WO2014147801A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2014147801A1
WO2014147801A1 PCT/JP2013/058152 JP2013058152W WO2014147801A1 WO 2014147801 A1 WO2014147801 A1 WO 2014147801A1 JP 2013058152 W JP2013058152 W JP 2013058152W WO 2014147801 A1 WO2014147801 A1 WO 2014147801A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
limiter
voltage
output current
limiter value
Prior art date
Application number
PCT/JP2013/058152
Other languages
English (en)
French (fr)
Inventor
直哉 今井
昌隆 池田
泰和 山口
博之 江口
昂 藤川
Original Assignee
新電元工業株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社, 本田技研工業株式会社 filed Critical 新電元工業株式会社
Priority to CA2903668A priority Critical patent/CA2903668C/en
Priority to EP13879185.0A priority patent/EP2978120B1/en
Priority to US14/773,316 priority patent/US9647525B2/en
Priority to PCT/JP2013/058152 priority patent/WO2014147801A1/ja
Priority to CN201380070046.4A priority patent/CN105612689B/zh
Priority to JP2015506494A priority patent/JP5882536B2/ja
Publication of WO2014147801A1 publication Critical patent/WO2014147801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1203Circuits independent of the type of conversion
    • H02H7/1206Circuits independent of the type of conversion specially adapted to conversion cells composed of a plurality of parallel or serial connected elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a power supply device including two single-phase inverters that operate in series synchronous operation.
  • a power supply device (single-phase three-wire inverter) including two single-phase inverters 100X and 200X that perform serial synchronous operation is known (see FIG. 4).
  • the outputs of the two inverters 100X and 200X are connected in series, and are electrically insulated from each other except for the output.
  • Each inverter 100X, 200X has a bridge circuit 11, 21, and each bridge circuit 11, 21 is supplied to the primary side by switching operation of FETs Q11-Q14, Q21-Q24 based on the PWM signal.
  • the DC voltages Vdc1 and Vdc2 thus generated are converted into AC voltages having a desired amplitude and output.
  • This power supply device outputs an AC voltage that is twice the AC voltages Vac1 and Vac2 output from the inverters 100X and 200X as an output voltage Vout from between the output terminals OUT1 and OUT2.
  • the inverters 100X and 200X have peak limiter circuits 16X and 26X that stop the operation of the bridge circuits 11 and 21 when the output current Iout reaches the positive and negative limiter values.
  • the limiter values of the two inverters 100X and 200X are determined independently of each other. If the positive limiter values are equal and the negative limiter values are equal to each other, the two output currents Iout reach the limiter values.
  • the bridge circuits 11 and 21 of the inverters 100X and 200X can stop operation, limit the maximum value of the output current Iout to a positive limiter value, and limit the minimum value to a negative limiter value. Therefore, it is possible to prevent the FETs Q11 to Q14 and Q21 to Q24 of the bridge circuits 11 and 21 from being damaged in a situation where an excessive output current Iout can flow.
  • each inverter 100X, 200X when the short-circuit state in which the output current Iout reaches the limiter value continues for a predetermined time (for example, several seconds), or the primary side DC voltages Vdc1, Vdc2 become the overvoltage detection value or more.
  • the protection circuit 18X, 28X is also provided for forcibly stopping both the inverters 100X, 200X in order to protect the power supply device.
  • a load that requires a large current such as a short-circuit start load
  • a load that requires a large current such as an incandescent bulb
  • the output terminals OUT1 and OUT2 of the power supply device are short-circuited, so that the output current Iout reaches the limiter value.
  • the output current Iout does not reach the limiter value. Therefore, if the positive limiter values of the two inverters 100X and 200X are equal and the negative limiter values are equal, the power supply device can continue to supply current to such a load without stopping the operation.
  • the positive limiter values of the two inverters 100X and 200X are different from each other, and the negative limiter values are often different from each other due to variations in circuit elements.
  • the limiter values when the limiter values are different, the moment when starting supplying current to a load that requires a large current at the start (time t11), one of the inverters having a small absolute value (for example, the inverter 100X). ), When the output current Iout reaches the limiter value, the bridge circuit 11 stops operating, and the maximum value of the output current Iout is limited to the limiter value.
  • the bridge circuit 21 continues to operate.
  • the protection circuit 18X of the inverter 100X operates both the inverters 100X and 200X. Stop. That is, the output voltage Vout and the output current Iout are zero. Therefore, it is impossible to drive a load that requires a large current during startup.
  • an object of the present invention is to provide a power supply device that can drive a load that requires a large current at the start-up after preventing an excessive increase in the DC voltage on the primary side.
  • a power supply device includes: A first inverter that converts a first DC voltage into a first AC voltage and outputs the first DC voltage based on a switching operation of a plurality of first switching elements constituting the first bridge circuit; Based on the switching operation of the plurality of second switching elements constituting the second bridge circuit, the second DC voltage is converted into a second AC voltage synchronized with the first AC voltage and output, A second inverter having an output connected in series with the output of the first inverter;
  • the first inverter is A first limiter value setting unit for setting a first limiter value; When the value according to the output current reaches the first limiter value, the first switching element is not switched, and the value according to the output current is less than the first limiter value.
  • a first peak limiter circuit that causes the first switching element to perform a switching operation;
  • a first control unit that increases the first limiter value based on a value corresponding to the output current and an increase in the first DC voltage;
  • the second inverter is A second limiter value setting unit for setting a second limiter value; When the value according to the output current reaches the second limiter value, the second switching element is not switched, and the value according to the output current is less than the second limiter value.
  • a second peak limiter circuit that causes the second switching element to perform a switching operation; And a second control unit that increases the second limiter value based on a value corresponding to the output current and an increase in the second DC voltage.
  • the first limiter value setting unit sets the positive first limiter value and the negative third limiter value,
  • the first peak limiter circuit does not cause the first switching element to perform a switching operation when a value corresponding to the output current reaches the first limiter value or the third limiter value. If the value corresponding to the current is less than the first limiter value and greater than the third limiter value, the first switching element is switched.
  • the first control unit increases the first limiter value and decreases the third limiter value based on a value corresponding to the output current and an increase in the first DC voltage
  • the second limiter value setting unit sets the positive second limiter value and the negative fourth limiter value
  • the second peak limiter circuit does not cause the second switching element to perform a switching operation when a value corresponding to the output current reaches the second limiter value or the fourth limiter value. If the value corresponding to the current is less than the second limiter value and greater than the fourth limiter value, the second switching element is caused to perform a switching operation;
  • the second control unit may increase the second limiter value and decrease the fourth limiter value based on a value corresponding to the output current and an increase in the second DC voltage. .
  • the first control unit has a value corresponding to the output current equal to or higher than a predetermined first specified current value, and the first DC voltage is equal to or higher than a predetermined first specified voltage value.
  • the first limiter value is increased and the third limiter value is decreased
  • the second control unit has a value corresponding to the output current equal to or greater than a predetermined second specified current value, and the second DC voltage is equal to or greater than a predetermined second specified voltage value.
  • the second limiter value may be increased and the fourth limiter value may be decreased.
  • the first specified current value is larger than a rated current value of the first and second inverters and is not more than the first limiter value
  • the second specified current value may be greater than the rated current value and less than or equal to the second limiter value
  • the first control unit has a state in which a value corresponding to the output current is equal to or greater than the first specified current value and the first DC voltage is less than the first specified voltage value.
  • the first limiter value is decreased and the third limiter value is increased
  • the second control unit has a state in which a value corresponding to the output current is equal to or greater than the second specified current value and the second DC voltage is less than the second specified voltage value.
  • the second limiter value may be decreased and the fourth limiter value may be increased.
  • the first control unit determines the first limiter value when a state in which a value corresponding to the output current is less than the first specified current value continues for a predetermined third specified time. Decreasing and increasing the third limiter value, The second control unit reduces the second limiter value when the state in which the value corresponding to the output current is less than the second specified current value continues for the third specified time.
  • the fourth limiter value may be increased.
  • the first control unit changes the first and third limiter values within predetermined ranges
  • the second control unit may change the second and fourth limiter values within predetermined ranges, respectively.
  • the first inverter In the power supply device, In the first inverter, a state in which a value corresponding to the output current reaches the first limiter value or the third limiter value continues for a predetermined short-circuit detection time, or the first inverter A first protection circuit that turns off the first and second switching elements when the DC voltage of one exceeds a predetermined first overvoltage detection value; The first overvoltage detection value is higher than the first specified voltage value, The second inverter has a state in which a value corresponding to the output current has reached the second limiter value or the fourth limiter value during the short-circuit detection time, or the second DC A second protection circuit for turning off the first and second switching elements when the voltage is equal to or higher than a predetermined second overvoltage detection value; The second overvoltage detection value may be higher than the second specified voltage value.
  • the first inverter includes a first current-voltage conversion circuit that converts a value corresponding to the output current into a first detection voltage;
  • the first limiter value setting unit includes: A first PWM unit for generating first and third PWM signals having a pulse width according to the control of the first control unit; The first PWM signal is smoothed to generate a first reference voltage corresponding to the first limiter value, and the third PWM signal is smoothed to correspond to the third limiter value.
  • a first smoothing circuit for generating a third reference voltage The first peak limiter circuit determines a relationship between a value corresponding to the output current and the first and third limiter values based on the detection voltage and the first and third reference voltages.
  • the second inverter has a second current-voltage conversion circuit that converts a value corresponding to the output current into a second detection voltage
  • the second limiter value setting unit includes: A second PWM unit for generating second and fourth PWM signals having a pulse width according to the control of the second control unit; The second PWM signal is smoothed to generate a second reference voltage corresponding to the second limiter value, and the fourth PWM signal is smoothed to correspond to the fourth limiter value.
  • a second smoothing circuit for generating a fourth reference voltage The second peak limiter circuit determines a relationship between a value corresponding to the output current and the second and fourth limiter values based on the detection voltage and the second and fourth reference voltages. Also good.
  • the first and second control units of the first and second inverters respectively increase the corresponding limiter value based on the value corresponding to the output current and the corresponding increase in the DC voltage. I am doing so.
  • the first limiter value of the first inverter is smaller than the second limiter value of the second inverter, the current supply to the load that requires a large current at the start is started, and then the output current is determined.
  • the first switching element stops switching operation and turns off.
  • the first control unit increases the first limiter value.
  • the first limiter value becomes larger than the second limiter value, the first switching element starts the switching operation again, so that a current flows through the first switching element that is turned on, so that the first side The DC voltage of 1 decreases.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of first and second limiter value setting units and first and second peak limiter circuits in FIG. 1. It is a block diagram which shows the structure of the conventional power supply device. It is a wave form diagram which shows the output current and 1st DC voltage of the conventional power supply device.
  • FIG. 1 is a block diagram showing a configuration of a power supply device according to an embodiment of the present invention. As shown in FIG. 1, the power supply device includes a first inverter 100 and a second inverter 200.
  • the first and second inverters 100 and 200 are connected by a communication line 1, and a control signal and a synchronization signal for synchronously operating each other are transmitted via the communication line 1.
  • the first inverter 100 operates as a master, and the second inverter 200 operates as a slave.
  • DC power is supplied between the input terminals I1 and I2 of the first inverter 100 and between the input terminals I3 and I4 of the second inverter 200, respectively.
  • AC power generated by an engine generator may be converted into DC power, and the converted DC power may be supplied to the first inverter 100 and the second inverter 200.
  • the first inverter 100 generates the first DC voltage Vdc1 between the input terminals I1 and I2 based on the switching operation of the four first switching elements Q11 to Q14 constituting the first bridge circuit 11. It converts into the alternating voltage Vac1 and outputs from between output terminals O1 and O2.
  • the second inverter 200 generates the first DC voltage Vdc2 between the input terminals I1 and I2 based on the switching operation of the four second switching elements Q21 to Q24 configuring the second bridge circuit 21. Is converted to a second AC voltage Vac2 that is synchronized with the AC voltage Vac1 and output from between the output terminals O3 and O4.
  • the output of the second inverter 200 is connected in series with the output of the first inverter 100. That is, the output terminal O2 of the first inverter 100 and the output terminal O3 of the second inverter 200 are connected, the output terminal O1 of the first inverter 100 is connected to the AC output terminal OUT1, and the output of the second inverter 200 The terminal O4 is connected to the AC output terminal OUT2.
  • This power supply device outputs an alternating voltage twice as large as the alternating voltages Vac1 and Vac2 output from the inverters 100 and 200 as an output voltage Vout between the output terminals OUT1 and OUT2.
  • the first inverter 100 includes a first input capacitor Cin1, a first bridge circuit 11, a first filter 12, a first drive circuit 13, a first current-voltage conversion circuit 14, and a first The limiter value setting unit 15, the first peak limiter circuit 16, the first control unit 17, and the first protection circuit 18 are included.
  • the first input capacitor Cin1 is connected between the input terminals I1 and I2.
  • the first bridge circuit 11 is a full bridge circuit, and includes four first switching elements Q11 to Q14, which are N-type MOSFETs, and four parasitic diodes D11 to D14.
  • the first switching elements Q11 and Q13 are connected in series between the input terminals I1 and I2.
  • the first switching elements Q12 and Q14 are also connected in series between the input terminals I1 and I2.
  • Each of the parasitic diodes D11 to D14 has an anode connected to the sources of the corresponding first switching elements Q11 to Q14, and a cathode connected to the drains of the corresponding first switching elements Q11 to Q14.
  • connection point between the source of the first switching element Q11 and the drain of the first switching element Q13 is connected to the output terminal O2 via the first filter 12.
  • connection point between the source of the first switching element Q12 and the drain of the first switching element Q14 is connected to the output terminal O1 through the first filter 12.
  • the first filter 12 is composed of, for example, an inductor and a capacitor, and is for obtaining a first AC voltage Vac1 close to a sine wave by removing harmonics from the output voltage of the first bridge circuit 11.
  • the first drive circuit 13 outputs the first drive signal, which has been subjected to pulse width modulation, to the gates of the first switching elements Q11 to Q14 so that the first AC voltage Vac1 has a desired value.
  • the first switching elements Q11 to Q14 perform a switching operation according to the first drive signal.
  • the first drive circuit 13 outputs a synchronization signal for synchronizing the first AC voltage Vac1 and the second AC voltage Vac2. This synchronization signal is supplied to the second drive circuit 23 of the second inverter 200 via the communication line 1.
  • the first current-voltage conversion circuit 14 converts the output current Iout flowing through the output terminal O2 into the first detection voltage Vdet1.
  • a value corresponding to the output current Iout may be used.
  • the output current Iout flows to the output terminals O1 to O4.
  • the first limiter value setting unit 15 sets a positive first limiter value and a negative third limiter value.
  • the first limiter value setting unit 15 generates a first reference voltage REF1 corresponding to the first limiter value and a third reference voltage REF3 corresponding to the third limiter value.
  • the first peak limiter circuit 16 controls the first switching elements Q11 to Q14 by controlling the first drive circuit 13 in accordance with the relationship between the output current Iout and the first and third limiter values. Control whether or not.
  • the first peak limiter circuit 16 When the output current Iout reaches the first limiter value or the third limiter value, the first peak limiter circuit 16 does not perform the switching operation of the first switching elements Q11 to Q14, and the first switching element Q11. All Q14 are turned off. On the other hand, the first peak limiter circuit 16 causes the first switching elements Q11 to Q14 to perform a switching operation when the output current Iout is less than the first limiter value and greater than the third limiter value.
  • the first peak limiter circuit 16 calculates the output current Iout and the first and third limiter values based on the first detection voltage Vdet1 and the first and third reference voltages REF1 and REF3. Determine the relationship.
  • the first control unit 17 receives the first detection voltage Vdet1 and the first DC voltage Vdc1, and inputs the first limiter value setting unit 15 based on the increase in the output current Iout and the first DC voltage Vdc1. , Increase the first limiter value and decrease the third limiter value.
  • the first control unit 17 changes the first and third limiter values within a predetermined range (for example, ⁇ number A). That is, the first and third limiter values have an upper limit value and a lower limit value, respectively. Detailed operation of the first control unit 17 will be described later along with detailed operation of the second control unit 27 of the second inverter 200.
  • the first protection circuit 18 is input with the output signal of the first peak limiter circuit 16 and the first DC voltage Vdc1, and the state in which the output current Iout has reached the first or third limiter value is predetermined.
  • the first drive circuit 13 and the second inverter when the short-circuit detection time (for example, several seconds) continues or when the first DC voltage Vdc1 becomes equal to or higher than a predetermined first overvoltage detection value.
  • the operation of the second driving circuit 23 of 200 is stopped. Thereby, the first protection circuit 18 turns off all of the first and second switching elements Q11 to Q14 and Q21 to Q24 and does not perform the switching operation.
  • the first overvoltage detection value is higher than the first specified voltage value.
  • the basic configuration of the second inverter 200 is the same as that of the first inverter 100.
  • the second inverter 200 includes a second input capacitor Cin2, a second bridge circuit 21, a second filter 22, a second drive circuit 23, a second current-voltage conversion circuit 24, A second limiter value setting unit 25, a second peak limiter circuit 26, a second control unit 27, and a second protection circuit 28 are included.
  • the second input capacitor Cin2 is connected between the input terminals I3 and I4.
  • the second bridge circuit 21 is a full bridge circuit, and includes four second switching elements Q21 to Q24, which are N-type MOSFETs, and four parasitic diodes D21 to D24.
  • the second switching elements Q21 and Q23 are connected in series between the input terminals I3 and I4.
  • the second switching elements Q22 and Q24 are also connected in series between the input terminals I3 and I4.
  • Each of the parasitic diodes D21 to D24 has an anode connected to the sources of the corresponding second switching elements Q21 to Q24, and a cathode connected to the drains of the corresponding second switching elements Q21 to Q24.
  • connection point between the source of the second switching element Q21 and the drain of the second switching element Q23 is connected to the output terminal O3 via the second filter 22.
  • connection point between the source of the second switching element Q22 and the drain of the second switching element Q24 is connected to the output terminal O4 via the second filter 22.
  • the second filter 22 has the same function as the first filter 12.
  • the second drive circuit 23 outputs a second drive signal that has been subjected to pulse width modulation to the gates of the second switching elements Q21 to Q24 so that the second AC voltage Vac2 has a desired value.
  • the second switching elements Q21 to Q24 perform a switching operation according to the second drive signal.
  • the second drive circuit 23 outputs a second drive signal synchronized with the first drive signal based on the synchronization signal supplied from the first drive circuit 13 via the communication line 1.
  • the second current-voltage conversion circuit 24 converts the output current Iout flowing through the output terminal O4 into the second detection voltage Vdet2.
  • the second limiter value setting unit 25 sets a positive second limiter value and a negative fourth limiter value.
  • the second reference voltage REF2 corresponding to the second limiter value and the fourth reference voltage REF4 corresponding to the fourth limiter value are generated.
  • the second peak limiter circuit 26 controls the second switching elements Q21 to Q24 by controlling the second drive circuit 23 according to the relationship between the output current Iout and the second and fourth limiter values. Control whether or not.
  • the second peak limiter circuit 26 When the output current Iout reaches the second limiter value or the fourth limiter value, the second peak limiter circuit 26 does not cause the second switching elements Q21 to Q24 to perform the switching operation, and the second switching element Q21. All Q24 are turned off. On the other hand, the second peak limiter circuit 26 causes the second switching elements Q21 to Q24 to perform a switching operation when the output current Iout is less than the second limiter value and greater than the fourth limiter value.
  • the second peak limiter circuit 26 calculates the output current Iout and the second and fourth limiter values based on the second detection voltage Vdet2 and the second and fourth reference voltages REF2 and REF4. Determine the relationship.
  • the second control unit 27 receives the second detection voltage Vdet2 and the second DC voltage Vdc2, and inputs the second limiter value setting unit 25 based on the increase in the output current Iout and the second DC voltage Vdc2. , Increase the second limiter value and decrease the fourth limiter value.
  • the second control unit 27 changes the second and fourth limiter values within predetermined ranges, respectively. That is, the second and fourth limiter values have an upper limit value and a lower limit value, respectively.
  • the second protection circuit 28 is supplied with the output signal of the second peak limiter circuit 26 and the second DC voltage Vdc2, and the state in which the output current Iout has reached the second or fourth limiter value is predetermined.
  • the operation of the drive circuit 13 is stopped. Thereby, the second protection circuit 28 turns off all the first and second switching elements Q11 to Q14 and Q21 to Q24 and does not perform the switching operation.
  • the second overvoltage detection value is higher than the second specified voltage value.
  • FIG. 2 the operation of the power supply apparatus will be described together with more detailed operations of the first and second control units 17 and 27.
  • FIG. 2 is a waveform diagram showing the output current Iout and the first DC voltage Vdc1 of the power supply device according to the embodiment of the present invention.
  • FIG. 2 is a waveform diagram when a load such as an incandescent light bulb that requires a large current at startup is connected to the power supply device. Further, FIG. 2 shows that in the initial state, the positive first limiter value is smaller than the positive second limiter value and the negative third limiter value is negative due to variations in circuit elements. It is a wave form diagram when larger than a 4th limiter value.
  • the output terminals OUT1 and OUT2 of the power supply device are short-circuited. Accordingly, after time t1, in the first inverter 100, when the output current Iout reaches the first or third limiter value, the first switching elements Q11 to Q14 are turned off, and the maximum value of the output current Iout is the first value. It is limited to a limiter value of 1, and its minimum value is limited to a third limiter value.
  • the output current Iout is limited by the first inverter 100 in this way, in the second inverter 200, the output current Iout does not reach the second and fourth limiter values. Even after time t1, the second switching elements Q21 to Q24 continue to perform the switching operation.
  • the first control unit 17 has the output current Iout equal to or higher than a predetermined first specified current value, and the first DC voltage Vdc1 is equal to or higher than a predetermined first specified voltage value.
  • the first limiter value is increased by a certain value and the third limiter value is decreased by a certain value.
  • the first specified current value is larger than the rated current values of the first and second inverters and is not more than the first limiter value.
  • the first control unit 17 increases the first limiter value by a certain value and decreases the third limiter value by a certain value.
  • the first limiter value becomes larger than the second limiter value and the third limiter value becomes smaller than the fourth limiter value
  • the first switching elements Q11 to Q14 start the switching operation again. Accordingly, when a current flows through the first switching element that is turned on, the first DC voltage Vdc1 on the primary side decreases in a shorter time than the time required for the increase, and returns to the initial voltage.
  • the second switching elements Q21 to Q24 are turned off, and the maximum value of the output current Iout is the first value. It is limited to a limiter value of 2, and its minimum value is limited to a fourth limiter value.
  • the second control unit 27 is in a state where the output current Iout is equal to or greater than a predetermined second specified current value and the second DC voltage Vdc2 is equal to or greater than a predetermined second specified voltage value.
  • the second limiter value is increased by a fixed value and the fourth limiter value is decreased by a fixed value when the first specified time is continued.
  • the second specified current value is larger than the rated current value and not more than the second limiter value.
  • the second specified current value may be equal to the first specified current value.
  • the first and second specified current values may be, for example, more than twice the rated current value.
  • the second limiter value increases and the fourth limiter value decreases, the second limiter value again becomes larger than the first limiter value, and the fourth limiter value becomes smaller than the third limiter value. Since the second switching elements Q21 to Q24 start the switching operation again, the second DC voltage Vdc2 decreases in a short time.
  • the first DC voltage Vdc1 does not reach the first overvoltage detection value
  • the second DC voltage Vdc2 does not reach the second overvoltage detection value.
  • the second protection circuits 18 and 28 stop the operation of the first and second inverters 100 and 200.
  • the output current Iout decreases below the rated current and does not reach the first to fourth limiter values. That is, the short-circuit state between the output terminals OUT1 and OUT2 is eliminated, and the power supply device can continue to supply current to such a load through normal operation.
  • the first and third limiter values are different and the second and fourth limiter values are different due to variations in circuit elements or environmental changes such as temperature changes and secular changes. Even in such a case, it is possible to drive a load that requires a large current at the start-up after preventing an excessive increase in the first and second DC voltages Vdc1 and Vdc2 on the primary side.
  • the first control unit 17 determines that the state in which the output current Iout is equal to or greater than the first specified current value and the first DC voltage Vdc1 is less than the first specified voltage value.
  • the first limiter value may be decreased by a certain value and the third limiter value may be increased by a certain value.
  • the second control unit 27 determines that the state in which the output current Iout is equal to or greater than the second specified current value and the second DC voltage Vdc2 is less than the second specified voltage value is the second specified time.
  • the second limiter value may be decreased by a certain value and the fourth limiter value may be increased by a certain value.
  • the first and second limiter values do not continue to increase and the third and fourth limiter values do not continue to decrease during the short circuit state.
  • the first control unit 17 decreases the first limiter value by a constant value when the state where the output current Iout is less than the first specified current value continues for a predetermined third specified time.
  • the third limiter value may be increased by a certain value.
  • the second control unit 27 decreases the second limiter value by a constant value and The limiter value may be increased by a certain value.
  • the first and second limiter values become larger than the initial state values by driving a load that requires a large current at the time of startup, and the third and fourth limiter values are in the initial state. Even if the output current Iout is smaller than the first value, the normal operation in which the output current Iout is less than the first and second specified current values continues, thereby reducing the first and second limiter values to the lower limit value.
  • the third and fourth limiter values can be increased to the upper limit value. Therefore, the range in which the first to fourth limiter values can be adjusted when driving a load that requires a large current at the time of startup again is expanded.
  • the first to third specified times may be set to the same time or different times.
  • the first or second protection circuit 18, 28 stops the operation of the first and second drive circuits 13, 23 when the short-circuit state continues for the short-circuit detection time. That is, in this case, similarly to the conventional power supply device, the operation of the power supply device itself can be stopped so that the output voltage Vout and the output current Iout are not output, so that safety can be ensured.
  • the first and second limiter value setting units 15 and 25 and the first and second peak limiter circuits 16 and 26 described above may be configured as follows, for example.
  • FIG. 3 is a diagram illustrating an example of the circuit configuration of the first and second limiter value setting units 15 and 25 and the first and second peak limiter circuits 16 and 26 of FIG.
  • the first limiter value setting unit 15 includes a first PWM unit 15a and a first smoothing circuit 15b.
  • the first PWM unit 15a generates first and third PWM signals S1 and S3 having a pulse width according to the control of the first control unit 17.
  • the first PWM unit 15a can be configured using, for example, a microcomputer.
  • the first smoothing circuit 15b smoothes the first PWM signal S1 with a low-pass filter including a resistor R1 and a capacitor C1, and generates a first reference voltage REF1 corresponding to the first limiter value.
  • the first smoothing circuit 15b smoothes the third PWM signal S3 by a low-pass filter including a resistor R2 and a capacitor C2, and generates a third reference voltage REF3 corresponding to the third limiter value. .
  • the first peak limiter circuit 16 includes a comparator 16a in which the first reference voltage REF1 is input to the non-inverting input terminal and the first detection voltage Vdet1 is input to the inverting input terminal, and a third reference voltage REF3. And a comparator 16b that is input to the inverting input terminal and to which the first detection voltage Vdet1 is input to the non-inverting input terminal.
  • the output terminals of the comparators 16 a and 16 b are connected to the first drive circuit 13 and the first protection circuit 18.
  • the comparators 16a and 16b allow the first peak limiter circuit 16 to output the output current Iout and the first and third limiters based on the first detection voltage Vdet1 and the first and third reference voltages REF1 and REF3. Determine the relationship with the value.
  • the second limiter value setting unit 25 has a second PWM unit 25a and a second smoothing circuit 25b.
  • the second PWM unit 25a generates second and fourth PWM signals S2 and S4 having a pulse width according to the control of the second control unit 27.
  • the second PWM unit 25a can also be configured using, for example, a microcomputer.
  • the second smoothing circuit 25b smoothes the second PWM signal S2 by a low-pass filter composed of a resistor R3 and a capacitor C3, and generates a second reference voltage REF2 corresponding to the second limiter value.
  • the second smoothing circuit 25b smoothes the fourth PWM signal S4 with a low-pass filter including a resistor R4 and a capacitor C4, and generates a fourth reference voltage REF4 corresponding to the fourth limiter value. .
  • the second peak limiter circuit 26 includes a comparator 26a in which the second reference voltage REF2 is input to the non-inverting input terminal and the second detection voltage Vdet2 is input to the inverting input terminal, and a fourth reference voltage REF4.
  • a comparator 26b that is input to the inverting input terminal and to which the second detection voltage Vdet2 is input to the non-inverting input terminal.
  • the output terminals of the comparators 26 a and 26 b are connected to the second drive circuit 23 and the second protection circuit 28.
  • the comparators 26a and 26b allow the second peak limiter circuit 26 to output the output current Iout and the second and fourth limiters based on the second detection voltage Vdet2 and the second and fourth reference voltages REF2 and REF4. Determine the relationship with the value.
  • Such a circuit configuration provides the same effect as the configuration of FIG.
  • the first and second limiter value setting units 15 and 25 need only be able to generate the first to fourth reference voltages REF1 to REF4 according to the control of the first and second control units 17 and 27, and D A / A converter or the like may be used.
  • first and second switching elements Q11 to Q14 and Q21 to Q24 other switching elements having a parasitic diode such as IGBT may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 電源装置は、第1の直流電圧を第1の交流電圧に変換して出力する第1のインバータと、第2の直流電圧を、第1の交流電圧と同期した第2の交流電圧に変換して出力し、出力が第1のインバータの出力と直列に接続された第2のインバータと、を備える。第1(第2)のインバータは、出力電流に応じた値が第1(第2)のリミッタ値に達した場合に、第1(第2)のスイッチング素子にスイッチング動作させず、出力電流に応じた値が第1(第2)のリミッタ値未満の場合に、第1(第2)のスイッチング素子にスイッチング動作させる第1(第2)のピークリミッタ回路と、出力電流に応じた値と第1(第2)の直流電圧の増加に基づいて、第1(第2)のリミッタ値を増加させる第1(第2)の制御部と、を有する。

Description

電源装置
 本発明は、直列同期運転する2つの単相インバータを備える電源装置に関する。
 直列同期運転する2つの単相インバータ100X,200Xを備える電源装置(単相三線式インバータ)が知られている(図4参照)。2つのインバータ100X,200Xは、出力が直列接続されており、この出力を除いて互いに電気的に絶縁されている。各インバータ100X,200Xはブリッジ回路11,21を有しており、各ブリッジ回路11,21は、PWM信号に基づいてFET Q11~Q14,Q21~Q24がスイッチング動作することにより、1次側に供給された直流電圧Vdc1,Vdc2を所望の振幅の交流電圧に変換して出力する。この電源装置は、各インバータ100X,200Xが出力する交流電圧Vac1,Vac2の2倍の交流電圧を、出力端子OUT1,OUT2間から出力電圧Voutとして出力する。
 各インバータ100X,200Xは、出力電流Ioutが正及び負のリミッタ値に達するとブリッジ回路11,21の動作を停止させるピークリミッタ回路16X,26Xを有している。2つのインバータ100X,200Xのリミッタ値は互いに独立して決定されているが、これらの正のリミッタ値同士が等しく、負のリミッタ値同士が等しければ、出力電流Ioutがリミッタ値に達すると2つのインバータ100X,200Xのブリッジ回路11,21は動作を停止して、出力電流Ioutの最大値を正のリミッタ値に制限でき、その最小値を負のリミッタ値に制限できる。よって、過大な出力電流Ioutが流れ得る状況でのブリッジ回路11,21のFET Q11~Q14,Q21~Q24などの破損を防止できる。
 また、各インバータ100X,200Xは、出力電流Ioutがリミッタ値に達した短絡状態が所定時間(例えば、数秒)続いた場合、又は、1次側の直流電圧Vdc1,Vdc2が過電圧検出値以上となった場合に、電源装置の保護のために強制的に両方のインバータ100X,200Xを停止させる保護回路18X,28Xも有している。
 ところで、電源装置の負荷として、例えば白熱電球などのような起動時に大電流を要する負荷(短絡スタートの負荷)が接続される場合がある。このような負荷に電流供給を開始する瞬間、電源装置の出力端子OUT1,OUT2間は短絡状態になるので、出力電流Ioutはリミッタ値に達する。ところが、このような負荷は、起動後、上記所定時間以内にインピーダンスが増加するので、出力電流Ioutはリミッタ値に達しないようになる。よって、2つのインバータ100X,200Xの正のリミッタ値同士が等しく、負のリミッタ値同士が等しければ、電源装置は、動作を停止せずにこのような負荷に対して電流供給を継続できる。
 このような電源装置に類似した装置として、特開2003-047296号公報に記載のものも知られている。
 しかしながら、回路素子のばらつきなどにより、2つのインバータ100X,200Xの正のリミッタ値同士は異なり、負のリミッタ値同士は異なっている場合が多い。図5に示すように、リミッタ値が異なっている場合、起動時に大電流を要する負荷に電流供給を開始する瞬間(時刻t11)、リミッタ値の絶対値が小さい一方のインバータ(例えばインバータ100Xとする)では、出力電流Ioutがリミッタ値に達することでブリッジ回路11は動作を停止して、出力電流Ioutの最大値はリミッタ値に制限される。これに対して、リミッタ値の絶対値が大きい他方のインバータ200Xでは、出力電流Ioutがリミッタ値に達しないため、ブリッジ回路21は動作し続ける。
 インバータ200Xのブリッジ回路21が動作し続けることにより、インバータ100Xでは、ブリッジ回路11のオフとなったFET Q11~Q14の寄生ダイオードD11~D14を介して電流が1次側に流れ、これにより1次側の直流電圧Vdc1が上昇する。出力電流Ioutが負になっている間も同様に動作する。
 このような動作を繰り返すことで、インバータ100Xの1次側の直流電圧Vdc1が上昇し、過電圧検出値に達すると(時刻t12)、インバータ100Xの保護回路18Xは、両方のインバータ100X,200Xの動作を停止させる。即ち、出力電圧Vout及び出力電流Ioutはゼロになる。従って、起動時に大電流を要する負荷を駆動できない。
 そこで、本発明は、1次側の直流電圧の過度の上昇を防止した上で、起動時に大電流を要する負荷を駆動できる電源装置を提供することを目的とする。
 本発明の一態様に係る電源装置は、
 第1のブリッジ回路を構成する複数の第1のスイッチング素子のスイッチング動作に基づいて、第1の直流電圧を第1の交流電圧に変換して出力する第1のインバータと、
 第2のブリッジ回路を構成する複数の第2のスイッチング素子のスイッチング動作に基づいて、第2の直流電圧を、前記第1の交流電圧と同期した第2の交流電圧に変換して出力し、出力が前記第1のインバータの出力と直列に接続された第2のインバータと、を備え、
 前記第1のインバータは、
 第1のリミッタ値を設定する第1のリミッタ値設定部と、
 出力電流に応じた値が前記第1のリミッタ値に達した場合に、前記第1のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第1のリミッタ値未満の場合に、前記第1のスイッチング素子にスイッチング動作させる第1のピークリミッタ回路と、
 前記出力電流に応じた値と前記第1の直流電圧の増加に基づいて、前記第1のリミッタ値を増加させる第1の制御部と、を有し、
 前記第2のインバータは、
 第2のリミッタ値を設定する第2のリミッタ値設定部と、
 前記出力電流に応じた値が前記第2のリミッタ値に達した場合に、前記第2のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第2のリミッタ値未満の場合に、前記第2のスイッチング素子にスイッチング動作させる第2のピークリミッタ回路と、
 前記出力電流に応じた値と前記第2の直流電圧の増加に基づいて、前記第2のリミッタ値を増加させる第2の制御部と、を有することを特徴とする。
 また、前記電源装置において、
 前記第1のリミッタ値設定部は、正の前記第1のリミッタ値と、負の第3のリミッタ値を設定し、
 前記第1のピークリミッタ回路は、前記出力電流に応じた値が前記第1のリミッタ値または前記第3のリミッタ値に達した場合に、前記第1のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第1のリミッタ値未満であり且つ前記第3のリミッタ値より大きい場合に、前記第1のスイッチング素子にスイッチング動作させ、
 前記第1の制御部は、前記出力電流に応じた値と前記第1の直流電圧の増加に基づいて、前記第1のリミッタ値を増加させると共に前記第3のリミッタ値を低下させ、
 前記第2のリミッタ値設定部は、正の前記第2のリミッタ値と、負の第4のリミッタ値を設定し、
 前記第2のピークリミッタ回路は、前記出力電流に応じた値が前記第2のリミッタ値または前記第4のリミッタ値に達した場合に、前記第2のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第2のリミッタ値未満であり且つ前記第4のリミッタ値より大きい場合に、前記第2のスイッチング素子にスイッチング動作させ、
 前記第2の制御部は、前記出力電流に応じた値と前記第2の直流電圧の増加に基づいて、前記第2のリミッタ値を増加させると共に前記第4のリミッタ値を低下させてもよい。
 また、前記電源装置において、
 前記第1の制御部は、前記出力電流に応じた値が予め定められた第1の規定電流値以上であり、且つ、前記第1の直流電圧が予め定められた第1の規定電圧値以上である状態が、予め定められた第1の規定時間継続した場合に、前記第1のリミッタ値を増加させると共に前記第3のリミッタ値を低下させ、
 前記第2の制御部は、前記出力電流に応じた値が予め定められた第2の規定電流値以上であり、且つ、前記第2の直流電圧が予め定められた第2の規定電圧値以上である状態が、前記第1の規定時間継続した場合に、前記第2のリミッタ値を増加させると共に前記第4のリミッタ値を低下させてもよい。
 また、前記電源装置において、
 前記第1の規定電流値は、前記第1及び第2のインバータの定格電流値より大きく、前記第1のリミッタ値以下であり、
 前記第2の規定電流値は、前記定格電流値より大きく、前記第2のリミッタ値以下であってもよい。
 また、前記電源装置において、
 前記第1の制御部は、前記出力電流に応じた値が前記第1の規定電流値以上であり、且つ、前記第1の直流電圧が前記第1の規定電圧値未満である状態が、予め定められた第2の規定時間継続した場合に、前記第1のリミッタ値を低下させると共に前記第3のリミッタ値を増加させ、
 前記第2の制御部は、前記出力電流に応じた値が前記第2の規定電流値以上であり、且つ、前記第2の直流電圧が前記第2の規定電圧値未満である状態が、前記第2の規定時間継続した場合に、前記第2のリミッタ値を低下させると共に前記第4のリミッタ値を増加させてもよい。
 また、前記電源装置において、
 前記第1の制御部は、前記出力電流に応じた値が前記第1の規定電流値未満である状態が、予め定められた第3の規定時間継続した場合に、前記第1のリミッタ値を低下させると共に前記第3のリミッタ値を増加させ、
 前記第2の制御部は、前記出力電流に応じた値が前記第2の規定電流値未満である状態が、前記第3の規定時間継続した場合に、前記第2のリミッタ値を低下させると共に前記第4のリミッタ値を増加させてもよい。
 また、前記電源装置において、
 前記第1の制御部は、前記第1及び第3のリミッタ値を、それぞれ予め定められた範囲で変化させ、
 前記第2の制御部は、前記第2及び第4のリミッタ値を、それぞれ予め定められた範囲で変化させてもよい。
 また、前記電源装置において、
 前記第1のインバータは、前記出力電流に応じた値が前記第1のリミッタ値又は前記第3のリミッタ値に達した状態が予め定められた短絡検出時間の間続いた場合、又は、前記第1の直流電圧が予め定められた第1の過電圧検出値以上になった場合に、前記第1及び第2のスイッチング素子をオフにする第1の保護回路を有し、
 前記第1の過電圧検出値は、前記第1の規定電圧値より高く、
 前記第2のインバータは、前記出力電流に応じた値が前記第2のリミッタ値又は前記第4のリミッタ値に達した状態が前記短絡検出時間の間続いた場合、又は、前記第2の直流電圧が予め定められた第2の過電圧検出値以上になった場合に、前記第1及び第2のスイッチング素子をオフにする第2の保護回路を有し、
 前記第2の過電圧検出値は、前記第2の規定電圧値より高くてもよい。
 また、前記電源装置において、
 前記第1のインバータは、前記出力電流に応じた値を第1の検出電圧に変換する第1の電流電圧変換回路を有し、
 前記第1のリミッタ値設定部は、
 前記第1の制御部の制御に応じたパルス幅の第1及び第3のPWM信号を生成する第1のPWM部と、
 前記第1のPWM信号を平滑して、前記第1のリミッタ値に対応する第1のリファレンス電圧を生成すると共に、前記第3のPWM信号を平滑して、前記第3のリミッタ値に対応する第3のリファレンス電圧を生成する第1の平滑回路と、を有し、
 前記第1のピークリミッタ回路は、前記検出電圧と前記第1及び第3のリファレンス電圧に基づいて、前記出力電流に応じた値と前記第1及び第3のリミッタ値との関係を判定し、
 前記第2のインバータは、前記出力電流に応じた値を第2の検出電圧に変換する第2の電流電圧変換回路を有し、
 前記第2のリミッタ値設定部は、
 前記第2の制御部の制御に応じたパルス幅の第2及び第4のPWM信号を生成する第2のPWM部と、
 前記第2のPWM信号を平滑して、前記第2のリミッタ値に対応する第2のリファレンス電圧を生成すると共に、前記第4のPWM信号を平滑して、前記第4のリミッタ値に対応する第4のリファレンス電圧を生成する第2の平滑回路と、を有し、
 前記第2のピークリミッタ回路は、前記検出電圧と前記第2及び第4のリファレンス電圧に基づいて、前記出力電流に応じた値と前記第2及び第4のリミッタ値との関係を判定してもよい。
 本発明によれば、第1及び第2のインバータの第1及び第2の制御部は、それぞれ、出力電流に応じた値及び対応する直流電圧の増加に基づいて、対応するリミッタ値を増加させるようにしている。
 これにより、例えば、第1のインバータの第1のリミッタ値が第2のインバータの第2のリミッタ値より小さい場合、起動時に大電流を要する負荷に電流供給を開始した後、出力電流に応じた値が第1のリミッタ値に達して、第1のスイッチング素子がスイッチング動作を停止してオフになる。この時、第2のスイッチング素子がオンしていることで第1の直流電圧が増加するので、第1の制御部は第1のリミッタ値を増加させる。これにより第1のリミッタ値が第2のリミッタ値より大きくなると、第1のスイッチング素子は再度スイッチング動作を開始するので、オンした第1のスイッチング素子に電流が流れることで、1次側の第1の直流電圧は低下する。
 従って、1次側の直流電圧の過度の上昇を防止した上で、起動時に大電流を要する負荷を駆動できる。
本発明の一実施形態に係る電源装置の構成を示すブロック図である。 本発明の一実施形態に係る電源装置の出力電流と第1の直流電圧を示す波形図である。 図1の第1及び第2のリミッタ値設定部と、第1及び第2のピークリミッタ回路の回路構成の一例を示す図である。 従来の電源装置の構成を示すブロック図である。 従来の電源装置の出力電流と第1の直流電圧を示す波形図である。
 以下に、図面を参照して本発明の一実施形態について説明する。この実施形態は、本発明を限定するものではない。
 図1は、本発明の一実施形態に係る電源装置の構成を示すブロック図である。図1に示すように、電源装置は、第1のインバータ100と、第2のインバータ200と、を備える。
 第1及び第2のインバータ100,200間は通信線1で接続されており、この通信線1を介して、互いを同期運転するための制御信号や同期信号が伝達される。第1のインバータ100はマスターとして動作し、第2のインバータ200はスレーブとして動作する。
 第1のインバータ100の入力端子I1,I2間と、第2のインバータ200の入力端子I3,I4間には、それぞれ直流電力が供給される。例えば、図示しないエンジン発電機で発電された交流電力を直流電力に変換して、変換された直流電力を第1のインバータ100と第2のインバータ200に供給してもよい。
 第1のインバータ100は、第1のブリッジ回路11を構成する4つの第1のスイッチング素子Q11~Q14のスイッチング動作に基づいて、入力端子I1,I2間の第1の直流電圧Vdc1を第1の交流電圧Vac1に変換して出力端子O1,O2間から出力する。
 第2のインバータ200は、第2のブリッジ回路21を構成する4つの第2のスイッチング素子Q21~Q24のスイッチング動作に基づいて、入力端子I1,I2間の第2の直流電圧Vdc2を、第1の交流電圧Vac1と同期した第2の交流電圧Vac2に変換して出力端子O3,O4間から出力する。
 第2のインバータ200の出力は、第1のインバータ100の出力と直列に接続されている。つまり、第1のインバータ100の出力端子O2と第2のインバータ200の出力端子O3は接続され、第1のインバータ100の出力端子O1は交流出力端子OUT1に接続され、第2のインバータ200の出力端子O4は交流出力端子OUT2に接続されている。この電源装置は、各インバータ100,200が出力する交流電圧Vac1,Vac2の2倍の交流電圧を、出力端子OUT1,OUT2間から出力電圧Voutとして出力する。
 次に、第1及び第2のインバータ100,200の構成について説明する。
 第1のインバータ100は、第1の入力キャパシタCin1と、第1のブリッジ回路11と、第1のフィルタ12と、第1の駆動回路13と、第1の電流電圧変換回路14と、第1のリミッタ値設定部15と、第1のピークリミッタ回路16と、第1の制御部17と、第1の保護回路18と、を有する。
 第1の入力キャパシタCin1は、入力端子I1,I2間に接続されている。
 第1のブリッジ回路11は、フルブリッジ回路であり、N型MOSFETである4つの第1のスイッチング素子Q11~Q14と、4つの寄生ダイオードD11~D14とを有する。第1のスイッチング素子Q11,Q13は、入力端子I1,I2間に直列に接続されている。第1のスイッチング素子Q12,Q14も、入力端子I1,I2間に直列に接続されている。各寄生ダイオードD11~D14は、対応する第1のスイッチング素子Q11~Q14のソースにアノードが接続され、対応する第1のスイッチング素子Q11~Q14のドレインにカソードが接続されている。
 第1のスイッチング素子Q11のソースと第1のスイッチング素子Q13のドレインの接続点は、第1のフィルタ12を介して出力端子O2に接続されている。
 第1のスイッチング素子Q12のソースと第1のスイッチング素子Q14のドレインの接続点は、第1のフィルタ12を介して出力端子O1に接続されている。
 第1のフィルタ12は、例えばインダクタとキャパシタで構成され、第1のブリッジ回路11の出力電圧から高調波を除去して正弦波に近い第1の交流電圧Vac1を得るためのものである。
 第1の駆動回路13は、第1の交流電圧Vac1が所望の値になるように、パルス幅変調された第1の駆動信号を第1のスイッチング素子Q11~Q14のゲートに出力する。第1のスイッチング素子Q11~Q14は、第1の駆動信号に応じてスイッチング動作する。
 また、第1の駆動回路13は、第1の交流電圧Vac1と第2の交流電圧Vac2を同期させるための同期信号を出力する。この同期信号は、通信線1を介して第2のインバータ200の第2の駆動回路23に供給される。
 第1の電流電圧変換回路14は、出力端子O2に流れる出力電流Ioutを第1の検出電圧Vdet1に変換する。以下、出力電流Ioutに代えて、出力電流Ioutに応じた値を用いてもよい。
 第1及び第2のインバータ100,200は出力が直列接続されているので、出力電流Ioutは、各出力端子O1~O4に流れる。
 第1のリミッタ値設定部15は、正の第1のリミッタ値と、負の第3のリミッタ値を設定する。本実施形態では、第1のリミッタ値設定部15は、第1のリミッタ値に対応する第1のリファレンス電圧REF1と、第3のリミッタ値に対応する第3のリファレンス電圧REF3を生成する。
 第1のピークリミッタ回路16は、出力電流Ioutと第1及び第3のリミッタ値との関係に応じて第1の駆動回路13を制御することにより、第1のスイッチング素子Q11~Q14にスイッチング動作させるか否かを制御する。
 第1のピークリミッタ回路16は、出力電流Ioutが第1のリミッタ値または第3のリミッタ値に達した場合に、第1のスイッチング素子Q11~Q14にスイッチング動作させず、第1のスイッチング素子Q11~Q14を全てオフにする。第1のピークリミッタ回路16は、一方、出力電流Ioutが第1のリミッタ値未満であり且つ第3のリミッタ値より大きい場合に、第1のスイッチング素子Q11~Q14にスイッチング動作させる。
 本実施形態では、第1のピークリミッタ回路16は、第1の検出電圧Vdet1と第1及び第3のリファレンス電圧REF1,REF3に基づいて、出力電流Ioutと第1及び第3のリミッタ値との関係を判定する。
 第1の制御部17は、第1の検出電圧Vdet1と第1の直流電圧Vdc1が入力され、出力電流Ioutと第1の直流電圧Vdc1の増加に基づいて、第1のリミッタ値設定部15に、第1のリミッタ値を増加させると共に第3のリミッタ値を低下させる。第1の制御部17は、第1及び第3のリミッタ値を、それぞれ予め定められた範囲(例えば±数A)で変化させる。即ち、第1及び第3のリミッタ値は、それぞれ上限値と下限値を有する。第1の制御部17の詳細な動作は、第2のインバータ200の第2の制御部27の詳細な動作と共に後述する。
 第1の保護回路18は、第1のピークリミッタ回路16の出力信号と第1の直流電圧Vdc1が入力され、出力電流Ioutが第1又は第3のリミッタ値に達した状態が予め定められた短絡検出時間(例えば数秒)の間続いた場合、又は、第1の直流電圧Vdc1が予め定められた第1の過電圧検出値以上になった場合に、第1の駆動回路13および第2のインバータ200の第2の駆動回路23の動作を停止させる。これにより、第1の保護回路18は、第1及び第2のスイッチング素子Q11~Q14,Q21~Q24を全てオフにして、スイッチング動作させない。第1の過電圧検出値は、第1の規定電圧値より高い。 
 第2のインバータ200の基本的な構成は、第1のインバータ100と同様である。
 即ち、第2のインバータ200は、第2の入力キャパシタCin2と、第2のブリッジ回路21と、第2のフィルタ22と、第2の駆動回路23と、第2の電流電圧変換回路24と、第2のリミッタ値設定部25と、第2のピークリミッタ回路26と、第2の制御部27と、第2の保護回路28と、を有する。
 第2の入力キャパシタCin2は、入力端子I3,I4間に接続されている。
 第2のブリッジ回路21は、フルブリッジ回路であり、N型MOSFETである4つの第2のスイッチング素子Q21~Q24と、4つの寄生ダイオードD21~D24とを有する。第2のスイッチング素子Q21,Q23は、入力端子I3,I4間に直列に接続されている。第2のスイッチング素子Q22,Q24も、入力端子I3,I4間に直列に接続されている。各寄生ダイオードD21~D24は、対応する第2のスイッチング素子Q21~Q24のソースにアノードが接続され、対応する第2のスイッチング素子Q21~Q24のドレインにカソードが接続されている。
 第2のスイッチング素子Q21のソースと第2のスイッチング素子Q23のドレインの接続点は、第2のフィルタ22を介して出力端子O3に接続されている。
 第2のスイッチング素子Q22のソースと第2のスイッチング素子Q24のドレインの接続点は、第2のフィルタ22を介して出力端子O4に接続されている。
 第2のフィルタ22は、第1のフィルタ12と同じ機能を有する。
 第2の駆動回路23は、第2の交流電圧Vac2が所望の値になるように、パルス幅変調された第2の駆動信号を第2のスイッチング素子Q21~Q24のゲートに出力する。第2のスイッチング素子Q21~Q24は、第2の駆動信号に応じてスイッチング動作する。この時、第2の駆動回路23は、第1の駆動回路13から通信線1を介して供給された同期信号に基づいて、第1の駆動信号と同期した第2の駆動信号を出力する。
 第2の電流電圧変換回路24は、出力端子O4に流れる出力電流Ioutを第2の検出電圧Vdet2に変換する。
 第2のリミッタ値設定部25は、正の第2のリミッタ値と、負の第4のリミッタ値を設定する。本実施形態では、第2のリミッタ値に対応する第2のリファレンス電圧REF2と、第4のリミッタ値に対応する第4のリファレンス電圧REF4を生成する。
 第2のピークリミッタ回路26は、出力電流Ioutと第2及び第4のリミッタ値との関係に応じて第2の駆動回路23を制御することにより、第2のスイッチング素子Q21~Q24にスイッチング動作させるか否かを制御する。
 第2のピークリミッタ回路26は、出力電流Ioutが第2のリミッタ値または第4のリミッタ値に達した場合に、第2のスイッチング素子Q21~Q24にスイッチング動作させず、第2のスイッチング素子Q21~Q24を全てオフにする。第2のピークリミッタ回路26は、一方、出力電流Ioutが第2のリミッタ値未満であり且つ第4のリミッタ値より大きい場合に、第2のスイッチング素子Q21~Q24にスイッチング動作させる。
 本実施形態では、第2のピークリミッタ回路26は、第2の検出電圧Vdet2と第2及び第4のリファレンス電圧REF2,REF4に基づいて、出力電流Ioutと第2及び第4のリミッタ値との関係を判定する。
 第2の制御部27は、第2の検出電圧Vdet2と第2の直流電圧Vdc2が入力され、出力電流Ioutと第2の直流電圧Vdc2の増加に基づいて、第2のリミッタ値設定部25に、第2のリミッタ値を増加させると共に第4のリミッタ値を低下させる。
 第2の制御部27は、第2及び第4のリミッタ値を、それぞれ予め定められた範囲で変化させる。即ち、第2及び第4のリミッタ値は、それぞれ上限値と下限値を有する。
 第2の保護回路28は、第2のピークリミッタ回路26の出力信号と第2の直流電圧Vdc2が入力され、出力電流Ioutが第2又は第4のリミッタ値に達した状態が予め定められた短絡検出時間の間続いた場合、又は、第2の直流電圧Vdc2が予め定められた第2の過電圧検出値以上になった場合に、第2の駆動回路23および第1のインバータ100の第1の駆動回路13の動作を停止させる。これにより、第2の保護回路28は、第1及び第2のスイッチング素子Q11~Q14,Q21~Q24を全てオフにして、スイッチング動作させない。第2の過電圧検出値は、第2の規定電圧値より高い。
 次に、図2を参照して、電源装置の動作を、第1及び第2の制御部17,27のより詳しい動作と共に説明する。
 図2は、本発明の一実施形態に係る電源装置の出力電流Ioutと第1の直流電圧Vdc1を示す波形図である。図2は、例えば白熱電球などのような、起動時に大電流を要する負荷が電源装置に接続された場合の波形図である。また、図2は、初期状態において、回路素子のばらつきなどに起因して、正の第1のリミッタ値は、正の第2のリミッタ値より小さく、負の第3のリミッタ値は、負の第4のリミッタ値より大きい場合の波形図である。
 図示する例では、時刻t1において、起動時に大電流を要する負荷に電流供給を開始した時、電源装置の出力端子OUT1,OUT2間は短絡状態になる。従って、時刻t1以降、第1のインバータ100では、出力電流Ioutが第1又は第3のリミッタ値に達した時に第1のスイッチング素子Q11~Q14はオフになり、出力電流Ioutの最大値は第1のリミッタ値に制限され、その最小値は第3のリミッタ値に制限される。
 このように第1のインバータ100によって出力電流Ioutが制限されることで、第2のインバータ200では、出力電流Ioutが第2及び第4のリミッタ値に達しないため、通常動作時と同様に、時刻t1以降も第2のスイッチング素子Q21~Q24はスイッチング動作し続ける。
 第2のスイッチング素子Q21~Q24がスイッチング動作し続けることにより、第1のインバータ100では、寄生ダイオードD11~D14を介して電流が1次側に流れ、これにより1次側の第1の直流電圧Vdc1が徐々に上昇する。
 ここで、第1の制御部17は、出力電流Ioutが予め定められた第1の規定電流値以上であり、且つ、第1の直流電圧Vdc1が予め定められた第1の規定電圧値以上である状態が、予め定められた第1の規定時間継続した場合に、第1のリミッタ値を一定値増加させると共に第3のリミッタ値を一定値低下させるように構成されている。第1の規定電流値は、第1及び第2のインバータの定格電流値より大きく、第1のリミッタ値以下である。
 図示した例では、時刻t2において上記条件が満たされるので、第1の制御部17が第1のリミッタ値を一定値増加させると共に第3のリミッタ値を一定値低下させる。これにより、第1のリミッタ値が第2のリミッタ値より大きくなり、第3のリミッタ値が第4のリミッタ値より小さくなると、第1のスイッチング素子Q11~Q14は再度スイッチング動作を開始する。従って、オンした第1のスイッチング素子に電流が流れることで、1次側の第1の直流電圧Vdc1は、上昇に要した時間より短時間で低下して、初期状態の電圧に戻る。
 一方、時刻t2以降、第2のインバータ200において、出力電流Ioutが第2及び第4のリミッタ値に達することで第2のスイッチング素子Q21~Q24はオフになり、出力電流Ioutの最大値は第2のリミッタ値に制限され、その最小値は第4のリミッタ値に制限される。
 図示は省略するが、これにより、第2のインバータ200では、寄生ダイオードD21~D24を介して電流が1次側に流れ、第2の直流電圧Vdc2が徐々に上昇する。
 第2の制御部27は、出力電流Ioutが予め定められた第2の規定電流値以上であり、且つ、第2の直流電圧Vdc2が予め定められた第2の規定電圧値以上である状態が、第1の規定時間継続した場合に、第2のリミッタ値を一定値増加させると共に第4のリミッタ値を一定値低下させるように構成されている。
 第2の規定電流値は、定格電流値より大きく、第2のリミッタ値以下である。第2の規定電流値は第1の規定電流値と等しくてもよい。第1及び第2の規定電流値は、例えば、定格電流値の2倍以上でもよい。
 第2のリミッタ値が増加して第4のリミッタ値が低下することにより、再び第2のリミッタ値が第1のリミッタ値より大きくなり、第4のリミッタ値が第3のリミッタ値より小さくなると、第2のスイッチング素子Q21~Q24は再度スイッチング動作を開始するので、第2の直流電圧Vdc2は短時間で低下する。
 このような動作を繰り返すことで、第1の直流電圧Vdc1が第1の過電圧検出値に達することは無く、第2の直流電圧Vdc2が第2の過電圧検出値に達することも無いため、第1及び第2の保護回路18,28が第1及び第2のインバータ100,200の動作を停止させる恐れは無い。
 このような負荷は、起動後、短絡検出時間以内にインピーダンスが増加するので、出力電流Ioutは、定格電流未満に減少して、第1から第4のリミッタ値に達しないようになる。即ち、出力端子OUT1,OUT2間の短絡状態は解消され、電源装置は、通常動作によって、このような負荷に対して電流供給を継続できる。
 従って本実施形態によれば、回路素子のばらつき、又は、温度変化や経年変化等の環境変化により、第1及び第3のリミッタ値が異なり、且つ、第2及び第4のリミッタ値が異なっている場合であっても、1次側の第1及び第2の直流電圧Vdc1,Vdc2の過度の上昇を防止した上で、起動時に大電流を要する負荷を駆動できる。
 なお、第1の制御部17は、出力電流Ioutが第1の規定電流値以上であり、且つ、第1の直流電圧Vdc1が第1の規定電圧値未満である状態が、予め定められた第2の規定時間継続した場合に、第1のリミッタ値を一定値低下させると共に第3のリミッタ値を一定値増加させるようにしてもよい。
 同様に第2の制御部27は、出力電流Ioutが第2の規定電流値以上であり、且つ、第2の直流電圧Vdc2が第2の規定電圧値未満である状態が、第2の規定時間継続した場合に、第2のリミッタ値を一定値低下させると共に第4のリミッタ値を一定値増加させるようにしてもよい。
 この場合、第1及び第2の規定時間を調整することで、短絡状態の間に、第1及び第2のリミッタ値が増加し続けず、第3及び第4のリミッタ値が減少し続けないようにできる。
 さらに、第1の制御部17は、出力電流Ioutが第1の規定電流値未満である状態が、予め定められた第3の規定時間継続した場合に、第1のリミッタ値を一定値低下させると共に第3のリミッタ値を一定値増加させるようにしてもよい。
 同様に第2の制御部27は、出力電流Ioutが第2の規定電流値未満である状態が、第3の規定時間継続した場合に、第2のリミッタ値を一定値低下させると共に第4のリミッタ値を一定値増加させるようにしてもよい。
 この場合、起動時に大電流を要する負荷を駆動して短絡状態になったことにより、第1及び第2のリミッタ値が初期状態の値より大きくなり、第3及び第4のリミッタ値が初期状態の値より小さくなってしまっても、出力電流Ioutが第1及び第2の規定電流値未満である通常動作が継続することにより、第1及び第2のリミッタ値を下限値まで低下させ、第3及び第4のリミッタ値を上限値まで上昇させることができる。従って、再度、起動時に大電流を要する負荷を駆動する際に、第1から第4のリミッタ値を調整できる範囲が広がる。
 なお、上記第1から第3の規定時間は、同じ時間に設定してもよく、互いに異なる時間に設定してもよい。
 ところで、このような起動時に大電流を要する負荷が接続されておらず、電源装置の出力端子OUT1,OUT2間が実際に短絡した場合であっても、上述のように動作する。しかし、この場合、第1又は第2の保護回路18,28は、短絡状態が短絡検出時間続いた場合に、第1及び第2の駆動回路13,23の動作を停止させる。即ちこの場合、従来の電源装置と同様に、電源装置自体の動作を停止させて出力電圧Vout及び出力電流Ioutが出力されないようにできるため、安全性を確保できる。
(回路構成の具体例)
 上述した第1及び第2のリミッタ値設定部15,25と、第1及び第2のピークリミッタ回路16,26は、例えば、以下のように構成してもよい。
 図3は、図1の第1及び第2のリミッタ値設定部15,25と、第1及び第2のピークリミッタ回路16,26の回路構成の一例を示す図である。
 図3に示すように、第1のリミッタ値設定部15は、第1のPWM部15aと、第1の平滑回路15bと、を有する。
 第1のPWM部15aは、第1の制御部17の制御に応じたパルス幅の第1及び第3のPWM信号S1,S3を生成する。第1のPWM部15aは、例えば、マイコン等を用いて構成できる。
 第1の平滑回路15bは、抵抗R1とキャパシタC1から構成されたローパスフィルタにより、第1のPWM信号S1を平滑して、第1のリミッタ値に対応する第1のリファレンス電圧REF1を生成する。また第1の平滑回路15bは、抵抗R2とキャパシタC2から構成されたローパスフィルタにより、第3のPWM信号S3を平滑して、第3のリミッタ値に対応する第3のリファレンス電圧REF3を生成する。
 第1のピークリミッタ回路16は、第1のリファレンス電圧REF1が非反転入力端子に入力され、第1の検出電圧Vdet1が反転入力端子に入力される比較器16aと、第3のリファレンス電圧REF3が反転入力端子に入力され、第1の検出電圧Vdet1が非反転入力端子に入力される比較器16bと、を有する。比較器16a,16bの出力端子は、第1の駆動回路13及び第1の保護回路18に接続されている。これら比較器16a,16bにより、第1のピークリミッタ回路16は、第1の検出電圧Vdet1と第1及び第3のリファレンス電圧REF1,REF3に基づいて、出力電流Ioutと第1及び第3のリミッタ値との関係を判定する。
 また、第2のリミッタ値設定部25は、第2のPWM部25aと、第2の平滑回路25bと、を有する。
 第2のPWM部25aは、第2の制御部27の制御に応じたパルス幅の第2及び第4のPWM信号S2,S4を生成する。第2のPWM部25aも、例えば、マイコン等を用いて構成できる。
 第2の平滑回路25bは、抵抗R3とキャパシタC3から構成されたローパスフィルタにより、第2のPWM信号S2を平滑して、第2のリミッタ値に対応する第2のリファレンス電圧REF2を生成する。また第2の平滑回路25bは、抵抗R4とキャパシタC4から構成されたローパスフィルタにより、第4のPWM信号S4を平滑して、第4のリミッタ値に対応する第4のリファレンス電圧REF4を生成する。
 第2のピークリミッタ回路26は、第2のリファレンス電圧REF2が非反転入力端子に入力され、第2の検出電圧Vdet2が反転入力端子に入力される比較器26aと、第4のリファレンス電圧REF4が反転入力端子に入力され、第2の検出電圧Vdet2が非反転入力端子に入力される比較器26bと、を有する。比較器26a,26bの出力端子は、第2の駆動回路23及び第2の保護回路28に接続されている。これら比較器26a,26bにより、第2のピークリミッタ回路26は、第2の検出電圧Vdet2と第2及び第4のリファレンス電圧REF2,REF4に基づいて、出力電流Ioutと第2及び第4のリミッタ値との関係を判定する。
 このような回路構成によって、図1の構成と同様の効果が得られる。
(変形例)
 例えば、第1及び第2のリミッタ値設定部15,25は、第1及び第2の制御部17,27の制御に応じた第1~第4のリファレンス電圧REF1~REF4を生成できればよく、D/A変換器などを用いてもよい。
 また、第1及び第2のスイッチング素子Q11~Q14,Q21~Q24として、IGBTなど、寄生ダイオードを有している他のスイッチング素子を用いても良い。
 本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
Cin1 第1の入力キャパシタ
11 第1のブリッジ回路
12 第1のフィルタ
13 第1の駆動回路
14 第1の電流電圧変換回路
15 第1のリミッタ値設定部
15a 第1のPWM部
15b 第1の平滑回路
16 第1のピークリミッタ回路
17 第1の制御部
18 第1の保護回路
100 第1のインバータ
Cin2 第2の入力キャパシタ
21 第2のブリッジ回路
22 第2のフィルタ
23 第2の駆動回路
24 第2の電流電圧変換回路
25 第2のリミッタ値設定部
25a 第2のPWM部
25b 第2の平滑回路
26 第2のピークリミッタ回路
27 第2の制御部
28 第2の保護回路
200 第2のインバータ

Claims (9)

  1.  第1のブリッジ回路を構成する複数の第1のスイッチング素子のスイッチング動作に基づいて、第1の直流電圧を第1の交流電圧に変換して出力する第1のインバータと、
     第2のブリッジ回路を構成する複数の第2のスイッチング素子のスイッチング動作に基づいて、第2の直流電圧を、前記第1の交流電圧と同期した第2の交流電圧に変換して出力し、出力が前記第1のインバータの出力と直列に接続された第2のインバータと、を備え、
     前記第1のインバータは、
     第1のリミッタ値を設定する第1のリミッタ値設定部と、
     出力電流に応じた値が前記第1のリミッタ値に達した場合に、前記第1のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第1のリミッタ値未満の場合に、前記第1のスイッチング素子にスイッチング動作させる第1のピークリミッタ回路と、
     前記出力電流に応じた値と前記第1の直流電圧の増加に基づいて、前記第1のリミッタ値を増加させる第1の制御部と、を有し、
     前記第2のインバータは、
     第2のリミッタ値を設定する第2のリミッタ値設定部と、
     前記出力電流に応じた値が前記第2のリミッタ値に達した場合に、前記第2のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第2のリミッタ値未満の場合に、前記第2のスイッチング素子にスイッチング動作させる第2のピークリミッタ回路と、
     前記出力電流に応じた値と前記第2の直流電圧の増加に基づいて、前記第2のリミッタ値を増加させる第2の制御部と、を有する
     ことを特徴とする電源装置。
  2.  前記第1のリミッタ値設定部は、正の前記第1のリミッタ値と、負の第3のリミッタ値を設定し、
     前記第1のピークリミッタ回路は、前記出力電流に応じた値が前記第1のリミッタ値または前記第3のリミッタ値に達した場合に、前記第1のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第1のリミッタ値未満であり且つ前記第3のリミッタ値より大きい場合に、前記第1のスイッチング素子にスイッチング動作させ、
     前記第1の制御部は、前記出力電流に応じた値と前記第1の直流電圧の増加に基づいて、前記第1のリミッタ値を増加させると共に前記第3のリミッタ値を低下させ、
     前記第2のリミッタ値設定部は、正の前記第2のリミッタ値と、負の第4のリミッタ値を設定し、
     前記第2のピークリミッタ回路は、前記出力電流に応じた値が前記第2のリミッタ値または前記第4のリミッタ値に達した場合に、前記第2のスイッチング素子にスイッチング動作させず、前記出力電流に応じた値が前記第2のリミッタ値未満であり且つ前記第4のリミッタ値より大きい場合に、前記第2のスイッチング素子にスイッチング動作させ、
     前記第2の制御部は、前記出力電流に応じた値と前記第2の直流電圧の増加に基づいて、前記第2のリミッタ値を増加させると共に前記第4のリミッタ値を低下させる
     ことを特徴とする請求項1に記載の電源装置。
  3.  前記第1の制御部は、前記出力電流に応じた値が予め定められた第1の規定電流値以上であり、且つ、前記第1の直流電圧が予め定められた第1の規定電圧値以上である状態が、予め定められた第1の規定時間継続した場合に、前記第1のリミッタ値を増加させると共に前記第3のリミッタ値を低下させ、
     前記第2の制御部は、前記出力電流に応じた値が予め定められた第2の規定電流値以上であり、且つ、前記第2の直流電圧が予め定められた第2の規定電圧値以上である状態が、前記第1の規定時間継続した場合に、前記第2のリミッタ値を増加させると共に前記第4のリミッタ値を低下させる
     ことを特徴とする請求項2に記載の電源装置。
  4.  前記第1の規定電流値は、前記第1及び第2のインバータの定格電流値より大きく、前記第1のリミッタ値以下であり、
     前記第2の規定電流値は、前記定格電流値より大きく、前記第2のリミッタ値以下である
     ことを特徴とする請求項3に記載の電源装置。
  5.  前記第1の制御部は、前記出力電流に応じた値が前記第1の規定電流値以上であり、且つ、前記第1の直流電圧が前記第1の規定電圧値未満である状態が、予め定められた第2の規定時間継続した場合に、前記第1のリミッタ値を低下させると共に前記第3のリミッタ値を増加させ、
     前記第2の制御部は、前記出力電流に応じた値が前記第2の規定電流値以上であり、且つ、前記第2の直流電圧が前記第2の規定電圧値未満である状態が、前記第2の規定時間継続した場合に、前記第2のリミッタ値を低下させると共に前記第4のリミッタ値を増加させる
     ことを特徴とする請求項3又は請求項4に記載の電源装置。
  6.  前記第1の制御部は、前記出力電流に応じた値が前記第1の規定電流値未満である状態が、予め定められた第3の規定時間継続した場合に、前記第1のリミッタ値を低下させると共に前記第3のリミッタ値を増加させ、
     前記第2の制御部は、前記出力電流に応じた値が前記第2の規定電流値未満である状態が、前記第3の規定時間継続した場合に、前記第2のリミッタ値を低下させると共に前記第4のリミッタ値を増加させる
     ことを特徴とする請求項3から請求項5の何れかに記載の電源装置。
  7.  前記第1の制御部は、前記第1及び第3のリミッタ値を、それぞれ予め定められた範囲で変化させ、
     前記第2の制御部は、前記第2及び第4のリミッタ値を、それぞれ予め定められた範囲で変化させる
     ことを特徴とする請求項3から請求項6の何れかに記載の電源装置。
  8.  前記第1のインバータは、前記出力電流に応じた値が前記第1のリミッタ値又は前記第3のリミッタ値に達した状態が予め定められた短絡検出時間の間続いた場合、又は、前記第1の直流電圧が予め定められた第1の過電圧検出値以上になった場合に、前記第1及び第2のスイッチング素子をオフにする第1の保護回路を有し、
     前記第1の過電圧検出値は、前記第1の規定電圧値より高く、
     前記第2のインバータは、前記出力電流に応じた値が前記第2のリミッタ値又は前記第4のリミッタ値に達した状態が前記短絡検出時間の間続いた場合、又は、前記第2の直流電圧が予め定められた第2の過電圧検出値以上になった場合に、前記第1及び第2のスイッチング素子をオフにする第2の保護回路を有し、
     前記第2の過電圧検出値は、前記第2の規定電圧値より高い
     ことを特徴とする請求項3から請求項7の何れかに記載の電源装置。
  9.  前記第1のインバータは、前記出力電流に応じた値を第1の検出電圧に変換する第1の電流電圧変換回路を有し、
     前記第1のリミッタ値設定部は、
     前記第1の制御部の制御に応じたパルス幅の第1及び第3のPWM信号を生成する第1のPWM部と、
     前記第1のPWM信号を平滑して、前記第1のリミッタ値に対応する第1のリファレンス電圧を生成すると共に、前記第3のPWM信号を平滑して、前記第3のリミッタ値に対応する第3のリファレンス電圧を生成する第1の平滑回路と、を有し、
     前記第1のピークリミッタ回路は、前記検出電圧と前記第1及び第3のリファレンス電圧に基づいて、前記出力電流に応じた値と前記第1及び第3のリミッタ値との関係を判定し、
     前記第2のインバータは、前記出力電流に応じた値を第2の検出電圧に変換する第2の電流電圧変換回路を有し、
     前記第2のリミッタ値設定部は、
     前記第2の制御部の制御に応じたパルス幅の第2及び第4のPWM信号を生成する第2のPWM部と、
     前記第2のPWM信号を平滑して、前記第2のリミッタ値に対応する第2のリファレンス電圧を生成すると共に、前記第4のPWM信号を平滑して、前記第4のリミッタ値に対応する第4のリファレンス電圧を生成する第2の平滑回路と、を有し、
     前記第2のピークリミッタ回路は、前記検出電圧と前記第2及び第4のリファレンス電圧に基づいて、前記出力電流に応じた値と前記第2及び第4のリミッタ値との関係を判定する
     ことを特徴とする請求項3から請求項8の何れかに記載の電源装置。
PCT/JP2013/058152 2013-03-21 2013-03-21 電源装置 WO2014147801A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2903668A CA2903668C (en) 2013-03-21 2013-03-21 Power supply device
EP13879185.0A EP2978120B1 (en) 2013-03-21 2013-03-21 Power supply device
US14/773,316 US9647525B2 (en) 2013-03-21 2013-03-21 Power supply device with current limit based on output current and input voltage
PCT/JP2013/058152 WO2014147801A1 (ja) 2013-03-21 2013-03-21 電源装置
CN201380070046.4A CN105612689B (zh) 2013-03-21 2013-03-21 电源装置
JP2015506494A JP5882536B2 (ja) 2013-03-21 2013-03-21 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058152 WO2014147801A1 (ja) 2013-03-21 2013-03-21 電源装置

Publications (1)

Publication Number Publication Date
WO2014147801A1 true WO2014147801A1 (ja) 2014-09-25

Family

ID=51579532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058152 WO2014147801A1 (ja) 2013-03-21 2013-03-21 電源装置

Country Status (6)

Country Link
US (1) US9647525B2 (ja)
EP (1) EP2978120B1 (ja)
JP (1) JP5882536B2 (ja)
CN (1) CN105612689B (ja)
CA (1) CA2903668C (ja)
WO (1) WO2014147801A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175740A (ja) * 2016-03-22 2017-09-28 東芝三菱電機産業システム株式会社 電力変換装置及びその制御方法
JP2018019565A (ja) * 2016-07-29 2018-02-01 東洋電機製造株式会社 補助電源装置
JP2020137243A (ja) * 2019-02-19 2020-08-31 東芝三菱電機産業システム株式会社 電源装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732655B2 (en) * 2016-06-02 2020-08-04 Zeon Corporation Energy harvesting apparatus and current control circuit
US10020754B2 (en) * 2016-09-30 2018-07-10 Sunpower Corporation String inverter system
JP6820825B2 (ja) * 2017-11-09 2021-01-27 三菱電機株式会社 半導体装置及びその駆動方法
FR3113203B1 (fr) 2020-07-29 2023-05-05 Thales Sa Dispositif de protection d’un convertisseur de puissance, dispositif de conversion de puissance.
TWI771002B (zh) * 2021-05-13 2022-07-11 固緯電子實業股份有限公司 用於電源裝置的限流電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219759A (ja) * 1992-02-04 1993-08-27 Toyo Electric Mfg Co Ltd インバータ制御装置
JPH1052052A (ja) * 1996-07-26 1998-02-20 Toyo Electric Mfg Co Ltd 過電流制限保護装置
JP2003047296A (ja) 2001-08-02 2003-02-14 Honda Motor Co Ltd エンジン発電機のインバータ装置
JP2007151228A (ja) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd インバータ電源装置
JP2009296858A (ja) * 2008-06-09 2009-12-17 Hitachi Ltd 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469373B2 (ja) * 1995-10-31 2003-11-25 三菱電機株式会社 半導体パワーモジュールおよび複合パワーモジュール
JP4448396B2 (ja) * 2004-07-13 2010-04-07 株式会社日立製作所 ランプ作動制御装置及びその方法
US7277304B2 (en) * 2005-09-23 2007-10-02 Gm Global Technology Operations, Inc. Multiple inverter system with single controller and related operating method
US7830687B2 (en) * 2006-07-13 2010-11-09 Florida State University Research Foundation, Inc. Adaptive power electronics interface for hybrid energy systems
JP5169135B2 (ja) * 2007-10-22 2013-03-27 サンケン電気株式会社 スイッチング電源装置
CN101217252B (zh) * 2008-01-04 2010-09-01 华中科技大学 一种脉宽调制dc-dc开关电源的软启动电路
JP5183563B2 (ja) * 2009-04-27 2013-04-17 三菱電機株式会社 誘導加熱調理器
US8737024B2 (en) * 2010-02-26 2014-05-27 General Electric Company Self-adjustable overcurrent protection threshold circuit, a method for generating a compensated threshold signal and a power supply employing the circuit or method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219759A (ja) * 1992-02-04 1993-08-27 Toyo Electric Mfg Co Ltd インバータ制御装置
JPH1052052A (ja) * 1996-07-26 1998-02-20 Toyo Electric Mfg Co Ltd 過電流制限保護装置
JP2003047296A (ja) 2001-08-02 2003-02-14 Honda Motor Co Ltd エンジン発電機のインバータ装置
JP2007151228A (ja) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd インバータ電源装置
JP2009296858A (ja) * 2008-06-09 2009-12-17 Hitachi Ltd 電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175740A (ja) * 2016-03-22 2017-09-28 東芝三菱電機産業システム株式会社 電力変換装置及びその制御方法
JP2018019565A (ja) * 2016-07-29 2018-02-01 東洋電機製造株式会社 補助電源装置
JP2020137243A (ja) * 2019-02-19 2020-08-31 東芝三菱電機産業システム株式会社 電源装置
JP6995450B2 (ja) 2019-02-19 2022-02-04 東芝三菱電機産業システム株式会社 電源装置

Also Published As

Publication number Publication date
EP2978120B1 (en) 2018-09-19
CN105612689B (zh) 2018-01-02
CN105612689A (zh) 2016-05-25
US9647525B2 (en) 2017-05-09
US20160020684A1 (en) 2016-01-21
JPWO2014147801A1 (ja) 2017-02-16
EP2978120A4 (en) 2017-03-15
CA2903668C (en) 2016-10-18
CA2903668A1 (en) 2014-09-25
EP2978120A1 (en) 2016-01-27
JP5882536B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5882536B2 (ja) 電源装置
US10097076B2 (en) Control circuit, control method and flyback converter
JP6227041B2 (ja) マルチレベルインバータ
TWI509256B (zh) Polarity detection circuit
US8044535B2 (en) Backup power system
WO2013175644A1 (ja) 電力変換装置
JPWO2017145303A1 (ja) コンバータ装置
EP3076539A1 (en) Discontinuous PWM with overmodulation and neutral point balancing for 3-level converters
WO2018033964A1 (ja) 系統連系インバータ装置及びその運転方法
Singh et al. Delta-modulated ac–ac converter for PM WECS
US8995152B2 (en) Inverter circuit
JP5362657B2 (ja) 電力変換装置
Tang et al. A dual mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies
US9590484B2 (en) Inverter device and power converting method thereof
JP2009027806A (ja) 電力変換装置
US9438132B2 (en) Multilevel AC/DC power converting method and converter device thereof
JP6516182B2 (ja) 電力変換回路およびそれを用いた電力変換装置
KR102226290B1 (ko) Ac-dc 컨버터
RU2578042C1 (ru) Трехфазный z-инвертор
JP7298560B2 (ja) パワーコンディショナ
JP5546605B2 (ja) 電力変換装置
JPWO2011128942A1 (ja) 電力変換装置
JP3290066B2 (ja) 並列同期運転機能を備える携帯用電源装置
JP6034143B2 (ja) 電力変換装置
JP4833760B2 (ja) 電力制御装置および電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013879185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2903668

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14773316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE