WO2016045260A1 - 发光二极管显示面板及其制造方法 - Google Patents

发光二极管显示面板及其制造方法 Download PDF

Info

Publication number
WO2016045260A1
WO2016045260A1 PCT/CN2015/070616 CN2015070616W WO2016045260A1 WO 2016045260 A1 WO2016045260 A1 WO 2016045260A1 CN 2015070616 W CN2015070616 W CN 2015070616W WO 2016045260 A1 WO2016045260 A1 WO 2016045260A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
polarizing layer
display panel
retardation film
phase retardation
Prior art date
Application number
PCT/CN2015/070616
Other languages
English (en)
French (fr)
Inventor
杨发禄
张俊瑞
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15793671.7A priority Critical patent/EP3200233B1/en
Priority to US14/777,576 priority patent/US20160329527A1/en
Publication of WO2016045260A1 publication Critical patent/WO2016045260A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a light emitting diode display panel and a method of fabricating the same.
  • LED display panel is the development trend of future display products, especially OLED display panel, which has a wide range of advantages such as wide viewing angle, fast response, high brightness, high contrast, bright color, light weight, thin thickness and low power consumption. .
  • the first substrate 1 is a schematic structural view of a conventional light emitting diode display panel including a first substrate 1 and a second substrate 2.
  • the first substrate 1 has a structure inherent to a light-emitting diode display panel such as an anode, a cathode, a light-emitting layer, a color filter layer, a hole injection layer, a hole transport layer, an electron transport layer, and a protective film.
  • the LED display panel shown in FIG. 1 is susceptible to ambient light, and the metal-containing region (metal region) of the first substrate 1 reflects 100% of the ambient incident light, as shown by the arrows in FIG.
  • the light path and color of the display panel can have a large effect, which affects the display quality.
  • a currently common improvement method is to provide a polarizer 3 on the outer side of the second substrate 2, as shown in FIG. After passing through the polarizer 3, the ambient light is converted into linearly polarized light, and after being reflected by the metal region, it is also emitted by linearly polarized light, and the reflectance is about 50%. Although the reflectance of the light-emitting diode display panel to ambient light is reduced after the polarizer 3 is disposed, about 50% of the ambient light reflected may affect the display image quality.
  • the present invention provides an LED display panel including a first substrate, a second substrate, and a polarizing layer, the LED display panel further including a ⁇ /4 phase retardation film, the polarizing layer and the The setting of the ⁇ /4 phase retardation film makes the incident Ambient light sequentially passes through the polarizing layer and the ⁇ /4 phase retardation film to reach the first substrate.
  • an angle between a transmission axis of the polarizing layer and a transmission axis of the ⁇ /4 phase retardation film is 45°.
  • the polarizing layer is disposed on a surface of the second substrate remote from the first substrate, and the ⁇ /4 phase retardation film is disposed on a surface of the second substrate adjacent to the first substrate .
  • the polarizing layer is a polarizer.
  • the polarizing layer and the ⁇ /4 phase retardation film are sequentially disposed on a surface of the second substrate close to the first substrate.
  • the polarizing layer is a metal grating layer for converting ambient light into linearly polarized light.
  • the polarizing layer is a dichroic dye molecular layer for converting ambient light into linearly polarized light.
  • the dichroic dye molecule forming the dichroic dye molecular layer comprises at least one of an azo dichroic dye molecule and a fluorenyl dichroic dye molecule.
  • the ⁇ /4 phase retardation film includes an alignment layer and a liquid crystal polymer layer disposed on the alignment layer, and an angle between an orientation direction of the alignment layer and a transmission axis of the polarizing layer is 45°.
  • the polarizing layer has a pattern, and a pattern of the polarizing layer corresponds to a pattern of a metal region in the first substrate.
  • the present invention also provides a method for fabricating a light emitting diode display panel, the LED display panel comprising a first substrate and a second substrate, the manufacturing method comprising the steps of:
  • a polarizing layer is disposed on a surface of the second substrate remote from the first substrate, and a ⁇ /4 phase retardation film is disposed on a surface of the second substrate adjacent to the first substrate;
  • a polarizing layer and a ⁇ /4 phase retardation film are sequentially disposed on a surface of the second substrate adjacent to the first substrate;
  • the polarizing layer and the ⁇ /4 phase retardation film are disposed such that incident ambient light sequentially passes through the polarizing layer and the ⁇ /4 phase retardation film to reach the first substrate.
  • an angle between a transmission axis of the polarizing layer and a transmission axis of the ⁇ /4 phase retardation film is 45°.
  • the invention effectively prevents the influence of ambient light reflection on the display screen by setting the polarizing layer and the ⁇ /4 phase retardation film simultaneously in the LED display panel, thereby improving the display image quality.
  • 1 is a schematic structural view of a conventional LED display panel
  • FIG. 2 is a schematic structural view of another conventional LED display panel
  • FIG. 3 is a schematic structural diagram of a light emitting diode display panel according to an embodiment of the present invention.
  • Figure 4 is a schematic view of the optical path of the structure shown in Figure 3;
  • Figure 5 is a plan view of the polarizing layer of Figure 3;
  • Figure 6 is a plan view showing the liquid crystal polymer layer of Figure 3.
  • FIG. 7 is a schematic structural diagram of a light emitting diode display panel according to another embodiment of the present invention.
