level.
  • the PUs are respectively connected to PUs and Ts of the SR3 class.
  • FIG. 6 is a schematic diagram showing the circuit structure of a shift register unit according to Embodiment 5 of the present invention, and FIG. 6 includes a circuit structure of adjacent odd-numbered and even-stage shift register units.
  • the method includes: a first control module 100, Two control modules 200 and an output buffer module 300.
  • the first control module 100 and the second control module 200 perform the functions of the control module in the foregoing embodiment
  • the output buffer module 300 performs the functions performed by the pull-up module and the pull-down module in the foregoing embodiment.
  • the first control module 100 includes a TFT T8 and a TFT T9.
  • the drains of T8 and T9 are respectively connected to the scan control signal lines V_F, V_R, and the gates of T8 and T9 are respectively connected to the output terminal Vout of the previous odd-order shift register unit. (2n-3) is connected to the output terminal Vout(2n+1) of the next odd-numbered shift register unit.
  • the second control module 200 includes TFTs T3, T4, T6, T7, T10, T11, ⁇ 12, ⁇ 15, T16, wherein the drains of ⁇ 6 and ⁇ 7 are both connected to the pull-up node PU, and the gates are respectively connected to the pull-down node PD_P , PD_N, the source is connected to the low level signal line VSS.
  • the drain of Til and the gate and drain of T10 are both connected to the first signal line Vacl, the source of T10 is connected to the gate of T11 and the drain of T12, and the source of T11 is connected to the pull-down node PD_P, the gate of T12
  • the pole and the source are respectively connected to the output terminal Vout(2n-3) of the previous odd-numbered shift register unit and the low-level signal line VSS, and the functions of T10, T11, and T12 are when the Vout(2n-3) is high.
  • the gate of T11 is discharged to a low level VSS by T12, so that the high level of Vacl will not be output from T10, Til to node PD_P, and when Vout(2n-3) is low, T12 is turned off.
  • the high level of Vacl will be output from T10, T11 to node PD_P.
  • the gates of T3 and ⁇ 4 are respectively connected to the pull-down nodes PD_P and PD_N, the drains are respectively connected to PD_N and PD_P, the sources are all connected to VSS, and the role of T3 (or T4) is when PD_P (or PD_N) is high.
  • the discharge of the node PD_N is implemented by T3 (or ⁇ 4).
  • the gates of T15 and T16 are connected to the pull-up node PU, the drains are respectively connected to the pull-down nodes PD_P, PD_N, and the sources are all connected to VSS.
  • the functions of T15 and T16 are when the pull-up node PU is high, T15, T16 discharges the nodes PD_P, PD_N to a low level VSS.
  • the pull-up node PU is connected to the gates of T13 and T14 in the upper shift register unit SR2n-2, and its function is to pull the pull-down node PD_P in the upper shift register unit SR2n-2 when the PU is high level.
  • PD_N is discharged to a low level VSS.
  • the output buffer module 30 is composed of TFTs T1, T2, ⁇ 13, ⁇ 14, ⁇ 5 and capacitor Cb.
  • TFTs T1, T2, ⁇ 13, ⁇ 14, ⁇ 5 and capacitor Cb When the pull-up node PU is at a high level, the high level of CLKA is output by T5; the gates of T1 and ⁇ 2 are respectively associated with the node PD_P PD_N is connected. Their main function is to pull the signal output terminal to low level VSS when PD_P or PD_N is high level; the gates of T13 and T14 are connected to the pull-up node PU of SR2N-2 stage shift register unit. Connected, the drains of T13 and T14 are connected to nodes PD_P and PD_N, respectively, and the sources are connected to VSS.
  • the even-numbered shift register unit also includes: a first control module 100, a second control module 200, and an output buffer module 300.
  • the circuit of the even-numbered shift register unit is identical to the odd-numbered shift register unit as a whole, except that the gates of T8 and ⁇ 9 of the even-numbered shift register unit are respectively connected to the output terminal Vout of the previous even-stage shift register unit ( 2n-2) and the output terminal Vout(2n+2) of the next even-stage shift register unit, and the gate of T10 is connected to the second signal line Vac2.
  • the pull-down nodes PD_P and PD_N of the odd-numbered shift register unit are respectively connected to the pull-down nodes PD_N and PD_P of the even-numbered shift register unit, and the gates of T13 and T14 in the even-numbered stage (ie, SR2n stage) shift register unit are respectively
  • the pull-up node PU connected to the lower stage (ie, SR2n+1 level) shift register unit, and the pull-up node PU thereof are connected to the gates of T13, T14 of the SR2n+1 stage shift register unit.
  • FIG. 7 shows the circuit structure of the pseudo-stage SR0 shift register unit.
  • T19 gate is connected to the STV
  • the source of T18 is connected to the pull-down node PD_N
  • the drain of T18 and the gate and source of T17 are both connected to Vac2.
  • the gates of T13 and T14 are both connected to the pull-up node PU in the SR1 stage, and the pull-up node PU in the stage is connected to the gates of T13, T14 in the SR1 stage.
  • T10, Til and T12 and T17, T18 and T19 can be used when the Vacl or Vac2 is high, that is, the PD_P or PD_N is high at the pull-down node, and the node PU and the signal output VoutO are alternately discharged.
  • Figure 8 shows the circuit diagram of the pseudo-stage SR2N+1 shift register unit.
  • the overall connection structure is similar to the circuit structure of the pseudo-stage SR0 shift register unit in Figure 7, except that the gates of T8 and T9 are connected to Vout, respectively.
  • the gates of (2N), STV, T13, and T14 are all connected to the pull-up node PU of the SR2N stage, and the pull-up node PU in the stage is connected to the gates of T13 and T14 in the SR2N stage.
  • Figure 9 shows the timing diagram of the shift register unit shown in Figure 6-8 during forward scan. As shown in Figure 9, it gives a timing diagram of approximately 2 frame periods, assuming that the STV signal pulse width, and the pseudo-level pulse DCLK superimposed on CLK1 and CLK4 are both 1 ⁇ , the pulse of CLK1-CLK4 The width is 2 inches. In the first frame time, it is assumed that Vacl and Vac2 are respectively high and low, and V_F and V_R are also high and low respectively.
  • T12 and T19 are turned on, and the gates of T11 and T18 are connected to the low-level signal line VSS, so Vacc
  • the high level is not output from the Til to the node PD_P, and since the gates of T15 and T16 are both connected to the pull-up node PU, the pull-down nodes PD_P and PD_N are discharged from the T15 and T16 to the low level VSS, respectively, so T6 , Tl, ⁇ 7, ⁇ 2 are all cut off.
  • the pull-up node PU of SR0 is connected to the gates of T13 and T14 in SR1
  • the pull-down nodes PD_P and PD_N in SR1 are pulled down to the low level VSS.
  • the dummy pulse DCLK superimposed on CLK1 arrives and is output to VoutO via T5, which is simultaneously input to the gate of T8 in the SR1 and SR2 stages, so SRI, SR2 shown in FIG.
  • the T5 is turned on, and the pull-up node PU is charged to the high level.
  • T12 is also turned on, which makes the gate and low level signal of T11.
  • the line VSS is connected, so the high level of Vacc is not output to the pull-down node PD_P via T11, and since the gates of T15 and T16 are all connected to the pull-up node PU, the pull-down nodes PD_P and PD_N are all connected to the low level VSS. Therefore, T6, Tl, ⁇ 7, and ⁇ 2 are all cut off.
  • T1 period CLK4 goes high, and it is known that T5 in SR2 is turned on, so the high level is output to Vout2 via T5, which is also known by the connection of Figure 5, which is input to SR4.
  • the gate causes the pull-up node PU in SR4 to be charged to a high level, and T5 in SR4 is turned on, and the pull-down nodes PD_P and PD_N in the SR4 stage become a low level, and T6, T1, ⁇ 7, ⁇ 2 are all turned off.
  • Vout3 is input to the gate of T9 in SR1, causing the node PU in SR1 to discharge to the low level V_R.
  • the high level of Vacc in SR0 will be output to node PD_P via Tl 1, so T6 and T1 are turned on, VoutO and node PU are all discharged to low level, and T7 and ⁇ 2 are both turned off.
  • Vout2 continues to output the high level of CLK4.
  • Vout4 is input to the gate of T9 in SR2, causing the node in node SR2 to discharge to a low level V_R.
  • Vacl's high level is output to node PD_P via T11, so T6 and T1 in SRI are turned on, ⁇ 7 and ⁇ 2 in SR2 are turned on, and nodes in PD1 and SR2 in SR1 are connected.
  • PD_P is still at low level vss.
  • the dummy pulse superimposed on CLK4 is output to Vout(2N+l) via T2 in the SR2N+1 stage shown in Fig. 8, and the high level is simultaneously input to SR2N.
  • the gate of T9 in the SR2N-1 stage causes the node PU in both stages to discharge to a low level VSS.
  • the high level of the odd-numbered levels Vacc in all the previous stages is input to the node PD_P via T11, since the nodes PD_P and PD_N in the adjacent odd-numbered stages are respectively connected to the nodes PD_N, PD_P in the even-numbered stages, so the T6 in the odd-numbered stages T1 and T2 are both turned on in the T1 and even-numbered stages, and the node PU and each output are discharged. At this time, T7 and T2 in the odd-numbered stages and T6 and T1 in the even-numbered stages are all at the low level vss.
  • the timing diagram of the shift register unit is similar to the first frame, but the difference is that Vac2 is high level and Vacl is low level in the second frame, at which time, in the subsequent time period,
  • the sustained discharge of the shift register unit of each stage is output from the high level of Vac2 in the even stage to the node PD_P via T11, because the nodes PD_P, PD_N and the even-numbered nodes in the adjacent odd-numbered stages PD_N, PD_P are connected, so T7, ⁇ 2 in the odd-numbered stages, and ⁇ 6, Tl in the even-numbered stages are all turned on, discharging the node PU and each output terminal, and T6, T1 in the odd-numbered stage and ⁇ 7 in the even-numbered stage, ⁇ 2 is cut off.
  • Fig. 10 is a timing chart showing the shift register unit of the embodiment of the present invention in the reverse scanning.
  • V_R is high level and V_F is low level.
  • the dummy level pulse signal superimposed on CLK4 is first outputted by SR2N+1 shown in FIG. 8, and then each high level pulse is sequentially outputted from the output end.
  • the high level of each stage in the reverse scanning is input from the T9 to the node PU, and in the forward scanning, the high level is input from the T8 to the node PU.
  • the circuit diagram of the shift register unit shown in FIG. 5 can realize the bidirectional scanning function, and the clock control signal and the two signal lines are added with respect to the general shift register unit connection structure, and The pseudo-stages SR0 and SR2N+1, and the nodes PD_P, PD_N, T, and PU in the adjacent odd-numbered and even-numbered stages, and more importantly, the circuit design improvement of the shift register unit and the dummy stage unit
  • the dummy level unit and the two sets of pull-down TFTs T6, Tl, T3 and T7, T2, T4 given in FIG. 6 are at a high level in different time periods (for example, adjacent two frame times) when Vac 1 or Vac2 is high.
  • the pull-up node PU and the output of each stage are alternately discharged. This design reduces the gate bias of the pull-down TFTs T6, T1, T3 and T7, T2, T4, improving the stability and lifetime of the shift register unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Shift Register Type Memory (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种移位寄存器、栅极驱动电路及显示装置。该移位寄存器包括:电位上拉模块,与时钟信号线和信号输出端连接;至少两个电位下拉模块,均与低电平信号线和所述信号输出端连接;控制模块,与所述电位上拉模块和所述电位下拉模块连接,用于控制所述电位上拉模块导通,将所述时钟信号线输入的高电平信号输出至所述信号输出端,以及控制所述至少两个电位下拉模块轮流导通,将所述低电平信号线输入的低电平信号输出至所述信号输出端,并在所述至少两个电位下拉模块其中之一导通时,控制其他所述电位下拉模块放电。该移位寄存器能够有效降低电位下拉 TFT的栅极过偏压,从而该移位寄存器单元的稳定性得以提高。

Description

移位寄存器单元、 栅极驱动电路及显示装置 技术领域
本发明涉及显示技术领域, 尤其涉及一种移位寄存器单元、 栅极驱动电 路及显示装置。 背景技术
液晶显示器现已广泛应用于各个显示领域, 如家庭、 公共场所、 办公场 所以及个人电子相关产品等。 液晶显示面板主要包括: 由阵列基板和彩膜基 板对盒形成的液晶盒、 偏光片以及背光模组等。 阵列基板上分布有大量位于 栅极线和数据线交叉区域的薄膜晶体管 (TFT), 栅极线控制着 TFT 的导通与 截止, 在 TFT导通时, 像素电极通过数据线进行充电或者放电, 数据线上的 电压控制了施加在液晶分子上的电压的大小并继而控制了液晶分子的偏转角 度, 从而使得透过液晶分子的光能够显示不同的灰阶。 对栅极线进行驱动的 电路叫栅极驱动电路, 栅极驱动电路顺序输出扫描信号给栅极线, 而扫描信 号的产生通常由移位寄存器来产生。 由于需求的不断发展, 有时需要液晶显 示面板能够逆向显示, 这就需要作为栅极驱动的移位寄存器具有双向扫描功 能。
如图 1所示为现有技术中常见的栅极驱动电路的结构示意图, 该栅极驱 动电路包括多个级联的双向扫描移位寄存器单元 SRI, SR2, . . . , SRN, 从 SR2到 SRN-1 , 每一级移位寄存器单元的输出信号除了连接到栅极线, 还分 别连接到其相邻的上一级和下一级移位寄存器单元, 该输出信号输入到上一 级移位寄存器单元起到复位(Reset )信号的作用, 输入到下一级移位寄存器 单元起到启动信号的作用。 该栅极驱动电路还包括与每一级移位寄存器单元 连接的用于控制正向以及逆向扫描的控制信号线 V_F、 V_R, 时钟信号线 CLK1、 CLK2, 低电平信号线 VSS (未示出), 以及与第一级移位寄存器单元 SR1连接的启动脉沖信号线 VST (未示出)。 另外, 第 N级移位寄存器单元 SRN的输出不需要连接到其下一层。
如图 2所示为现有技术中常见的双向扫描移位寄存器单元(即第 i级移 位寄存器单元(i大于 1 ) ) 的结构示意图, 该结构主要包括控制模块 20和输 出緩沖模块 30, 控制模块 20 内部包括该移位寄存器单元的正向以及逆向扫 描的具体控制电路,输出緩沖单元 30主要由上拉 TFT Tpu以及下拉 TFT Tpd 构成, 它们的栅极分别连接到控制模块 20的上拉节点 PU和下拉节点 PD, TFT Tpu的漏极连接到 CLK2, TFT Tpd的源极连接到 VSS。 控制模块 20的 各输入端分别连接上一级 (即第 i-1 级) 移位寄存器单元的信号输出端 Vout(i-l)、 CLK1以及 V_F、 V_R。 该移位寄存器单元(即第 i级) 的工作过 程一般如下: 当正向扫描的控制信号线 V_F输出高电平且上一级移位寄存器 单元的信号输出端 Vout(i-l)输出高电平时,控制模块 20使上拉节点 PU充电, TFT Tpu导通, 同时使下拉节点 PD放电, TFT Tpd截止, 当 CLK2处于高电 平时, 经过 TFT Tpu由该移位寄存器单元(即第 i级) 的信号输出端 Vouti 输出该高电平信号, 当 CLK2处于低电平时, 控制模块 20将使上拉节点 PU 放电以及下拉节点 PD充电, TFT Tpu截止, TFT Tpd导通, 经过 TFT Tpd 由信号输出端 Vouti输出低电平 VSS。
上述双向扫描移位寄存器在具体设计中通常会出现以下的问题: 下拉 TFT Tpd的栅极可能会受到过偏压, 使得 TFT Tpd的阈值电压发生改变, 从 而造成移位寄存器的稳定性降低。 具体说明如下: 如图 2所示, 为了使得在 后续时刻, 信号输出端 Vouti输出低电平 VSS, 需要在 CLK2处于高电平状 态时, 由控制模块 20对下拉节点 PD充电, 将 TFT Tpd导通, 使得经过 TFT Tpd由信号输出端 Vouti输出低电平 VSS, 在 CLK2处于低电平状态时, 由控 制模块 20将下拉节点 PD的电位保持, 这就使得 TFT Tpd的栅极一直处于高 电平状态, 因此 TFT Tpd的栅极会受到过偏压, 使得其阈值电压发生变化, 这对移位寄存器单元的稳定性产生很大影响。 不仅是液晶显示面板, 采用阵 列显示基板的其他类型的显示面板的移位寄存器单元以及栅极驱动电路也存 在上述问题。 发明内容
本发明要解决的技术问题是: 提供一种能够有效降低下拉 TFT的栅极过 偏压的移位寄存器单元、 栅极驱动电路及显示装置。
为解决上述问题, 本发明实施方式提供一种移位寄存器单元, 包括: 上 拉模块, 与时钟信号线和信号输出端连接; 至少两个下拉模块, 均与低电平 信号线和所述信号输出端连接; 控制模块, 与所述上拉模块和所述下拉模块 连接, 用于控制所述上拉模块导通, 将所述时钟信号线输入的高电平信号输 出至所述信号输出端, 以及控制所述至少两个下拉模块轮流导通, 将所述低 电平信号线输入的低电平信号输出至所述信号输出端, 并在所述至少两个下 拉模块其中之一导通时, 控制所述至少两个下拉模块中的其他电位下拉模块 放电。
优选地,所述至少两个下拉模块包括第一薄膜晶体管和第二薄膜晶体管, 所述第一薄膜晶体管和第二薄膜晶体管的漏极均与所述信号输出端连接, 源 极均与所述低电平信号线连接, 所述第一薄膜晶体管的栅极与第一信号线连 接, 所述第二薄膜晶体管的栅极与第二信号线连接, 所述第一信号线输入的 信号和所述第二信号线输入的信号为高低相反的电平信号。
优选地, 所述控制模块包括: 第三薄膜晶体管和第四薄膜晶体管, 所述 第三薄膜晶体管的栅极与所述第一薄膜晶体管的栅极连接, 漏极与所述第二 薄膜晶体管的栅极连接, 源极与所述低电平信号线连接, 所述第四薄膜晶体 管的栅极与所述第二薄膜晶体管的栅极连接, 漏极与所述第一薄膜晶体管的 栅极连接, 源极与所述低电平信号线连接。
优选地, 所述控制模块还包括: 扫描控制子模块, 所述上拉模块包括第 五薄膜晶体管和电容, 所述第五薄膜晶体管的栅极与所述扫描控制子模块连 接, 漏极与所述时钟信号线连接, 源极与所述信号输出端连接, 所述电容的 一端与所述第五薄膜晶体管的栅极连接, 另一端与所述第一薄膜晶体管和所 述第二薄膜晶体管的漏极连接。
优选地, 所述控制模块包括: 第六薄膜晶体管, 所述第六薄膜晶体管的 栅极与所述第一薄膜晶体管的栅极连接, 漏极与所述第五薄膜晶体管的栅极 连接, 源极与所述低电平信号线连接。
优选地, 所述控制模块还包括: 第七薄膜晶体管, 所述第七薄膜晶体管 的栅极与所述第二薄膜晶体管的栅极连接, 漏极与所述第五薄膜晶体管的栅 极连接, 源极与所述低电平信号线连接。
本发明实施方式还提供一种栅极驱动电路, 包括多个级联的移位寄存器 单元, 所述移位寄存器单元为上述移位寄存器单元。
优选地, 所述移位寄存器单元为奇数级移位寄存器单元时, 其第一薄膜 晶体管的栅极与下一级移位寄存器单元的第二薄膜晶体管的栅极连接, 其第 二薄膜晶体管的栅极与下一级移位寄存器单元的第一薄膜晶体管的栅极连 接; 所述移位寄存器单元为偶数级移位寄存器单元时, 其第一薄膜晶体管的 栅极与上一级移位寄存器单元的第二薄膜晶体管的栅极连接, 其第二薄膜晶 体管的栅极与上一级移位寄存器单元的第一薄膜晶体管的栅极连接, 奇数级 移位寄存器单元的第一薄膜晶体管的栅极与所述第一信号线连接, 偶数级移 位寄存器单元的第一薄膜晶体管的栅极与所述第二信号线连接。
优选地, 所述控制模块还包括: 第十薄膜晶体管、 第十一薄膜晶体管和 第十二薄膜晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述 第十薄膜晶体管的栅极和漏极均与所述第一信号线连接, 源极与所述第十二 薄膜晶体管的漏极连接, 所述第十二薄膜晶体管的栅极与上一奇数级移位寄 存器单元的信号输出端连接, 源极与所述低电平信号线连接, 所述第十一薄 膜晶体管的栅极与所述第十二薄膜晶体管的漏极连接, 漏极与所述第一信号 线连接, 源极与所述第一薄膜晶体管的栅极连接; 所述移位寄存器单元为偶 数级移位寄存器单元时, 所述第十薄膜晶体管的栅极和漏极均与所述第二信 号线连接, 源极与所述第十二薄膜晶体管的漏极连接, 所述第十二薄膜晶体 管的栅极与上一偶数级移位寄存器单元的信号输出端连接, 源极与所述低电 平信号线连接, 所述第十一薄膜晶体管的栅极与所述第十二薄膜晶体管的漏 极连接, 漏极与所述第二信号线连接, 源极与所述第二薄膜晶体管的栅极连 接。
优选地,所述扫描控制子模块包括: 第八薄膜晶体管和第九薄膜晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述第八薄膜晶体管的栅 极与上一奇数级移位寄存器单元的信号输出端连接, 漏极与正向扫描控制信 号线连接, 源极与所述第五薄膜晶体管的栅极连接, 所述第九薄膜晶体管的 栅极与下一奇数级移位寄存器单元的信号输出端连接, 漏极与反向扫描控制 信号线连接, 源极与所述第五薄膜晶体管的栅极连接; 所述移位寄存器单元 为偶数级移位寄存器单元时, 所述第八薄膜晶体管的栅极与上一偶数级移位 寄存器单元的信号输出端连接, 漏极与正向扫描控制信号线连接, 源极与所 述第五薄膜晶体管的栅极连接, 所述第九薄膜晶体管的栅极与下一偶数级移 位寄存器单元的信号输出端连接, 漏极与反向扫描控制信号线连接, 源极与 所述第五薄膜晶体管的栅极连接。
优选地, 所述移位寄存器单元还包括: 第十三薄膜晶体管和第十四薄膜 晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述第十三薄膜 晶体管和第十四薄膜晶体管的栅极均与上一级移位寄存器单元的第五薄膜晶 体管的栅极连接, 源极均与所述低电平信号线连接, 所述第十三薄膜晶体管 的漏极与本级移位寄存器单元的第一薄膜晶体管的栅极连接, 所述第十四薄 膜晶体管的漏极与本级移位寄存器单元的第二薄膜晶体管的栅极连接, 本级 移位寄存器单元的第五薄膜晶体管的栅极与上一级移位寄存器单元的第十三 薄膜晶体管和第十四薄膜晶体管的栅极连接, 所述移位寄存器单元为偶数移 位寄存器单元时, 所述第十三薄膜晶体管和第十四薄膜晶体管的栅极均与下 一级移位寄存器单元的第五薄膜晶体管的栅极连接, 源极均与所述低电平信 号线连接, 所述第十三薄膜晶体管的漏极与本级移位寄存器单元的第一薄膜 晶体管的栅极连接, 所述第十四薄膜晶体管的漏极与本级移位寄存器单元的 第二薄膜晶体管的栅极连接, 本级移位寄存器单元的第五薄膜晶体管的栅极 与下一级移位寄存器单元的第十三薄膜晶体管和第十四薄膜晶体管的栅极连 接。
优选地, 所述栅极驱动电路包括四条所述时钟信号线, 所述四条时钟信 号线依次连接到相邻的四个所述移位寄存器单元。
本发明实施方式还提供一种显示装置, 包括上述栅极驱动电路。
上述技术方案具有以下有益效果:
在后续的放电时刻, 栅极驱动电路中的移位寄存器单元采用至少两个电 位下拉模块轮流导通, 并在其中一个电位下拉模块导通时, 对其他电位下拉 模块进行放电, 从而降低了电位下拉 TFT的栅极的过偏压, 提高了移位寄存 器单元的稳定性。 附图说明
图 1为现有技术中常见的栅极驱动电路的结构示意图;
图 2为现有技术中常见的双向扫描移位寄存器单元的结构示意图; 图 3为本发明实施例一的移位寄存器单元的结构示意图;
图 4为本发明实施例二的移位寄存器单元的结构示意图;
图 5为本发明实施例五的栅极驱动电路的结构示意图;
图 6为本发明实施例五的移位寄存器单元的结构示意图;
图 7为本发明实施例五的 SR0级的移位寄存器单元的结构示意图; 图 8为本发明实施例五的 SR2N+1级的移位寄存器单元的结构示意图; 图 9为本发明实施例五的移位寄存器单元的正向扫描的工作时序图; 图 10为本发明实施例五的移位寄存器单元的逆向扫描的工作时序图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 <实施例一>
如图 3所示为本发明实施例一的移位寄存器单元的结构示意图, 该移位 寄存器单元包括: 上拉模块、 两个下拉模块和控制模块。
上拉模块与时钟信号线 CLK、 信号输出端 Vout以及控制模块连接, 用 于在所述控制模块的控制下导通,将所述时钟信号线 CLK输入的高电平信号 输出至所述信号输出端 Vout。
两个下拉模块均与低电平信号线 VSS、所述信号输出端 Vout以及控制模 块连接, 用于在所述控制模块的控制下轮流导通将所述低电平信号线 VSS输 入的低电平信号输出至所述信号输出端 Vout, 并且在其中一个下拉模块导通 时, 另一下拉模块放电。
控制模块与所述上拉模块和所述两个下拉模块连接, 用于控制所述上拉 模块导通, 使得所述上拉模块将所述时钟信号线输入的高电平信号输出至所 述信号输出端; 以及控制所述两个下拉模块轮流导通, 使得所述两个下拉模 块将所述低电平信号线输入的低电平信号输出至所述信号输出端, 并且在控 制所述两个下拉模块其中之一导通时, 控制另一下拉模块放电。
上述实施例提供的移位寄存器, 在放电时刻, 可以控制所述两个下拉模 块轮流导通, 并在其中一个下拉模块导通时, 对另一个下拉模块进行放电, 防止每个下拉模块受到过偏压, 提高了移位寄存器单元的稳定性。
上述实施例是以移位寄存器单元中包括两个下拉模块为例进行说明, 在 本发明的其他实施例中, 移位寄存器单元还可以包括多于两个的下拉模块, 这些下拉模块轮流导通, 并在其中之一导通时, 其它下拉模块均放电, 其电 路连接关系与上述实施例一中的电路连接关系相似, 在此不再详细说明。
本发明实施例中的下拉模块可以采用薄膜晶体管实现, 当然, 也可以采 用其他方式实现, 只要能够实现将低电平信号线 VSS输入的低电平信号输出 至信号输出端 Vout即可, 以下实施例中均以下拉模块采用薄膜晶体管实现为 例进行说明。
<实施例二> 本发明实施例二的移位寄存器单元包括上拉模块、 两个下拉模块和控制 模块, 其中, 如图 4所示, 两个下拉模块分别为第一薄膜晶体管 T1和第二薄 膜晶体管 T2,所述第一薄膜晶体管 T1和第二薄膜晶体管 T2的漏极均与信号 输出端 Vout连接, 源极均与低电平信号线 VSS连接, 第一薄膜晶体管 T1的 栅极与第一信号线 Vacl连接, 第二薄膜晶体管 T2的栅极与第二信号线 Vac2 连接, 所述第一信号线 Vacl输入的信号和所述第二信号线 Vac2输入的信号 为高低相反的电平信号。
上述第一薄膜晶体管 T1和第二薄膜晶体管 T2可以轮流导通。 具体的, 假设: 在第一时间段内, 第一信号线 Vacl输入的信号为高电平信号, 第二信 号线 Vac2输入的信号为低电平信号, 则第一薄膜晶体管 T1导通, 第二薄膜 晶体管 T2截止; 在第二时间段内, 第二信号线 Vac2输入的信号变为高电平 信号, 第一信号线 Vacl输入的信号变为低电平信号, 则第二薄膜晶体管 T2 导通, 第一薄膜晶体管 T1截止。
此外, 为了使得第一薄膜晶体管和第二薄膜晶体管的栅极不受过偏压, 还可以在其中一个薄膜晶体管导通时, 对另一薄膜晶体管放电。 在此情况下, 本发明实施例的控制模块还包括: 第三薄膜晶体管 T3和第四薄膜晶体管 T4, 所述第三薄膜晶体管 T3的栅极与所述第一薄膜晶体管 T1的栅极连接, 漏极 与所述第二薄膜晶体管 T2的栅极连接, 源极与所述低电平信号线 VSS连接, 所述第四薄膜晶体管 T4的栅极与所述第二薄膜晶体管 T2的栅极连接, 漏极 与所述第一薄膜晶体管 T1的栅极连接, 源极与所述低电平信号线 VSS连接。
通过上述结构, 当第一薄膜晶体管 T1 的栅极为高电平时, 第三薄膜晶 体管 T3导通, 从而可以对第二薄膜晶体管 T2的栅极放电, 当第二薄膜晶体 管 T2的栅极为高电平时, 第四薄膜晶体管 T4导通, 从而可以对第一薄膜晶 体管 T1的栅极放电。
上述实施例中, 两个下拉模块可以轮流导通, 并在其中之一导通时, 对 另一个进行放电, 此外, 还可以在其中任一下拉模块导通时, 对上拉模块放 电。
具体的, 所述控制模块还可以包括扫描控制子模块, 所述上拉模块包括 第五薄膜晶体管和电容, 所述第五薄膜晶体管的栅极与所述扫描控制子模块 连接, 漏极与所述时钟信号线连接, 源极与所述信号输出端连接, 所述电容 的一端与所述第五薄膜晶体管的栅极连接, 另一端与所述第一薄膜晶体管 T1 和所述第二薄膜晶体管 T2的漏极连接。
当第一薄膜晶体管 T1 (或第二薄膜晶体管 Τ2 ) 的栅极为高电平时, 第 一薄膜晶体管 T1 (或第二薄膜晶体管 Τ2 )导通, 低电平信号线输入的低电 平信号输入至第五薄膜晶体管的栅极, 对第五薄膜晶体管的栅极进行放电, 从而可以有效的将第五薄膜晶体管的栅极上积累的电荷释放, 进一步提高了 移位寄存器单元的稳定性。
为进一步加强上拉模块的放电效果, 本发明实施例的控制模块还可以包 括: 第六薄膜晶体管和第七薄膜晶体管, 所述第六薄膜晶体管的栅极与所述 第一薄膜晶体管 T1的栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源 极与所述低电平信号线连接, 所述第七薄膜晶体管的栅极与所述第二薄膜晶 体管 Τ2的栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源极与所述低 电平信号线连接。 具体的, 可以在第一薄膜晶体管 T1的栅极为高电平时, 通 过第六薄膜晶体管为第五薄膜晶体管放电,在第一薄膜晶体管 Τ2的栅极为高 电平时, 通过第七薄膜晶体管为第五薄膜晶体管放电。
<实施例三>
本发明实施例还提供一种栅极驱动电路, 包括多个级联的移位寄存器单 元, 每个移位寄存器单元包括: 上拉模块、 两个下拉模块和控制模块。
上拉模块与时钟信号线、 信号输出端以及控制模块连接, 用于在所述控 制模块的控制下导通, 将所述时钟信号线输入的高电平信号输出至所述信号 输出端。
两个下拉模块均与低电平信号线、 所述信号输出端以及控制模块连接, 用于在所述控制模块的控制下轮流导通将所述低电平信号线输入的低电平信 号输出至所述信号输出端, 并且在其中一个下拉模块导通时, 另一下拉模块 放电。
控制模块与所述上拉模块和所述两个下拉模块连接, 用于控制所述上拉 模块导通, 使得所述上拉模块将所述时钟信号线输入的高电平信号输出至所 述信号输出端; 以及控制所述两个下拉模块轮流导通, 使得所述两个下拉模 块将所述低电平信号线输入的低电平信号输出至所述信号输出端, 并且在控 制所述两个下拉模块其中之一导通时, 控制另一下拉模块放电。
上述移位寄存器单元在放电时刻, 可以控制两个下拉模块轮流导通, 并 在其中一个下拉模块导通时, 对另一个下拉模块进行放电, 防止每个下拉模 块受到过偏压, 提高了稳定性。
上述实施例是以移位寄存器单元中包括两个下拉模块为例进行说明, 在 本发明的其他实施例中, 移位寄存器单元还可以包括多于两个的下拉模块, 这些下拉模块轮流导通, 并在其中之一导通时, 其它下拉模块均放电, 其电 路连接关系与上述实施例一中的电路连接关系相似, 在此不再详细说明。
本发明实施例中的下拉模块可以采用薄膜晶体管实现, 当然, 也可以采 用其他方式实现, 只要能够实现将低电平信号线 VSS输入的低电平信号输出 至信号输出端 Vout即可, 以下实施例中均以下拉模块采用薄膜晶体管实现为 例进行说明。
<实施例四>
本发明实施例四的栅极驱动电路包括多个级联的移位寄存器单元, 每个 移位寄存器单元包括上拉模块、 两个下拉模块和控制模块, 其中, 两个下拉 模块分别为第一薄膜晶体管和第二薄膜晶体管, 所述第一薄膜晶体管和第二 薄膜晶体管的漏极与所述信号输出端连接, 源极与所述低电平信号线连接, 在所述移位寄存器单元为奇数级移位寄存器单元时, 其第一薄膜晶体管的栅 极与下一级移位寄存器单元的第二薄膜晶体管的栅极连接, 其第二薄膜晶体 管的栅极与下一级移位寄存器单元的第一薄膜晶体管的栅极连接, 所述移位 寄存器单元为偶数级移位寄存器单元时, 其第一薄膜晶体管的栅极与上一级 移位寄存器单元的第二薄膜晶体管的栅极连接, 其第二薄膜晶体管的栅极与 上一级移位寄存器单元的第一薄膜晶体管的栅极连接, 奇数级移位寄存器单 元的第一薄膜晶体管的栅极与第一信号线连接, 偶数级移位寄存器单元的第 一薄膜晶体管的栅极与第二信号线连接, 所述第一信号线输入的信号和所述 第二信号线输入的信号为高低相反的电平信号。
上述第一薄膜晶体管和第二薄膜晶体管可以轮流导通。 具体的, 假设: 在第一时间段内, 第一信号线输入的信号为高电平信号, 第二信号线输入的 信号为低电平信号, 则第一薄膜晶体管导通, 第二薄膜晶体管截止; 在第二 时间段内, 第二信号线输入的信号变为高电平信号, 第一信号线输入的信号 变为低电平信号, 则第二薄膜晶体管导通, 第一薄膜晶体管截止。
上述移位寄存器单元可以通过多种方式控制第一薄膜晶体管和第二薄膜 晶体管轮流导通, 下面举例进行说明。
所述控制模块还可以包括: 第十薄膜晶体管、 第十一薄膜晶体管和第十 二薄膜晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述第十 薄膜晶体管的栅极和漏极均与所述第一信号线连接, 源极与所述第十二薄膜 晶体管的漏极连接, 所述第十二薄膜晶体管的栅极与上一奇数级移位寄存器 单元的信号输出端连接, 源极与所述低电平信号线连接, 所述第十一薄膜晶 体管的栅极与所述第十二薄膜晶体管的漏极连接, 漏极与所述第一交流信号 线连接, 源极与所述第一薄膜晶体管的栅极连接; 所述移位寄存器单元为偶 数级移位寄存器单元时, 所述第十薄膜晶体管的栅极和漏极均与所述第二信 号线连接, 源极与所述第十二薄膜晶体管的漏极连接, 所述第十二薄膜晶体 管的栅极与上一偶数级移位寄存器单元的信号输出端连接, 源极与所述低电 平信号线连接, 所述第十一薄膜晶体管的栅极与所述第十二薄膜晶体管的漏 极连接, 漏极与所述第二信号线连接, 源极与所述第二薄膜晶体管的栅极连 接。
此外, 为了使得第一薄膜晶体管和第二薄膜晶体管的栅极不受过偏压, 还可以在其中一个薄膜晶体管导通时, 对另一薄膜晶体管放电。 本发明实施 例的控制模块还包括: 第三薄膜晶体管和第四薄膜晶体管, 所述第三薄膜晶 体管的栅极与所述第一薄膜晶体管的栅极连接, 漏极与所述第二薄膜晶体管 的栅极连接, 源极与所述低电平信号线连接, 所述第四薄膜晶体管的栅极与 所述第二薄膜晶体管的栅极连接, 漏极与所述第一薄膜晶体管的栅极连接, 源极与所述低电平信号线连接。
通过上述结构, 当第一薄膜晶体管的栅极为高电平时, 第三薄膜晶体管 导通, 从而可以对第二薄膜晶体管放电, 当第二薄膜晶体管的栅极为高电平 时, 第四薄膜晶体管导通, 从而可以对第一薄膜晶体管放电。
上述实施例中, 两个下拉模块可以轮流导通, 并在其中之一导通时, 对 另一个进行放电, 此外, 还可以在其中任一下拉模块导通时, 对电位上拉模 块放电。
具体的, 所述控制模块还可以包括扫描控制子模块, 所述上拉模块包括 第五薄膜晶体管和电容, 所述第五薄膜晶体管的栅极与所述扫描控制子模块 连接, 漏极与所述时钟信号线连接, 源极与所述信号输出端连接, 所述电容 的一端与所述第五薄膜晶体管的栅极连接, 另一端与所述第一薄膜晶体管和 所述第二薄膜晶体管的漏极连接。
当第一薄膜晶体管 (或第二薄膜晶体管) 的栅极为高电平时, 第一薄膜 晶体管 (或第二薄膜晶体管)导通, 低电平信号线输入的低电平信号输入至 第五薄膜晶体管的栅极, 对第五薄膜晶体管进行放电, 从而可以有效的将第 五薄膜晶体管上积累的电荷释放, 进一步提高了移位寄存器单元的稳定性。
本发明实施例中的移位寄存器单元可以是双向扫描移位寄存器单元, 为 了实现双向扫描, 所述扫描控制子模块可以包括: 第八薄膜晶体管和第九薄 膜晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述第八薄膜 晶体管的栅极与上一奇数级移位寄存器单元的信号输出端连接, 漏极与正向 扫描控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接, 所述第九薄 膜晶体管的栅极与下一奇数级移位寄存器单元的信号输出端连接, 漏极与反 向扫描控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接; 所述移位 寄存器单元为偶数级移位寄存器单元时, 所述第八薄膜晶体管的栅极与上一 偶数级移位寄存器单元的信号输出端连接,漏极与正向扫描控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接, 所述第九薄膜晶体管的栅极与下一 偶数级移位寄存器单元的信号输出端连接,漏极与反向扫描控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接。
为进一步加强上拉模块的放电效果, 本发明实施例的控制模块还可以包 括: 第六薄膜晶体管和第七薄膜晶体管, 所述第六薄膜晶体管的栅极与所述 第一薄膜晶体管的栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源极 与所述低电平信号线连接, 所述第七薄膜晶体管的栅极与所述第二薄膜晶体 管的栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源极与所述低电平 信号线连接。 具体的, 可以在第一薄膜晶体管的栅极为高电平时, 通过第六 薄膜晶体管为第五薄膜晶体管放电, 在第一薄膜晶体管的栅极为高电平时, 通过第七薄膜晶体管为第五薄膜晶体管放电。
为了提高栅极驱动电路的工作效率, 不同级的移位寄存器单元可以相互 耦合, 具体的, 所述移位寄存器单元还可以包括: 第十三薄膜晶体管和第十 四薄膜晶体管, 当所述移位寄存器单元为奇数级移位寄存器单元时, 所述第 十三薄膜晶体管和第十四薄膜晶体管的栅极均与上一级移位寄存器单元的第 五薄膜晶体管的栅极连接, 源极均与所述低电平信号线连接, 所述第十三薄 膜晶体管的漏极与本级移位寄存器单元的第一薄膜晶体管的栅极连接, 所述 第十四薄膜晶体管的漏极与本级移位寄存器单元的第二薄膜晶体管的栅极连 接, 本级移位寄存器单元的第五薄膜晶体管的栅极与上一级移位寄存器单元 的第十三薄膜晶体管和第十四薄膜晶体管的栅极连接; 当所述移位寄存器单 元为偶数移位寄存器单元时, 所述第十三薄膜晶体管和第十四薄膜晶体管的 栅极均与下一级移位寄存器单元的第五薄膜晶体管的栅极连接, 源极均与所 述低电平信号线连接, 所述第十三薄膜晶体管的漏极与本级移位寄存器单元 的第一薄膜晶体管的栅极连接, 所述第十四薄膜晶体管的漏极与本级移位寄 存器单元的第二薄膜晶体管的栅极连接, 本级移位寄存器单元的第五薄膜晶 体管的栅极与下一级移位寄存器单元的第十三薄膜晶体管和第十四薄膜晶体 管的栅极连接。
为了降低脉沖的出现频率, 达到降低栅极驱动电路的功耗的目的, 所述 栅极驱动电路可以包括四条时钟信号线, 所述四条时钟信号线依次连接到相 邻的四个移位寄存器单元。
<实施例五>
如图 5为本发明实施例五的栅极驱动电路的结构示意图。 相对于图 1所 示的现有技术中的栅极驱动电路, 本发明实施例的栅极驱动电路采用了 4根 时钟控制信号线 CLK1-CLK4,时钟控制信号线的增加是为了降低脉沖的出现 频率, 达到降低栅极驱动电路的功耗的目的。 另外, 还增加了 2根信号控制 线 Vacl, Vac2, 其作用是在后续放电时刻, 实现对移位寄存器单元中的下拉 单元在不同时间段 (比如相邻的两帧时间)轮流放电的过程。 V_F、 V_R是控制 正向以及逆向扫描的控制信号线。 另外, 相对于图 1所示的现有技术中的栅 极驱动电路, 还增加了上端的伪级 SR0以及下端的伪级 SR2N+1 , 伪级的设 计是为了防止在正向或逆向扫描时, 外部的错误信号输入到 SR1或 SR2N。 另一方面, 在不同级的移位寄存器单元的连接上, 从上端到下端, 增加了奇 数级与偶数级的耦合, 即将奇数级下拉节点 PD_P, PD_N分别与偶数级的下 拉节点 PD_N, PD_P相连, 比如, SR1级中的 PD_P, PD_N分别与 SR2级中 的 PD_N, PD_P相连, SR3级中的 PD_P, PD_N分别与 SR4级中的 PD_N, PD_P 相连。 另外, 为了增强放电效果, 节点 T, PU分别与上一级或下一级的节点 PU, T相连, 比如, SR0级的 T, PU分别与 SR1级的 PU, T相连, SR2级的 T, PU分别与 SR3级的 PU, T相连。
如图 6所示为本发明实施例五的移位寄存器单元的电路结构示意图, 图 6中包括了相邻的奇数级与偶数级移位寄存器单元的电路结构。
在奇数级移位寄存器单元的电路结构中, 包括: 第一控制模块 100、 第 二控制模块 200和输出緩沖模块 300。 其中, 第一控制模块 100和第二控制 模块 200执行上述实施例中的控制模块的功能, 输出緩沖模块 300执行上述 实施例中的上拉模块和下拉模块执行的功能。
第一控制模块 100, 包括 TFT T8和 TFT T9 , T8和 T9的漏极分别与扫 描控制信号线 V_F, V_R连接, T8和 T9的栅极分别与上一个奇数级移位寄存 器单元的输出端 Vout(2n-3)和下一个奇数级移位寄存器单元的输出端 Vout(2n+l)连接。
第二控制模块 200, 包括 TFT T3、 T4、 T6、 T7、 T10、 Tll、 Τ12、 Τ15、 T16, 其中, Τ6、 Τ7的漏极均连接到上拉节点 PU,栅极分别连接到下拉节点 PD_P、 PD_N, 源极均连接到低电平信号线 VSS。 Til的漏极以及 T10的栅极 和漏极均连接到第一信号线 Vacl, T10 的源极与 T11的栅极以及 T12的漏极 相连, T11的源极连接到下拉节点 PD_P, T12的栅极和源极分别连接到上一 个奇数级移位寄存器单元的输出端 Vout(2n-3)和低电平信号线 VSS , T10、T11、 T12的作用是当 Vout(2n-3)为高电平时, 由 T12将 T11的栅极放电至低电平 VSS, 从而使得 Vacl 的高电平将不会由 T10、 Til 输出到节点 PD_P , 当 Vout(2n-3)为低电平时, T12截止, Vacl 的高电平将由 T10, T11输出到节点 PD_P。 T3、 Τ4 的栅极分别连接到下拉节点 PD_P、 PD_N, 漏极分别连接到 PD_N、 PD_P, 源极均连接到 VSS , T3 (或 T4 )的作用是当 PD_P (或 PD_N) 为高电平时, 由 T3(或 Τ4)实现对节点 PD_N (或 PD_P)的放电。 T15、 T16的 栅极均连接到上拉节点 PU, 漏极分别连接到下拉节点 PD_P、 PD_N, 源极 均连接到 VSS , T15、 T16的作用是当上拉节点 PU为高电平时, T15、 T16 将节点 PD_P、 PD_N放电至低电平 VSS。 另外, 上拉节点 PU连接到上级移 位寄存器单元 SR2n-2中的 T13、 T14的栅极, 其作用是当 PU为高电平, 将 上级移位寄存器单元 SR2n-2中的下拉节点 PD_P、 PD_N放电至低电平 VSS。
输出緩沖模块 30, 由 TFT T1、 T2、 Τ13、 Τ14、 Τ5以及电容 Cb组成, 当上拉节点 PU为高电平时, 由 T5输出 CLKA的高电平; Tl、 Τ2的栅极分 别与节点 PD_P、 PD_N相连, 它们的主要作用是当 PD_P或 PD_N为高电平 时, 将信号输出端下拉至低电平 VSS; T13、 T14的栅极均与 SR2N-2级移位 寄存器单元的上拉节点 PU相连, T13、 T14的漏极分别与节点 PD_P、 PD_N 相连, 源极均与 VSS相连, 它们的作用是当 SR2n-2级移位寄存器单元的上 拉节点 PU为高电平时, 通过 T13、 T14分别将 SR2n-l级移位寄存器单元的 下拉节点 PD_P、 PD_N放电至低电平 VSS。
偶数级移位寄存器单元同样包括: 第一控制模块 100、第二控制模块 200 和输出緩沖模块 300。 偶数级移位寄存器单元的电路在整体上与奇数级移位 寄存器单元相同, 除了偶数级移位寄存器单元的 T8、 Τ9 的栅极分别连接到 上一个偶数级移位寄存器单元的输出端 Vout(2n-2)以及下一个偶数级移位寄 存器单元的输出端 Vout(2n+2), 以及 T10的栅极连接到第二信号线 Vac2外。 另外, 奇数级移位寄存器单元的下拉节点 PD_P、 PD_N分别与偶数级移位寄 存器单元的下拉节点 PD_N、 PD_P相连, 偶数级(即 SR2n级)移位寄存器 单元中的 T13、 T14的栅极均连接到下级(即 SR2n+l级)移位寄存器单元的 上拉节点 PU, 以及其上拉节点 PU连接到 SR2n+l级移位寄存器单元的 T13、 T14的栅极。
图 7给出了伪级 SR0移位寄存器单元的电路结构, 相对于图 6给出的 奇数级或者偶数级移位寄存器单元的电路结构, 增加了另外一组节点控制 TFT T17、 T18和 T19, 其中 T19栅极与 STV相连, T18的源极与下拉节点 PD_N相连, T18的漏极和 T17的栅极和源极均与 Vac2相连。 T13, T14的栅 极均与 SR1级中的上拉节点 PU相连以及该级中的上拉节点 PU与 SR1级中 的 T13, T14的栅极相连。 T10、 Til和 T12以及 T17、 T18和 T19能够实现 在 Vacl或 Vac2为高电平时, 即在下拉节点 PD_P或 PD_N为高电平, 对节 点 PU和信号输出端 VoutO进行轮流放电。
图 8给出了伪级 SR2N+1移位寄存器单元的电路图, 其整体连接结构与 图 7中的伪级 SR0移位寄存器单元的电路结构相类似,除了 T8和 T9的栅极 分别连接到 Vout(2N)、 STV, T13、 T14的栅极均与 SR2N级的上拉节点 PU 相连, 以及该级中的上拉节点 PU与 SR2N级中的 T13、 T14的栅极相连。
图 9给出了图 6-8所示的移位寄存器单元在正向扫描时的时序图。 如图 9所示,其给出的是近似 2帧周期的时序图,其中假定了 STV信号脉沖宽度、 以及叠加在 CLK1和 CLK4上的伪级脉沖 DCLK宽度均为 1 Η, CLK1-CLK4 的脉沖宽度为 2Η。在前 1帧时间内,假设了 Vacl、 Vac2分别为高,低电平, V_F、 V_R也分别为高, 低电平。
在 Ts时间段的前一个时刻, STV为高电平, 因此图 7所示的伪级 SR0 中的 T8导通, 上拉节点 PU充电至高电平, 使得 T5导通, 同时 STV的高电 平使得 T12、 T19导通, Tll、 T18的栅极与低电平信号线 VSS相连,故 Vacl 的高电平不会由 Til输出到节点 PD_P, 同时由于 T15、 T16的栅极均与上 拉节点 PU相连, 这使得下拉节点 PD_P、 PD_N分别由 T15、 T16放电至低 电平 VSS, 因此 T6、 Tl、 Τ7、 Τ2均截止。 两外, 由于 SR0的上拉节点 PU 与 SR1中的 T13, T14的栅极相连, 故 SR1中的下拉节点 PD_P、 PD_N被下 拉至低电平 VSS。
在 Ts时间段, 叠加在 CLK1上的伪级脉沖 DCLK到来, 经由 T5输出到 VoutO, 该高电平同时输入到 SR1、 SR2级中的 T8的栅极, 因此图 5所示的 SRI , SR2中的 T5均导通, 上拉节点 PU均充电至高电平, 同时, 在 SR1、 SR2中, 由于 T12的栅极与 VoutO相连, 因 T12也导通, 这使得 T11的栅极 与低电平信号线 VSS相连, 因此 Vacl的高电平不会经由 T11输出到下拉节 点 PD_P, 同时由于 T15、 T16的栅极均与上拉节点 PU相连, 因此下拉节点 PD_P、 PD_N均与低电平 VSS相连, 故 T6、 Tl、 Τ7、 Τ2均截止。
在 TO时间段, CLK3变为高电平, 由前面知道, SR1中的 T5导通, 故 该高电平经由 T5输出到 Voutl, 由图 5所示的连接可知,该高电平输入到 SR3 中 T8的栅极,使得 SR3中的上拉节点 PU充电至高电平, SR3中的 T5导通, 同时该 SR3级中的下拉节点 PD_P、 PD_N变为低电平, T6、 Tl、 Τ7、 Τ2均 截止。 另外, 由图 5知道, 该 Voutl 高电平会反馈到图 7所示的 SR0中的 T9的栅极,因此 SR0中上拉节点 PU会被放电至低电平 V_R, 同时,由于 SRI 中节点 PU均与 SR0中的 T13 , T14的栅极相连, 因此, 进一步加强了 SR0 级中的 PD_P、 PD_N的下拉效果。
在 T1时间段, CLK4变为高电平, 由前知道 SR2中的 T5导通, 因此该 高电平会经由 T5输出到 Vout2, 同样由图 5 的连接知道, 该高电平输入到 SR4的栅极, 使得 SR4中的上拉节点 PU充电至高电平, SR4中的 T5导通, 该 SR4级中下拉节点 PD_P、 PD_N变为低电平, T6、 Tl、 Τ7、 Τ2均截止。 同时, 由于 SR2的节点 PU与 SR3中的 T13, T14栅极相连, 因此 SR3中下 拉节点 PD_P、 PD_N ¾放电至低电平 VSS。 此时, Voutl继续输出 CLK3的 高电平。 注意此时, 对于图 7所示的 SR0而言, 由于上拉节点 PU被放电至 低电平 V_R, 因此 T15, T16均截止, Vacl的高电平会经由 T10, T11输入到 节点 PD_P, 由于 T13、 T14的栅极均与 SRI的节点 PU相连, 由于 T13、 T14 较强的放电能力, 因此 SR0中节点 PD_P、 PD_N均处于低电平 VSS。
在 T2时间段, CLK2变为高电平, 由前知道, SR3中的 T5导通, 此高 电平会经由 T5输出到 Vout3 , 同样由图 5的连接知道, 该高电平输入到 SR5 中 T8的栅极, 使得 SR5中的节点 PU充电至高电平, SR5中的 T5导通, 该 SR5级中节点 PD_P、 PD_N变为低电平, T6、 Tl、 Τ7、 Τ2均截止。 由于 SR3的 PU点与 SR2中的 T13、 T14的栅极相连, 因此进一步加强了 SR2中 T13、 T14的下拉效果。 同样由图 5知道, Vout3的高电平会输入到 SR1中的 T9的栅极, 使得 SR1 中的节点 PU放电至低电平 V_R。 这时, SR0中 Vacl 的高电平会经由 Tl 1输出到节点 PD_P , 因此 T6、 T1导通, VoutO以及节点 PU均被放电至低电平, T7、 Τ2均截止。 同时, Vout2继续输出 CLK4的高电 平。
在 T3时间段, CLK1变为高电平, 由前知道, SR4中 T5导通, 该高电 平会经由 T5输出到 Vout4, 同样由图 5知道, 该高电平输入到 SR6的栅极, 使得 SR6中的节点 PU充电至高电平, SR6中的 T5导通, 该 SR6级中节点 PD_P, PD_N变为氐电平, T6、 Tl、 Τ7、 Τ2均截止。 同时, Vout4的该高电 平会输入到 SR5中的 T13、T14的栅极,使得该 SR5级中的节点 PD_P、 PD_N 下拉至低电平 VSS。 同样由图 5知道, Vout4的高电平会输入到 SR2中的 T9 的栅极,使得节点 SR2中的节点放电至低电平 V_R。类似前面的分析,在 SR1 中, Vacl的高电平会经由 T11输出到节点 PD_P, 因此 SRI中的 T6、 T1导通, SR2中的 Τ7、 Τ2导通, 而 SR1中节点 PD_N和 SR2中节点 PD_P仍处于低 电平 vss。
在第一帧要结束的前一时间段, 叠加在 CLK4上的伪级脉沖会经由图 8 所示 SR2N+1 级中的 T2输出到 Vout(2N+l), 该高电平同时输入到 SR2N, SR2N-1级中的 T9的栅极, 使得这两级中的节点 PU放电至低电平 VSS。 此 时, 前面所有级中奇数级 Vacl的高电平会经由 T11输入到节点 PD_P, 由于 相邻的奇数级中节点 PD_P , PD_N分别与偶数级中节点 PD_N, PD_P相连, 因此奇数级中的 T6, T1与偶数级中 T7, T2均导通, 对节点 PU以及每个输出 端进行放电, 这时奇数级中的 T7, T2以及偶数级中的 T6, T1均处于低电平 vss。
在第二帧开始时, 移位寄存器单元的时序图与第一帧相类似, 但是所不 同是, 在第二帧时 Vac2为高电平, Vacl 为低电平, 这时在后续时间段, 每 级的移位寄存器单元的持续放电是由偶数级中的 Vac2的高电平经由 T11输出 到节点 PD_P, 由于相邻的奇数级中节点 PD_P, PD_N 分别与偶数级中节点 PD_N, PD_P相连, 因此奇数级中 T7, Τ2以及偶数级中的 Τ6, Tl均导通, 对 节点 PU以及每个输出端进行放电,而奇数级中的 T6, T1以及偶数级中的 Τ7, Τ2均截止。 由于 Τ3, Τ4分别与节点 PD_P, PD_N相连, 这样就实现了在相邻 的两帧, TFT T6, Tl, T3和 T7, T2, T4, 在 Vacl或 Vac2为高电平时, 对上拉 节点 PU以及各级的输出端进行轮流放电的过程。
图 10 给出的是本发明实施例的移位寄存器单元在逆向扫描时的时序 图。 在逆向扫描时, V_R为高电平, V_F为低电平, 此时叠加在 CLK4上的 伪级脉沖信号首先由图 8所示的 SR2N+1输出, 然后各个高电平脉沖依次由 输出端 Vout(2N), Vout(2N-l), Vout(2N-2), Vout(2N-3), ……输出, 从而实现了 逆向扫描。相对于正向扫描过程,逆向扫描时各级的高电平是由 T9输入到节 点 PU的, 而正向扫描时, 高电平是由 T8输入到节点 PU的。 在逆向扫描时, 同样实现了在相邻的两帧, TFT T6, Tl, T3和 T7, T2, T4, 在 Vacl或 Vac2为 高电平时, 对上拉节点 PU以及各级的输出端进行轮流放电的过程。
需要了解的是, 在图 9和 10给出的时序图是 Vacl, Vac2的高电平持续 时间是 1帧时给出的, 实际上 Vacl或 Vac2的高电平持续时间只需是脉沖的 宽度的某个正整数倍同时比一帧时间小、 以及二者的相位始终相反, 就可以 实现上述的奇、偶数级中 TFT T6, Tl, T3和 T7, T2, T4对上拉节点 PU以及各 级的输出端进行轮流放电的过程。 此时的时序图不再赘述。
根据前面的图 9以及图 10时序分析知道, 图 5给出的移位寄存器单元 电路图能够实现双向扫描功能, 相对一般的移位寄存器单元连接结构, 增加 了时钟控制信号以及两根信号线, 以及伪级 SR0和 SR2N+1 , 以及相邻的奇 数级和偶数级中节点 PD_P,PD_N, T, 以及 PU耦合, 更重要的是, 通过对移 位寄存器单元以及伪级单元的电路改进设计, 使得伪级单元以及图 6给出的 两组下拉的 TFT T6, Tl, T3和 T7, T2, T4,在不同时间段 (比如说相邻的 2帧时 间)Vac 1或 Vac2为高电平时, 对上拉节点 PU以及各级的输出端进行轮流放 电, 这样的设计降低了下拉 TFT T6, Tl, T3和 T7, T2, T4的栅极偏压,提高了 移位寄存器单元的稳定性及寿命。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润 饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种移位寄存器单元, 其特征在于, 包括:
上拉模块, 与时钟信号线和信号输出端连接;
至少两个下拉模块, 均与低电平信号线和所述信号输出端连接; 控制模块, 与所述上拉模块和所述至少两个下拉模块连接, 用于控制所 述上拉模块导通, 将所述时钟信号线输入的高电平信号输出至所述信号输出 端, 以及控制所述至少两个下拉模块轮流导通, 将所述低电平信号线输入的 低电平信号输出至所述信号输出端, 并在所述至少两个下拉模块其中之一导 通时, 控制所述至少两个下拉模块中的其他下拉模块放电。
2. 如权利要求 1所述的移位寄存器单元, 其特征在于, 所述至少两个下 拉模块包括第一薄膜晶体管和第二薄膜晶体管, 所述第一薄膜晶体管和第二 薄膜晶体管的漏极均与所述信号输出端连接, 源极均与所述低电平信号线连 接, 所述第一薄膜晶体管的栅极与第一信号线连接, 所述第二薄膜晶体管的 栅极与第二信号线连接, 所述第一信号线输入的信号和所述第二信号线输入 的信号为高低相反的电平信号。
3. 如权利要求 2所述的移位寄存器单元, 其特征在于, 所述控制模块包 括: 第三薄膜晶体管和第四薄膜晶体管, 所述第三薄膜晶体管的栅极与所述 第一薄膜晶体管的栅极连接, 漏极与所述第二薄膜晶体管的栅极连接, 源极 与所述低电平信号线连接, 所述第四薄膜晶体管的栅极与所述第二薄膜晶体 管的栅极连接, 漏极与所述第一薄膜晶体管的栅极连接, 源极与所述低电平 信号线连接。
4. 如权利要求 2所述的移位寄存器单元, 其特征在于, 所述控制模块还 包括: 扫描控制子模块, 所述上拉模块包括第五薄膜晶体管和电容, 所述第 五薄膜晶体管的栅极与所述扫描控制子模块连接, 漏极与所述时钟信号线连 接, 源极与所述信号输出端连接, 所述电容的一端与所述第五薄膜晶体管的 栅极连接,另一端与所述第一薄膜晶体管和所述第二薄膜晶体管的漏极连接。
5. 如权利要求 4所述的移位寄存器单元, 其特征在于, 所述控制模块包 括: 第六薄膜晶体管, 所述第六薄膜晶体管的栅极与所述第一薄膜晶体管的 栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源极与所述低电平信号 线连接。
6. 如权利要求 4所述的移位寄存器单元, 其特征在于, 所述控制模块还 包括: 第七薄膜晶体管, 所述第七薄膜晶体管的栅极与所述第二薄膜晶体管 的栅极连接, 漏极与所述第五薄膜晶体管的栅极连接, 源极与所述低电平信 号线连接。
7. 一种栅极驱动电路, 包括多个级联的移位寄存器单元, 其特征在于, 所述移位寄存器单元为权利要求 1-6任一项所述的移位寄存器单元。
8. 如权利要求 7所述的栅极驱动电路, 其特征在于,
所述移位寄存器单元为奇数级移位寄存器单元时, 其第一薄膜晶体管的 栅极与下一级移位寄存器单元的第二薄膜晶体管的栅极连接, 其第二薄膜晶 体管的栅极与下一级移位寄存器单元的第一薄膜晶体管的栅极连接,
所述移位寄存器单元为偶数级移位寄存器单元时, 其第一薄膜晶体管的 栅极与上一级移位寄存器单元的第二薄膜晶体管的栅极连接, 其第二薄膜晶 体管的栅极与上一级移位寄存器单元的第一薄膜晶体管的栅极连接, 奇数级 移位寄存器单元的第一薄膜晶体管的栅极与所述第一信号线连接, 偶数级移 位寄存器单元的第一薄膜晶体管的栅极与所述第二信号线连接。
9. 如权利要求 7所述的栅极驱动电路, 其特征在于, 所述控制模块还包 括: 第十薄膜晶体管、 第十一薄膜晶体管和第十二薄膜晶体管,
所述移位寄存器单元为奇数级移位寄存器单元时, 所述第十薄膜晶体管 的栅极和漏极均与所述第一信号线连接, 源极与所述第十二薄膜晶体管的漏 极连接, 所述第十二薄膜晶体管的栅极与上一奇数级移位寄存器单元的信号 输出端连接, 源极与所述低电平信号线连接, 所述第十一薄膜晶体管的栅极 与所述第十二薄膜晶体管的漏极连接, 漏极与所述第一信号线连接, 源极与 所述第一薄膜晶体管的栅极连接;
所述移位寄存器单元为偶数级移位寄存器单元时, 所述第十薄膜晶体管 的栅极和漏极均与所述第二信号线连接, 源极与所述第十二薄膜晶体管的漏 极连接, 所述第十二薄膜晶体管的栅极与上一偶数级移位寄存器单元的信号 输出端连接, 源极与所述低电平信号线连接, 所述第十一薄膜晶体管的栅极 与所述第十二薄膜晶体管的漏极连接, 漏极与所述第二信号线连接, 源极与 所述第二薄膜晶体管的栅极连接。
10. 如权利要求 7所述的栅极驱动电路, 其特征在于, 所述扫描控制子 模块包括: 第八薄膜晶体管和第九薄膜晶体管, 所述移位寄存器单元为奇数级移位寄存器单元时, 所述第八薄膜晶体管 的栅极与上一奇数级移位寄存器单元的信号输出端连接, 漏极与正向扫描控 制信号线连接, 源极与所述第五薄膜晶体管的栅极连接, 所述第九薄膜晶体 管的栅极与下一奇数级移位寄存器单元的信号输出端连接, 漏极与反向扫描 控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接;
所述移位寄存器单元为偶数级移位寄存器单元时, 所述第八薄膜晶体管 的栅极与上一偶数级移位寄存器单元的信号输出端连接, 漏极与正向扫描控 制信号线连接, 源极与所述第五薄膜晶体管的栅极连接, 所述第九薄膜晶体 管的栅极与下一偶数级移位寄存器单元的信号输出端连接, 漏极与反向扫描 控制信号线连接, 源极与所述第五薄膜晶体管的栅极连接。
11. 如权利要求 7所述的栅极驱动电路, 其特征在于, 所述移位寄存器 单元还包括: 第十三薄膜晶体管和第十四薄膜晶体管,
所述移位寄存器单元为奇数级移位寄存器单元时, 所述第十三薄膜晶体 管和第十四薄膜晶体管的栅极均与上一级移位寄存器单元的第五薄膜晶体管 的栅极连接, 源极均与所述低电平信号线连接, 所述第十三薄膜晶体管的漏 极与本级移位寄存器单元的第一薄膜晶体管的栅极连接, 所述第十四薄膜晶 体管的漏极与本级移位寄存器单元的第二薄膜晶体管的栅极连接, 本级移位 寄存器单元的第五薄膜晶体管的栅极与上一级移位寄存器单元的第十三薄膜 晶体管和第十四薄膜晶体管的栅极连接;
所述移位寄存器单元为偶数移位寄存器单元时, 所述第十三薄膜晶体管 和第十四薄膜晶体管的栅极均与下一级移位寄存器单元的第五薄膜晶体管的 栅极连接, 源极均与所述低电平信号线连接, 所述第十三薄膜晶体管的漏极 与本级移位寄存器单元的第一薄膜晶体管的栅极连接, 所述第十四薄膜晶体 管的漏极与本级移位寄存器单元的第二薄膜晶体管的栅极连接, 本级移位寄 存器单元的第五薄膜晶体管的栅极与下一级移位寄存器单元的第十三薄膜晶 体管和第十四薄膜晶体管的栅极连接。
12. 如权利要求 7所述的栅极驱动电路, 其特征在于, 所述栅极驱动电 路包括四条所述时钟信号线, 所述四条时钟信号线依次连接到相邻的四个所 述移位寄存器单元。
13.一种显示装置, 其特征在于, 包括权利要求 7-12任一项所述的栅极 驱动电路。
PCT/CN2013/077497 2013-03-29 2013-06-19 移位寄存器单元、栅极驱动电路及显示装置 WO2014153863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,957 US9666152B2 (en) 2013-03-29 2013-06-19 Shift register unit, gate driving circuit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101094340A CN103198867A (zh) 2013-03-29 2013-03-29 移位寄存器、栅极驱动电路及显示装置
CN201310109434.0 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014153863A1 true WO2014153863A1 (zh) 2014-10-02

Family

ID=48721339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077497 WO2014153863A1 (zh) 2013-03-29 2013-06-19 移位寄存器单元、栅极驱动电路及显示装置

Country Status (3)

Country Link
US (1) US9666152B2 (zh)
CN (1) CN103198867A (zh)
WO (1) WO2014153863A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347044B (zh) * 2013-08-06 2017-07-21 瀚宇彩晶股份有限公司 栅极驱动电路
CN104078021B (zh) * 2014-07-17 2016-05-04 深圳市华星光电技术有限公司 具有自我补偿功能的栅极驱动电路
CN104700766B (zh) * 2015-03-31 2017-12-15 京东方科技集团股份有限公司 控制子单元、移位寄存单元、移位寄存器和显示装置
CN105161061B (zh) * 2015-08-18 2017-11-10 深圳市华星光电技术有限公司 驱动电路以及移位寄存电路
CN105185338B (zh) * 2015-09-28 2018-01-30 武汉华星光电技术有限公司 Cmos goa电路
CN105206238B (zh) * 2015-10-15 2017-12-15 武汉华星光电技术有限公司 栅极驱动电路及应用该电路的显示装置
CN105185343B (zh) * 2015-10-15 2017-12-29 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
US9792871B2 (en) * 2015-11-18 2017-10-17 Wuhan China Star Optoelectronics Technology Co., Ltd. Gate driver on array circuit and liquid crystal display adopting the same
CN105702225B (zh) * 2016-04-27 2018-09-04 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法和显示装置
US10353257B2 (en) * 2017-04-11 2019-07-16 HKC Corporation Limited Display panel and display apparatus
CN107146589A (zh) * 2017-07-04 2017-09-08 深圳市华星光电技术有限公司 Goa电路及液晶显示装置
WO2019033294A1 (en) * 2017-08-16 2019-02-21 Boe Technology Group Co., Ltd. NETWORK GRID DRIVER CIRCUIT, AMOLED DISPLAY PANEL PIXEL CIRCUIT, AMOLED DISPLAY PANEL, AND AMOLED DISPLAY PANEL PIXEL CIRCUIT DRIVING METHOD
TWI625711B (zh) * 2017-08-29 2018-06-01 友達光電股份有限公司 閘極驅動電路
US10580509B2 (en) 2017-09-26 2020-03-03 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd Array substrate, display panel and display device
CN107505792B (zh) * 2017-09-26 2020-12-25 深圳市华星光电半导体显示技术有限公司 阵列基板、显示面板以及显示装置
CN110619838B (zh) * 2019-11-04 2021-12-21 京东方科技集团股份有限公司 移位寄存器单元电路及驱动方法、栅极驱动器和显示装置
CN111986607B (zh) 2020-08-19 2021-12-03 武汉华星光电技术有限公司 显示面板及显示装置
CN112216240A (zh) * 2020-09-17 2021-01-12 福建华佳彩有限公司 一种新型双输出gip电路
CN112509513A (zh) * 2020-12-15 2021-03-16 云谷(固安)科技有限公司 移位寄存器、显示面板及显示装置
CN112863426A (zh) * 2021-01-08 2021-05-28 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113362771A (zh) * 2021-06-28 2021-09-07 武汉华星光电技术有限公司 栅极驱动电路及显示装置
CN116153259A (zh) * 2023-03-10 2023-05-23 厦门天马显示科技有限公司 栅极驱动电路、显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136185A (zh) * 2006-09-01 2008-03-05 三星电子株式会社 能够显示局部画面的显示设备及其驱动方法
CN101615431A (zh) * 2009-07-29 2009-12-30 友达光电股份有限公司 移位寄存器
CN202502720U (zh) * 2012-03-16 2012-10-24 合肥京东方光电科技有限公司 一种移位寄存器、阵列基板栅极驱动装置和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307414B1 (ko) * 2007-04-27 2013-09-12 삼성디스플레이 주식회사 게이트 구동 회로 및 이를 포함하는 액정 표시 장치
KR101568249B1 (ko) * 2007-12-31 2015-11-11 엘지디스플레이 주식회사 쉬프트 레지스터
US8344989B2 (en) 2007-12-31 2013-01-01 Lg Display Co., Ltd. Shift register
KR101286539B1 (ko) * 2008-04-15 2013-07-17 엘지디스플레이 주식회사 쉬프트 레지스터
TWI393978B (zh) * 2009-07-14 2013-04-21 Au Optronics Corp 液晶顯示器及其移位暫存裝置
CN103035298B (zh) * 2012-12-14 2015-07-15 京东方科技集团股份有限公司 一种移位寄存器单元、栅极驱动电路及显示器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136185A (zh) * 2006-09-01 2008-03-05 三星电子株式会社 能够显示局部画面的显示设备及其驱动方法
CN101615431A (zh) * 2009-07-29 2009-12-30 友达光电股份有限公司 移位寄存器
CN202502720U (zh) * 2012-03-16 2012-10-24 合肥京东方光电科技有限公司 一种移位寄存器、阵列基板栅极驱动装置和显示装置

Also Published As

Publication number Publication date
US9666152B2 (en) 2017-05-30
US20160180964A1 (en) 2016-06-23
CN103198867A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2014153863A1 (zh) 移位寄存器单元、栅极驱动电路及显示装置
WO2017211149A1 (zh) 移位寄存器及其驱动方法、栅极驱动装置
CN101562046B (zh) 移位寄存器
US8982107B2 (en) Scanning signal line drive circuit and display device provided with same
JP5859275B2 (ja) シフト・レジスタユニット、ゲート駆動装置及び液晶ディスプレー
KR101143531B1 (ko) 액정 디스플레이 게이트 구동 장치
US8686990B2 (en) Scanning signal line drive circuit and display device equipped with same
JP4126613B2 (ja) 液晶表示装置のゲート駆動装置及び方法
WO2018040768A1 (zh) 移位寄存器单元、栅极扫描电路
WO2017054403A1 (zh) 栅极驱动单元电路、栅极驱动电路、显示装置和驱动方法
KR20070122174A (ko) 쉬프트 레지스터
EP2498260A1 (en) Shift register and the scanning signal line driving circuit provided there with, and display device
WO2013078955A1 (zh) 移位寄存器及其驱动方法、栅极驱动装置与显示装置
JP5819514B2 (ja) シフトレジスタ、ドライバ回路、表示装置
KR20080081822A (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
WO2014169536A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
JP2006189762A (ja) 平板表示装置用シフトレジスト
WO2014124571A1 (zh) 双向移位寄存器单元、双向移位寄存器及显示装置
CN102903322A (zh) 移位寄存器及其驱动方法和阵列基板、显示装置
WO2015043087A1 (zh) 栅极驱动电路及栅线驱动方法、显示装置
WO2019100822A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路和显示装置
KR101192799B1 (ko) 쉬프트 레지스터
KR20090057798A (ko) 쉬프트 레지스터
KR101232153B1 (ko) 게이트 구동회로
KR100545027B1 (ko) 액정표시장치의 구동장치 및 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235957

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880216

Country of ref document: EP

Kind code of ref document: A1