WO2014148456A1 - 鍛造部品及びその製造方法、並びにコンロッド - Google Patents

鍛造部品及びその製造方法、並びにコンロッド Download PDF

Info

Publication number
WO2014148456A1
WO2014148456A1 PCT/JP2014/057223 JP2014057223W WO2014148456A1 WO 2014148456 A1 WO2014148456 A1 WO 2014148456A1 JP 2014057223 W JP2014057223 W JP 2014057223W WO 2014148456 A1 WO2014148456 A1 WO 2014148456A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
machinability
forged part
steel
formula
Prior art date
Application number
PCT/JP2014/057223
Other languages
English (en)
French (fr)
Inventor
健之 上西
進 大脇
久典 高馬
智靖 北野
和浩 棚橋
伸幸 篠原
Original Assignee
愛知製鋼株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社, トヨタ自動車株式会社 filed Critical 愛知製鋼株式会社
Priority to KR1020157021459A priority Critical patent/KR101691970B1/ko
Priority to EP14769461.6A priority patent/EP2977482B1/en
Priority to ES14769461T priority patent/ES2717295T3/es
Priority to CN201480009691.XA priority patent/CN105026593B/zh
Priority to RU2015132530A priority patent/RU2622472C2/ru
Priority to US14/762,367 priority patent/US10822677B2/en
Priority to BR112015020540A priority patent/BR112015020540A2/pt
Priority to JP2014530852A priority patent/JP5681333B1/ja
Publication of WO2014148456A1 publication Critical patent/WO2014148456A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/023Constructions of connecting-rods with constant length for piston engines, pumps or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • F16C9/045Connecting-rod bearings; Attachments thereof the bearing cap of the connecting rod being split by fracturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/74Ferrous alloys, e.g. steel alloys with manganese as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines

Definitions

  • the present invention relates to a forged part, a manufacturing method thereof, and a connecting rod.
  • forged parts used in automobiles such as connecting rods are required to be lighter in order to improve fuel efficiency.
  • it is effective to increase the strength of steel as a raw material to reduce the thickness.
  • increasing the strength of steel leads to deterioration of machinability. Therefore, it is desired to develop a steel that satisfies both high strength and machinability maintenance.
  • Patent Document 1 discloses steel developed for the purpose of increasing strength and reducing cost. Further, as steel developed for the purpose of increasing strength and improving machinability, it is described in, for example, Patent Document 2.
  • the steel described in Patent Document 1 achieves cost reduction and strength enhancement to some extent, the above-described fracture splitting property is not considered at all.
  • the steel described in Patent Document 2 has a property capable of achieving high strength to some extent and capable of being divided by fracture.
  • the machinability of this steel is improved as compared with the conventional steel, it is still not sufficient.
  • the fracture splitting property is evaluated for deformation due to the brittle fracture surface ratio, no chipping caused by being too brittle is taken into consideration. Therefore, the steel of Patent Document 1 has a problem of deformation or chipping that occurs during fracture division.
  • Charpy impact value is extremely low, not only from the viewpoint of fracture breakability, but also from the viewpoint of stable use as a part for a long period of time, ensuring the minimum value necessary for durability There is a need to.
  • the present invention provides a forged part that can be divided by breakage made of a steel material that can realize all three characteristics of improvement in strength, machinability, and breakability, and a method for manufacturing the same. It is something to try.
  • the forged part to be obtained in the present invention can be broken and divided, it can be used without breaking and breaking for the purpose.
  • the chemical composition is, by mass, C: 0.30 to 0.45%, Si: 0.05 to 0.35%, Mn: 0.50 to 0.90%, P : 0.030 to 0.070%, S: 0.040 to 0.070%, Cr: 0.01 to 0.50%, Al: 0.001 to 0.050%, V: 0.25 to 0 .35%, Ca: 0 to 0.0100%, N: 0.0150% or less, with the balance being Fe and inevitable impurities, Formula 1: [C] -4 ⁇ [S] + [V] ⁇ 25 ⁇ [Ca] ⁇ 0.44 (Here, [X] means the value of the content (mass%) of the element X.) While the metal structure is a ferrite pearlite structure, the area ratio of ferrite is 30% or more, Vickers hardness is in the range of 320-380HV, 0.2% proof stress is 800 MPa or more, A forged part having a Charpy impact value by V notch in a range of 7
  • the chemical component composition is, by mass%, C: 0.30 to 0.45%, Si: 0.05 to 0.35%, Mn: 0.50 to 0.90%, P: 0.030 to 0.070%, S: 0.040 to 0.070%, Cr: 0.01 to 0.50%, Al: 0.001 to 0.050%, V: 0.25 to A step of preparing a forging steel material containing 0.35%, Ca: 0 to 0.0100%, N: 0.0090% or less, the balance being Fe and unavoidable impurities, and satisfying the following formula 1.
  • the chemical composition is, by mass, C: 0.30 to 0.45%, Si: 0.05 to 0.35%, Mn: 0.50 to 0.90%.
  • P 0.030 to 0.070%
  • S 0.040 to 0.070%
  • Cr 0.01 to 0.50%
  • Al 0.001 to 0.050%
  • V 0.25 Steel for forging containing ⁇ 0.35%
  • Ca 0 ⁇ 0.0100%
  • N more than 0.0090 ⁇ 0.0150%
  • the forged parts have the specific chemical composition described above, and all the characteristics expressed by Vickers hardness, 0.2% proof stress, metal structure, and Charpy impact value are within the specific range. is there.
  • excellent characteristics that machinability is good and there is no chipping or deformation at the time of fracture division while maintaining high strength that is, three characteristics of higher strength, improved machinability, and improved fracture segmentability. All improvements can be realized at a high level.
  • the said forge components can be used safely for a long period of time by ensuring characteristics, such as the said Charpy impact value, irrespective of the presence or absence of fracture separation.
  • Example 1 The (a) top view of the test piece for fracture
  • C 0.30 to 0.45%
  • C (carbon) is a basic element for ensuring strength.
  • C (carbon) is a basic element for ensuring strength.
  • the C content is lower than the lower limit, it becomes difficult to secure strength and the like, and there is a risk of deformation during fracture division.
  • the C content exceeds the above upper limit, there is a concern about a decrease in machinability and a problem of chipping during fracture division.
  • Si 0.05 to 0.35%
  • Si silicon is an element that is effective as a deoxidizer during steelmaking and effective in improving strength and fracture splitting. In order to obtain these effects, it is necessary to add more than the above lower limit value of Si. On the other hand, if the Si content is too large, decarburization increases and the fatigue strength may be adversely affected, so the Si content is set to the above upper limit or less.
  • Mn 0.50-0.90%
  • Mn manganese
  • P 0.030 to 0.070%
  • P (phosphorus) is an element that affects the fracture splitting property.
  • an appropriate Charpy impact value can be easily obtained, and deformation and chipping can be suppressed during fracture splitting. If the P content is less than the above lower limit, there may be a problem of deformation during fracture division. On the other hand, when the P content exceeds the above upper limit, there is a possibility that a chipping problem may occur at the time of fracture division.
  • S 0.040 to 0.070%
  • S (sulfur) is an element effective for improving machinability.
  • S is contained in the above lower limit value or more.
  • the upper limit value is limited.
  • Cr 0.01 to 0.50%
  • Cr chromium
  • Cr is an element effective for adjusting the balance of strength and toughness of steel as in the case of Mn.
  • the Cr content is too high, machinability may be reduced due to an increase in pearlite or precipitation of bainite as in the case of Mn, so the upper limit value is limited.
  • Al 0.001 to 0.050%, Since Al (aluminum) is an element effective for deoxidation treatment, it is added in excess of the above lower limit. On the other hand, an increase in Al may cause a decrease in machinability due to an increase in alumina-based inclusions.
  • V 0.25 to 0.35%
  • V vanadium
  • V vanadium
  • V is an element which becomes carbonitride during cooling after hot forging and precipitates finely in ferrite and improves the strength by precipitation strengthening, so it is added above the lower limit.
  • V greatly affects the cost, it is limited to the upper limit value or less.
  • Ca 0 to 0.0100% (including 0%), Since Ca (calcium) is effective in improving machinability, it can be added as necessary. When Ca is hardly contained, naturally the effect of improving machinability by Ca cannot be obtained, but as long as the formula 1 is satisfied, the necessary machinability can be ensured. Therefore, Ca is not an essential element but an arbitrary element. On the other hand, since the machinability improving effect due to the addition of Ca is saturated even if the addition amount is too large, the addition amount of Ca is limited to the above upper limit value or less.
  • N 0.0150% or less
  • N nitrogen
  • N nitrogen
  • the N content exceeds the above upper limit value
  • a relatively large carbonitride that does not contribute to strength improvement is formed in combination with V in the steel, and the strength improvement effect by addition of V may be hindered. Therefore, it is limited to the upper limit value or less.
  • the higher the N content there is a possibility that the relatively coarse carbonitrides that do not contribute to the strength improvement increase in the steel. In order to avoid this and ensure the strength after forging, it is preferable to heat to a higher temperature during hot forging to dissolve a relatively coarse carbonitride.
  • inevitable impurities include, for example, Cu, Ni, Mo and the like as shown in Table 1 described later.
  • the chemical component composition further satisfies the formula 1: [C] ⁇ 4 ⁇ [S] + [V] ⁇ 25 ⁇ [Ca] ⁇ 0.44 after regulating the content range of each element described above.
  • [X] means the value of the mass% of the element X, for example, [C] means the value of content (mass%) of C.
  • [C] means the value of content (mass%) of C.
  • the addition of Ca is effective for improving machinability.
  • the content of elements other than Ca is within the above range and the above formula 1 is satisfied, good machinability can be obtained regardless of whether Ca is added. That is, if Formula 1 is satisfied, it goes without saying that 0.0005% or more of Ca is contained, but good machinability can be ensured even when Ca is not added. Therefore, by making Formula 1 an essential requirement, it becomes possible to widen the range of allowable addition amount of Ca.
  • Formula 1 prepares many steel materials composed of various chemical components, acquires machinability index data, and performs a multiple regression analysis on the relationship between these and the content of elements of C, S, V, and Ca. And the relational expression of Formula 1 was derived from the threshold value at which machinability equivalent to or higher than that of the reference material was obtained. The reason why the specific elements C, S, V, and Ca are selected is based on the past knowledge that the four elements have a greater influence on the machinability than other elements. After deriving Formula 1 consisting of the above four elements, the validity was verified.
  • the steel constituting the forged part has a Vickers hardness of 320 to 380 HV.
  • the Vickers hardness is lower than the lower limit, it is difficult to achieve a sufficiently high strength.
  • the Vickers hardness exceeds the upper limit, the machinability may be reduced.
  • the steel constituting the forged part has a 0.2% proof stress of 800 MPa or more. Thereby, sufficient high intensity
  • the Charpy impact value by V notch is in the range of 7 to 15 J / cm 2 .
  • tip can be aimed at, and the very outstanding fracture
  • the Charpy impact value is lower than the lower limit value, chipping may occur at the time of fracture division.
  • the Charpy impact value is higher than the upper limit value, deformation may increase at the time of fracture division.
  • the metal structure of the steel constituting the forged part is a ferrite / pearlite structure, and the area ratio of ferrite is 30% or more. Thereby, very excellent machinability can be obtained.
  • the ferrite area ratio may be less than 30%. Therefore, it is effective to adjust the combination of the individual chemical component compositions so as to satisfy the above formula 2.
  • the ferrite area ratio also depends on manufacturing conditions such as hot forging conditions and a cooling rate after hot forging. The conditions for hot forging and the cooling conditions after hot forging will be described later. Not only these conditions but also the satisfaction of the above formula 2 greatly affects the control of the ferrite area ratio. Therefore, it is important to satisfy Equation 2 above.
  • Formula 2 prepares many steel materials composed of various chemical components, acquires ferrite area ratio data, and performs multiple regression on the relationship between these and the contents of elements of C, Si, Mn, Cr, and V.
  • the relational expression of Formula 2 was derived so that the ferrite area ratio was 30% or more.
  • the reason for selecting specific elements such as C, Si, Mn, Cr, and V is based on the past knowledge that the five elements have a greater influence on the metal structure after forging than other elements. After deriving Formula 2 consisting of the above five elements, the validity was verified.
  • the forged parts having the above-mentioned excellent characteristics can be applied to various members.
  • the connecting rod can be subjected to a manufacturing method using fracture division, and the application of the steel is very effective.
  • the raw material is melted in an electric furnace or the like to produce a cast piece having the specific chemical component, and hot processing such as hot rolling is added thereto for forging.
  • a step of preparing a steel material, a step of hot forging the steel for forging, and a cooling step of cooling the forged product after hot forging are performed.
  • the hot forging temperature it is necessary to adjust the hot forging temperature to be higher as the N content is higher, and to dissolve the relatively coarse carbonitride described above.
  • the hot forging temperature when the N content is 0.0090% or less, there is no particular difference from conventional hot forging, and the hot forging temperature may be 1150 ° C. or higher.
  • the hot forging temperature when the N content exceeds 0.0090%, the hot forging temperature is set higher than 1230 ° C. so that more V carbonitrides in the forging steel can be dissolved. Is preferred. Even if the N content is 0.0090% or less, there is no problem in setting the hot forging temperature to 1230 ° C. or higher. However, if the hot forging temperature is too high, the crystal grains are coarsened and the mechanical properties are adversely affected, so the upper limit temperature is preferably 1300 ° C.
  • the average cooling rate between 800 and 600 ° C. is 150 to 250 ° C./min.
  • the lower limit of the average cooling rate is set to 150 ° C./minute because it becomes difficult to obtain the targeted high strength, hardness, and impact value when the cooling rate is slow.
  • the upper limit is set to 250 ° C./min because if the cooling is performed faster than this, a bainite structure may be generated, and the targeted mechanical properties cannot be obtained.
  • the reason why the cooling rate range is set in the range of 800 to 600 ° C. is that the cooling rate in this temperature range has the greatest influence on the mechanical properties.
  • Example 1 Examples relating to the forged parts will be described.
  • Table 1 a plurality of types of samples having different chemical component compositions were prepared, and various evaluations were performed by adding processing assuming the case of producing a connecting rod.
  • the manufacturing method of each sample can be changed into various known methods.
  • ⁇ Strength evaluation test> As a test piece for strength evaluation, a cast bar prepared by melting in an electric furnace is hot-rolled into a bar steel, and the bar steel is forged to produce a round bar with a diameter of ⁇ 20 mm as a forging steel material, Thereafter, the round bar is heated to 1200 ° C. corresponding to a standard processing temperature in actual hot forging and held for 30 minutes, and then the fan is air-cooled to obtain an average cooling rate of about 800 to 600 ° C. What was cooled to room temperature on the conditions used as 190 degreeC / min was used.
  • the strength evaluation was performed on the following items. Hardness measurement: Vickers hardness was measured according to JIS Z 2244. -Measurement of tensile strength and 0.2% proof stress: The tensile strength based on JIS Z2241 was implemented and calculated
  • Charpy impact value Determined by carrying out a Charpy impact test with a V-notch in accordance with JIS Z 2242.
  • the hardness was determined to be good when the Vickers hardness was in the range of 320 to 380 HV, and poor otherwise.
  • the 0.2% proof stress was determined to be good when 800 MPa or higher and poor when it was not.
  • the Charpy impact value due to the V notch was determined to be good when it was in the range of 7 to 15 J / cm 2 , and bad otherwise.
  • ⁇ Machinability evaluation test> As a test piece for machinability evaluation, a cast piece prepared by melting in an electric furnace is hot-rolled to form a steel bar, and the steel bar is forged and used as a forging steel material. A bar was made, and then the square bar was heated to 1200 ° C. corresponding to the standard processing temperature in actual hot forging and held for 30 minutes, and then air-cooled with a fan and averaged between 800 to 600 ° C. The sample was cooled to room temperature under a condition where the cooling rate was about 190 ° C./min, and further cut into a square bar having a square section of 20 mm on one side.
  • the machinability test was performed by drilling with a drill.
  • the test conditions are as follows.
  • -Drill used High-speed drill with a diameter of 8 mm-Drill rotation speed: 800 rpm ⁇ Feeding: 0.20mm / rev ⁇ Processing depth: 11mm ⁇ Number of processed holes: 300 holes (not penetrated)
  • the amount of drill wear was measured at the flank corner of the drill after 300 holes were drilled.
  • the machinability index was calculated by setting the drill wear amount of the reference material to 1, and the drill wear amount of each sample by the ratio to the reference material.
  • the reference material is carbon steel of a conventional JIS machine.
  • the chemical composition is C: 0.23%, Si: 0.25%, Mn: 0.80%, Cr: 0.2%, and the balance is Fe.
  • steel of inevitable impurities (hardness 250 HV) was used.
  • This conventional steel has a remarkably low hardness compared to the steel in the present application, and has machinability with no manufacturing problems even without the addition of a machinability improving element such as S. It was. Then, the case where the machinability index was 1.20 or less was judged as good, and the case where it exceeded 1.20 was judged as bad.
  • ⁇ Breakability evaluation test> As a test piece for fracture splitting evaluation, one prepared as follows was used. First, hot rolling was applied to a cast piece prepared by melting in an electric furnace to form a steel bar, and the steel bar was forged to produce a plate material of length 75 mm ⁇ width 75 mm ⁇ thickness 25 mm as a steel material for forging. Next, the plate material was heated to 1200 ° C. corresponding to a standard processing temperature in actual hot forging and held for 30 minutes, and then cooled by a fan, and the average cooling rate between 800 to 600 ° C. was about 190 ° C. The mixture was cooled to room temperature under the condition of 1 min. Thereafter, as shown in FIG.
  • the above-mentioned plate material was processed to obtain a test piece 8 for fracture splitting evaluation.
  • the notch 83 was notched with a laser, and the depth d was 1 mm. Further, the notches 83 were set at two positions of 90 degrees with respect to the length direction, that is, two positions closest to the through hole 82.
  • Breaking division was performed by inserting an unillustrated jig into the through hole 81 and applying an impact load in the direction of arrow F as shown in FIG.
  • samples E1 to E17 good results were obtained in all evaluation items, and excellent properties were exhibited in all three of strength, machinability, and fracture splitting property. Recognize. Of these samples, samples E14 to E17 contain only Ca as an impurity, but the necessary machinability may be satisfied by adjusting the components so as to satisfy Formula 1 by optimizing components other than Ca. Recognize.
  • Samples E1 to E17 are not only excellent in break splitting but also all other characteristics and have a Charpy impact value of 7 J / cm 2 or more, so whether or not there is break splitting. It can be used safely for a long time. Therefore, it can be suitably used not only for parts that require break separation but also for parts that do not require break separation.
  • the sample C1 has a result that the strength content such as hardness and 0.2% proof stress is low and the Charpy impact value is high and the deformation is large in the fracture splitting evaluation because the C content is too small. It was.
  • the sample C2 has too little Mn content, the strength characteristics such as hardness and 0.2% proof stress are low, and the Charpy impact value is high, resulting in large deformation in fracture splitting evaluation. became.
  • Sample C3 has a low content of ferrite in the metal structure due to a too high Cr content, resulting in a low Charpy impact value, chipping in fracture splitting evaluation, and low machinability. It became.
  • Sample C4 had too little P content, resulting in a high impact value and large deformation in the fracture splitting evaluation.
  • Sample C5 has a too low Mn content, resulting in a low ferrite area ratio in the metal structure, resulting in a low Charpy impact value, resulting in chipping in fracture splitting evaluation and low machinability. It became.
  • Sample C6 since the P content was too large, the Charpy impact value was low, and chipping occurred in the fracture splitting evaluation. Sample C7 has too much C content, resulting in a low Charpy impact value and chipping in fracture splitting evaluation, and a low ferrite area ratio in the metal structure resulting in low machinability. It became.
  • Sample C8 has a low S content and does not satisfy Formula 1, so that the machinability is low. Since sample C9 did not satisfy Formula 1, the result was low in machinability. Sample C10 had a low 0.2% yield strength because the V content was too low. Since the sample C11 had too much V content, the Charpy impact value was low, chipping occurred in the fracture splitting evaluation, and the hardness was too high, resulting in low machinability.
  • Sample C12 does not satisfy the relationship of Formula 2 although individual chemical components are included within the scope of the present invention.
  • the ferrite area ratio was less than 30%.
  • the machinability was lowered, the Charpy impact value was low, and chipping occurred in the fracture splitting evaluation. From this result, at least in the case of adopting the production method of this example, it is effective not only to regulate individual chemical components but also to satisfy the relationship of Formula 2 in order to optimize the ferrite area ratio. I understand.
  • FIG. 2 shows the relationship between the P content and the Charpy impact value.
  • the horizontal axis represents P content (% by mass), and the vertical axis represents Charpy impact value (J / cm 2 ).
  • the data of samples E1 to E17 and samples C4 and C6 were plotted. As can be seen from the figure, it is effective to restrict the P content to a range of 0.030 to 0.070% in order to restrict the Charpy impact value to a range of 7 to 15 J / cm 2. I understand that.
  • FIG. 3 shows the relationship between hardness and Charpy impact value.
  • the horizontal axis represents hardness (HV10)
  • the vertical axis represents Charpy impact value (J / cm 2 ).
  • the data of samples E1 to E17 and samples C1 to C7 and C11 were plotted. As is known from the figure, it is difficult to regulate the Charpy impact value in the range of 7 to 15 J / cm 2 simply by regulating the hardness. From the sample C1, the C content is optimized, and the sample C2 Is optimized for Mn content, sample C4 and sample C6 are optimized for P content, samples C3, C5 and C7 are optimized for ferrite area ratio, and sample C11 is optimized for V content. It turns out that it is necessary.
  • FIG. 4 shows the relationship between hardness and 0.2% proof stress.
  • the horizontal axis represents hardness (HV10)
  • the vertical axis represents 0.2% yield strength (MPa).
  • the data of samples E1 to E17 and samples C1 to C3, C5, C7, and C10 were plotted. From the figure, it can be seen that when the hardness is less than 320 HV, the 0.2% yield strength is less than 800 MPa. When N exceeds 0.0090%, it can be seen that the 0.2% proof stress is less than 800 MPa.
  • FIG. 5 shows the relationship between hardness and machinability index.
  • the horizontal axis represents hardness (HV10)
  • the vertical axis represents machinability index.
  • the data of samples E1 to E17 and samples C3, C5, C7 to C9 and C11 were plotted. From the figure, it can be seen that the machinability deteriorates when the hardness exceeds 380 HV, and even if the hardness is 380 HV or less, the machinability deteriorates when the ferrite area ratio is less than 30%. It can be seen that the machinability also deteriorates when S is less than 0.040%.
  • FIG. 6 shows the relationship between the value of Formula 1 and the machinability index.
  • the horizontal axis represents the value of Equation 1 and the vertical axis represents the machinability index.
  • the data of samples E14 to E17 and sample C9 were plotted. That is, in order to confirm that the machinability is satisfied if Formula 1 is satisfied even if the Ca content is small, the Ca content is less than 0.0005% among the samples tested in this example. It is what was restrict
  • Example 2 In this example, a plurality of samples shown in Table 3 were prepared, and the influence of the N content and the V content on the properties of the steel was examined. Furthermore, the influence of the heating temperature during hot forging was also investigated. As shown in Table 3, samples E21, E22, and C21 are samples in which the V content is all 0.32% and the N amount is different. Samples E31, E32 and C31 are samples in which the V content is 0.28% and the N amount is different. The components other than V and N are adjusted so as to be substantially the same between the three samples E21, E22, and C21 and the three samples E31, E32, and C31.
  • the manufacturing method of each sample was basically the same as in the case of Example 1 described above, and the heating temperature during hot forging was set to the temperature shown in Table 4.
  • the test method of the obtained sample was also the same as that in Example 1 described above.
  • the test results are shown in Table 4. Furthermore, in FIG. 7, the relationship between N content and heating temperature, and 0.2% yield strength was shown.
  • Example 3 In the examples described above, the cooling step after hot forging was performed under the condition that the average cooling rate between 800 and 600 ° C. was 190 ° C./min. In order to grasp the influence of the cooling rate in more detail, in this example, the strength of the fan air-cooling fan is adjusted, and the sample E1 is used for the average cooling rates of 800 to 600 ° C. and 100 ° C./min. The experiment was conducted using. Conditions other than the cooling rate were the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0150%以下を含有し、残部がFe及び不可避的不純物よりなると共に式1を満足する鋼よりなる鍛造部品である。金属組織がフェライト・パーライト組織であると共に、フェライトの面積率が30%以上である。ビッカース硬さが320~380HVの範囲にある。0.2%耐力が800MPa以上である。Vノッチによるシャルピー衝撃値が7~15J/cm2の範囲にある。

Description

鍛造部品及びその製造方法、並びにコンロッド
 本発明は、鍛造部品及びその製造方法、並びにコンロッドに関する。
 例えばコンロッドなどの自動車に用いられる鍛造部品においては、燃費向上のための軽量化が要求されている。軽量化には、素材となる鋼の強度を高めて薄肉化することが有効である。しかしながら、一般的に、鋼の高強度化は被削性の悪化につながる。そのため、高強度化と被削性維持の両方を満足する鋼の開発が望まれている。
 また、2つの部品を組み合わせて一組の部品を構成する場合に、その2つの部品を連結した状態で成形した後に、最終的に破断分割して2つの部品に仕上げることが検討されている。この製造方法を採用すれば、製造工程の合理化を図ることができると共に、破断分割後の2つの部品の組み付け性が向上する。このような製造方法を可能にするには、少なくとも破断分割を容易に行える鋼が必要となる。
 高強度化と低コスト化を目的として開発された鋼としては、例えば特許文献1に記載されている。また、高強度化と被削性向上を目的として開発された鋼としては、例えば特許文献2に記載されている。
特開2011-32545号公報 特開2011-195862号公報
 特許文献1に記載された鋼は、低コスト化と高強度化をある程度実現しているものの、上述した破断分割性については全く考慮されていない。また、特許文献2に記載された鋼は、高強度化をある程度実現し、破断分割可能な特性を有している。しかしながらこの鋼の被削性は、従来よりも向上しているものの、未だ十分とは言えない。さらに、破断分割性を脆性破面率による変形について評価しているものの、脆すぎることにより発生する欠けについては全く考慮されていない。そのため、特許文献1の鋼は、破断分割時に発生する変形や欠けが問題である。
 また、シャルピー衝撃値は、破断分断性に関する観点からだけでなく、部品として長期間安定的に使用する観点からも、極端に低いのは問題であり、耐久性に必要な最低限の値を確保する必要がある。
 本発明は、このような背景に基づき、高強度化、被削性向上、及び破断分割性向上という3つの特性向上を全て実現可能な鋼材からなる破断分割可能な鍛造部品及びその製造方法を提供しようとするものである。なお、本発明において得ようとする鍛造部品は、破断分割可能なものではあるが、その用途上、破断分割を行うことなく使用しても当然よい。
 本発明の一態様は、化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0150%以下を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足し、
 式1:[C]-4×[S]+[V]-25×[Ca]<0.44
 (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
 金属組織がフェライト・パーライト組織であると共に、フェライトの面積率が30%以上であり、
 ビッカース硬さが320~380HVの範囲にあり、
 0.2%耐力が800MPa以上であり、
 Vノッチによるシャルピー衝撃値が7~15J/cm2の範囲にあることを特徴とする鍛造部品にある。
 本発明の他の態様は、化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0090%以下を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足する鍛造用鋼材を準備する工程と、
 式1:[C]-4×[S]+[V]-25×[Ca]<0.44
 (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
 上記鍛造用鋼材に対して1150℃~1300℃の熱間鍛造温度にて熱間鍛造を施して鍛造部品を得る工程と、
 上記熱間鍛造後の上記鍛造部品を800~600℃における平均冷却速度が150~250℃/minとなるよう冷却する冷却工程と、
 を有することを特徴とする鍛造部品の製造方法にある。
 本発明のさらに別の態様は、化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0090超~0.0150%を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足する鍛造用鋼材を準備する工程と、
 式1:[C]-4×[S]+[V]-25×[Ca]<0.44
 (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
 上記鍛造用鋼材に対して1230℃~1300℃の熱間鍛造温度にて熱間鍛造を施して鍛造部品を得る工程と、
 上記熱間鍛造後の上記鍛造部品を800~600℃における平均冷却速度が150~250℃/minとなるよう冷却する冷却工程と、
 を有することを特徴とする鍛造部品の製造方法にある。
 上記鍛造部品は、上記特定の化学成分組成を有していると共に、ビッカース硬さ、0.2%耐力、金属組織、及びシャルピー衝撃値で表される特性が、すべて上記の特定の範囲内にある。これにより、高強度を維持しながら被削性がよく破断分割時の欠けや変形がないという優れた特性の実現、すなわち、高強度化、被削性向上、及び破断分割性向上という3つの特性全ての向上を、高いレベルで実現することができる。なお、上記鍛造部品は、用途に応じて、破断分割を実施することなく製造してもよい。そして、上記鍛造部品は、破断分離の有無にかかわらず、上記シャルピー衝撃値等の特性を確保していることによって、長期にわたって安心して使用することが可能である。
実施例1における、破断分割性評価用試験片の(a)平面図、(b)正面図。 実施例1における、P含有量とシャルピー衝撃値との関係を示す説明図。 実施例1における、硬さとシャルピー衝撃値との関係を示す説明図。 実施例1における、硬さと0.2%耐力との関係を示す説明図。 実施例1における、硬さと被削性指数との関係を示す説明図。 実施例1における、式1の値と被削性指数との関係を示す説明図。 実施例2における、N含有量及び加熱温度と0.2%耐力との関係を示す説明図。
 上記鍛造部品における化学成分組成の限定理由を説明する。
C:0.30~0.45%、
 C(炭素)は、強度を確保するための基本元素である。適度な強度、硬度、シャルピー衝撃値を得ると共に適度な被削性を確保するためには、C含有量を上記範囲内に収めることが重要である。C含有量が上記下限値を下回る場合には、強度等を確保することが困難となると共に破断分割時に変形してしまうおそれがでてくる。C含有量が上記上限値を超える場合には、被削性の低下、破断分割時の欠けの問題等が懸念される。なお、1100MPa超えの引張強さを獲得するには、Cを0.35%以上含有させることが好ましい。
Si:0.05~0.35%、
 Si(ケイ素)は、製鋼時の脱酸剤として有効であると共に、強度と破断分割性の向上に有効な元素である。これらの効果を得るためには、Siの上記下限値以上の添加が必要である。一方、Si含有量が多すぎると脱炭が増加し疲労強度に悪影響が生じるおそれがあるため、Si含有量は上記上限値以下とする。
Mn:0.50~0.90%、
 Mn(マンガン)は、製鋼時の脱酸ならびに鋼の強度、靱性バランスを調整するために有効な元素である。強度、靱性バランス調整に加え、金属組織の最適化、被削性及び破断分割性向上のためには、Mn含有量を上記範囲内にすることが必要である。Mn含有量が上記下限値を下回る場合には、強度低下及び破断分割時の変形が生じるおそれがある。Mn含有量が上記上限値を超える場合には、パーライトの増加やベイナイトの析出によって被削性が低下するおそれがある。
P:0.030~0.070%、
 P(リン)は、破断分割性に影響を与える元素であり、上記範囲に限定することによって、適度なシャルピー衝撃値が得やすくなり、破断分割時の変形抑制及び欠け抑制を図ることができる。P含有量が上記下限値未満の場合には、破断分割時の変形の問題が生じるおそれがある。一方、P含有量が上記上限値を超える場合には、破断分割時に欠けの問題が生じるおそれがある。
S:0.040~0.070%、
 S(硫黄)は、被削性向上に有効な元素である。この効果を得るために、Sは上記下限値以上含有させる。一方、S含有量が多すぎる場合には、鍛造時に割れが生じやすくなるため、上記上限値以下に制限する。
Cr:0.01~0.50%、
 Cr(クロム)は、Mnと同様に鋼の強度、靱性バランスを調整するために有効な元素であるため上記下限値以上添加する。一方、Cr含有量が多くなりすぎるとMnの場合と同様にパーライトの増加やベイナイトの析出によって被削性が低下するおそれがあるため、上記上限値以下に制限する。
Al:0.001~0.050%、
 Al(アルミニウム)は、脱酸処理に有効な元素であるため、上記下限値以上添加する。一方、Alの増加は、アルミナ系介在物の増加による被削性低下を招くおそれがあるため、上記上限値以下に制限する。
V:0.25~0.35%、
 V(バナジウム)は、熱間鍛造後の冷却時に炭窒化物となってフェライト中に微細に析出し、析出強化により強度を向上させる元素であるため、上記下限値以上添加する。一方、Vはコストに大きく影響するため、上記上限値以下に制限する。
Ca:0~0.0100%(0%の場合を含む)、
 Ca(カルシウム)は、被削性の改善に有効であるため必要に応じて添加することができる。Caをほとんど含有させない場合には、当然Caによる被削性向上効果は得られないが、式1を満足する限り、必要な被削性を確保することが可能である。したがって、Caは必須元素ではなく、任意元素である。一方、Ca添加による被削性向上効果は、添加量が多すぎても飽和してしまうため、Ca添加量は上記上限値以下に制限する。
N:0.0150%以下、
 N(窒素)は、大気中に最も多く含まれる元素であり、大気溶解をする場合には製造上不純物としての含有が避けられない。しかしながら、N含有量が上記上限値を超えると、鋼中においてVと結合して、強度向上に寄与しない比較的大きい炭窒化物が多く形成され、V添加による強度向上効果を阻害するおそれがあるため、上記上限値以下に制限する。なお、上記のN含有範囲においても、N含有量が高いほど、強度向上に寄与しない比較的粗大な炭窒化物が鋼中において多くなる可能性がある。これを回避して鍛造後の強度を確保するためには、熱間鍛造時により高めの温度に加熱して比較的粗大な炭窒化物を固溶させることが好ましい。
 上記化学成分組成の内、不可避的不純物としては、例えば、後述する表1にもあるように、Cu、Ni、Mo等がある。
 上記化学成分組成は、上述した各元素の含有範囲を規制した上で、さらに、式1:[C]-4×[S]+[V]-25×[Ca]<0.44を満足する必要がある。なお、[X]は、元素Xの質量%の値を意味するものであり、例えば、[C]は、Cの含有量(質量%)の値を意味する。他の元素の場合も同様である。また、後述する式2においても同様である。
 被削性向上には、上述したようにCaの添加が有効である。一方、Ca以外の元素の含有量が上記範囲であると共に上記式1が満足されることによって、Caの添加の有無に関係なく、良好な被削性を得ることができる。すなわち、式1を満足すれば、Caを0.0005%以上含有する場合は勿論であるが、Ca未添加の場合であっても良好な被削性を確保することができる。したがって、式1を必須要件とすることにより、許容できるCaの添加量の範囲を広くすることが可能となる。
 なお、式1は、種々の化学成分からなる鋼材を多数準備し、被削性指数のデータを取得し、これらと、C、S、V、Caの元素の含有量との関係を重回帰分析で分析し、基準材と同程度以上の被削性が得られる閾値から式1の関係式を導いた。C、S、V、Caという特定の元素を選択した理由は、上記4元素が他元素と比べて被削性への影響が大きいという過去の知見に基づくものである。上記4元素からなる式1を導いた後には、その妥当性についての検証を行った。
 また、上記鍛造部品を構成する鋼は、ビッカース硬さが320~380HVの範囲にある。これにより、高強度特性と、上述した成分調整による優れた被削性との両立を図ることができる。ビッカース硬さが上記下限値より低い場合には、十分な高強度化を図ることが困難であり、一方、上記上限値を超える場合には、被削性が低下するおそれがある。
 また、上記鍛造部品を構成する鋼は、0.2%耐力が800MPa以上である。これにより、十分な高強度化を図ることができ、部材の軽量化に寄与することができる。
 また、Vノッチによるシャルピー衝撃値が7~15J/cm2の範囲にある。これにより、破断分割時の変形の抑制と欠けの抑制を図ることができ、非常に優れた破断分割性を得ることができる。上記シャルピー衝撃値が上記下限値よりも低い場合には、破断分割時に欠けが発生するおそれがあり、一方、上記上限値よりも高い場合には、破断分割時に変形が大きくなるおそれがある。
 また、上記鍛造部品を構成する鋼の金属組織がフェライト・パーライト組織であると共に、フェライトの面積率が30%以上である状態にある。これにより、非常に優れた被削性を得ることができる。
 このフェライト面積率30%以上のフェライト・パーライト組織を得るには、上記特定の化学成分組成における個々の成分範囲を満足した上で、さらに下記式2を満足することが好ましい。
 式2:2.15≦4×[C]-[Si]+(1/5)×[Mn]+7×[Cr]-[V]≦2.61
 上記特定の化学成分組成における個々の成分範囲を満足している場合であっても、上記式2を満足しない場合には、フェライト面積率が30%未満となる場合が生じうる。そのため、上記式2を満足するように個々の化学成分組成の組み合わせを調整することが有効である。なお、フェライト面積率は、熱間鍛造の条件や熱間鍛造後の冷却速度などの製造条件にも左右される。熱間鍛造の条件や熱間鍛造後の冷却条件については後述するが、これらの条件だけでなく、上記式2の満足の有無が、フェライト面積率の制御に大きく影響する。それ故、上記式2を満足することは重要である。
 なお、式2は、種々の化学成分からなる鋼材を多数準備し、フェライト面積率のデータを取得し、これらと、C、Si、Mn、Cr、Vの元素の含有量との関係を重回帰分析で分析し、フェライト面積率が30%以上となるように式2の関係式を導いた。C、Si、Mn、Cr、Vという特定の元素を選択した理由は、上記5元素が他元素と比べて鍛造後の金属組織への影響が大きいという過去の知見に基づくものである。上記5元素からなる式2を導いた後には、その妥当性についての検証を行った。
 また、上記の優れた特性を有する鍛造部品は、様々な部材に適用可能である。特に、コンロッドは、破断分割を利用した製造方法の実施が可能であり、上記鋼の適用が非常に有効である。
 また、上記鍛造部品を製造するに当たっては、少なくとも、電気炉等で原料を溶解し、上記特定の化学成分を有する鋳造片を作製し、これに熱間圧延等の熱間加工を加えて鍛造用鋼材を準備する工程と、鍛造用鋼材に対して熱間鍛造を施す工程と、熱間鍛造後の鍛造品を冷却する冷却工程とを行う。この際、Nの含有率が高いと、鍛造用鋼材中において比較的粗大なV炭窒化物がより多く析出した状態となるため、熱間鍛造後の鍛造品の冷却途中に強度向上に寄与する微細な炭窒化物を析出させるために、N含有率が高いほど、熱間鍛造温度を高めに調整して、前述した比較的粗大な炭窒化物を固溶させる必要がある。
 具体的には、N含有量が0.0090%以下の場合には、従来の熱間鍛造と特に差異はなく、熱間鍛造温度を1150℃以上とすればよい。一方、N含有量が0.0090%を超える場合には、熱間鍛造温度を1230℃以上と高めに設定して、鍛造用鋼材中のV炭窒化物がより多く固溶できるようにすることが好ましい。なお、N含有量が0.0090%以下の場合であっても、熱間鍛造温度を1230℃以上とするのは問題ない。但し、熱間鍛造温度を高くしすぎると、結晶粒が粗大化し、機械的性質に悪影響が生じるため、上限温度は1300℃とすることが好ましい。
 また、狙いとする高強度、硬さ、及び破断分割に適した衝撃値を得るためには熱間鍛造後の冷却速度も注意する必要がある。具体的には、800~600℃の間の平均冷却速度を150~250℃/分となるように冷却することが好ましい。平均冷却速度の下限を150℃/分とするのは、冷却速度が遅くなると狙いとする高強度、硬さ、衝撃値を得ることが困難となるためである。また、上限を250℃/分とするのは、これ以上に早い冷却にするとベイナイト組織が生成するおそれが生じ、やはり狙いとする機械的性質が得られなくなるためである。800~600℃の範囲で冷却速度の範囲を設定したのは、この温度範囲の冷却速度が最も機械的性質への影響が大きいためである。
(実施例1)
 上記鍛造部品に係る実施例につき説明する。本例では、表1に示すごとく、化学成分組成が異なる複数種類の試料を準備して、コンロッドを作製する場合を想定した加工を加えて各種評価を行った。なお、各試料の製造方法は、公知の種々の方法に変更可能である。
Figure JPOXMLDOC01-appb-T000001
<強度評価試験>
 強度評価用試験片としては、電気炉にて溶解して作製した鋳造片に熱間圧延を加えて棒鋼とし、該棒鋼を鍛伸して鍛造用鋼材としての直径φ20mmの丸棒を作製し、その後、この丸棒に対し、実際の熱間鍛造における標準的な処理温度に相当する1200℃まで加熱して30分間保持した後、ファン空冷して800~600℃の間の平均冷却速度がおよそ190℃/分となる条件で室温まで冷却したものを用いた。
 強度評価は、次の項目について行った。
・硬さ測定:JIS Z 2244に準拠してビッカース硬さを測定した。
・引張強さ及び0.2%耐力の測定:JIS Z 2241に準拠した引張試験を実施して求めた。
・フェライト面積率:試験片の断面をナイタール腐食させた後、光学顕微鏡を用いて観察した。面積率は、JIS G0551に準拠した点算法により求めた。
・シャルピー衝撃値:JIS Z 2242に準拠したVノッチによるシャルピー衝撃試験を実施して求めた。
 硬さは、ビッカース硬さが320~380HVの範囲にある場合に良好、それ以外の場合を不良と判定した。0.2%耐力は、800MPa以上の場合を良好、それ以外の場合を不良と判定した。Vノッチによるシャルピー衝撃値は、7~15J/cm2の範囲にある場合を良好、それ以外の場合を不良と判定した。
<被削性評価試験>
 被削性評価用試験片としては、電気炉にて溶解して作製した鋳造片に熱間圧延を加えて棒鋼とし、該棒鋼を鍛伸して鍛造用鋼材としての一辺25mmの断面正方形の角棒を作製し、その後、この角棒を、実際の熱間鍛造における標準的な処理温度に相当する1200℃まで加熱して30分間保持した後、ファン空冷して800~600℃の間の平均冷却速度がおよそ190℃/分となる条件で室温まで冷却し、さらに一辺20mmの断面正方形の角棒に切削したものを用いた。
 被削性試験はドリルによる穴あけにより行った。試験条件は、以下の通りである。
・使用ドリル:直径φ8mmのハイスドリル
・ドリル回転数:800rpm
・送り:0.20mm/rev
・加工深さ:11mm
・加工穴数:300穴(未貫通)
 ドリル摩耗量の測定は、300穴加工後のドリルの逃げ面コーナー部において行った。
 被削性指数は、基準材のドリル摩耗量を1とし、各試料のドリル摩耗量を基準材との比率によって算出した。基準材は、従来のJIS機械の炭素鋼である、化学成分組成が、C:0.23%、Si:0.25%、Mn:0.80%、Cr:0.2%、残部がFe及び不可避的不純物の鋼(硬さ250HV)を用いた。この従来鋼は、本願における鋼と比べて硬さが著しく低く、S等の被削性向上元素を添加していなくても製造上問題のない被削性を有しているので基準材として用いた。そして、被削性指数が1.20以下の場合を良好、1.20超えの場合を不良と判定した。
<破断分割性評価試験>
 破断分割性評価用試験片としては、次のように作製したものを用いた。まず、電気炉にて溶解して作製した鋳造片に熱間圧延を加えて棒鋼とし、該棒鋼を鍛伸して鍛造用鋼材としての長さ75mm×幅75mm×厚み25mmの板材を作製した。次いで、この板材を、実際の熱間鍛造における標準的な処理温度に相当する1200℃まで加熱して30分間保持した後、ファン空冷して800~600℃の間の平均冷却速度がおよそ190℃/分となる条件で室温まで冷却した。その後、図1に示すごとく、コンロッドの大端部を想定し、外形が長さL70mm×W幅70mm×厚みT20mmであり、中央において厚み方向に貫通する直径D1=φ45mmの貫通穴81を有する形状となるよう上記板材を加工して破断分割性評価用試験片8を得た。この破断分割性評価用試験片8には、同図に示すごとく、平行な一対の外形線に沿って、長さ方向に貫通する直径D2=φ8mmの一対の平行な貫通穴82を設けると共に、貫通穴81の内周壁に、一対の切り欠き83を設けた。切り欠き83は、レーザによって切り欠いたものであり、深さdは1mmとした。また、切り欠き83は、長さ方向に対して90度の2箇所の位置、つまり、上記貫通穴82に最も近い2箇所の位置とした。
 破断分割(クラッキング)は、図示しない治具を貫通穴81に挿入し、図1に示すごとく、矢印F方向に衝撃荷重を加えるという方法で行った。
 破断分割性の評価は、破断分割後に再度分割前の状態に組み合わせて、上記貫通穴82を利用してボルト締結し、破断分割前後の貫通穴81の内径寸法を測定して寸法変化量を求めて行った。各試料において、それぞれ10回(n=10)の試験を行い、全ての試験において寸法変化が10μm以下であり、かつ、破断面に欠けが発生していなかった場合を良好、それ以外は不良と判定した。
 各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から知られるように、試料E1~E17については、すべての評価項目において良好な結果が得られ、強度、被削性、及び破断分割性の3つ全てにおいて優れた特性を発揮することがわかる。このうち試料E14~E17は、Caを不純物としてしか含有していないが、Ca以外の成分の最適化で式1を満足するよう成分調整されたことにより、必要な被削性を満足することがわかる。
 また、試料E1~E17は、破断分割性に優れるだけでなく、他の特性も全て優れ、かつ、シャルピー衝撃値も7J/cm2以上の値を確保しているので、破断分割の有無に関わらず、長期にわたって安心して使用することができる。したがって、破断分離が必要な部品だけでなく、破断分離が不要な部品にも好適に使用可能である。
 一方、試料C1は、C含有量が少なすぎるために、硬さ、0.2%耐力等の強度特性が低く、かつシャルピー衝撃値の値が高く破断分割性評価において変形が大きいという結果になった。
 同様に、試料C2は、Mn含有量が少なすぎるために、硬さ、0.2%耐力等の強度特性が低く、かつシャルピー衝撃値の値が高く破断分割性評価において変形が大きいという結果になった。
 試料C3は、Cr含有量が多すぎるために金属組織におけるフェライト面積率が低くなったことによりシャルピー衝撃値の値が低くなり、破断分割性評価において欠けが発生すると共に、被削性が低い結果となった。
 試料C4は、P含有量が少なすぎ、衝撃値の値が高くなって破断分割性評価において変形が大きいという結果となった。
 試料C5は、Mn含有量が多すぎるために金属組織におけるフェライト面積率が低くなったことでシャルピー衝撃値の値が低くなり、破断分割性評価において欠けが発生すると共に、被削性が低い結果となった。
 試料C6は、P含有量が多すぎるために、シャルピー衝撃値の値が低くなって破断分割性評価において欠けが発生した。
 試料C7は、C含有量が多すぎるために、シャルピー衝撃値の値が低くなって破断分割性評価において欠けが発生し、また、金属組織におけるフェライト面積率が低くなって被削性が低い結果となった。
 試料C8は、S含有量が少なすぎ、式1を満足しないために、被削性が低い結果となった。
 試料C9は、式1を満足しないため、被削性が低い結果となった。
 試料C10は、V含有量が少なすぎるために、0.2%耐力が低い結果となった。
 試料C11は、V含有量が多すぎるために、シャルピー衝撃値の値が低く破断分割性評価において欠けが発生し、また、硬さが高くなりすぎて被削性が低い結果となった。
 試料C12は、個々の化学成分が本願発明の範囲内に含まれているものの、式2の関係を満たしていないものである。そして、これによりフェライト面積率が30%を下回り、その結果、被削性の低下が生じ、かつ、シャルピー衝撃値の値が低く破断分割性評価において欠けも発生した。この結果から、少なくとも本例の製造方法を採用する場合には、個々の化学成分を規制するだけでなく、式2の関係を満足することがフェライト面積率を最適化するために有効であることがわかる。
 次に、図2には、P含有量とシャルピー衝撃値との関係を示す。同図の横軸にはP含有量(質量%)を、縦軸にはシャルピー衝撃値(J/cm2)をとった。そして、試料E1~E17と、試料C4及びC6のデータをプロットした。同図から知られるごとく、上記シャルピー衝撃値を7~15J/cm2の範囲に規制するには、少なくとも、P含有量を0.030~0.070%の範囲に制限することが有効であることがわかる。
 図3には、硬さとシャルピー衝撃値との関係を示す。同図の横軸には硬さ(HV10)を、縦軸にはシャルピー衝撃値(J/cm2)をとった。そして、試料E1~E17と、試料C1~C7及びC11のデータをプロットした。同図から知られるごとく、上記シャルピー衝撃値を7~15J/cm2の範囲に規制するには、硬さを規制するだけでは困難であり、試料C1からはC含有量の適正化、試料C2からはMn含有量の適正化、試料C4及び試料C6からはP含有量の適正化、試料C3、C5及びC7からはフェライト面積率の適正化、試料C11からはV含有量の適正化がそれぞれ必要であることがわかる。
 図4には、硬さと0.2%耐力との関係を示す。同図の横軸には硬さ(HV10)を、縦軸には0.2%耐力(MPa)をとった。そして、試料E1~E17と、試料C1~C3、C5、C7及びC10のデータをプロットした。同図からは、硬さが320HV未満では、0.2%耐力が800MPa未満となることがわかる一方、硬さが320HV以上でも、Vが0.25%未満では0.2%耐力が800MPa未満となり、Nが0.0090%を超えると0.2%耐力が800MPa未満となることがわかる。
 図5には、硬さと被削性指数との関係を示す。同図の横軸には硬さ(HV10)を、縦軸には被削性指数をとった。そして、試料E1~E17と、試料C3、C5、C7~C9及びC11のデータをプロットした。同図からは、380HVを超える硬度では、被削性が悪化することがわかり、かつ、硬度が380HV以下であっても、フェライト面積率が30%未満の場合には被削性が悪化し、Sが0.040%未満の場合も被削性が悪化することがわかる。
 図6には、式1の値と被削性指数との関係を示す。同図の横軸には式1の値を、縦軸には被削性指数をとった。そして、試料E14~E17と、試料C9のデータをプロットした。すなわち、Ca含有量が少なくても式1を満足すれば、被削性を満足することを確認するため、本実施例で実験を行った試料のうち、Ca含有量が0.0005%未満のものであって、各成分の含有範囲が適正なものに限定してプロットしたものである。プロットしたデータのうち、試料C9のみが式1を満足しておらず、他の試料は式1を満足している。同図からは、Ca含有量が0.0005%未満の場合であっても、式1を満足することによって被削性を確保できることがわかる。
(実施例2)
 本実施例では、表3に示す複数の試料を準備し、N含有量及びV含有量が鋼の特性に及ぼす影響について調べた。さらに、熱間鍛造時の加熱温度による影響についても調べた。表3に示すごとく、試料E21、E22及びC21は、V含有量がすべて0.32%であり、N量がそれぞれ異なる試料である。試料E31、E32及びC31は、V含有量がすべて0.28%であり、N量がそれぞれ異なる試料である。なお、V、N以外の成分はE21、E22、C21の3試料とE31、E32、C31の3試料間においてほぼ同レベルとなるよう調整している。
Figure JPOXMLDOC01-appb-T000003
 各試料の製造方法は、上述した実施例1の場合と基本的に同じであり、熱間鍛造時の加熱温度は、表4に示す温度に設定した。得られた試料の試験方法も、上述した実施例1の場合と同じとした。試験結果を表4に示す。さらに、図7には、N含有量及び加熱温度と0.2%耐力との関係を示した。
Figure JPOXMLDOC01-appb-T000004
 表4及び図7より知られるごとく、N含有量が0.0090%以下の場合は、熱間鍛造温度が1200℃の場合でも800MPa以上の0.2%耐力を確保できているが、0.0090%を超えると、800MPa以上の0.2%耐力を確保できない場合が生じる。しかしながら、Nが0.0090%超えの場合であっても、熱間鍛造温度を1230℃以上とすることによって、0.2%耐力を800MPa以上にすることができることがわかる。一方、N含有量が0.015%を超える場合(試料C21、C31の場合)には、熱間鍛造温度を1250℃まで上げても0.2%耐力を800MPa以上にすることができなかった。
(実施例3)
 以上説明した実施例では、熱間鍛造後の冷却工程を800~600℃の間の平均冷却速度が190℃/分となる条件で行った。この冷却速度の影響をより詳しく把握するため、本例では、ファン空冷のファンの強さを調整し、800~600℃の平均冷却速度100℃/分と300℃/分の場合について、試料E1を用いて実験を行った。冷却速度以外の条件は、実施例1と同様とした。
 実験の結果、冷却速度100℃/分とした場合は、硬さが312HV、耐力が769MPaとなって両方とも低めとなったが、一方で、衝撃値は17.65J/cm2と高くなりすぎ、破断分割性が低下し変形大となった。
 また、冷却速度を300℃/分とした場合は、ベイナイト組織が生成して、冷却速度100℃/分の場合に0.799であった降伏比が0.732まで低下し、かつ、衝撃値が6.44J/cm2に低下し、破断分割時に欠けの発生が認められた。
 以上の実験結果より、熱間鍛造後の冷却速度の調整も重要であることがわかる。

Claims (5)

  1.  化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0150%以下を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足し、
     式1:[C]-4×[S]+[V]-25×[Ca]<0.44
     (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
     金属組織がフェライト・パーライト組織であると共に、フェライトの面積率が30%以上であり、
     ビッカース硬さが320~380HVの範囲にあり、
     0.2%耐力が800MPa以上であり、
     Vノッチによるシャルピー衝撃値が7~15J/cm2の範囲にあることを特徴とする鍛造部品。
  2.  下記式2を満足することを特徴とする請求項1に記載の鍛造部品。
     式2:2.15≦4×[C]-[Si]+(1/5)×[Mn]+7×[Cr]-[V]≦2.61
  3.  請求項1又は2に記載の鍛造部品からなることを特徴とするコンロッド。
  4.  化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0090%以下を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足する鍛造用鋼材を準備する工程と、
     式1:[C]-4×[S]+[V]-25×[Ca]<0.44
     (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
     上記鍛造用鋼材に対して1150℃~1300℃の熱間鍛造温度にて熱間鍛造を施して鍛造部品を得る工程と、
     上記熱間鍛造後の上記鍛造部品を800~600℃における平均冷却速度が150~250℃/minとなるよう冷却する冷却工程と、
     を有することを特徴とする鍛造部品の製造方法。
  5.  化学成分組成が、質量%で、C:0.30~0.45%、Si:0.05~0.35%、Mn:0.50~0.90%、P:0.030~0.070%、S:0.040~0.070%、Cr:0.01~0.50%、Al:0.001~0.050%、V:0.25~0.35%、Ca:0~0.0100%、N:0.0090超~0.0150%を含有し、残部がFe及び不可避的不純物よりなると共に、下記式1を満足する鍛造用鋼材を準備する工程と、
     式1:[C]-4×[S]+[V]-25×[Ca]<0.44
     (ここで、[X]は、元素Xの含有量(質量%)の値を意味する。)
     上記鍛造用鋼材に対して1230℃~1300℃の熱間鍛造温度にて熱間鍛造を施して鍛造部品を得る工程と、
     上記熱間鍛造後の上記鍛造部品を800~600℃における平均冷却速度が150~250℃/minとなるよう冷却する冷却工程と、
     を有することを特徴とする鍛造部品の製造方法。
PCT/JP2014/057223 2013-03-20 2014-03-18 鍛造部品及びその製造方法、並びにコンロッド WO2014148456A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020157021459A KR101691970B1 (ko) 2013-03-20 2014-03-18 단조 부품 및 그 제조 방법과 콘 로드
EP14769461.6A EP2977482B1 (en) 2013-03-20 2014-03-18 Forged part, method for producing the same and connecting rod
ES14769461T ES2717295T3 (es) 2013-03-20 2014-03-18 Parte forjada, método para producir la misma y biela
CN201480009691.XA CN105026593B (zh) 2013-03-20 2014-03-18 锻造部件及其制造方法、以及连杆
RU2015132530A RU2622472C2 (ru) 2013-03-20 2014-03-18 Кованый компонент, способ его изготовления и соединительный шток
US14/762,367 US10822677B2 (en) 2013-03-20 2014-03-18 Forged component, method for manufacturing the same, and connecting rod
BR112015020540A BR112015020540A2 (pt) 2013-03-20 2014-03-18 peça forjada, método para produzir a mesma e haste de conexão
JP2014530852A JP5681333B1 (ja) 2013-03-20 2014-03-18 鍛造部品及びその製造方法、並びにコンロッド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013057444 2013-03-20
JP2013-057444 2013-03-20

Publications (1)

Publication Number Publication Date
WO2014148456A1 true WO2014148456A1 (ja) 2014-09-25

Family

ID=51580135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057223 WO2014148456A1 (ja) 2013-03-20 2014-03-18 鍛造部品及びその製造方法、並びにコンロッド

Country Status (9)

Country Link
US (1) US10822677B2 (ja)
EP (1) EP2977482B1 (ja)
JP (1) JP5681333B1 (ja)
KR (1) KR101691970B1 (ja)
CN (1) CN105026593B (ja)
BR (1) BR112015020540A2 (ja)
ES (1) ES2717295T3 (ja)
RU (1) RU2622472C2 (ja)
WO (1) WO2014148456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147798A (ja) * 2019-03-14 2020-09-17 愛知製鋼株式会社 鍛造部品及びその製造方法、並びにコンロッド

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209220A (ja) * 1992-01-29 1993-08-20 Daido Steel Co Ltd 鋼製部品の製造方法
JPH08277437A (ja) * 1995-04-07 1996-10-22 Kobe Steel Ltd 高強度・高靭性熱間鍛造用非調質鋼とその鍛造品の製造方法
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts
JP2001192762A (ja) * 2000-01-12 2001-07-17 Daido Steel Co Ltd 高靱性熱間鍛造用非調質鋼
JP2004277841A (ja) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd 非調質鋼
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2008240129A (ja) * 2007-03-29 2008-10-09 Sumitomo Metal Ind Ltd 非調質鋼材
JP2011032545A (ja) 2009-08-03 2011-02-17 Aichi Steel Works Ltd 熱間鍛造非調質鋼
JP2011195862A (ja) 2010-03-18 2011-10-06 Aichi Steel Works Ltd 熱間鍛造非調質鋼部品及びこれに用いる熱間鍛造用非調質鋼

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350065A (ja) * 1998-06-04 1999-12-21 Daido Steel Co Ltd 旋削加工性に優れた熱間鍛造用非調質鋼
JP3478381B2 (ja) * 1999-02-16 2003-12-15 愛知製鋼株式会社 被削性と圧縮加工後の疲労強度に優れた非調質鍛造品の製造方法
JP4822308B2 (ja) * 2001-08-09 2011-11-24 株式会社神戸製鋼所 熱間鍛造非調質コンロッドの製造方法
FR2848226B1 (fr) 2002-12-05 2006-06-09 Ascometal Sa Acier pour construction mecanique, procede de mise en forme a chaud d'une piece de cet acier, et piece ainsi obtenue
JP4086734B2 (ja) * 2003-08-04 2008-05-14 愛知製鋼株式会社 破断分離が容易なコンロッド用超高温熱間鍛造非調質部品及びその製造方法
KR100536660B1 (ko) * 2003-12-18 2005-12-14 삼화강봉주식회사 저온충격 특성이 우수한 냉간압조용 강선과 그 제조 방법
RU2293770C2 (ru) * 2004-07-13 2007-02-20 Общество с ограниченной ответственностью "Интелмет НТ" Пруток из среднеуглеродистой микролегированной стали
CN101405418B (zh) * 2006-03-15 2012-07-11 株式会社神户制钢所 断裂分离性优异的断裂分离型连杆用轧制材,断裂分离性优异的断裂分离型连杆用热锻零件及断裂分离型连杆
RU2338794C2 (ru) * 2006-09-19 2008-11-20 Открытое акционерное общество "Оскольский электрометаллургический комбинат" Сортовой прокат из среднеуглеродистой хромсодержащей стали для холодной объемной штамповки
CN101883874B (zh) * 2008-07-29 2012-01-18 新日本制铁株式会社 高强度断裂分割用非调质钢和断裂分割用钢部件
JP2011084767A (ja) * 2009-10-14 2011-04-28 Honda Motor Co Ltd クラッキングコンロッドの製造方法
JP5576832B2 (ja) * 2011-06-21 2014-08-20 株式会社神戸製鋼所 フェライト−パーライト型非調質鍛造部品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209220A (ja) * 1992-01-29 1993-08-20 Daido Steel Co Ltd 鋼製部品の製造方法
JPH08277437A (ja) * 1995-04-07 1996-10-22 Kobe Steel Ltd 高強度・高靭性熱間鍛造用非調質鋼とその鍛造品の製造方法
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts
JP2001192762A (ja) * 2000-01-12 2001-07-17 Daido Steel Co Ltd 高靱性熱間鍛造用非調質鋼
JP2004277841A (ja) * 2003-03-18 2004-10-07 Sumitomo Metal Ind Ltd 非調質鋼
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2008240129A (ja) * 2007-03-29 2008-10-09 Sumitomo Metal Ind Ltd 非調質鋼材
JP2011032545A (ja) 2009-08-03 2011-02-17 Aichi Steel Works Ltd 熱間鍛造非調質鋼
JP2011195862A (ja) 2010-03-18 2011-10-06 Aichi Steel Works Ltd 熱間鍛造非調質鋼部品及びこれに用いる熱間鍛造用非調質鋼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147798A (ja) * 2019-03-14 2020-09-17 愛知製鋼株式会社 鍛造部品及びその製造方法、並びにコンロッド
WO2020184009A1 (ja) * 2019-03-14 2020-09-17 愛知製鋼株式会社 鍛造部品及びその製造方法、並びにコンロッド

Also Published As

Publication number Publication date
JPWO2014148456A1 (ja) 2017-02-16
US20150354042A1 (en) 2015-12-10
EP2977482A4 (en) 2016-02-24
EP2977482B1 (en) 2019-02-13
BR112015020540A2 (pt) 2017-07-18
CN105026593B (zh) 2017-03-22
ES2717295T3 (es) 2019-06-20
RU2622472C2 (ru) 2017-06-15
KR101691970B1 (ko) 2017-01-02
RU2015132530A (ru) 2017-04-25
JP5681333B1 (ja) 2015-03-04
KR20150104622A (ko) 2015-09-15
EP2977482A1 (en) 2016-01-27
US10822677B2 (en) 2020-11-03
CN105026593A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN101410541B (zh) 可切削性和强度特性优异的机械结构用钢
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
JP5123335B2 (ja) クランクシャフトおよびその製造方法
JP5974623B2 (ja) 時効硬化型ベイナイト非調質鋼
JP5655366B2 (ja) ベイナイト鋼
JP2007119819A (ja) コンロッド用非調質鋼及びコンロッド
US10066281B2 (en) Age-hardenable steel
KR100740414B1 (ko) 재질 이방성이 작고 강도, 인성 및 피삭성이 우수한비조질 강 및 그의 제조 방법
WO2012011469A1 (ja) 熱間鍛造用圧延棒鋼または線材
JP5262740B2 (ja) 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法
CN109790602B (zh)
JP6620490B2 (ja) 時効硬化性鋼
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP5598038B2 (ja) 熱間鍛造非調質鋼部品及びこれに用いる熱間鍛造用非調質鋼
JP6604248B2 (ja) 鍛造部品及びその製造方法並びにコンロッド
JP2012077371A (ja) 熱間鍛造用圧延鋼材およびその製造方法
JP5681333B1 (ja) 鍛造部品及びその製造方法、並びにコンロッド
JP6459704B2 (ja) 冷間鍛造部品用鋼
JP2002348637A (ja) 高強度ねじ用鋼、高強度ねじおよび高強度ねじの製造方法
JP4121416B2 (ja) 機械構造用非調質型熱間鍛造部品およびその製造方法
WO2020184009A1 (ja) 鍛造部品及びその製造方法、並びにコンロッド
KR101302693B1 (ko) 편석 저감을 통한 경도균일성 및 가공성이 우수한 플라스틱 금형강
JP5556191B2 (ja) 熱間鍛造非調質鋼部品及びこれに用いる熱間鍛造用非調質鋼
JP2019035126A (ja) 機械構造用鋼
JP2013185205A (ja) 肌焼用鋼部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009691.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014530852

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014769461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14762367

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157021459

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015020540

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015132530

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015020540

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150826