WO2014153852A1 - 偏光片及显示装置 - Google Patents

偏光片及显示装置 Download PDF

Info

Publication number
WO2014153852A1
WO2014153852A1 PCT/CN2013/077338 CN2013077338W WO2014153852A1 WO 2014153852 A1 WO2014153852 A1 WO 2014153852A1 CN 2013077338 W CN2013077338 W CN 2013077338W WO 2014153852 A1 WO2014153852 A1 WO 2014153852A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical compensation
compensation film
wave plate
axis direction
refractive index
Prior art date
Application number
PCT/CN2013/077338
Other languages
English (en)
French (fr)
Inventor
秦广奎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/359,371 priority Critical patent/US9690025B2/en
Publication of WO2014153852A1 publication Critical patent/WO2014153852A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a polarizer and a display device including the polarizer. Background technique
  • An OLED (Organic Light-Emitting Diode) display also known as an organic electroluminescent display, is an emerging flat panel display device that has a low manufacturing process, low cost, low power consumption, and high luminance.
  • the utility model has the advantages of wide adaptability to the working temperature, light volume, fast response speed, easy realization of color display and large screen display, easy realization of matching with the integrated circuit driver, easy realization of flexible display, and the like, and thus has broad application prospects.
  • the display device in the OLED display generally includes a substrate substrate 1, a semiconductor layer 2 (also referred to as an ITO layer) and an electrode layer 6 which are sequentially disposed on the substrate of the substrate, and an electrode layer 2 and an electrode.
  • the structural layer between layers 6.
  • the semiconductor layer 2 is connected to the positive electrode of the power to form an anode
  • the electrode layer 6 is connected to the negative electrode of the power to form a cathode
  • the structural layer includes a hole transport layer 3 (also referred to as an HTL layer) connected to the semiconductor layer 2, and an electrode An electron transport layer 5 (ETL) connected to the layer 6 and a light-emitting layer 4 (EL) disposed between the hole transport layer 3 and the electron transport layer 5.
  • ETL electron transport layer 5
  • EL light-emitting layer 4
  • the holes generated by the anode and the charges generated by the cathode are combined in the light-emitting layer to produce light, and the three primary colors of red, green and blue are respectively generated according to the formula to form a basic color.
  • the electrode layer 6 is generally made of metal, its reflectivity is extremely high, so that the OLED display may have poor readability due to light reflection when it is used outdoors in a strong external environment.
  • a circular polarizer is generally used to solve the above problem.
  • the circular polarizer 7 is disposed on a surface of the substrate substrate 1 away from the electrode layer 6 and is incident along the ambient light.
  • the protective layer 701, the polarizing layer 702 and the quarter wave plate 703 are sequentially included; wherein the quarter wave plate generally adopts a uniaxial phase retarder, and the refractive index factor Nz is generally 0 or 1.
  • the linearly polarized light having the polarization direction coincident with the absorption axis of the polarizing layer 702 is absorbed by the polarizing layer 702, thereby preventing external ambient light reflection and improving outdoor readability.
  • the circular polarizer can absorb the ambient light of the normal incidence almost completely, the optical axis of the quarter-wave plate 703 or the polarization layer 702 is transmitted at the plane of polarization of the obliquely incident ambient light. A certain deflection occurs in the direction of the shaft, and causes an angle between the optical axis of the quarter wave plate 703 and the transmission axis of the polarizing layer 702 to change, thereby causing light leakage, as shown in FIG.
  • the polarizer is almost opaque when the ambient light is incident perpendicularly, and the maximum light leakage rate is about 5% when the ambient light is obliquely incident.
  • the luminous intensity per unit area of the sun is 20000 nit, and the circular polarizer is inclined to the maximum.
  • the intensity of the reflected light can reach 1000%, which seriously affects the outdoor readability of the OLED display, and the stronger the external ambient light, the worse the outdoor readability of the OLED display (Fig. 4, along the The outer circumferential direction is distributed as the azimuth angle, and the radial direction is distributed as the polar angle, and the relative light intensity at the position where the gray level is the highest in the figure is zero, and the relative light intensity at the position where the gray level is lower. Higher).
  • the transmission axis of the polarizing layer is perpendicular to the point A, and the point A is the positive direction of the S1 axis.
  • the optical axis 703A of the quarter-wave plate coincides with the S2 axis. In this case, the light incident on the circular polarizer is completely absorbed by the circular polarizer after being reflected by the electrode layer, so that light leakage is not caused.
  • the deviation between the positive direction and the circumference is also caused, and in this case, light leakage is also caused; according to the symmetry of the optical structure, the azimuth angles are 135° and 225, respectively. At 315°, light leakage can also occur.
  • Embodiments of the present invention provide a polarizer capable of solving the problem of oblique light leakage of an OLED display and a display device including the polarizer.
  • a polarizer for use with a reflective layer, the polarizer comprising a polarizing layer and a compensation layer, the compensation layer being disposed between the polarizing layer and the reflective layer .
  • a display device comprising the above polarizer.
  • a quarter-wave plate having a refractive index factor Nz of 0 or 1 cooperates with the polarizing layer and the reflective layer to prevent reflection of ambient light, but is obliquely incident to the outside of the circular polarizer.
  • Ambient light causes the optical axis of the quarter-wave plate to deflect or the transmission axis of the polarizing layer to deflect, resulting in oblique light leakage, that is, the existing circular polarizer can only prevent the external environment from being vertically incident thereon. The reflection of light does not prevent the reflection of ambient light obliquely incident thereon.
  • a compensation layer is used in cooperation with the polarizing layer and the reflective layer to prevent reflection of ambient light incident on the polarizer in each direction.
  • the compensation layer uses a quarter-wave plate with a refractive index factor Nz of 0.5 or two eighth-wave plates with a sum of refractive index factors Nz of 1, the refractive index factor Nz in the existing circular polarizer can be compensated.
  • the deflection of the optical axis of a quarter-wave plate of 0 or 1 compensates for a polar angle of 40° to 80°, and an azimuth angle of about 0°, about 90°, and 180°.
  • the compensation layer when it is a single layer or double layer optical compensation film, it can compensate for the deflection caused by the transmission axis of the polarizing layer in the existing circular polarizer, thereby compensating for the polar angle of 40 .
  • the azimuth angle is about 45°, about 135°, about 225°, and about 315°; the compensation layer uses a quarter-wave plate with a refractive index factor of Nz of 0.5 or a refractive index factor of Nz.
  • the deflection and polarization of the optical axis of the quarter-wave plate in the existing circular polarizer can be compensated at the same time.
  • the deflection of the transmission axis of the layer minimizes the reflection of ambient light obliquely incident on the polarizer.
  • the polarizer of the present invention can prevent not only the opposite of the ambient light incident thereon.
  • the radiation can also minimize the reflection of ambient light obliquely incident thereon, and the polarizer of the present invention can greatly improve the outdoor readability of the OLED display after being applied to the OLED display.
  • FIG. 1 is a schematic structural view of an OLED display device in the prior art
  • FIG. 2 is a schematic structural view of another OLED display device in the prior art
  • FIG. 3 is a schematic structural view of the circular polarizer of FIG. 2;
  • FIG. 4 is a schematic view showing light leakage of the circular polarizer shown in FIG. 3 at various viewing angles;
  • FIG. 5 is an equatorial cross-sectional view of a Bangka ball when the ambient light is incident perpendicularly to the circular polarizer shown in FIG. 3;
  • FIG. 6 is an ambient light incident at an azimuth angle of 0° and a polar angle of 60°. The equator section of the Bangka ball when the circular polarizer is shown;
  • Figure 7 shows that the ambient light has an azimuth angle of 45. , the polar angle is 60.
  • FIG. 8 is a schematic structural view of a polarizer according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of light leakage at various viewing angles of the polarizer according to Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram of light leakage at various viewing angles of the polarizer according to Embodiment 3 of the present invention
  • Schematic diagram of the structure of the polarizer
  • FIG. 12 is a schematic structural view of a polarizer according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic structural view of a polarizer according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic view showing light leakage of polarizers in various viewing angles according to Embodiment 8 of the present invention.
  • FIG. 15 is a schematic structural view of a polarizer according to Embodiment 9 of the present invention.
  • the embodiment provides a polarizer for use in combination with a reflective layer, the polarizer includes a polarizing layer and a compensation layer, and the compensation layer is disposed between the polarizing layer and the reflective layer and is incident in all directions.
  • the reflective layer may be made of any material capable of reflecting light, for example, may be an electrode layer in an OLED display device.
  • the reflective layer is incident on the reflective layer, reflected by the reflective layer, and passed through the compensation layer again, and then converted into linearly polarized light whose polarization direction is consistent with the absorption axis direction of the polarizing layer, thereby being polarized and then The polarizer is emitted, thereby improving the outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle is improved.
  • the light incident on the polarizer in each direction includes both light incident perpendicularly to the polarizer and light obliquely incident on the polarizer.
  • the embodiment further provides a display device including the above polarizer.
  • the display device may be any display device that needs to avoid external ambient light reflection and has a reflective layer, such as: a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part that has a display function, such as a navigator.
  • Example 2
  • the embodiment provides a polarizer for use in conjunction with a reflective layer (not shown).
  • the positional relationship between the polarizer and the reflective layer is: incident direction of ambient light.
  • the second time is a polarizer and a reflective layer.
  • the polarizer includes a protective layer 701, a polarizing layer 702, and a compensation layer; the compensation layer is disposed between the polarizing layer and the reflective layer, and includes an optical compensation film 704 and a quarter wave plate 703, the optical compensation film 704 is disposed between the polarizing layer 702 and the quarter wave plate 703; the protective layer 701 is disposed on a surface of the polarizing layer 702 away from the side of the compensation layer and the reflective layer.
  • the protective layer 701 needs to be subjected to surface treatment, and those skilled in the art can perform different surface treatments on the protective layer 701 according to actual needs, for example, hardening treatment to prevent the polarizer from being scratched; low anti- or anti-reverse processing, In order to reduce the surface reflectance of the polarizer, improve the outdoor readability; anti-glare treatment, to reduce the interference of ambient light, improve the picture clarity and energy of the display device used by the polarizer, reduce the screen reflection, and make the image more Clear and realistic.
  • the quarter-wave plate 703 can employ a quarter-wave plate in the existing circular polarizer, that is, the refractive index factor Nz is 0 or 1.
  • the optical compensation film 704 is made of a wave plate.
  • the optical compensation film 704 has a refractive index factor Nz of 0.3 to 0.4, a phase retardation amount R0 of 240 nm to 300 nm, and an angle between the slow axis direction of the optical compensation film and the transmission axis direction of the polarizing layer is negative 5. To the positive 5. .
  • the refractive index factor Nz of the optical compensation film 704 is 0.25, the phase retardation amount R0 is 275 nm, and the angle between the slow axis direction of the optical compensation film and the transmission axis direction of the polarizing layer is 0 or
  • the refractive index factor Nz of the optical compensation film 704 is 0.7 to 0.8, the phase retardation amount R0 is 240 nm to 300 nm, and the angle between the slow axis direction of the optical compensation film and the transmission axis direction of the polarizing layer is positive 85. Up to 95. Or negative 95. To negative 85. .
  • the refractive index factor Nz of the optical compensation film 704 is 0.75
  • the phase retardation amount R0 is 275 nm
  • the angle between the slow axis direction of the optical compensation film and the transmission axis direction of the polarizing layer is positive 90° or Negative 90°.
  • Nz (nx-nz) I (nx-ny) (1)
  • R0 (nx-ny) x d ( 2 )
  • Nz is the refractive index factor
  • R0 is the phase retardation amount
  • nx is the refractive index in the X direction
  • ny is the refractive index in the y direction
  • nz is the refractive index in the z direction
  • d is the thickness.
  • the above parameters refer to the parameters of the optical compensation film 704.
  • the angle between the two axes is positive, that is, one axis rotates counterclockwise to an angle parallel to the other axis; the angle between the two axes is negative, one Axis timing
  • the needle is rotated to an angle that is parallel to the other axis. For example, if the angle between the slow axis direction of the optical compensation film and the transmission axis direction of the polarizing layer is plus 90°, the slow axis direction of the optical compensation film is rotated counterclockwise until it is parallel to the transmission axis direction of the polarizing layer. The angle is 90°.
  • the transmission axis of the polarizing layer is perpendicular to the A point, that is, perpendicular to the intersection of the positive direction of the S1 axis and the circumference (as shown in FIG. 5).
  • the polar angle is about 60° (for example, 40 to 80.) and the azimuth angle is about 45°
  • the transmission axis of the polarizing layer is still perpendicular to the point A, but the point A has been from the S1 axis.
  • the intersection of the positive direction and the circumference deviates (as shown in Figure 7).
  • the compensation layer in the polarizer of this embodiment employs the optical compensation film 704, it is at the polar angle 60. Left and right (for example, 40 to 80.), the azimuth is 45.
  • the optical axis of the optical compensation film 704 is at a position between the point A of FIG. 7 and the intersection of the positive direction of the S1 axis and the circumference, and the phase retardation amount R0 of the optical compensation film 704 is At 275 nm, it is exactly equal to the phase retardation amount of the half-wave plate.
  • the optical compensation film 704 can bring the transmission axis direction of the polarizing layer from the point A to the intersection of the positive direction of the S1 axis and the circumference, thereby effectively
  • the deflection caused by the transmission axis of the polarizing layer 702 when the ambient light is obliquely incident is compensated, and the oblique light leakage caused by the deflection of the transmission axis of the polarizing layer is solved, so that the light leakage of the polarizer at all angles is solved.
  • Both have been improved, especially the light leakage with a polar angle of 40° to 80° and an azimuth of 45°.
  • the polarizer of the embodiment can also reduce the polar angle by 40° to 80°, and the azimuth angle is about 135°, 225. Light leakage at left and right and around 315°.
  • the phase retardation amount R0 is 275 nm, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°
  • the quarter-wave plate 703 has a refractive index factor Nz of 1, a phase retardation amount R0 of 137.5 nm, and an angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the maximum light leakage rate of the polarizer is about 3.5%.
  • the maximum light leakage rate of the polarizer of the embodiment is reduced by about 1.5% compared with the circular polarizer of the prior art, thereby improving the The outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle has been improved.
  • the embodiment further provides a display device including the above polarizer.
  • Example 3 The difference between this embodiment and Embodiment 2 is that:
  • the quarter-wave plate 703 has a refractive index factor Nz of 0.4 to 0.6, a phase retardation amount R0 of llOnm to 160 nm, and a slow-axis direction of the quarter-wave plate and a polarizing layer.
  • the angle through the axis direction is positive 40. Up to 50. Or negative 50. To negative 40. .
  • the quarter wave plate 703 has a refractive index factor Nz of 0.5, a phase retard amount
  • R0 is 137.5 nm, and the angle between the slow axis direction of the quarter-wave plate and the transmission axis direction of the polarizing layer is positive 45. Or negative 45. .
  • the compensation layer of the polarizer of the embodiment adopts the optical compensation film 704, which solves the problem of oblique light leakage caused by the deflection of the transmission axis of the polarizing layer, and particularly reduces the polar angle of 40° to 80°, and the azimuth angle.
  • the optical axis when viewed from any orientation and angle, does not deflect, that is, it coincides with the direction of the optical axis when viewed in the vertical direction (coincides with the S2 axis in Fig. 5), and thus obliquely incident on the polarizer
  • the light of the quarter wave plate does not deflect in the optical axis of the quarter wave plate.
  • the refractive index factor Nz of the quarter wave plate in the circular polarizer is generally 0 or 1.
  • the light incident obliquely incident on the existing circular polarizer causes the optical axis of the quarter wave plate to be deflected, so that the polarizer of the embodiment avoids one quarter of the ambient light obliquely incident.
  • the optical axis of the wave plate The deflection of the original circular polarizer solves the problem of oblique light leakage caused by the deflection of the optical axis of the quarter-wave plate of the existing circular polarizer, so that the leakage of the polarizer at all angles is improved, especially It is reduced by a polar angle of 40° to 80.
  • the azimuth is about 0 ° light leakage.
  • the polarizer described in this embodiment can also reduce the polar angle from 40° to 80°.
  • the azimuth is about 90°, about 180°, and about 270°. That is to say, the polarizer of the embodiment simultaneously compensates for the oblique light leakage caused by the deflection of the transmission axis of the polarizing layer and the deflection of the optical axis of the quarter-wave plate, and at the same time avoids the polarization.
  • the film leaks in the vertical direction and in the oblique direction, and the viewing angle is very good.
  • the refractive index factor Nz of the optical compensation film 704 is 0.25
  • the phase retardation amount R0 is 275 nm
  • the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°
  • the quarter-wave plate 703 has a refractive index factor Nz of 0.5 and a phase retardation amount R0 of 137.5 nm, and the angle between the bank axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the maximum light leakage rate of the polarizer is about 0.12%. It can be seen that the polarizer of the embodiment is compared with the circular polarizer of the prior art. The maximum light leakage rate is reduced by about 4.88%, thereby improving the outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle is very good.
  • the embodiment further provides a display device including the above polarizer.
  • Example 4 is the same as those in Embodiment 2, and are not described herein again.
  • Example 4 is the same as those in Embodiment 2, and are not described herein again.
  • the quarter wave plate 703 includes a first eighth wave plate 7031 and a second eighth wave plate 7032, and the first eighth wave plate 7031 and the second The polarity of the eighth wave plate 7032 is opposite; the sum of the refractive index factor Nz of the first eighth wave plate 7031 and the refractive index factor Nz of the second eighth wave plate 7032 is 0.85 to 1.15.
  • the phase retardation amount R0 of the first eighth wave plate 7031 and the second eighth wave plate 7032 are both 55 nm to 80 nm, and the first eighth wave plate and the second eighth one
  • the slow axis directions of the wave plates are the same, and the angle between the wave plates and the transmission axis direction of the polarizing layer is positive 40. Up to 50. Or negative 50. To negative 40. .
  • the sum of the refractive index factor Nz of the first eighth-wave plate 7031 and the refractive index factor Nz of the second eighth-wave plate 7032 is 1, and the first eighth-wave plate 7031 And the phase delay amount R0 of the second eighth wave plate 7032 is both 69 nm, and the slow axis directions of the first eighth wave plate and the second eighth wave plate are the same, both with the polarizing layer
  • the angle through the axis direction is positive 45. Or minus 45°.
  • the compensation layer in the polarizer of the embodiment adopts the optical compensation film 704, and solves the problem of oblique light leakage caused by the deflection of the transmission axis of the polarizing layer, and particularly reduces the polar angle of 40° to 80.
  • the azimuth angle is about 45°, about 135°, about 225°, and about 315°; at the same time, the first eighth wave plate 7031 and the second eighth wave plate 7032 of opposite polarity are used. Since the polarities of the two eighth-wave plates are opposite, the polar angle is 40° to 80° and the azimuth angle is 0.
  • the deflection direction of the optical axis of the first eighth wave plate 7031 is opposite to the deflection direction of the optical axis of the second eighth wave plate 7032, thereby canceling each other.
  • the problem of the oblique light leakage caused by the deflection of the optical axis of the quarter-wave plate of the prior circular polarizer is solved, so that the leakage of the polarizer at all angles is improved.
  • the polar angle is reduced from 40° to 80.
  • the azimuth is about 0°, about 90°, about 180°, and about 270°; and, because the refractive index is greater than 0 and less than 1
  • the formation process of the thin film material is complicated, the cost is high, and the required phase retardation amount is large, so that the thickness thereof is large, and the implementation is difficult, if the first eighth wave plate 7031 and the second eighth one.
  • the sum of the refractive index factors Nz of the wave plate 7032 is 1 (may be greater than 1), so that the refractive index factor Nz of the first eighth wave plate 7031 and the second eighth wave plate 7032 is 0 or 1 respectively.
  • the range of the refractive index factor Nz of the first eighth wave plate 7031 and the second eighth wave plate 7032 is not in the range of (0, 1), so that the process cartridge is simple, the cost is low, and the like.
  • each layer of the eighth-wave plate has a small phase retardation and a thin thickness, which is easy to implement. That is to say, the polarizer of the embodiment simultaneously compensates for the oblique light leakage caused by the deflection of the transmission axis of the polarizing layer and the deflection of the optical axis of the quarter-wave plate, and at the same time avoids the polarization. The film leaks in the vertical direction and in the oblique direction, and the viewing angle is very good.
  • the phase retardation amount R0 is 275 nm
  • the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°
  • the first eighth one is
  • the wave plate 7031 has a refractive index factor Nz of 1, a phase retardation amount R0 of 68.75 nm, and an angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45°
  • the second eighth wave plate 7032 The refractive index factor Nz is 0, the phase retardation amount R0 is 68.75 nm, and the maximum light leakage rate of the polarizer is about 0.12% when the angle between the slow axis direction and the transmission axis direction of the polarizing layer is negative 45° ( That is, the light leakage of the polarizer corresponding to the parameters of the present section is the same as that of FIG.
  • the embodiment further provides a display device including the above polarizer.
  • Example 5 is the same as those in Embodiment 2, and are not described herein again.
  • Example 5 is the same as those in Embodiment 2, and are not described herein again.
  • the compensation layer in the polarizer does not include the optical compensation film 704 in Embodiment 2, but includes a first optical compensation film 7041 and a second optical compensation film 7042; the first optical compensation film 7041
  • the second optical compensation film 7042 is disposed on the surface of the first optical compensation film 7041 near the reflective layer (or a quarter wave) on the surface of the polarizing layer 702 on the side close to the reflective layer (or the quarter wave plate 703). Sheet 703) on one side of the surface.
  • the compensation film 7042 is made of wave plates.
  • the refractive index factor Nz of the first optical compensation film 7041 is less than or equal to 0, and the refractive index factor Nz of the second optical compensation film 7042 is greater than or equal to 1, the first optical compensation film 7041 and the second optical compensation film.
  • the phase retardation amount of 7042 is llOnm to 160 nm, and the angle between the slow axis directions of the first optical compensation film and the second optical compensation film and the transmission axis direction of the polarizing layer is positive 85. Up to 95° or negative 95. To negative 85. .
  • the phase retardation amounts of the first optical compensation film 7041 and the second optical compensation film 7042 are both 137 nm, and the slow axis directions of the first optical compensation film and the second optical compensation film are both transmitted through the polarizing layer.
  • the angle between the axes is positive 90. Or minus 90°.
  • the refractive index factor Nz of the first optical compensation film 7041 is greater than or equal to 1, and the refractive index factor Nz of the second optical compensation film 7042 is less than or equal to 0, the first optical compensation film 7041 and the second optical compensation film.
  • the phase retardation amount of 7042 is llOnm to 160 nm, and the angles of the slow axis directions of the first optical compensation film and the second optical compensation film are opposite to the transmission axis direction of the polarizing layer by a negative 5° to a positive 5°.
  • the phase retardation amounts of the first optical compensation film 7041 and the second optical compensation film 7042 are both 137 nm, and the slow axis directions of the first optical compensation film and the second optical compensation film are both transmitted through the polarizing layer.
  • the angle between the axes is 0°.
  • the refractive index factor Nz of the first optical compensation film 7041 is less than or equal to 0, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is minus 5.
  • the second optical compensation film 7042 has a refractive index factor Nz greater than or equal to 1, and an angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 85. Up to 95. Or negative 95. To negative 85.
  • the first optical compensation film and the second optical compensation film have a phase retardation amount of llOnm to 160 nm.
  • an angle between a slow axis direction of the first optical compensation film and a transmission axis direction of the polarizing layer is zero.
  • the angle between the slow axis direction of the second optical compensation film and the transmission axis direction of the polarizing layer is positive 90° or minus 90°, and the phase retardation amounts of the first optical compensation film and the second optical compensation film are both for
  • the refractive index factor Nz of the first optical compensation film 7041 is greater than or equal to 1, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 85. To the positive 95. Or negative 95. To negative 85.
  • the refractive index factor Nz of the second optical compensation film 7042 is less than or equal to 0, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is negative 5. To positive 5.
  • the first optical compensation film and the first The phase retardation amounts of the two optical compensation films are all llOnm to 160 nm.
  • an angle between a slow axis direction of the first optical compensation film and a transmission axis direction of the polarizing layer is positive 90. Or negative 90.
  • the angle between the slow axis direction of the second optical compensation film and the transmission axis direction of the polarizing layer is 0°, and the phase retardation amounts of the first optical compensation film and the second optical compensation film are both 137 nm.
  • the compensation layer in the polarizer of the embodiment adopts two layers of optical compensation films, and the refractive index factor of each layer of the optical compensation film is not in the range of (0, 1), which can not only solve the transmission axis due to the polarizing layer.
  • the problem of oblique light leakage caused by deflection, especially the polar angle is 40° to 80°, and the azimuth angle is 45.
  • the optical compensation film of each layer has a small phase retardation and a thin thickness, which is easy to implement.
  • the second optical The refractive index factor Nz of the compensation film 7042 is 0, the phase retardation amount R0 is 137.5 nm, the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°, and the refraction of the quarter-wave plate 703
  • the rate factor Nz is 1, and the phase retardation amount R0 is 137.5 nm, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the maximum light leakage rate of the polarizer is about 3.5% (that is, the light leakage of the polarizer corresponding to the parameters of the present section is the same as that of FIG. 9), and the polarizer of the present embodiment and the prior art can be seen. Compared with the circular polarizer, the maximum light leakage rate is reduced by about 1.5%, thereby improving the outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle is improved.
  • the embodiment further provides a display device including the above polarizer.
  • Example 6 is the same as those in Embodiment 2, and are not described herein again.
  • Example 6 is the same as those in Embodiment 2, and are not described herein again.
  • the quarter-wave plate 703 has a refractive index factor Nz of 0.4 to 0.6, a phase retardation amount R0 of llOnm to 160 nm, and a slow-axis direction of the quarter-wave plate and a polarizing layer.
  • the angle through the axis direction is positive 40. Up to 50. Or negative 50. To negative 40. .
  • the quarter wave plate 703 has a refractive index factor Nz of 0.5 and a phase retardation amount R0 of 137.5 nm, and the slow axis direction of the quarter wave plate and the transmission axis direction of the polarizing layer Clip The angle is positive 45. Or negative 45. .
  • the polarizer of the embodiment adopts two layers of optical compensation film, which solves the problem of oblique light leakage caused by deflection of the transmission axis of the polarizing layer, and particularly reduces the polar angle of 40° to 80° and the azimuth angle is 45.
  • the optical retardation film of each layer has a small phase retardation and a thin thickness, which is easy to implement;
  • a quarter-wave plate with a factor Nz of 0.5 solves the problem of oblique light leakage caused by the deflection of the optical axis of the quarter-wave plate of the conventional circular polarizer, especially the polar angle is reduced to 40. ° to 80°, the azimuth angle is about 0°, about 90°, about 180°, and about 270°, that is, the polarizer described in this embodiment compensates for the deflection due to the transmission axis of the polarizing layer.
  • the oblique optical leakage caused by the deflection of the optical axis of the quarter-wave plate avoids the leakage of the polarizer in the vertical direction and the oblique direction, and the viewing angle is very good.
  • the second optical The refractive index factor Nz of the compensation film 7042 is 0, the phase retardation amount R0 is 137.5 nm, the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°, and the refraction of the quarter-wave plate 703
  • the rate factor Nz is 0.5
  • the phase retardation amount R0 is 137.5 nm
  • the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the maximum light leakage rate of the polarizer is about 0.12% (that is, the light leakage of the polarizer corresponding to the parameters of the present section is the same as that of FIG. 10), and it can be seen that the polarizer of the embodiment and the prior art Compared with the circular polarizer, the maximum light leakage rate is reduced by about 4.88%, thereby improving the outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle is very good.
  • the embodiment further provides a display device including the above polarizer.
  • the quarter wave plate 703 includes a first eighth wave plate 7031 and a second eighth wave plate 7032, and the first eighth wave plate 7031 and the second The polarity of the eighth wave plate 7032 is opposite; the sum of the refractive index factor Nz of the first eighth wave plate 7031 and the refractive index factor Nz of the second eighth wave plate 7032 is 0.85 to 1.15.
  • the first eighth wave plate 7031 And the phase delay amount R0 of the second eighth wave plate 7032 is 55 nm to 80 nm, and the slow axis directions of the first eighth wave plate and the second eighth wave plate are the same, both are polarized
  • the angle of the layer in the direction of the transmission axis is positive 40. Up to 50. Or negative 50. To negative 40. .
  • the sum of the refractive index factor Nz of the first eighth-wave plate 7031 and the refractive index factor Nz of the second eighth-wave plate 7032 is 1, and the first eighth-wave plate 7031 And the phase delay amount R0 of the second eighth wave plate 7032 is both 69 nm, and the slow axis directions of the first eighth wave plate and the second eighth wave plate are the same, both with the polarizing layer
  • the angle through the axis direction is positive 45. Or minus 45°.
  • the polarizer of the embodiment adopts two layers of optical compensation film, which solves the problem of oblique light leakage caused by deflection of the transmission axis of the polarizing layer, and particularly reduces the polar angle of 40° to 80° and the azimuth angle is 45.
  • the optical retardation film of each layer has a small phase retardation and a thin thickness, which is easy to implement. At the same time, it is also polar.
  • the opposite first octave wave plate 7031 and second octave wave plate 7032 solve the oblique light leakage caused by the deflection of the optical polar axis of the quarter wave plate of the prior circular polarizer.
  • the problem, especially the reduced polar angle is 40° to 80.
  • the azimuth is about 0°, about 90°, 180.
  • the polarizer of the embodiment simultaneously compensates for the oblique light leakage caused by the deflection of the transmission axis of the polarizing layer and the deflection of the optical axis of the quarter-wave plate, and at the same time avoids the polarization.
  • the film leaks in the vertical direction and in the oblique direction, and the viewing angle is very good.
  • the second optical The refractive index factor Nz of the compensation film 7042 is 0, the phase retardation amount R0 is 137.5 nm, the angle between the slow axis direction and the transmission axis direction of the polarizing layer is 0°, and the first eighth wave plate 7031
  • the refractive index factor Nz is 1, and the phase retardation amount R0 is 68.75 nm, and the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the second eighth-wave plate 7032 has a refractive index factor Nz of 0, a phase retardation amount R0 of 68.75 nm, and an angle between the slow axis direction and the transmission axis direction of the polarizing layer is minus 45°.
  • the maximum light leakage rate of the polarizer is about 0.12% (that is, the light leakage of the polarizer corresponding to the parameters of the present section is the same as that of FIG. 10), and it can be seen that the polarizer of the present embodiment is different from the prior art. Compared with the polarizer, the maximum light leakage rate is reduced by about 4.88%, thus improving The outdoor readable display of the OLED display to which the polarizer is applied has a very good viewing angle.
  • the embodiment further provides a display device including the above polarizer.
  • the compensation layer includes a quarter wave plate, the quarter wave plate has a refractive index factor Nz of 0.4 to 0.6, a phase retardation amount R0 of llOnm to 160 nm, and the quarter wave plate is slow.
  • the angle between the axial direction and the transmission axis direction of the polarizing layer is positive 40. Up to 50. Or negative 50. To negative 40. .
  • the quarter wave plate has a refractive index factor Nz of 0.5, and the phase retardation amount R0 is
  • the structure of the polarizer of the present embodiment is the same as that of the structure shown in Fig. 3, only the refractive index factor Nz of the quarter-wave plate is different, and the structural schematic of the polarizer described in this embodiment is not provided.
  • the conventional circular polarizer is caused by the deflection of the optical axis direction of the quarter-wave plate.
  • the problem of oblique light leakage makes the polarizer have a certain improvement in light leakage at all angles, especially the light leakage with a polar angle of 40° to 80° and an azimuth angle of about 0°.
  • the polarizer of the embodiment can also reduce the polar angle of 40 to 80 and the azimuth of 90. Light leakage from left and right, around 180°, and around 270°.
  • the polarizer further includes a protective layer disposed on a surface of the polarizing layer away from the side of the quarter wave plate.
  • the phase retardation amount R0 is 137.5 nm
  • the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45°.
  • the maximum light leakage rate of the polarizer is about 1.15%. It can be seen that the maximum light leakage rate of the polarizer of the embodiment is reduced by about 3.85% compared with the circular polarizer of the prior art. The outdoor readability of the OLED display to which the polarizer is applied, and the viewing angle is greatly improved.
  • the embodiment further provides a display device including the above polarizer.
  • the compensation layer includes a quarter wave plate, and the quarter wave plate includes a first eighth wave plate 7031 and a second eighth wave plate 7032, and the first eighth one
  • the wave plate 7031 is opposite in polarity to the second eighth wave plate 7032; the refractive index factor Nz of the first eighth wave plate 7031 and the refractive index factor Nz of the second eighth wave plate 7032 And a sum of 0.85 to 1.15, the phase retardation amount R0 of the first eighth wave plate 7031 and the second eighth wave plate 7032 are both 55 nm to 80 nm, and the first eighth wave plate and The slow axis directions of the second eighth wave plate are the same, and the angles between the second and eighth wave plates are positively 40 with respect to the transmission axis direction of the polarizing layer.
  • the sum of the refractive index factor Nz of the first eighth-wave plate 7031 and the refractive index factor Nz of the second eighth-wave plate 7032 is 1, the first eighth-wave plate and
  • the phase retardation amount R0 of the second eighth wave plate is 69 nm, and the slow axis directions of the first eighth wave plate and the second eighth wave plate are the same, and both are transmitted through the polarizing layer.
  • the angle between the axes is positive 45° or negative 45
  • the problem that the existing circular polarizer is deflected due to the deflection of the optical axis direction of the quarter wave plate thereof is solved, so that the light leakage of the polarizer at all angles is improved, especially reduced.
  • the polar angle is 40° to 80°, the azimuth is about 0°, about 90°, about 180°, and about 270°; and, if the sum of the refractive index factors Nz of the two eighth-wave plates is 1 (may also be greater than 1), such that the refractive index factor Nz of the first eighth wave plate 7031 and the second eighth wave plate 7032 are respectively 0 or 1, that is, the two eighth waves
  • the range of the refractive index factor of the sheet is not in the range of (0, 1), so the embodiment has the advantages of single process, low cost, and the phase retardation of each of the eighth-wave plates is small and the thickness is thin. , easy to implement.
  • the polarizer further includes a protective layer 701 disposed on a surface of the polarizing layer 702 away from the side of the first eighth wave plate 7031.
  • the phase retardation amount R0 is 68.75 nm
  • the angle between the slow axis direction and the transmission axis direction of the polarizing layer is positive 45.
  • the second eighth-wave plate 7032 has a refractive index factor Nz of 0, a phase retardation amount R0 of 68.75 nm, and an angle between the slow axis direction and the transmission axis direction of the polarizing layer is negative 45°.
  • the maximum light leakage rate of the polarizer is about 1.15% (ie, the light leakage of the polarizer corresponding to the parameters of this paragraph is shown in each angle of view) 14 is the same), it can be seen that the maximum light leakage rate of the polarizer of the embodiment is reduced by about 3.85% compared with the circular polarizer of the prior art, thereby improving the outdoor environment of the OLED display to which the polarizer is applied. Readability, and the perspective has been greatly improved.
  • the embodiment further provides a display device including the above polarizer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏光片,其用于和反射层配合使用,偏光片包括偏光层(702)和补偿层(704),补偿层(704)设置在偏光层(702)与反射层之间。一种包括偏光片的显示装置也被公开。这种偏光片能够解决0LED显示器的斜向漏光问题。

Description

偏光片及显示装置 技术领域
本发明涉及显示技术领域, 具体涉及一种偏光片和包括所述偏光片的显 示装置。 背景技术
OLED ( Organic Light-Emitting Diode, 有机发光二极管)显示器, 也称 为有机电致发光显示器, 是一种新兴的平板显示装置, 由于其具有制备工艺 筒单、 成本低、 功耗低、 发光亮度高、 工作温度适应范围广、 体积轻薄、 响 应速度快, 而且易于实现彩色显示和大屏幕显示、 易于实现和集成电路驱动 器相匹配、 易于实现柔性显示等优点, 因而具有广阔的应用前景。
如图 1所示, OLED显示器中的显示装置一般包括村底基板 1、 依次设 置在村底基板上的半导体层 2 (也称为 ITO层)和电极层 6、 以及设置在半 导体层 2与电极层 6之间的结构层。 其中, 半导体层 2与电力正极相连而成 为阳极, 电极层 6与电力负极相连而成为阴极; 所述结构层包括与半导体层 2相连的空穴传输层 3 (也称为 HTL层)、 与电极层 6相连的电子传输层 5 ( ETL )、 以及设置在空穴传输层 3和电子传输层 5之间的发光层 4 ( EL )。 当为半导体层 2与电极层 6施加适当电压时, 阳极产生的空穴与阴极产生的 电荷就会在发光层中结合, 产生光亮, 并且依其配方不同分别产生红绿蓝三 原色, 以构成基本色彩。
由于电极层 6—般采用金属制成, 其反射率极高, 故 OLED显示器在外 界环境光较强的户外使用时, 会由于光反射而导致可读性极差。 目前, 一般 采用圓偏光片来解决上述问题, 如图 2、 3所示, 所述圓偏光片 7设置在村底 基板 1远离电极层 6一侧的表面上, 且沿外界环境光入射的方向依次包括保 护层 701、偏光层 702和四分之一波片 703; 其中, 所述四分之一波片一般采 用单轴相位延迟片, 其折射率因子 Nz—般为 0或 1。
当外界环境光经由保护层 701垂直入射至偏光层 702后, 其中一个偏振 方向的光被吸收, 而偏振方向与偏光层 702的透过轴方向一致的线偏振光通 过, 且该线偏振光经过与其夹角为 45。 的四分之一波片 703后, 变为左旋或 者右旋圓偏振光, 其经过电极层 6的反射后, 变为旋转方向与原来相反的右 旋或者左旋圓偏振光, 然后再一次经过四分之一波片 703后, 变为偏振方向 与偏光层 702的吸收轴一致的线偏振光, 从而被偏光层 702吸收, 故防止了 外界环境光反射, 提高了户外可读性。
虽然圓偏光片能够将垂直入射的外界环境光几乎完全吸收, 但是, 对于 斜入射的外界环境光来说, 在其偏振面, 四分之一波片 703的光轴或偏光层 702的透过轴的方向会发生一定的偏转, 并导致四分之一波片 703的光轴与 偏光层 702的透过轴之间的夹角发生变化, 从而导致漏光, 如图 4所示, 所 述圓偏光片在外界环境光垂直入射时几乎不透光, 而在外界环境光斜向入射 时最大漏光率可达 5%左右,假设太阳单位面积的发光强度为 20000nit,所述 圓偏光片斜向最大漏光率为 5%时, 其反射光的强度可达到 lOOOnit, 故严重 影响了 OLED显示器的户外可读性, 而且外界环境光越强, OLED显示器的 户外可读性越差(图 4中, 沿外圓周方向分布的为方位角, 沿半径方向分布 的为极角, 且图中灰度级最高的位置处相对光强度为零, 灰度级越低的位置 处的相对光强度越高)。
下面通过邦加球来解释圓偏光片的漏光原理, 所述邦加球中设置有相互 垂直的 S1轴和 S2轴。
如图 5所示, 当外界环境光垂直入射至圓偏光片时, 也即从圓偏光片的 法线方向观察时, 偏光层的透过轴与 A点垂直, A点为 S1轴正方向与圓周 的交点, 四分之一波片的光轴 703A与 S2轴重合, 此种情况下入射至圓偏光 片的光经电极层反射再次经过圓偏光片后被完全吸收, 故不会引起漏光。
如图 6所示, 当外界环境光沿方位角为 0° , 极角为 60° 左右的方向入 射至圓偏光片时, 也即从圓偏光片的一斜方向观察时, 偏光层的透过轴的方 向未发生偏转, 仍和 S1 轴正方向与圓周的交点垂直, 而四分之一波片的光 轴 703A的方向发生了偏转, 此种情况下入射至圓偏光片的光经电极层反射 再次经过圓偏光片后不能被完全吸收, 从而导致漏光; 根据光学结构的对称 性, 当方位角分别为 90° 、 180° 和 270° 时, 也会发生漏光现象。
如图 7所示, 当外界环境光沿方位角为 45° , 极角为 60° 左右的方向 入射至圓偏光片时, 也即从圓偏光片的另一斜方向观察时, 四分之一波片的 光轴 703A的方向未发生偏转, 仍与 S2轴重合, 而偏光层的透过轴的方向发 生了偏转, 即偏光层的透过轴虽仍与 A点垂直, 但是 A点已从 S1轴的正方 向与圓周的交点处偏离, 此种情况下同样会导致漏光; 根据光学结构的对称 性, 当方位角分别为 135° 、 225。 和 315° 时, 也会发生漏光现象。 发明内容
本发明的实施例提供一种能够解决 OLED显示器斜向漏光问题的偏光片 和包括所述偏光片的显示装置。
根据本发明的第一方面, 提供一种偏光片, 所述偏光片用于和反射层配 合使用, 所述偏光片包括偏光层和补偿层, 所述补偿层设置在偏光层与反射 层之间。
根据本发明的第二方面, 还提供一种包括上述偏光片的显示装置。
现有的圓偏光片中采用折射率因子 Nz为 0或 1的四分之一波片与偏光 层及反射层协同作用以防止外界环境光的反射, 但是由于斜入射至该圓偏光 片的外界环境光引起该四分之一波片的光轴发生偏转或偏光层的透过轴发生 偏转, 从而导致斜向漏光问题, 即现有的圓偏光片只能防止垂直入射至其上 的外界环境光的反射, 而无法防止斜入射至其上的外界环境光的反射。
本发明所述偏光片中采用补偿层与偏光层及反射层协同作用以防止沿各 个方向入射至该偏光片的外界环境光的反射。所述补偿层采用折射率因子 Nz 为 0.5的四分之一波片或折射率因子 Nz之和为 1的两个八分之一波片时,可 以补偿现有圓偏光片中折射率因子 Nz为 0或 1的四分之一波片的光轴所发 生的偏转,从而补偿极角为 40° 至 80° , 方位角为 0° 左右、 90° 左右、 180 。 左右和 270° 左右的漏光; 所述补偿层采用单层或双层光学补偿膜时, 可 以补偿现有圓偏光片中偏光层的透过轴所发生的偏转, 从而补偿极角为 40 。 至 80° ,方位角为 45° 左右、 135° 左右、 225° 左右和 315° 左右的漏光; 所述补偿层同时采用折射率因子 Nz为 0.5的四分之一波片或折射率因子 Nz 之和为 1的两个八分之一波片, 和单层或双层光学补偿膜时, 则可同时补偿 现有圓偏光片中的四分之一波片的光轴所发生的偏转和偏光层的透过轴所发 生的偏转,从而在最大程度上减少了斜入射至该偏光片的外界环境光的反射。
因此, 本发明所述偏光片不但能防止垂直入射至其上的外界环境光的反 射, 还能在最大程度上减少斜入射至其上的外界环境光的反射, 而且本发明 所述偏光片应用于 OLED显示器后,可极大地提高 OLED显示器的户外可读 性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中一种 OLED显示装置的结构示意图;
图 2为现有技术中另一种 OLED显示装置的结构示意图;
图 3为图 2中圓偏光片的结构示意图;
图 4为图 3所示圓偏光片在各个视角的漏光情况示意图;
图 5为外界环境光垂直入射至图 3所示圓偏光片时邦加球的赤道截面图; 图 6为外界环境光沿方位角为 0° , 极角为 60° 的方向入射至图 3所示 圓偏光片时邦加球的赤道截面图;
图 7为外界环境光沿方位角为 45。 , 极角为 60。 的方向入射至图 3所 示圓偏光片时邦加球的赤道截面图;
图 8为本发明实施例 2所述偏光片的结构示意图;
图 9为本发明实施例 2所述偏光片在各个视角的漏光情况示意图; 图 10为本发明实施例 3所述偏光片在各个视角的漏光情况示意图; 图 11为本发明实施例 4所述偏光片的结构示意图;
图 12为本发明实施例 5所述偏光片的结构示意图;
图 13为本发明实施例 7所述偏光片的结构示意图;
图 14为本发明实施例 8所述偏光片在各个视角的漏光情况示意图; 图 15为本发明实施例 9所述偏光片的结构示意图。
图中: 1 _村底基板; 2—半导体层; 3 _空穴传输层; 4 -发光层; 5—电 子传输层; 6 -电极层; 7 -圓偏光片; 701 -保护层; 702 -偏光层; 703 -四 分之一波片; 703A -四分之一波片的光轴; 7031 -第一八分之一波片; 7032 -第二八分之一波片; 704 -光学补偿膜; 7041 -第一光学补偿膜; 7042 -第 二光学补偿膜。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 实施例 1:
本实施例提供一种偏光片, 其用于和反射层配合使用, 所述偏光片包括 偏光层和补偿层, 所述补偿层设置在偏光层与反射层之间, 沿各个方向入射
收轴方向一致的线偏振光, 从而被偏光层吸收。 所述反射层可以由任何能够 反射光线的材料制成, 例如, 可以是 OLED显示装置中的电极层。 收和补偿层后入射至反射层, 经由所述反射层反射, 并再次经过所述补偿层 后转化为偏振方向与所述偏光层的吸收轴方向一致的线偏振光, 从而被偏光 后再从该偏光片射出, 因而提高了该偏光片所应用的 OLED显示器的户外可 读性, 且视角得到了一定的改善。
本发明中, 所述沿各个方向入射至偏光片的光线既包括垂直入射至偏光 片的光线, 也包括斜入射至所述偏光片的光线。
本实施例还提供一种包括上述偏光片的显示装置。 所述显示装置可以是 任何一种需要避免外界环境光反射且具备反射层的显示装置, 例如: 液晶面 板、 电子纸、 OLED面板、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。 实施例 2:
如图 8所示, 本实施例提供一种偏光片, 其用于和反射层(图中未示出) 配合使用, 所述偏光片与反射层的位置关系为: 沿外界环境光的入射方向依 次为偏光片、 反射层。 所述偏光片包括保护层 701、 偏光层 702和补偿层; 所述补偿层设置在偏光层与反射层之间, 其包括光学补偿膜 704和四分之一 波片 703 ,所述光学补偿膜 704设置在偏光层 702与四分之一波片 703之间; 所述保护层 701设置在偏光层 702远离补偿层及反射层一侧的表面上。
其中, 所述保护层 701需经过表面处理, 本领域技术人员可根据实际需 要对保护层 701进行不同的表面处理, 例如, 硬化处理, 以防止偏光片被划 伤; 低反或防反处理, 以降低偏光片表面反射率, 提高户外可读性; 防眩处 理, 以降低外界环境光的干扰, 提高该偏光片所应用的显示装置的画面清晰 度和能度, 减少屏幕反光, 使图像更清晰、 逼真。 所述四分之一波片 703可 采用现有圓偏光片中的四分之一波片, 即折射率因子 Nz为 0或 1。所述光学 补偿膜 704采用波片制成。
所述光学补偿膜 704的折射率因子 Nz为 0.3至 0.4, 相位延迟量 R0为 240nm至 300nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹 角为负 5。 至正 5。 。
优选地, 所述光学补偿膜 704的折射率因子 Nz为 0.25, 相位延迟量 R0 为 275nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为 0 或者, 所述光学补偿膜 704的折射率因子 Nz为 0.7至 0.8, 相位延迟量 R0为 240nm至 300nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方 向的夹角为正 85。 至正 95。 或负 95。 至负 85。 。
优选地, 所述光学补偿膜 704的折射率因子 Nz为 0.75, 相位延迟量 R0 为 275nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为正 90° 或负 90° 。
本发明中, Nz = (nx-nz) I (nx-ny) ( 1 )
R0 = (nx-ny) x d ( 2 )
上述公式中, Nz为折射率因子, R0为相位延迟量, nx为 X方向的折射 率, ny为 y方向的折射率, nz为 z方向的折射率, d为厚度。 本实施例中, 上述参数单指光学补偿膜 704的参数。
需要说明的是, 本发明中, 两轴之间夹角为正指的是, 一个轴逆时针旋 转至与另一个轴平行所经过的角度; 两轴之间夹角为负指的是, 一个轴顺时 针旋转至与另一个轴平行所经过的角度。 例如, 若光学补偿膜的慢轴方向与 偏光层的透过轴方向的夹角为正 90° ,则光学补偿膜的慢轴方向逆时针旋转 至与偏光层的透过轴方向平行时所经过的角度为 90° 。
根据邦加球分析, 在垂直方向观察现有圓偏光片时, 其中偏光层的透过 轴和 A点垂直, 即和 S1轴正方向与圓周的交点垂直(如图 5所示 ), 而在极 角 60° 左右(例如 40。 至 80。 ) , 方位角为 45° 左右观察现有圓偏光片时, 其中偏光层的透过轴虽仍与 A点垂直, 但是 A点已从 S1轴的正方向与圓周 的交点处偏离(如图 7所示)。 由于本实施例所述偏光片中的补偿层采用了光 学补偿膜 704, 在极角 60。 左右(例如 40。 至 80。 ) , 方位角为 45。 左右观 察该偏光片时, 所述光学补偿膜 704的光轴处于图 7中 A点和 S1轴正方向 与圓周的交点之间的位置处, 且所述光学补偿膜 704 的相位延迟量 R0 为 275nm时, 正好等于二分之一波片的相位延迟量, 因此所述光学补偿膜 704 可将偏光层的透过轴方向从 A点带到 S1轴正方向与圓周的交点处, 从而有 效地补偿了外界环境光斜入射时偏光层 702的透过轴所发生的偏转, 并解决 了因偏光层的透过轴发生偏转而引起的斜向漏光问题, 使得该偏光片在所有 角度的漏光情况都得到一定的改善, 尤其是减少了极角为 40° 至 80° , 方 位角为 45° 左右的漏光。 根据光学结构的对称性, 本实施例所述偏光片还能 减少极角为 40° 至 80° , 方位角为 135° 左右、 225。 左右和 315° 左右的 漏光度。
如图 9所示, 当所述光学补偿膜 704的折射率因子 Nz为 0.25, 相位延 迟量 R0为 275nm,其慢轴方向与偏光层的透过轴方向的夹角为 0° ,且所述 四分之一波片 703的折射率因子 Nz为 1 , 相位延迟量 R0为 137.5nm, 其慢 轴方向与偏光层的透过轴方向的夹角为正 45。 时,所述偏光片的最大漏光率 为 3.5%左右, 可见, 本实施例所述偏光片与现有技术中的圓偏光片相比, 其 最大漏光率减少了约 1.5%, 因而提高了该偏光片所应用的 OLED显示器的 户外可读性, 且视角得到了一定的改善。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 1相同, 这里不再赘述。 实施例 3: 本实施例与实施例 2的区别在于:
本实施例中, 所述四分之一波片 703的折射率因子 Nz为 0.4至 0.6, 相 位延迟量 R0为 llOnm至 160nm, 且所述四分之一波片的慢轴方向与偏光层 的透过轴方向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述四分之一波片 703 的折射率因子 Nz为 0.5, 相位延迟量
R0为 137.5nm,且所述四分之一波片的慢轴方向与偏光层的透过轴方向的夹 角为正 45。 或负 45。 。
本实施例所述偏光片的补偿层既采用光学补偿膜 704, 解决了因偏光层 的透过轴发生偏转而引起的斜向漏光问题, 尤其减少了极角为 40° 至 80° , 方位角为 45° 左右、 135° 左右、 225° 左右和 315° 左右的漏光; 同时, 又 采用折射率因子 Nz为 0.5的四分之一波片, 而对于折射率因子 Nz为 0.5的 四分之一波片来说, 从任何方位与角度观察时, 其光轴均不发生偏转, 即与 垂直方向观察时的光轴方向一致(与图 5中 S2轴重合), 因此斜入射至所述 偏光片上的光线也不会引起其中的四分之一波片的光轴发生偏转, 而现有技 术中,所述圓偏光片中的四分之一波片的折射率因子 Nz—般为 0或者 1 ,导 致了斜入射至现有圓偏光片上的光线引起其中的四分之一波片的光轴发生偏 转, 因而本实施例所述偏光片避免了外界环境光斜入射时其中的四分之一波 片的光轴发生偏转, 解决了现有圓偏光片因其中的四分之一波片的光轴方向 发生偏转而引起的斜向漏光问题, 使得该偏光片在所有角度的漏光情况都得 到一定的改善,尤其是减少了极角为 40° 至 80。 ,方位角为 0° 左右的漏光。 根据光学结构的对称性, 本实施例所述偏光片还能减少极角为 40° 至 80。 , 方位角为 90° 左右、 180° 左右和 270° 左右的漏光。 也就是说, 本实施例 所述偏光片同时补偿了因偏光层的透过轴发生偏转和四分之一波片的光轴发 生偏转而引起的斜向漏光问题, 且同时避免了所述偏光片在垂直方向和斜向 的漏光, 视角非常好。
如图 10所示, 当所述光学补偿膜 704的折射率因子 Nz为 0.25, 相位延 迟量 R0为 275nm,其慢轴方向与偏光层的透过轴方向的夹角为 0° ,且所述 四分之一波片 703的折射率因子 Nz为 0.5, 相位延迟量 R0为 137.5nm, 其 '隄轴方向与偏光层的透过轴方向的夹角为正 45。 时,所述偏光片的最大漏光 率为 0.12%左右, 可见, 本实施例所述偏光片与现有技术中的圓偏光片相比, 其最大漏光率减少了约 4.88%, 因而提高了该偏光片所应用的 OLED显示器 的户外可读性, 且视角非常好。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 2相同, 这里不再赘述。 实施例 4:
如图 11所示, 本实施例与实施例 2的区别在于:
本实施例中,所述四分之一波片 703包括第一八分之一波片 7031和第二 八分之一波片 7032,且所述第一八分之一波片 7031与第二八分之一波片 7032 的极性相反; 所述第一八分之一波片 7031的折射率因子 Nz与第二八分之一 波片 7032的折射率因子 Nz之和为 0.85至 1.15,所述第一八分之一波片 7031 和第二八分之一波片 7032的相位延迟量 R0均为 55nm至 80nm,且所述第一 八分之一波片和第二八分之一波片的慢轴方向一致, 均与偏光层的透过轴方 向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述第一八分之一波片 7031的折射率因子 Nz与第二八分之一 波片 7032的折射率因子 Nz之和为 1 ,所述第一八分之一波片 7031和第二八 分之一波片 7032的相位延迟量 R0均为 69nm, 且所述第一八分之一波片和 第二八分之一波片的慢轴方向一致,均与偏光层的透过轴方向的夹角为正 45 。 或负 45° 。
本实施例所述偏光片中的补偿层既采用光学补偿膜 704, 解决了因偏光 层的透过轴发生偏转而引起的斜向漏光问题, 尤其减少了极角为 40° 至 80 。 , 方位角为 45° 左右、 135° 左右、 225° 左右和 315° 左右的漏光; 同时, 又采用极性相反的第一八分之一波片 7031和第二八分之一波片 7032, 由于 该两个八分之一波片的极性相反, 使得从极角为 40° 至 80° , 方位角为 0 。 左右观察本实施例所述偏光片时, 第一八分之一波片 7031 的光轴的偏转 方向与第二八分之一波片 7032的光轴的偏转方向正好相反,因此起到相互抵 消的作用, 从而解决了现有圓偏光片因其中的四分之一波片的光轴方向发生 偏转而引起的斜向漏光问题, 使得该偏光片在所有角度的漏光情况都得到一 定的改善,尤其是减少了极角为 40° 至 80。 ,方位角为 0° 左右、 90° 左右、 180° 左右和 270° 左右的漏光; 而且, 由于折射率因子大于 0且小于 1的光 学薄膜材料的形成工艺较为复杂, 成本较高, 且需要的相位延迟量较大, 使 得其厚度较大,并导致实施困难,如果第一八分之一波片 7031和第二八分之 一波片 7032的折射率因子 Nz之和为 1 (也可大于 1 ) , 可使得第一八分之一 波片 7031与第二八分之一波片 7032的折射率因子 Nz分别为 0或 1 ,即使得 第一八分之一波片 7031和第二八分之一波片 7032的折射率因子 Nz的范围 均不在(0,1 )范围内, 故还具有工艺筒单、 成本低等优点, 且每层八分之一 波片的相位延迟量较小、 厚度较薄, 容易实施。 也就是说, 本实施例所述偏 光片同时补偿了因偏光层的透过轴发生偏转和四分之一波片的光轴发生偏转 而引起的斜向漏光问题,且同时避免了所述偏光片在垂直方向和斜向的漏光, 视角非常好。
当所述光学补偿膜 704 的折射率因子 Nz 为 0.25, 相位延迟量 R0 为 275nm, 其慢轴方向与偏光层的透过轴方向的夹角为 0° , 且所述第一八分 之一波片 7031的折射率因子 Nz为 1 ,相位延迟量 R0为 68.75nm, 其慢轴方 向与偏光层的透过轴方向的夹角为正 45° , 所述第二八分之一波片 7032的 折射率因子 Nz为 0, 相位延迟量 R0为 68.75nm, 其慢轴方向与偏光层的透 过轴方向的夹角为负 45° 时, 所述偏光片的最大漏光率为 0.12%左右(即本 段参数所对应的偏光片在各个视角的漏光情况示意图与图 10相同), 可见, 本实施例所述偏光片与现有技术中的圓偏光片相比, 其最大漏光率减少了约 4.88%, 因而提高了该偏光片所应用的 OLED显示器的户外可读性, 且视角 非常好。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 2相同, 这里不再赘述。 实施例 5:
如图 12所示, 本实施例与实施例 2的区别在于:
本实施例中, 所述偏光片中的补偿层不包括实施例 2 中的光学补偿膜 704, 而是包括第一光学补偿膜 7041和第二光学补偿膜 7042; 所述第一光学 补偿膜 7041设置在偏光层 702接近反射层(或四分之一波片 703 )一侧的表 面上,所述第二光学补偿膜 7042设置在第一光学补偿膜 7041接近反射层(或 四分之一波片 703 )一侧的表面上。 所述第一光学补偿膜 7041和第二光学补 偿膜 7042均采用波片制成。
其中, 所述第一光学补偿膜 7041的折射率因子 Nz小于或等于 0, 第二 光学补偿膜 7042的折射率因子 Nz大于或等于 1 , 所述第一光学补偿膜 7041 和第二光学补偿膜 7042的相位延迟量均为 llOnm至 160nm, 且所述第一光 学补偿膜和第二光学补偿膜的慢轴方向均与偏光层的透过轴方向的夹角为正 85。 至正 95° 或负 95。 至负 85。 。
优选地, 所述第一光学补偿膜 7041和第二光学补偿膜 7042的相位延迟 量均为 137nm, 所述第一光学补偿膜和第二光学补偿膜的慢轴方向均与偏光 层的透过轴方向的夹角为正 90。 或负 90° 。
或者, 所述第一光学补偿膜 7041的折射率因子 Nz大于或等于 1 , 第二 光学补偿膜 7042的折射率因子 Nz小于或等于 0, 所述第一光学补偿膜 7041 和第二光学补偿膜 7042的相位延迟量均为 llOnm至 160nm, 且所述第一光 学补偿膜和第二光学补偿膜的慢轴方向均与偏光层的透过轴方向的夹角为负 5° 至正 5° 。
优选地, 所述第一光学补偿膜 7041和第二光学补偿膜 7042的相位延迟 量均为 137nm, 所述第一光学补偿膜和第二光学补偿膜的慢轴方向均与偏光 层的透过轴方向的夹角为 0° 。
或者, 所述第一光学补偿膜 7041的折射率因子 Nz小于或等于 0, 其慢 轴方向与偏光层的透过轴方向的夹角为负 5。 至正 5。 , 所述第二光学补偿 膜 7042的折射率因子 Nz大于或等于 1 , 其慢轴方向与偏光层的透过轴方向 的夹角为正 85。 至正 95。 或负 95。 至负 85。 , 所述第一光学补偿膜和第二 光学补偿膜的相位延迟量均为 llOnm至 160nm。
优选地, 所述第一光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角 为 0。 , 所述第二光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为正 90° 或负 90° , 所述第一光学补偿膜和第二光学补偿膜的相位延迟量均为
137nm„
或者, 所述第一光学补偿膜 7041的折射率因子 Nz大于或等于 1 , 其慢 轴方向与偏光层的透过轴方向的夹角为正 85。 至正 95。 或负 95。 至负 85 。 , 所述第二光学补偿膜 7042的折射率因子 Nz小于或等于 0, 其慢轴方向 与偏光层的透过轴方向的夹角为负 5。 至正 5。 , 所述第一光学补偿膜和第 二光学补偿膜的相位延迟量均为 llOnm至 160nm。
优选地, 所述第一光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角 为正 90。 或负 90。 , 所述第二光学补偿膜的慢轴方向与偏光层的透过轴方 向的夹角为 0° , 所述第一光学补偿膜和第二光学补偿膜的相位延迟量均为 137nm。
本实施例所述偏光片中的补偿层采用两层光学补偿膜, 且每层光学补偿 膜的折射率因子的范围均不在(0,1 )范围内, 不仅能解决因偏光层的透过轴 偏转而引起的斜向漏光问题, 尤其减少了极角为 40° 至 80° , 方位角为 45 。 左右、 135° 左右、 225。 左右和 315° 左右的漏光, 而且工艺筒单、 成本 低, 每层光学补偿膜的相位延迟量较小、 厚度较薄, 容易实施。
当所述第一光学补偿膜 7041的折射率因子 Nz为 1 , 相位延迟量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴方向的夹角为正 90° , 所述第二光 学补偿膜 7042的折射率因子 Nz为 0,相位延迟量 R0为 137.5nm, 其慢轴方 向与偏光层的透过轴方向的夹角为 0° , 且所述四分之一波片 703的折射率 因子 Nz为 1 , 相位延迟量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴方 向的夹角为正 45。 时, 所述偏光片的最大漏光率为 3.5%左右(即本段参数 所对应的偏光片在各个视角的漏光情况示意图与图 9相同),可见,本实施例 所述偏光片与现有技术中的圓偏光片相比, 其最大漏光率减少了约 1.5%, 因 而提高了该偏光片所应用的 OLED显示器的户外可读性,且视角得到了一定 的改善。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 2相同, 这里不再赘述。 实施例 6:
本实施例与实施例 5的区别在于:
本实施例中, 所述四分之一波片 703的折射率因子 Nz为 0.4至 0.6, 相 位延迟量 R0为 llOnm至 160nm, 且所述四分之一波片的慢轴方向与偏光层 的透过轴方向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述四分之一波片 703 的折射率因子 Nz为 0.5 , 相位延迟量 R0为 137.5nm,且所述四分之一波片的慢轴方向与偏光层的透过轴方向的夹 角为正 45。 或负 45。 。
本实施例所述偏光片既采用两层光学补偿膜, 解决了因偏光层的透过轴 发生偏转而引起的斜向漏光问题, 尤其减少了极角为 40° 至 80° , 方位角 为 45° 左右、 135° 左右、 225° 左右和 315° 左右的漏光, 且工艺筒单、 成 本低, 每层光学补偿膜的相位延迟量较小、 厚度较薄, 容易实施; 同时, 又 采用折射率因子 Nz为 0.5的四分之一波片,解决了现有圓偏光片因其中的四 分之一波片的光轴方向发生偏转而引起的斜向漏光问题, 尤其是减少了极角 为 40° 至 80° , 方位角为 0° 左右、 90° 左右、 180° 左右和 270° 左右的 漏光, 也就是说, 本实施例所述偏光片同时补偿了因偏光层的透过轴发生偏 转和四分之一波片的光轴发生偏转而引起的斜向漏光问题, 且同时避免了所 述偏光片在垂直方向和斜向的漏光, 视角非常好。
当所述第一光学补偿膜 7041的折射率因子 Nz为 1 , 相位延迟量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴方向的夹角为正 90° , 所述第二光 学补偿膜 7042的折射率因子 Nz为 0,相位延迟量 R0为 137.5nm, 其慢轴方 向与偏光层的透过轴方向的夹角为 0° , 且所述四分之一波片 703的折射率 因子 Nz为 0.5, 相位延迟量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴 方向的夹角为正 45。 时, 所述偏光片的最大漏光率为 0.12%左右(即本段参 数所对应的偏光片在各个视角的漏光情况示意图与图 10相同), 可见, 本实 施例所述偏光片与现有技术中的圓偏光片相比, 其最大漏光率减少了约 4.88%, 因而提高了该偏光片所应用的 OLED显示器的户外可读性, 且视角 非常好。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 5相同, 这里不再赘述。 实施例 7:
如图 13所示, 本实施例与实施例 5的区别在于:
本实施例中,所述四分之一波片 703包括第一八分之一波片 7031和第二 八分之一波片 7032,且所述第一八分之一波片 7031与第二八分之一波片 7032 的极性相反; 所述第一八分之一波片 7031的折射率因子 Nz与第二八分之一 波片 7032的折射率因子 Nz之和为 0.85至 1.15,所述第一八分之一波片 7031 和第二八分之一波片 7032的相位延迟量 R0均为 55nm至 80nm,且所述第一 八分之一波片和第二八分之一波片的慢轴方向一致, 均与偏光层的透过轴方 向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述第一八分之一波片 7031的折射率因子 Nz与第二八分之一 波片 7032的折射率因子 Nz之和为 1 ,所述第一八分之一波片 7031和第二八 分之一波片 7032的相位延迟量 R0均为 69nm, 且所述第一八分之一波片和 第二八分之一波片的慢轴方向一致,均与偏光层的透过轴方向的夹角为正 45 。 或负 45° 。
本实施例所述偏光片既采用两层光学补偿膜, 解决了因偏光层的透过轴 发生偏转而引起的斜向漏光问题, 尤其减少了极角为 40° 至 80° , 方位角 为 45° 左右、 135° 左右、 225° 左右和 315° 左右的漏光, 且工艺筒单、 成 本低, 每层光学补偿膜的相位延迟量较小、 厚度较薄, 容易实施; 同时, 又 采用极性相反的第一八分之一波片 7031和第二八分之一波片 7032, 解决了 现有圓偏光片因其中的四分之一波片的光轴方向发生偏转而引起的斜向漏光 问题,尤其是减少了极角为 40° 至 80。 , 方位角为 0° 左右、 90° 左右、 180 。 左右和 270。 左右的漏光, 且工艺筒单、 成本低, 每层四分之一波片的相 位延迟量较小、 厚度较薄, 容易实施。 也就是说, 本实施例所述偏光片同时 补偿了因偏光层的透过轴发生偏转和四分之一波片的光轴发生偏转而引起的 斜向漏光问题,且同时避免了所述偏光片在垂直方向和斜向的漏光,,视角非 常好。
当所述第一光学补偿膜 7041的折射率因子 Nz为 1 , 相位延迟量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴方向的夹角为正 90° , 所述第二光 学补偿膜 7042的折射率因子 Nz为 0,相位延迟量 R0为 137.5nm, 其慢轴方 向与偏光层的透过轴方向的夹角为 0° ,且所述第一八分之一波片 7031的折 射率因子 Nz为 1 , 相位延迟量 R0为 68.75nm, 其慢轴方向与偏光层的透过 轴方向的夹角为正 45。 ,所述第二八分之一波片 7032的折射率因子 Nz为 0, 相位延迟量 R0为 68.75nm, 其慢轴方向与偏光层的透过轴方向的夹角为负 45° 时, 所述偏光片的最大漏光率为 0.12%左右 (即本段参数所对应的偏光 片在各个视角的漏光情况示意图与图 10相同), 可见, 本实施例所述偏光片 与现有技术中的圓偏光片相比, 其最大漏光率减少了约 4.88%, 因而提高了 该偏光片所应用的 OLED显示器的户外可读性, 且视角非常好。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 5相同, 这里不再赘述。 实施例 8:
本实施例与实施例 1的区别在于:
所述补偿层包括四分之一波片, 所述四分之一波片的折射率因子 Nz为 0.4至 0.6, 相位延迟量 R0为 llOnm至 160nm, 且所述四分之一波片的慢轴 方向与偏光层的透过轴方向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述四分之一波片的折射率因子 Nz为 0.5, 相位延迟量 R0为
137.5nm, 且所述四分之一波片的慢轴方向与偏光层的透过轴方向的夹角为 正 45。 或负 45。 。
由于本实施例所述偏光片的结构与图 3所示结构相同, 只是其中的四分 之一波片的折射率因子 Nz不同, 故不再提供本实施例所述偏光片的结构示 意图。
本实施例中,如果采用折射率因子 Nz为 0.5的四分之一波片作为补偿层, 则解决了现有圓偏光片因其中的四分之一波片的光轴方向发生偏转而引起的 斜向漏光问题, 使得该偏光片在所有角度的漏光情况都得到一定的改善, 尤 其是减少了极角为 40° 至 80° , 方位角为 0° 左右的漏光。 根据光学结构 的对称性, 本实施例所述偏光片还能减少极角为 40° 至 80° , 方位角为 90 。 左右、 180° 左右和 270° 左右的漏光。
优选地, 所述偏光片还包括保护层, 所述保护层设置在所述偏光层远离 所述四分之一波片一侧的表面上。
如图 14所示, 当所述四分之一波片的折射率因子 Nz为 0.5, 相位延迟 量 R0为 137.5nm, 其慢轴方向与偏光层的透过轴方向的夹角为正 45° 时, 所述偏光片的最大漏光率为 1.15%左右, 可见, 本实施例所述偏光片与现有 技术中的圓偏光片相比, 其最大漏光率减少了约 3.85%, 因而提高了该偏光 片所应用的 OLED显示器的户外可读性, 且视角得到了很大的改善。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 1相同, 这里不再赘述。 实施例 9:
如图 15所示, 本实施例与实施例 1的区别在于:
所述补偿层包括四分之一波片, 所述四分之一波片包括第一八分之一波 片 7031和第二八分之一波片 7032,且所述第一八分之一波片 7031与第二八 分之一波片 7032的极性相反;所述第一八分之一波片 7031的折射率因子 Nz 与第二八分之一波片 7032的折射率因子 Nz之和为 0.85至 1.15,所述第一八 分之一波片 7031和第二八分之一波片 7032的相位延迟量 R0均为 55nm至 80nm, 且所述第一八分之一波片和第二八分之一波片的慢轴方向一致, 均与 偏光层的透过轴方向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
优选地, 所述第一八分之一波片 7031的折射率因子 Nz与第二八分之一 波片 7032的折射率因子 Nz之和为 1 , 所述第一八分之一波片和第二八分之 一波片的相位延迟量 R0均为 69nm,且所述第一八分之一波片和第二八分之 一波片的慢轴方向一致, 均与偏光层的透过轴方向的夹角为正 45° 或负 45
解决了现有圓偏光片因其中的四分之一波片的光轴方向发生偏转而引起的斜 向漏光问题, 使得该偏光片在所有角度的漏光情况都得到一定的改善, 尤其 是减少了极角为 40° 至 80° , 方位角为 0° 左右、 90° 左右、 180° 左右和 270° 左右的漏光; 而且, 如果该两个八分之一波片的折射率因子 Nz之和为 1 (也可大于 1 ), 可使得第一八分之一波片 7031与第二八分之一波片 7032 的折射率因子 Nz分别为 0或 1 ,即使得该两个八分之一波片的折射率因子的 范围均不在(0,1 )范围内, 故本实施例具有工艺筒单、 成本低等优点, 且每 个八分之一波片的相位延迟量较小、 厚度较薄, 容易实施。
优选地, 所述偏光片还包括保护层 701 , 所述保护层 701设置在所述偏 光层 702远离所述第一八分之一波片 7031—侧的表面上。
当所述第一八分之一波片 7031的折射率因子 Nz为 1 , 相位延迟量 R0 为 68.75nm, 其慢轴方向与偏光层的透过轴方向的夹角为正 45。 , 所述第二 八分之一波片 7032的折射率因子 Nz为 0,相位延迟量 R0为 68.75nm, 其慢 轴方向与偏光层的透过轴方向的夹角为负 45° 时,所述偏光片的最大漏光率 为 1.15%左右(即本段参数所对应的偏光片在各个视角的漏光情况示意图与 图 14相同), 可见, 本实施例所述偏光片与现有技术中的圓偏光片相比, 其 最大漏光率减少了约 3.85%, 因而提高了该偏光片所应用的 OLED显示器的 户外可读性, 且视角得到了很大的改善。
本实施例还提供一种包括上述偏光片的显示装置。
本实施例中的其他结构及作用都与实施例 1相同, 这里不再赘述。 以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1. 一种偏光片, 其中所述偏光片用于和反射层配合使用, 所述偏光片包 括偏光层和补偿层, 所述补偿层设置在偏光层与反射层之间。
2. 根据权利要求 1所述的偏光片, 其中
所述补偿层包括四分之一波片和光学补偿膜, 所述光学补偿膜设置在偏 光层与四分之一波片之间; 所述光学补偿膜采用波片制成;
所述光学补偿膜的折射率因子为 0.3 至 0.4, 相位延迟量为 240nm至 300nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为负 5 。 至正 5° ;
或者, 所述光学补偿膜的折射率因子为 0.7至 0.8, 相位延迟量为 240nm 至 300nm, 且所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为正 85。 至正 95° 或负 95。 至负 85。 。
3. 根据权利要求 2所述的偏光片, 其中
所述光学补偿膜的折射率因子为 0.25, 相位延迟量为 275nm, 且所述光 学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为 0° ;
或者, 所述光学补偿膜的折射率因子为 0.75 , 相位延迟量为 275nm, 且 所述光学补偿膜的慢轴方向与偏光层的透过轴方向的夹角为正 90。 或负 90
4. 根据权利要求 1所述的偏光片, 其中
所述补偿层包括四分之一波片、 第一光学补偿膜和第二光学补偿膜, 所 述第一光学补偿膜设置在偏光层接近反射层一侧的表面上, 所述第二光学补 偿膜设置在第一光学补偿膜接近反射层一侧的表面上, 所述四分之一波片设 置在第二光学补偿膜接近反射层一侧的表面上; 所述第一光学补偿膜和第二 光学补偿膜均采用波片制成。
5. 根据权利要求 4所述的偏光片, 其中
所述第一光学补偿膜的折射率因子小于或等于 0, 第二光学补偿膜的折 射率因子大于或等于 1 , 所述第一光学补偿膜和第二光学补偿膜的相位延迟 量均为 llOnm至 160nm,且所述第一光学补偿膜和第二光学补偿膜的慢轴方 向均与偏光层的透过轴方向的夹角为正 85。 至正 95。 或负 95。 至负 85。 。
6. 根据权利要求 4所述的偏光片, 其中
所述第一光学补偿膜的折射率因子大于或等于 1 , 第二光学补偿膜的折 射率因子小于或等于 0, 所述第一光学补偿膜和第二光学补偿膜的相位延迟 量均为 llOnm至 160nm,且所述第一光学补偿膜和第二光学补偿膜的慢轴方 向均与偏光层的透过轴方向的夹角为负 5° 至正 5° 。
7. 根据权利要求 4所述的偏光片, 其中
所述第一光学补偿膜的折射率因子小于或等于 0, 其慢轴方向与偏光层 的透过轴方向的夹角为负 5。 至正 5。 , 所述第二光学补偿膜的折射率因子 大于或等于 1 , 其慢轴方向与偏光层的透过轴方向的夹角为正 85° 至正 95 。 或负 95° 至负 85° , 所述第一光学补偿膜和第二光学补偿膜的相位延迟 量均为 llOnm至 160nm。
8. 根据权利要求 4所述的偏光片, 其中
所述第一光学补偿膜的折射率因子大于或等于 1 , 其慢轴方向与偏光层 的透过轴方向的夹角为正 85。 至正 95。 或负 95。 至负 85。 , 所述第二光学 补偿膜的折射率因子小于或等于 0, 其慢轴方向与偏光层的透过轴方向的夹 角为负 5。 至正 5。 , 所述第一光学补偿膜和第二光学补偿膜的相位延迟量 均为 llOnm至 160nm。
9. 根据权利要求 5所述的偏光片, 其中
所述第一光学补偿膜的折射率因子小于或等于 0, 第二光学补偿膜的折 射率因子大于或等于 1 , 所述第一光学补偿膜和第二光学补偿膜的相位延迟 量均为 137nm, 且所述第一光学补偿膜和第二光学补偿膜的慢轴方向均与偏 光层的透过轴方向的夹角为正 90。 或负 90。 。
10. 根据权利要求 6所述的偏光片, 其中
所述第一光学补偿膜的折射率因子大于或等于 1 , 第二光学补偿膜的折 射率因子小于或等于 0, 所述第一光学补偿膜和第二光学补偿膜的相位延迟 量均为 137nm, 且所述第一光学补偿膜和第二光学补偿膜的慢轴方向均与偏 光层的透过轴方向的夹角为 0° 。
11. 根据权利要求 7所述的偏光片, 其中
所述第一光学补偿膜的折射率因子小于或等于 0, 其慢轴方向与偏光层 的透过轴方向的夹角为 0° , 所述第二光学补偿膜的折射率因子大于或等于 1 , 其慢轴方向与偏光层的透过轴方向的夹角为正 90。 或负 90。 , 所述第一 光学补偿膜和第二光学补偿膜的相位延迟量均为 137nm;
12. 根据权利要求 8所述的偏光片, 其中
所述第一光学补偿膜的折射率因子大于或等于 1 , 其慢轴方向与偏光层 的透过轴方向的夹角为正 90。 或负 90。 , 所述第二光学补偿膜的折射率因 子小于或等于 0, 其慢轴方向与偏光层的透过轴方向的夹角为 0° , 所述第 一光学补偿膜和第二光学补偿膜的相位延迟量均为 137nm。
13. 根据权利要求 1-12中任一项所述的偏光片, 其中所述补偿层包括四 分之一波片, 所述四分之一波片的折射率因子为 0.4 至 0.6, 相位延迟量为 llOnm至 160nm, 且所述四分之一波片的慢轴方向与偏光层的透过轴方向的 夹角为正 40。 至正 50。 或负 50。 至负 40。 。
14.根据权利要求 13所述的偏光片,其中所述四分之一波片的折射率因 子为 0.5, 相位延迟量为 137.5nm, 且所述四分之一波片的慢轴方向与偏光层 的透过轴方向的夹角为正 45。 或负 45。 。
15. 根据权利要求 1-12中任一项所述的偏光片, 其中所述补偿层包括四 分之一波片,所述四分之一波片包括第一八分之一波片和第二八分之一波片, 且所述第一八分之一波片与第二八分之一波片的极性相反; 所述第一八分之 一波片的折射率因子与第二八分之一波片的折射率因子之和为 0.85至 1.15, 所述第一八分之一波片和第二八分之一波片的相位延迟量均为 55nm 至 80nm, 且所述第一八分之一波片和第二八分之一波片的慢轴方向一致, 均与 偏光层的透过轴方向的夹角为正 40。 至正 50。 或负 50。 至负 40。 。
16.根据权利要求 15所述的偏光片,其中所述第一八分之一波片的折射 率因子与第二八分之一波片的折射率因子之和为 1 , 所述第一八分之一波片 和第二八分之一波片的相位延迟量均为 69nm, 且所述第一八分之一波片和 第二八分之一波片的慢轴方向一致,均与偏光层的透过轴方向的夹角为正 45 。 或负 45° 。
17. 根据权利要求 1所述的偏光片, 还包括保护层, 所述保护层设置在 所述偏光层远离补偿层一侧的表面上。
18. 一种显示装置, 包括如权利要求 1-17中任一项所述的偏光片。
PCT/CN2013/077338 2013-03-28 2013-06-17 偏光片及显示装置 WO2014153852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/359,371 US9690025B2 (en) 2013-03-28 2013-06-17 Polarizer and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105035.7 2013-03-28
CN201310105035.7A CN103207426B (zh) 2013-03-28 2013-03-28 一种偏光片及显示装置

Publications (1)

Publication Number Publication Date
WO2014153852A1 true WO2014153852A1 (zh) 2014-10-02

Family

ID=48754701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077338 WO2014153852A1 (zh) 2013-03-28 2013-06-17 偏光片及显示装置

Country Status (3)

Country Link
US (1) US9690025B2 (zh)
CN (1) CN103207426B (zh)
WO (1) WO2014153852A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682158A (zh) * 2013-12-10 2014-03-26 京东方科技集团股份有限公司 一种有机电致发光显示器件、其制备方法及显示装置
CN103682154B (zh) * 2013-12-10 2016-01-27 京东方科技集团股份有限公司 一种有机电致发光显示器件及显示装置
KR101731676B1 (ko) 2014-07-23 2017-05-02 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
JP6520953B2 (ja) * 2014-09-26 2019-05-29 日本ゼオン株式会社 円偏光板及びその製造方法、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置
CN104570538B (zh) 2015-01-27 2017-11-24 京东方科技集团股份有限公司 一种显示装置
KR102440078B1 (ko) * 2015-03-10 2022-09-06 삼성디스플레이 주식회사 편광판 및 이를 포함하는 표시장치
CN105114866B (zh) * 2015-08-31 2018-06-01 昆山龙腾光电有限公司 偏光板及其制作方法以及显示面板结构和显示装置
KR102586151B1 (ko) * 2016-01-28 2023-10-06 삼성디스플레이 주식회사 편광 유닛 및 이를 포함하는 유기 발광 표시 장치
KR20180036864A (ko) * 2016-09-30 2018-04-10 삼성디스플레이 주식회사 편광 유닛 및 이를 포함하는 표시 장치
KR20180061485A (ko) * 2016-11-28 2018-06-08 삼성디스플레이 주식회사 플렉서블 표시 장치
US11391876B2 (en) * 2017-02-28 2022-07-19 Zeon Corporation Optically anisotropic laminate, circularly polarizing plate and image display device
CN107589546B (zh) * 2017-10-23 2024-05-24 北京小米移动软件有限公司 光学系统及增强现实眼镜
CN110161687A (zh) * 2018-02-12 2019-08-23 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
EP3754409A4 (en) 2018-02-12 2021-04-14 Matrixed Reality Technology Co., Ltd. AUGMENTED REALITY DEVICE AND OPTICAL SYSTEM USED IN IT
CN108303805A (zh) * 2018-03-16 2018-07-20 杨丛泽 一种智能立体影像盒
CN110767105B (zh) * 2018-07-27 2021-01-22 京东方科技集团股份有限公司 一种显示模组及显示装置
CN111950335B (zh) * 2019-05-17 2023-07-21 荣耀终端有限公司 叠层结构、显示面板及电子装置
CN112433286A (zh) * 2019-08-26 2021-03-02 陕西坤同半导体科技有限公司 一种偏光片、显示装置
JP7402975B2 (ja) * 2019-09-27 2023-12-21 スリーエム イノベイティブ プロパティズ カンパニー 反射偏光子および光学システム
CN112164324B (zh) * 2020-09-04 2022-07-15 中国科学技术大学 具有改变出射光偏振状态的有机发光显示装置
CN217506272U (zh) * 2020-09-30 2022-09-27 上海悠睿光学有限公司 光学模组和近眼显示装置
CN112255794B (zh) * 2020-10-28 2022-07-19 上海悠睿光学有限公司 光学模组、近眼显示装置和光投射方法
CN112993194B (zh) * 2021-02-10 2022-05-17 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
KR20230080146A (ko) * 2021-11-29 2023-06-07 엘지디스플레이 주식회사 표시장치 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957294A (zh) * 2004-05-21 2007-05-02 皇家飞利浦电子股份有限公司 具有平行排列型的液晶层的液晶显示设备
JP2007156085A (ja) * 2005-12-05 2007-06-21 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
CN101276091A (zh) * 2007-03-30 2008-10-01 Nec液晶技术株式会社 具有触控式面板的液晶显示装置和终端装置
WO2012070808A2 (ko) * 2010-11-23 2012-05-31 동우화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
CN102707489A (zh) * 2011-06-09 2012-10-03 京东方科技集团股份有限公司 液晶显示面板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2318878A (en) 1996-10-31 1998-05-06 Sharp Kk Reflective liquid crystal device
JP4276392B2 (ja) * 2001-07-25 2009-06-10 龍男 内田 円偏光板およびそれを用いた液晶ディスプレイ
JP2004341207A (ja) 2003-05-15 2004-12-02 Koninkl Philips Electronics Nv 液晶表示装置
JP2012032418A (ja) * 2008-11-19 2012-02-16 Sharp Corp 円偏光板及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957294A (zh) * 2004-05-21 2007-05-02 皇家飞利浦电子股份有限公司 具有平行排列型的液晶层的液晶显示设备
JP2007156085A (ja) * 2005-12-05 2007-06-21 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
CN101276091A (zh) * 2007-03-30 2008-10-01 Nec液晶技术株式会社 具有触控式面板的液晶显示装置和终端装置
WO2012070808A2 (ko) * 2010-11-23 2012-05-31 동우화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
CN102707489A (zh) * 2011-06-09 2012-10-03 京东方科技集团股份有限公司 液晶显示面板

Also Published As

Publication number Publication date
CN103207426B (zh) 2015-09-16
US20150219814A1 (en) 2015-08-06
US9690025B2 (en) 2017-06-27
CN103207426A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2014153852A1 (zh) 偏光片及显示装置
US8531765B2 (en) Circularly polarizing plate and display device
US20180358576A1 (en) Polarization optical assembly, oled device and preparation method thereof, and display device
CN103389536B (zh) 多层光学膜、光学膜的制造方法以及显示装置
US20170031206A1 (en) Sunlight readable lcd with uniform in-cell retarder
US10437106B2 (en) Liquid crystal display panel wherein a thickness direction retardation of at least one of a first, second, third, and fourth phase difference plate has a negative value
JP6929586B2 (ja) 反射防止用光学フィルタ及び有機発光装置
US20100277660A1 (en) Wire grid polarizer with combined functionality for liquid crystal displays
WO2016045260A1 (zh) 发光二极管显示面板及其制造方法
JP2004271786A (ja) 液晶表示装置
CN108922903B (zh) 一种有机发光显示面板及显示装置
US10175534B2 (en) Compensation film and optical film and display device
KR101665598B1 (ko) 편광판 및 이를 구비하는 표시 장치
KR20160055431A (ko) 편광필름 및 그를 구비하는 플렉서블 표시장치
WO2013086890A1 (zh) 具有视角补偿的液晶显示器
EP3422057A1 (en) Polarized type viewing angle control element, polarized type viewing angle control display module, and polarized type viewing angle control light source module
CN105629543B (zh) 一种柔性液晶显示面板及显示装置
JP2021063984A (ja) 光学積層体及びそれを用いた液晶表示装置
CN110262133B (zh) 具有cop延迟器和cop匹配rm的低反射率lcd
TW201825934A (zh) 抗反射光學濾波器及有機發光裝置
US10338426B2 (en) Light diffusion member, base material for light diffusion member production, display device using same and method for producing light diffusion member
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
US20190278139A1 (en) Lcd with reactive mesogen internal retarder and related fabrication methods
WO2017193444A1 (zh) 液晶显示装置
JP2001195003A (ja) 表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14359371

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07-12-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13880336

Country of ref document: EP

Kind code of ref document: A1