  • Figure 8 is a schematic view of the optical path of the structure shown in Figure 7;
  • Figure 9 is a schematic plan view of a patterned polarizing layer.
  • the invention provides a light emitting diode display panel, comprising a first substrate and a second a substrate and a polarizing layer, the LED display panel further comprising a ⁇ /4 phase retardation film, the polarizing layer and the ⁇ /4 phase retardation film being disposed such that incident ambient light sequentially passes through the polarizing layer and the ⁇ / The 4 phase retardation film reaches the first substrate.
  • the LED display panel may be an OLED (Organic Light Emitting Diode) display panel, or may be an Active Matrix Organic Light Emitting Diode (AMOLED) display panel.
  • the first substrate in the present invention can be used for display, and the second substrate can be used to package the first substrate.
  • the first substrate may be a display substrate including an anode, a cathode, a light emitting layer, a color filter layer, a hole injection layer, a hole transport layer, an electron transport layer, a thin film transistor array, a protective film, etc.; the second substrate It can be a cover that only functions as a package.
  • the plurality of structures in the first substrate comprise a metal material
  • the structure such as an anode, a cathode, a thin film transistor array or the like includes a metal material, and a region where the metal material is located is referred to as a metal region.
  • the metal region in the first substrate is capable of reflecting ambient light incident on the first substrate, thereby affecting the display effect.
  • incident ambient light passes through the polarizing layer to form linearly polarized light, and then passes through the ⁇ /4 phase retardation film to form circularly polarized light or elliptically polarized light.
  • the angle between the transmission axis of the polarizing layer and the transmission axis of the ⁇ /4 phase retardation film is 45°, circularly polarized light is formed, otherwise elliptically polarized light is formed.
  • the rotation direction is changed, for example, the left circularly polarized light becomes right-handed circularly polarized light, and passes through the ⁇ /4 phase retardation film again.
  • linearly polarized light perpendicular to the previous polarization direction is formed, so that the polarizing layer cannot be transmitted, thereby greatly reducing the influence of ambient light reflection on the display image and improving the display image quality.
  • an angle between a transmission axis of the polarizing layer and a transmission axis of the ⁇ /4 phase retardation film is 45°.
  • the emitted ambient light includes only linearly polarized light whose polarization direction is perpendicular to the transmission axis of the polarizing layer, so that no ambient light can pass through the polarizing layer, that is, the reflectance of the incident ambient light is 0%. The effect of ambient light on display quality is completely avoided.
  • FIG. 3 is a schematic diagram of a light emitting diode display panel according to an embodiment of the present invention.
  • the polarizing layer 6 is disposed on a surface of the second substrate 2 remote from the first substrate 1 (ie, disposed outside the second substrate 2), and the ⁇ /4 phase retardation film 7 is disposed on the second substrate 2.
  • the first substrate 1 ie, disposed on the inner side of the second substrate 2
  • ambient light is incident from above the polarizing layer 6, sequentially passing through the polarizing layer 6, the second substrate 2, and the ⁇ /4 phase retardation film 7. It is irradiated onto the first substrate 1.
  • the specific form of the polarizing layer 6 in the present embodiment is not limited as long as the ambient light can be converted into linearly polarized light.
  • the polarizing layer 6 in FIG. 3 is disposed outside the second substrate 2, and the polarizing layer 6 is preferably a conventional polarizer to simplify the production process and save cost.
  • the ⁇ /4 phase retardation film 7 can be realized by sequentially forming the alignment layer 4 and the liquid crystal polymer layer 5 on the inside of the second substrate 2. Since the angle between the transmission axis of the polarizing layer 6 and the transmission axis of the ⁇ /4 phase retardation film 7 is preferably 45°, the orientation direction of the alignment layer 4 and the transmission axis of the polarizing layer 6 may be provided. The angle is 45°.
  • the alignment layer 4 may be provided by friction or by photo-alignment.
  • the liquid crystal polymer layer 5 is formed by curing the liquid crystal reaction monomer by ultraviolet light.
  • Figure 4 is a schematic view of the optical path of the structure shown in Figure 3. Assuming that the transmission axis of the polarizing layer 6 is 0°, as shown in FIG. 5, incident ambient light passes through the polarizing layer 6 to form linearly polarized light of 0°. In order to form an angle of 45 with the direction of the transmission axis of the polarizing layer 6, the direction of the transmission axis of the ⁇ /4 phase retardation film 7 is preferably 45°.
  • the orientation direction of the alignment layer 4 may be set to 45°, and then the liquid crystal polymer layer 5 is provided on the alignment layer 4, and a plan view of the liquid crystal polymer layer 5 which is completed is shown in FIG. 6.
  • the linearly polarized light of 0° passes through the ⁇ /4 phase retardation film 7 formed of the alignment layer 4 and the liquid crystal polymer layer 5, and forms left-handed circularly polarized light.
  • the left circularly polarized light is reflected by the metal region in the first substrate 1 to form right circularly polarized light.
  • the right circularly polarized light passes through the ⁇ /4 phase retardation film 7 again to form 90° linearly polarized light, and the 90° linearly polarized light cannot pass through the polarizing layer 6 having a transmission axis of 0°, thereby causing reflection of incident ambient light.
  • the rate is 0%, which eliminates the influence of ambient light reflection on the display effect of the display panel and improves the display quality.
  • FIG. 7 is a schematic diagram of a light emitting diode display panel according to another embodiment of the present invention.
  • the polarizing layer 6 and the ⁇ /4 phase retardation film 7 are sequentially disposed on the surface of the second substrate 2 close to the first substrate 1 (that is, disposed on the inner side of the second substrate 2).
  • the ambient light is incident from above the second substrate 2, passes through the second substrate 2, the polarizing layer 6, and the ⁇ /4 phase retardation film 7 in order, and is irradiated onto the first substrate 1.
  • the polarizing layer 6 there is no limitation on the specific form of the polarizing layer 6, as long as the environment can be Light can be converted into linearly polarized light.
  • the polarizing layer 6 in FIG. 7 is disposed inside the second substrate 2.
  • the polarizing layer 6 is preferably a metal grating layer or a dichroic dye molecular layer capable of converting ambient light into linearly polarized light. Since the thickness of the metal grating layer and the dichroic dye molecular layer is thin, it is advantageous to control the overall thickness of the display panel to meet the development trend of thinness and thinness.
  • the dichroic dye molecules are capable of absorbing one of the linearly polarized light components while allowing the other linearly polarized light component to pass. Therefore, the dichroic dye molecular layer can replace the polarizer to achieve the function of light conversion.
  • the dichroic dye molecule forming the dichroic dye molecular layer may be a mixture of any one or any of an azo dichroic dye molecule and a fluorenyl dichroic dye molecule.
  • the molecular formula of the azo dichroic dye molecule is as follows:
  • the molecular formula of the fluorenyl dichroic dye molecule is as follows:
  • the ⁇ /4 phase retardation film 7 can be realized by sequentially forming the alignment layer 4 and the liquid crystal polymer layer 5 on the polarizing layer 6. Since the angle between the transmission axis of the polarizing layer 6 and the transmission axis of the ⁇ /4 phase retardation film 7 is preferably 45°, the orientation direction of the alignment layer 4 and the transmission axis of the polarizing layer 6 may be provided. The angle is 45°.
  • the alignment layer 4 may be provided by friction or by photo-alignment.
  • the liquid crystal polymer layer 5 is formed by curing the liquid crystal reaction monomer by ultraviolet light.
  • Figure 8 is a schematic view of the optical path of the structure shown in Figure 7. Assuming that the transmission axis of the polarizing layer 6 is 0°, incident ambient light passes through the polarizing layer 6 to form 0° linearly polarized light. In order to form an angle of 45° with the direction of the transmission axis of the polarizing layer 6, the direction of the transmission axis of the ⁇ /4 phase retardation film 7 is preferably 45°.
  • the orientation direction of the alignment layer 4 may be set to 45°, and then the liquid crystal polymer layer 5 is provided on the alignment layer 4 to obtain a ⁇ /4 phase extension of 45° in the transmission axis direction. Delayed film 7.
  • the linearly polarized light of 0° passes through the ⁇ /4 phase retardation film 7 formed of the alignment layer 4 and the liquid crystal polymer layer 5, and forms left-handed circularly polarized light.
  • the left circularly polarized light is reflected by the metal region in the first substrate 1 to form right circularly polarized light.
  • the right circularly polarized light passes through the ⁇ /4 phase retardation film 7 again to form 90° linearly polarized light, and the 90° linearly polarized light cannot pass through the polarizing layer 6 having a transmission axis of 0°, thereby causing reflection of incident ambient light.
  • the rate is 0%, which eliminates the influence of ambient light reflection on the display effect of the display panel and improves the display quality.
  • the arrangement positions of the ⁇ /4 phase retardation film and the polarizing layer are not particularly limited as long as the incident ambient light sequentially passes through the polarizing layer and the ⁇ /4 phase retardation film before reaching the first A metal region of a substrate or a first substrate may be used.
  • the ⁇ /4 phase retardation film and the polarizing layer may be sequentially disposed outside the second substrate, that is, a ⁇ /4 phase retardation film is first disposed on the outer side of the second substrate, and then A polarizing layer is provided on the outer side of the ⁇ /4 phase retardation film.
  • the optical path principle is the same as the above two embodiments, and details are not described herein again.
  • a polarizer is preferable as the polarizing layer.
  • the polarizing layer in the present invention may be a polarizing layer having a pattern, and the pattern of the polarizing layer corresponds to a pattern of a metal region in the first substrate.
  • a plurality of structures in the first substrate include a metal material, and a structure such as an anode, a cathode, a thin film transistor array, or the like includes a metal material, and a region where the metal material is located is referred to as a metal region.
  • the metal region generally has a predetermined pattern, and if the pattern of the polarizing layer is made to correspond to the pattern of the metal region in the first substrate, the brightness of the display panel can be improved while saving the raw material for manufacturing the polarizing layer.
  • the pattern of the polarizing layer may correspond to the pattern of the metal regions formed by the metal material in a certain layer structure, or may correspond to the sum of the patterns of the metal regions formed by all the metal materials in the first substrate.
  • FIG. 9 is a schematic plan view of a patterned polarizing layer in which the pattern of the polarizing layer corresponds to the periphery of the display region, wherein the pattern of the polarizing layer corresponds to the metal region formed by the metal electrode in the thin film transistor array.
  • the LED display panel includes a first substrate and a second substrate, and the manufacturing method includes the following steps:
  • a polarizing layer is disposed on a surface of the second substrate remote from the first substrate (ie, an outer side of the second substrate), and on a surface of the second substrate adjacent to the first substrate (ie, a ⁇ /4 phase retardation film on the inner side of the second substrate;
  • a polarizing layer and a ⁇ /4 phase retardation film are sequentially disposed inside the second substrate;
  • a ⁇ /4 phase retardation film and a polarizing layer are sequentially disposed outside the second substrate;
  • the polarizing layer and the ⁇ /4 phase retardation film are disposed such that incident ambient light sequentially passes through the polarizing layer and the ⁇ /4 phase retardation film to reach the first substrate.
  • an angle between a transmission axis of the polarizing layer and a transmission axis of the ⁇ /4 phase retardation film is 45°.
  • the incident ambient light passes through the polarizing layer to form linearly polarized light, and then passes through the ⁇ /4 phase retardation film to form circularly polarized light, and the circularly polarized light reaches the first substrate and passes through the first substrate.
  • the direction of rotation is changed.
  • the left-handed circularly polarized light becomes right-handed circularly polarized light
  • the right-handed circularly polarized light passes through the ⁇ /4 phase retardation film again to form a vertical direction perpendicular to the previous polarization direction.
  • the linearly polarized light does not allow the polarizing layer to pass through.
  • the invention effectively prevents the influence of ambient light reflection on the display screen and improves the display image quality.
  • the polarizing layer may be a polarizer, a metal grating layer, a dichroic dye molecular layer, or any other layer structure capable of converting ambient light into linearly polarized light.
  • the polarizing layer is disposed outside the second substrate, it is preferably a polarizer to reduce the process difficulty and save cost.
  • a metal grating layer or a dichroic dye molecular layer is preferably used to control the thickness of the display panel to be in a thin range.
  • the ⁇ /4 phase retardation film may be an alignment layer and a liquid crystal polymer layer disposed on the alignment layer, the liquid crystal polymer layer being formed by liquid crystal reaction monomers by ultraviolet light curing.
  • an angle between an orientation direction of the alignment layer and a transmission axis of the polarizing layer is 45°.
  • the invention effectively prevents the influence of the ambient light reflection on the display screen by setting the polarizing layer and the ⁇ /4 phase retardation film simultaneously in the LED display panel, and improves the display drawing. quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种发光二极管显示面板及其制造方法,其中发光二极管显示面板包括第一基板(1)、第二基板(2)、偏光层(6)和λ/4相位延迟膜(7),偏光层和λ/4相位延迟膜的设置使得入射环境光依次通过偏光层和λ/4相位延迟膜后到达第一基板。通过同时设置偏光层和λ/4相位延迟膜,有效防止了环境光反射对显示画面的影响,提升了显示画质。

Description

发光二极管显示面板及其制造方法 技术领域
本发明涉及显示技术领域,尤其涉及一种发光二极管显示面板及其制造方法。
背景技术
发光二极管显示面板是未来显示产品的发展趋势,尤其是有机发光二极管显示面板,具有视角宽、响应速度快、亮度高、对比度高、色彩鲜艳、重量轻、厚度薄、功耗低等一系列优点。
图1是现有发光二极管显示面板的结构示意图,所述发光二极管显示面板包括第一基板1和第二基板2。第一基板1上包含阳极、阴极、发光层、彩色滤光层、空穴注入层、空穴传输层、电子传输层、保护膜等发光二极管显示面板固有的结构。图1所示的发光二极管显示面板容易受环境光的影响,第一基板1中包含金属的区域(金属区域)将环境入射光100%反射出去,如图1中箭头所示,这对发光二极管显示面板的光路和色彩方面会产生很大的影响,从而影响显示画质。
目前常用的改善方法是在第二基板2的外侧设置偏光片3,如图2中所示。环境光经过偏光片3后,转换成线偏振光,经金属区域反射后,还是以线偏振光出射,反射率约为50%。虽然设置偏光片3后所述发光二极管显示面板对环境光的反射率有所降低,但是反射出的约50%的环境光还是会对显示画质产生影响。
发明内容
本发明的目的在于提供一种发光二极管显示面板及其制造方法,以改善环境光对显示画质的影响。
为解决上述技术问题,本发明提供一种发光二极管显示面板,包括第一基板、第二基板和偏光层,所述发光二极管显示面板还包括λ/4相位延迟膜,所述偏光层和所述λ/4相位延迟膜的设置使得入射 环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
优选地,所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
优选地,所述偏光层设置在所述第二基板的远离所述第一基板的表面上,所述λ/4相位延迟膜设置在所述第二基板的靠近所述第一基板的表面上。
优选地,所述偏光层为偏光片。
优选地,所述偏光层和所述λ/4相位延迟膜依次设置在所述第二基板的靠近所述第一基板的表面上。
优选地,所述偏光层为用于将环境光转换为线偏振光的金属光栅层。
优选地,所述偏光层为用于将环境光转换为线偏振光的二色性染料分子层。
优选地,形成所述二色性染料分子层的二色性染料分子包括偶氮基二色性染料分子和蒽醌基二色性染料分子中的至少一种。
优选地,所述λ/4相位延迟膜包括取向层和设置在所述取向层上的液晶聚合物层,所述取向层的取向方向与所述偏光层的透过轴之间的夹角为45°。
优选地,所述偏光层具有图案,所述偏光层的图案与所述第一基板中的金属区域的图案相对应。
本发明还提供了一种发光二极管显示面板的制作方法,所述发光二极管显示面板包括第一基板和第二基板,所述制作方法包括步骤:
S1、在所述第二基板的远离所述第一基板的表面上设置偏光层,并在所述第二基板的靠近所述第一基板的表面上设置λ/4相位延迟膜;
或者,在所述第二基板的靠近所述第一基板的表面上依次设置偏光层和λ/4相位延迟膜;
或者,在所述第二基板的远离所述第一基板的表面上依次设置 λ/4相位延迟膜和偏光层;以及
S2、将所述第二基板与所述第一基板进行对盒切割;
其中,所述偏光层和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
优选地,所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
本发明通过在发光二极管显示面板中同时设置偏光层和λ/4相位延迟膜,有效防止了环境光反射对显示画面的影响,提升了显示画质。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是现有发光二极管显示面板的结构示意图;
图2是另一现有发光二极管显示面板的结构示意图;
图3是本发明实施例提供的发光二极管显示面板的结构示意图;
图4是图3所示结构的光路示意图;
图5是图3中偏光层的平面示意图;
图6是图3中液晶聚合物层的平面示意图;
图7是本发明另一实施例提供的发光二极管显示面板的结构示意图;
图8是图7所示结构的光路示意图;和
图9是具有图案的偏光层的平面示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种发光二极管显示面板,包括第一基板、第二 基板和偏光层,所述发光二极管显示面板还包括λ/4相位延迟膜,所述偏光层和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
这里的发光二极管显示面板可以是有机发光二极管(OLED,Organic Light Emitting Diode)显示面板,或者可以是有源矩阵有机发光二极管(AMOLED,Active Matrix Organic Light Emitting Diode)显示面板。本发明中的第一基板可以用于显示,第二基板可以用于封装该第一基板。比如,第一基板可以是显示基板,其包含阳极、阴极、发光层、彩色滤光层、空穴注入层、空穴传输层、电子传输层、薄膜晶体管阵列、保护膜等结构;第二基板可以是只起封装作用的盖板。其中,第一基板中的多个结构包含有金属材料,例如阳极、阴极、薄膜晶体管阵列等结构中都包含金属材料,这里将金属材料所在的区域称为金属区域。第一基板中的金属区域能够反射入射到第一基板上的环境光,从而对显示效果造成影响。
在本发明中,入射环境光经过所述偏光层后形成线偏振光,再经过所述λ/4相位延迟膜后形成圆偏振光或者椭圆偏振光。当所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°时,形成圆偏振光,否则形成椭圆偏振光。所述圆偏振光或者椭圆偏振光到达第一基板并经过金属区域的反射后,会改变旋转方向,例如左旋圆偏振光会变成右旋圆偏振光,再次经过所述λ/4相位延迟膜后会形成与之前偏振方向相垂直的线偏振光,从而无法透出偏光层,因此大大降低了环境光反射对显示画面的影响,提升了显示画质。
优选地,所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。这种情况下,出射的环境光只包括偏振方向与所述偏光层的透过轴垂直的线偏振光,使得没有环境光能够透出所述偏光层,即入射环境光的反射率为0%,完全避免了环境光对显示画质的影响。
图3是本发明实施例提供的发光二极管显示面板的示意图。在图3中,偏光层6设置在第二基板2的远离第一基板1的表面上(即,设置在第二基板2的外侧),λ/4相位延迟膜7设置在第二基板2的 靠近第一基板1的表面上(即,设置在第二基板2的内侧),环境光从偏光层6的上方入射,依次经过偏光层6、第二基板2和λ/4相位延迟膜7后照射到第一基板1上。
本实施例中对偏光层6的具体形式没有限制,只要能够将环境光转化为线偏振光即可。图3中的偏光层6设置在第二基板2的外侧,此时偏光层6优选为常规的偏光片,以简化生产流程,节约成本。
λ/4相位延迟膜7可以通过在第二基板2内侧依次形成取向层4和液晶聚合物层5来实现。由于偏光层6的透过轴与λ/4相位延迟膜7的透过轴之间的夹角优选为45°,那么可以设置取向层4的取向方向与偏光层6的透过轴之间的夹角为45°。
取向层4可以通过摩擦方式设置,也可以通过光取向方式设置。液晶聚合物层5由液晶反应单体通过紫外光固化形成。
图4是图3所示结构的光路示意图。假设偏光层6的透过轴为0°,如图5所示,入射环境光经过偏光层6后形成0°的线偏振光。为了与偏光层6的透过轴的方向形成45°的夹角,λ/4相位延迟膜7的透过轴的方向优选为45°。这里可以将取向层4的取向方向设置为45°,之后在取向层4上设置液晶聚合物层5,设置完成的液晶聚合物层5的平面示意图如图6所示。
0°的线偏振光经过由取向层4和液晶聚合物层5形成的λ/4相位延迟膜7后,形成左旋圆偏振光。所述左旋圆偏振光经过第一基板1中的金属区域反射后,形成右旋圆偏振光。所述右旋圆偏振光再次经过λ/4相位延迟膜7后形成90°线偏振光,该90°线偏振光无法通过透过轴为0°的偏光层6,从而使得入射环境光的反射率为0%,消除了环境光反射对显示面板的显示效果的影响,提升了显示画质。
图7是本发明另一实施例提供的发光二极管显示面板的示意图。在图7中,偏光层6和λ/4相位延迟膜7依次设置在第二基板2的靠近第一基板1的表面上(即,设置在第二基板2的内侧)。环境光从第二基板2上方入射,依次经过第二基板2、偏光层6和λ/4相位延迟膜7后照射到第一基板1上。
本实施例中对偏光层6的具体形式没有限制,只要能够将环境 光转化为线偏振光即可。图7中的偏光层6设置在第二基板2的内侧,此时偏光层6优选为能够将环境光转换为线偏振光的金属光栅层或者二色性染料分子层。由于金属光栅层和二色性染料分子层的厚度较薄,有利于控制显示面板的整体厚度,使其满足轻薄化的发展趋势。
对于入射环境光中的两个正交的线偏振光分量,二色性染料分子能够吸收其中一个线偏振光分量,而让另一个线偏振光分量通过。因此,二色性染料分子层可代替偏光片实现光线转换的功能。本发明中,形成所述二色性染料分子层的二色性染料分子可以是偶氮基二色性染料分子和蒽醌基二色性染料分子中的任意一种或任意几种的混合。
其中,偶氮基二色性染料分子的分子式如下:
Figure PCTCN2015070616-appb-000001
蒽醌基二色性染料分子的分子式如下:
Figure PCTCN2015070616-appb-000002
在图7所示的实施例中,λ/4相位延迟膜7可以通过在偏光层6上依次形成取向层4和液晶聚合物层5来实现。由于偏光层6的透过轴与λ/4相位延迟膜7的透过轴之间的夹角优选为45°,那么可以设置取向层4的取向方向与偏光层6的透过轴之间的夹角为45°。
同样,取向层4可以通过摩擦方式设置,也可以通过光取向方式设置。液晶聚合物层5由液晶反应单体通过紫外光固化形成。
图8是图7所示结构的光路示意图。假设偏光层6的透过轴为0°,那么入射环境光经过偏光层6后形成0°的线偏振光。为了与偏光层6的透过轴的方向形成45°夹角,λ/4相位延迟膜7的透过轴的方向优选为45°。这里可以将取向层4的取向方向设置为45°,之后在取向层4上设置液晶聚合物层5,以获得透过轴方向为45°的λ/4相位延 迟膜7。
0°的线偏振光经过由取向层4和液晶聚合物层5形成的λ/4相位延迟膜7后,形成左旋圆偏振光。所述左旋圆偏振光经过第一基板1中的金属区域反射后,形成右旋圆偏振光。所述右旋圆偏振光再次经过λ/4相位延迟膜7后形成90°线偏振光,该90°线偏振光无法通过透过轴为0°的偏光层6,从而使得入射环境光的反射率为0%,消除了环境光反射对显示面板的显示效果的影响,提升了显示画质。
在本发明中,对所述λ/4相位延迟膜和所述偏光层的设置位置不进行具体限定,只要入射环境光依次经过所述偏光层和所述λ/4相位延迟膜后再到达第一基板或第一基板的金属区域即可。比如,所述λ/4相位延迟膜和所述偏光层还可以依次设置在所述第二基板的外侧,即在所述第二基板的外侧先设置λ/4相位延迟膜,再在所述λ/4相位延迟膜的外侧设置偏光层。其光路原理与上述两种实施例相同,在此不再赘述。此外,由于所述偏光层设置在所述第二基板的外侧,因此优选偏光片作为偏光层。
进一步地,本发明中的偏光层可以是具有一定图案的偏光层,并且所述偏光层的图案与第一基板中的金属区域的图案相对应。如上所述,第一基板中的多个结构包含有金属材料,例如阳极、阴极、薄膜晶体管阵列等结构中都包含金属材料,金属材料所在的区域称为金属区域。所述金属区域通常具有预定的图案,如果使偏光层的图案与第一基板中的金属区域的图案相对应,能够提高显示面板的亮度,同时节省制作偏光层的原材料。
本发明中,偏光层的图案可以对应于某一层结构中金属材料所形成的金属区域的图案,也可以对应于第一基板中所有金属材料所形成的金属区域的图案的总和。例如,图9是一种具有图案的偏光层的平面示意图,图中偏光层的图案对应于显示区域的外围,其中偏光层的图案对应于薄膜晶体管阵列中金属电极所形成的金属区域。
本发明的另一方面还提供了上述发光二极管显示面板的制作方法,发光二极管显示面板包括第一基板和第二基板,该制作方法包括步骤:
S1、在所述第二基板的远离所述第一基板的表面上(即,第二基板的外侧)设置偏光层,并在所述第二基板的靠近所述第一基板的表面上(即,第二基板的内侧)设置λ/4相位延迟膜;
或者,在所述第二基板的内侧依次设置偏光层和λ/4相位延迟膜;
或者,在所述第二基板的外侧依次设置λ/4相位延迟膜和偏光层;和
S2、将所述第二基板与所述第一基板进行对盒切割。
其中,所述偏光层和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
优选地,所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
入射环境光经过所述偏光层后形成线偏振光,再经过所述λ/4相位延迟膜后形成圆偏振光,所述圆偏振光到达所述第一基板并经过所述第一基板中的金属区域反射后,会改变旋转方向,例如左旋圆偏振光会变成右旋圆偏振光,所述右旋圆偏振光再次经过所述λ/4相位延迟膜后会形成与之前偏振方向相垂直的线偏振光,从而无法透出偏光层。本发明有效防止了环境光反射对显示画面的影响,提升了显示画质。
所述偏光层可以是偏光片、金属光栅层、二色性染料分子层,或者其它任何能够将环境光转换为线偏振光的层结构。当所述偏光层设置在所述第二基板的外侧时,优选为偏光片,以降低工艺难度,节约成本。当所述偏光层设置在所述第二基板的内侧时,优选为金属光栅层或二色性染料分子层,以控制显示面板的厚度在较薄的范围内。
所述λ/4相位延迟膜可以是取向层和设置在所述取向层上的液晶聚合物层,所述液晶聚合物层由液晶反应单体通过紫外光固化形成。优选地,所述取向层的取向方向与所述偏光层的透过轴之间的夹角为45°。
本发明通过在发光二极管显示面板中同时设置偏光层和λ/4相位延迟膜,有效防止了环境光反射对显示画面的影响,提升了显示画 质。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种发光二极管显示面板,包括第一基板、第二基板和偏光层,其中,所述发光二极管显示面板还包括λ/4相位延迟膜,所述偏光层和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
  2. 根据权利要求1所述的发光二极管显示面板,其中,所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
  3. 根据权利要求1或2所述的发光二极管显示面板,其中,所述偏光层设置在所述第二基板的远离所述第一基板的表面上,所述λ/4相位延迟膜设置在所述第二基板的靠近所述第一基板的表面上。
  4. 根据权利要求3所述的发光二极管显示面板,其中,所述偏光层为偏光片。
  5. 根据权利要求1或2所述的发光二极管显示面板,其中,所述偏光层和所述λ/4相位延迟膜依次设置在所述第二基板的靠近所述第一基板的表面上。
  6. 根据权利要求5所述的发光二极管显示面板,其中,所述偏光层为用于将环境光转换为线偏振光的金属光栅层。
  7. 根据权利要求5所述的发光二极管显示面板,其中,所述偏光层为用于将环境光转换为线偏振光的二色性染料分子层。
  8. 根据权利要求7所述的发光二极管显示面板,其中,形成所述二色性染料分子层的二色性染料分子包括偶氮基二色性染料分子 和蒽醌基二色性染料分子中的至少一种。
  9. 根据权利要求1至8中任意一项所述的发光二极管显示面板,其中,所述λ/4相位延迟膜包括取向层和设置在所述取向层上的液晶聚合物层,所述取向层的取向方向与所述偏光层的透过轴之间的夹角为45°。
  10. 根据权利要求1至9中任意一项所述的发光二极管显示面板,其中,所述偏光层具有图案,所述偏光层的图案与所述第一基板中的金属区域的图案相对应。
  11. 一种发光二极管显示面板的制作方法,所述发光二极管显示面板包括第一基板和第二基板,所述制作方法包括步骤:
    S1、在所述第二基板的远离所述第一基板的表面上设置偏光层,并在所述第二基板的靠近所述第一基板的表面上设置λ/4相位延迟膜;
    或者,在所述第二基板的靠近所述第一基板的表面上依次设置偏光层和λ/4相位延迟膜;
    或者,在所述第二基板的远离所述第一基板的表面上依次设置λ/4相位延迟膜和偏光层;以及
    S2、将所述第二基板与所述第一基板进行对盒切割;
    其中,所述偏光层和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述λ/4相位延迟膜后到达所述第一基板。
  12. 根据权利要求11所述的发光二极管显示面板的制作方法,其中所述偏光层的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
PCT/CN2015/070616 2014-09-23 2015-01-13 发光二极管显示面板及其制造方法 WO2016045260A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15793671.7A EP3200233B1 (en) 2014-09-23 2015-01-13 Light-emitting diode display panel and manufacturing method therefor
US14/777,576 US20160329527A1 (en) 2014-09-23 2015-01-13 Light-emitting diode display panel and method of fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410492129.9 2014-09-23
CN201410492129.9A CN104319282B (zh) 2014-09-23 2014-09-23 发光二极管显示面板

Publications (1)

Publication Number Publication Date
WO2016045260A1 true WO2016045260A1 (zh) 2016-03-31

Family

ID=52374491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070616 WO2016045260A1 (zh) 2014-09-23 2015-01-13 发光二极管显示面板及其制造方法

Country Status (4)

Country Link
US (1) US20160329527A1 (zh)
EP (1) EP3200233B1 (zh)
CN (1) CN104319282B (zh)
WO (1) WO2016045260A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094026A (zh) * 2021-11-12 2022-02-25 京东方科技集团股份有限公司 显示面板及显示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038927A1 (ja) * 2015-09-03 2017-03-09 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
CN105510999B (zh) 2016-01-28 2019-05-28 京东方科技集团股份有限公司 减反射结构及其制造方法、显示器及其制造方法
CN106249336A (zh) * 2016-08-04 2016-12-21 深圳市华星光电技术有限公司 圆偏光片与oled显示装置
CN107065180A (zh) * 2017-01-17 2017-08-18 浙江唯见科技有限公司 一种紧凑式虚拟现实近眼显示系统及头戴显示设备
CN107219723B (zh) * 2017-08-02 2021-01-22 京东方科技集团股份有限公司 一种金属光栅的制作方法、金属光栅及显示装置
CN107515493B (zh) * 2017-09-22 2019-01-08 出门问问信息科技有限公司 一种显示装置、屏幕切换方法及电子设备
CN108878671A (zh) 2018-07-05 2018-11-23 武汉华星光电半导体显示技术有限公司 Oled封装结构、oled显示面板及其制作方法
CN110767105B (zh) * 2018-07-27 2021-01-22 京东方科技集团股份有限公司 一种显示模组及显示装置
TWI676851B (zh) * 2018-08-22 2019-11-11 隆達電子股份有限公司 畫素陣列封裝結構及顯示面板
US10811396B2 (en) 2019-01-20 2020-10-20 Lextar Electronics Corporation Display device
CN113228287A (zh) * 2019-11-26 2021-08-06 重庆康佳光电技术研究院有限公司 显示组件、显示组件的制作方法、以及电子设备
CN113594217B (zh) * 2021-07-29 2023-11-14 合肥维信诺科技有限公司 显示面板及其制备方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019662A1 (en) * 2008-07-22 2010-01-28 Kim Eun-Ah Organic light emitting diode display and method of manufacturing the same
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
CN102709309A (zh) * 2012-03-16 2012-10-03 友达光电股份有限公司 镜面可切换有机发光显示器及镜面可切换显示器
CN102769024A (zh) * 2011-05-02 2012-11-07 群康科技(深圳)有限公司 影像显示系统
US8684780B2 (en) * 2008-08-26 2014-04-01 Samsung Display Co., Ltd. Organic light emitting diode display, display device including the same, and associated methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
KR100855884B1 (ko) * 2001-12-24 2008-09-03 엘지디스플레이 주식회사 액정표시장치용 얼라인 키
JP4027164B2 (ja) * 2002-06-21 2007-12-26 株式会社日立製作所 表示装置
JP4184189B2 (ja) * 2003-08-13 2008-11-19 株式会社 日立ディスプレイズ 発光型表示装置
EP2511758A1 (en) * 2005-08-19 2012-10-17 RealD Inc. Stereoscopic eyewear
WO2008081941A1 (ja) * 2007-01-05 2008-07-10 Asahi Glass Co., Ltd. 波長選択波長板およびそれを用いた光ヘッド装置
KR101106294B1 (ko) * 2008-05-22 2012-01-18 주식회사 엘지화학 유기발광소자용 휘도 향상 편광판
KR100953656B1 (ko) * 2009-01-09 2010-04-20 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101029998B1 (ko) * 2009-12-22 2011-04-20 삼성모바일디스플레이주식회사 편광필름 및 그것을 구비한 유기 발광 디스플레이 장치
KR20120004862A (ko) * 2010-07-07 2012-01-13 삼성모바일디스플레이주식회사 유기 발광 표시 장치
JPWO2012067080A1 (ja) * 2010-11-18 2014-05-12 日本電気株式会社 光源ユニットおよびそれを備えた投射型表示装置
DE102011056836B4 (de) * 2011-06-22 2020-12-24 Lg Display Co., Ltd. Organische lichtemittierende Anzeigevorrichtung
CN102436071B (zh) * 2011-12-29 2013-12-04 昆山龙腾光电有限公司 立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019662A1 (en) * 2008-07-22 2010-01-28 Kim Eun-Ah Organic light emitting diode display and method of manufacturing the same
US8684780B2 (en) * 2008-08-26 2014-04-01 Samsung Display Co., Ltd. Organic light emitting diode display, display device including the same, and associated methods
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
CN102769024A (zh) * 2011-05-02 2012-11-07 群康科技(深圳)有限公司 影像显示系统
CN102709309A (zh) * 2012-03-16 2012-10-03 友达光电股份有限公司 镜面可切换有机发光显示器及镜面可切换显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200233A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094026A (zh) * 2021-11-12 2022-02-25 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN104319282B (zh) 2018-02-27
EP3200233B1 (en) 2019-07-03
CN104319282A (zh) 2015-01-28
EP3200233A1 (en) 2017-08-02
US20160329527A1 (en) 2016-11-10
EP3200233A4 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2016045260A1 (zh) 发光二极管显示面板及其制造方法
WO2018006868A1 (zh) 偏振光学组件、oled器件及制备方法、显示装置
WO2020037907A1 (zh) 有机发光显示面板及其制造方法
WO2014153852A1 (zh) 偏光片及显示装置
US9720280B2 (en) Compensation film and optical film, and display device
TWI468793B (zh) 有機發光顯示裝置
US10180519B2 (en) Organic light emitting diode device
WO2020181949A1 (zh) 显示面板及其驱动方法、和显示装置
US10175534B2 (en) Compensation film and optical film and display device
CN105870148B (zh) 有机发光装置及其制造方法
WO2018126689A1 (zh) 反射式显示面板及其制造方法、显示装置
CN111081747A (zh) 一种oled显示面板及其制备方法
WO2015196591A1 (zh) 柔性膜、有机发光二极管显示面板及显示装置
JP2018147761A (ja) 表示装置及びその製造方法
US10067277B2 (en) Compensation film, and optical film and display device including the same
CN107621666B (zh) 超薄型广波域相位延迟膜
US10353129B2 (en) Optical film and method of manufacturing the same and display device including the same
KR102274580B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2018153036A1 (zh) 显示屏及其制造方法和显示装置
US20210343966A1 (en) Electroluminescent Display Panel and Manufacturing Method Thereof, and Display Device
KR101790489B1 (ko) 액정표시장치의 제조방법
US10175404B2 (en) Compensation film and display device including the same
TWI706197B (zh) 有機發光二極體顯示器
KR101916948B1 (ko) 표시장치
CN109065578B (zh) 显示模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14777576

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015793671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793671

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE