WO2014146821A1 - Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile - Google Patents

Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile Download PDF

Info

Publication number
WO2014146821A1
WO2014146821A1 PCT/EP2014/052079 EP2014052079W WO2014146821A1 WO 2014146821 A1 WO2014146821 A1 WO 2014146821A1 EP 2014052079 W EP2014052079 W EP 2014052079W WO 2014146821 A1 WO2014146821 A1 WO 2014146821A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor vehicle
circumference
determined
wheel
distance
Prior art date
Application number
PCT/EP2014/052079
Other languages
German (de)
English (en)
Inventor
Nicolas Jecker
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Priority to EP14702834.4A priority Critical patent/EP2976248A1/fr
Publication of WO2014146821A1 publication Critical patent/WO2014146821A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • G01B21/12Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters of objects while moving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/18Distance travelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the invention relates to a method for determining a current circumference of at least one wheel of a motor vehicle by means of a driver assistance device of the
  • the invention additionally relates to a
  • the circumference of a first wheel here becomes dependent on the measured yaw rate, the track between the first wheel and a second wheel of the same axis, the rotational speed of the first wheel and the second wheel and in dependence on a ratio between the circumference of the first wheel and the circumference of the second wheel.
  • the ratio between the circumference of the first wheel and the circumference of the second wheel can be determined at a time when the yaw rate integrated over a predetermined time interval is zero. This ratio can therefore be determined in particular when driving straight ahead of the motor vehicle.
  • EP 0 979 763 B1 discloses a method for determining the curve radius of lanes. It will be the difference of the wheel speed of at least two Vehicle wheels measured and determines the yaw rate of the motor vehicle and thus the curve radius.
  • This object is achieved by a method by a
  • An inventive method is used to determine a current or
  • a driver assistance device of the motor vehicle By means of a yaw rate sensor of the driver assistance device, a yaw rate of the motor vehicle is detected, and the current circumference of the at least one wheel is dependent on the yaw rate and on at least one known or stored geometry parameter of the
  • Curve detected, and a turning radius of the traveled curve is determined in dependence on the steering angle and the at least one geometry parameter of the motor vehicle. If the curve radius is known, a distance traveled by the motor vehicle during cornering depends on the yaw rate and on the
  • Curve radius is determined, and the scope becomes dependent on the traveled
  • the known geometry of the motor vehicle is used to calculate on the basis of the measured steering angle - the steering wheel angle and / or the steering angle of the front wheels - the curve radius of the traveled curve.
  • the measured yaw rate and the calculated curve radius can turn the
  • the extent of the at least one wheel can then be determined without much effort on the basis of the distance traveled.
  • the inventive method has over the prior art in particular the advantage that only a turn is needed and it is therefore not necessary that the vehicle must be driven straight ahead.
  • the calculation of the scope can thus be performed more reliable overall.
  • the determination of the scope is much more precise than in the prior art, because the proposed method is independent of the determination of the rotational speed of the wheels and used as measured variables in particular only the said yaw rate and the steering angle and beyond the exact, known geometry parameters of the motor vehicle become.
  • This actual circumference of the wheel can basically change during operation of the motor vehicle for a variety of reasons, such as in particular due to temperature fluctuations, wear, changes in air pressure and the like.
  • the curve radius of the traveled curve is determined as a function of the steering angle and the at least one geometry parameter.
  • a geometry parameter a wheelbase of the motor vehicle is preferably used, i. the distance between the front axle and the rear axle of the motor vehicle.
  • the curve radius can be determined reliably, for example, according to the single track model and without much computational effort.
  • the circumference of the at least one wheel can be determined as follows: By means of a wheel sensor, the number of revolutions of the at least one wheel when traveling the distance can be detected. The scope can then be determined by the distance traveled
  • Distance and the number of revolutions are determined.
  • the distance covered can be divided by the number of revolutions and the circumference thus calculated directly.
  • Revolutions for example, a usually already existing ABS sensor can be used, which provides several signal pulses per revolution and by means of which the revolutions of the wheel are thus detected.
  • a toothed disk and a sensor are used here, for example a Hall sensor or an optical sensor.
  • the respective scope is determined individually. Then, the number of revolutions of the respective wheel can be detected individually by means of an associated wheel sensor to these at least two wheels, and the respective circumference of the at least two wheels can be determined on the basis of the distance traveled and the respective number of revolutions. It is used here the fact that the ABS sensors are typically present not only on a single wheel, but on all wheels of the motor vehicle, so that the information about the respective number of revolutions is always available. This can now be used to individually determine the respective extent for the at least two wheels. Thus, it is possible, for example, to monitor the air pressure of the wheels individually or very precise parking paths by means of an automatic
  • the respective circumference is determined individually for at least two wheels of the motor vehicle, then it can be provided that the distance covered is determined individually for the at least two wheels, in particular for the wheels of different vehicle sides, and the respective circumference of the at least two wheels on the basis of the respective Distance is determined.
  • This can be carried out, for example, in such a way that the curve radius of the traveled curve is determined individually for a curve-internal wheel and a curve-outside wheel, taking into account the geometry of the motor vehicle-in particular taking into account the gauge of the motor vehicle.
  • the respective covered distance of the inside wheel on the one hand and the kurvenäu ßeren wheel on the other hand can be determined on the basis of the respective curve radius and the yaw rate, and the respective circumference of the two wheels can be calculated from each traveled distance.
  • the respective circumference for all wheels of the motor vehicle can thus be calculated individually and very precisely.
  • the information about the current steering angle is preferably at a
  • Communication bus of the motor vehicle tapped, in particular on the CAN bus.
  • information about a common steering angle of the front wheels according to the single-track model is transmitted via this communication bus.
  • the geometry parameters of the motor vehicle - such as the gauge - but the steering angle can be calculated individually for the two steerable wheels.
  • the inside wheels on the one hand and for the kurvenäu ßeren wheels on the other hand thus results in a different radius of curvature of the traveled Distance, which is determined in particular on the basis of the respective steering angle and preferably also taking into account the wheelbase.
  • the individual determination of the radius of curvature for the two sides of the vehicle can also be simplified such that first the radius of curvature is determined based on a center of a vehicle axis to then calculate depending on this Einspurmodell curve radius and depending on the gauge inside the curve radius and the curve outer radius ,
  • a common value for the circumference depends on the distance traveled, and in particular also on the number of revolutions of the at least one wheel is determined.
  • Motor vehicle determined so it can be provided to increase the accuracy that for the at least two wheels, the respective number of revolutions is detected individually by means of each associated wheel sensor and the number of revolutions indicating numerical values filtered, in particular averaged.
  • the common value for the extent can then be determined depending on the result of this filtering.
  • the common value for the circumference can be determined very precisely, because possibly existing outliers can be eliminated by the filtering.
  • Determining the distance traveled may include a
  • Alignment angle of the vehicle about the yaw axis - is determined during cornering by an integration of the yaw rate.
  • the distance traveled can then be determined directly on the basis of the yaw angle change and the curve radius. Namely, the relation holds that the traveled distance along the traveled curve can be calculated by multiplying the radius of curvature by the yaw angle change (in radians). The determination of the distance traveled thus takes place on the one hand without much computational effort and on the other hand also particularly reliable and precise.
  • the detection of the distance traveled or the integration of the yaw rate to determine the scope is carried out only under the condition that a predetermined criterion with respect to the driving dynamics of the motor vehicle is met. This ensures that the distance covered is only integrated if a highly precise determination of the circumference is possible.
  • This predetermined criterion may include, for example, at least one of the following conditions:
  • ABS Vehicle dynamics control system
  • the steering angle must be within a predetermined desired value range, it is ensured that a cornering of the motor vehicle is present and thus the extent of the at least one wheel can be reliably determined.
  • the determination of the circumference based on the detected distance can only be carried out on the premise that the distance traveled is greater than the threshold value. Additionally or alternatively it can be checked whether the yaw angle change of the motor vehicle during the
  • Cornering is greater than a predetermined threshold, and the determination of the circumference based on the traveled distance can only be made on the premise that the yaw angle change is greater than the threshold value. For example, it is possible to wait until the motor vehicle has turned around 90 ° about the yaw axis, and only then can the circumference be determined on the basis of the distance traveled along the 90 ° ring segment. Thus, a plausible result can be achieved. If the current extent of the at least one wheel is known, then this information can be utilized in various ways:
  • the determined actual extent of the at least one wheel can be compared with a reference value, in particular with a predefined or pre-stored and thus stored reference value and / or with the determined current circumference of another wheel of the motor vehicle.
  • a reference value in particular with a predefined or pre-stored and thus stored reference value and / or with the determined current circumference of another wheel of the motor vehicle.
  • a warning can then be issued to the driver.
  • the invention additionally relates to a driver assistance device for a motor vehicle, which is designed to carry out a method according to the invention.
  • the driver assistance device may in particular include a yaw rate sensor for determining a yaw rate of the motor vehicle and a steering angle sensor for detecting the current steering angle of the motor vehicle.
  • the driver assistance device can also have an electronic computing device which is designed to determine a curve radius of the traveled curve as a function of the steering angle and of at least one geometry parameter of the motor vehicle, a distance traveled by the motor vehicle during cornering depending on the yaw rate and of the To determine radius of curvature and to determine the circumference of the at least one wheel depending on the distance traveled.
  • a motor vehicle according to the invention comprises an inventive
  • FIG. 1 is a schematic representation of a motor vehicle with a
  • Fig. 3 in a schematic representation of a driving situation of the motor vehicle for
  • the motor vehicle 1 is for example a passenger car.
  • the motor vehicle 1 includes a driver assistance device 2, which serves to assist the driver when driving the motor vehicle 1.
  • the driver assistance device 2 can be, for example, a parking assistance system.
  • the driver assistance device 2 comprises a yaw rate sensor 3, a steering angle sensor 4 and an electronic computing device 5.
  • the sensors 3, 4 and the computing device 5 are connected to a communication bus 6 of the motor vehicle 1, in particular the CAN bus.
  • the computing device 5 thus receives information about a current
  • geometry parameters of the motor vehicle 1 are stored in the computing device 5.
  • the computing device 5 is designed such that it can determine the actual and thus current circumference of at least one wheel 7, 8, 9, 10 of the motor vehicle 1 as a function of the yaw rate G, the steering angle ⁇ and at least one geometry parameter A, W namely the
  • the information about the actual extent can then be used, for example, in the calculation of parking paths by means of the parking assistance system.
  • the wheel circumference of at least one wheel 7, 8, 9, 10 can be compared with a reference value, and after detecting a significant
  • Deviation can be issued a warning to the driver.
  • the reference value may be, for example, a pre-stored value and / or the determined circumference of another wheel 7, 8, 9, 10.
  • the method begins in a step S1, in which it is checked whether a predetermined criterion with regard to the driving dynamics is fulfilled or not.
  • This criterion initially comprises in particular the condition that a cornering of the motor vehicle 1 is present.
  • the first condition thus includes that the current steering angle ⁇ of the motor vehicle 1 in a
  • predetermined target value range is.
  • other conditions can be defined, for example for the current speed of the motor vehicle 1 and / or for the current yaw rate G and / or with respect to an automatic
  • Vehicle dynamics control system (ABS, ESP and the like).
  • the above criterion may also include, for example, yaw rate G in a
  • predetermined setpoint range is and / or the current speed of the motor vehicle is within a predetermined setpoint range and / or there is no automatic intervention of the vehicle dynamics control system at the current time.
  • step S1 If the criterion according to step S1 is satisfied and there is a turn, the method proceeds to a further step S2.
  • step S2 on the one hand, a yaw angle change ⁇ of the motor vehicle 1 during cornering
  • Integrating yaw rate G over time is calculated depending on the steering angle ⁇ and dependent on at least one geometry parameter A, W.
  • a curve radius R of the traveled curve is calculated.
  • a distance traveled by the motor vehicle 1 during cornering is measured in real time Distance S integrated, which can be done, for example, at very small time intervals of, for example, 10 to 20 ms.
  • a number of revolutions U of the at least one wheel 7, 8, 9, 10 are counted.
  • step S3 is then checked whether the previously detected covered distance S and / or the yaw angle ß has exceeded a predetermined setpoint or not. If this is not the case, the method returns to step S1, and the steps are repeated. If the condition according to step S3 is met, the method proceeds to a step S4 in which the circumference of the at least one wheel 7, 8, 9, 10 is calculated as a function of the distance traveled S and the number of revolutions U.
  • the distance traveled S can be divided by the number of revolutions U.
  • an ABS sensor is used, which usually has a multiplicity of pulses per
  • step S3 If the criterion according to step S3 is met, the method also returns to step S1 at the same time. This ensures that the information about the actual extent of the at least one wheel 7, 8, 9, 10 can be continuously updated.
  • Fig. 3 a road situation is now shown in a schematic representation, in which the motor vehicle 1 is driven over a curve 1 1. That's it
  • the radius of curvature R shown in Fig. 3 refers to a center 12 centered between the wheels 9, 10 of the rear axle.
  • This radius of curvature R can be determined from the supplied steering angle ⁇ according to the single-track model, taking into account the wheelbase A.
  • a common value for the actual circumference can be calculated.
  • Revolutions U of at least one wheel 7, 8, 9, 10 considered.
  • the respective number of revolutions U of at least two wheels 7, 8, 9, 10, for example of at least the rear wheels 9, 10 or of all wheels 7, 8, 9, 10, are taken into account, in such a way that for example, a mean value is calculated from the numerical values indicating the respective number of revolutions U, and the common value for the circumference is calculated as a function of the mean value and of the single-track turning radius R.
  • Steering angle ⁇ taking into account the geometry parameters A, W are calculated.
  • the steering angle of the front left wheel 7 may differ depending on the vehicle geometry of the steering angle of the front right wheel 8, which can be calculated on the basis of the supplied single-track steering angle ⁇ and taking into account the geometry parameters A, W.
  • the circumference can be determined individually for the inside wheels 8, 10 on the one hand and for the kurvenäu ßeren wheels 7, 9 on the other. Since the number of revolutions U is also preferably measured individually for each wheel 7, 8, 9, 10, the actual amount can even be calculated individually for each wheel 7, 8, 9, 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

L'invention concerne un procédé permettant de déterminer la portée actuelle d'au moins une roue (9, 10) d'un véhicule automobile (1) au moyen d'un dispositif d'aide à la conduite du véhicule automobile (1), dans lequel un capteur de vitesse de lacet détecte la vitesse de lacet du véhicule automobile (1), et la portée actuelle de ladite au moins une roue (9, 10) est déterminée en fonction de la vitesse de lacet et d'au moins un paramètre géométrique du véhicule automobile (1), un angle de braquage du véhicule automobile (1) pendant un déplacement du véhicule automobile (1) dans des virages étant détecté pour déterminer la portée, et un rayon de courbure (R) du virage (11) étant déterminé en fonction de l'angle de braquage et d'au moins un paramètre géométrique du véhicule automobile (1), une distance (S) parcourue pendant le déplacement du véhicule automobile (1) dans des virages étant déterminée en fonction de la vitesse de lacet et du rayon de courbure (R), et la portée étant déterminée en fonction de la distance (S) parcourue.
PCT/EP2014/052079 2013-03-21 2014-02-04 Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile WO2014146821A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14702834.4A EP2976248A1 (fr) 2013-03-21 2014-02-04 Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013004900.8A DE102013004900A1 (de) 2013-03-21 2013-03-21 Verfahren zum Bestimmen eines aktuellen Umfangs eines Rades eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102013004900.8 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014146821A1 true WO2014146821A1 (fr) 2014-09-25

Family

ID=50064602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052079 WO2014146821A1 (fr) 2013-03-21 2014-02-04 Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile

Country Status (3)

Country Link
EP (1) EP2976248A1 (fr)
DE (1) DE102013004900A1 (fr)
WO (1) WO2014146821A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065015A1 (fr) * 2016-10-06 2018-04-12 Continental Teves Ag & Co. Ohg Procédé de détermination de l'orientation d'un véhicule
CN110789532A (zh) * 2018-07-16 2020-02-14 大众汽车有限公司 估计车轮的当前的车轮周长的方法和设备
DE102018123092A1 (de) * 2018-09-20 2020-03-26 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer lateralen Geschwindigkeit sowie einer Gierrate für eine Eigenbewegung eines Kraftfahrzeugs
CN114423663A (zh) * 2019-09-27 2022-04-29 蒂森克虏伯普利斯坦股份公司 用于迭代地确定机动车辆车轮的半径的方法
US11485370B2 (en) 2018-06-22 2022-11-01 Thyssenkrupp Presta Ag Method for determining a corrected wheel radius on the basis of the measured yaw rate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016010750B4 (de) 2016-09-06 2018-07-12 Nira Dynamics Ab Schätzung absoluter Radrollradien und Schätzung eines vertikalen Kompressionswerts
DE102016223902B4 (de) * 2016-12-01 2019-12-19 Audi Ag Verfahren und System zur Bestimmung von Radumfängen und Spurweiten eines Fahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1194304B1 (fr) 1999-06-19 2006-07-26 Continental Teves AG & Co. oHG Procede et dispositif pour elaborer une table de valeurs de correction, determiner une valeur d'essai et detecter une perte de pression dans un pneu de roue
EP0979763B1 (fr) 1998-08-08 2007-02-14 Volkswagen Aktiengesellschaft Méthode de détermination du rayon de courbure d'une rue
WO2007074113A1 (fr) * 2005-12-23 2007-07-05 Continental Teves Ag & Co. Ohg Procede et systeme d'assistance au conducteur lors des manœuvres de stationnement d'un vehicule automobile
EP1826530B1 (fr) 2006-02-24 2008-08-27 Volkswagen Aktiengesellschaft Procédé et dispositif destinés à la détection de la dimension d'une roue
DE102007029870A1 (de) * 2007-06-28 2009-01-02 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Reifenzustandsüberwachung
US20110238251A1 (en) * 2010-03-29 2011-09-29 Ian Wright System and method for vehicle dynamics control in electric drive vehicles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961681A1 (de) * 1999-04-03 2000-10-19 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zur Druckverlusterkennung und zur Fahrdynamikregelung
DE10024178A1 (de) * 2000-05-17 2001-12-06 Wabco Gmbh & Co Ohg Verfahren zur verbesserten Bestimmung des Verhältnisses der Radien der Räder eines Fahrzeuges zueinander
DE10058099A1 (de) * 2000-11-09 2002-05-23 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zum Erkennen oder Abschätzen von Reifenabnutzung
DE102005014099A1 (de) * 2004-04-05 2005-10-27 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung der absoluten Abrollumfänge der Räder eines Kraftfahrzeugs
DE102006060456B4 (de) * 2005-12-23 2019-11-14 Continental Teves Ag & Co. Ohg Verfahren und System zum Lenken eines Fahrzeugs in eine Parklücke

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979763B1 (fr) 1998-08-08 2007-02-14 Volkswagen Aktiengesellschaft Méthode de détermination du rayon de courbure d'une rue
EP1194304B1 (fr) 1999-06-19 2006-07-26 Continental Teves AG & Co. oHG Procede et dispositif pour elaborer une table de valeurs de correction, determiner une valeur d'essai et detecter une perte de pression dans un pneu de roue
WO2007074113A1 (fr) * 2005-12-23 2007-07-05 Continental Teves Ag & Co. Ohg Procede et systeme d'assistance au conducteur lors des manœuvres de stationnement d'un vehicule automobile
EP1826530B1 (fr) 2006-02-24 2008-08-27 Volkswagen Aktiengesellschaft Procédé et dispositif destinés à la détection de la dimension d'une roue
DE102007029870A1 (de) * 2007-06-28 2009-01-02 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Reifenzustandsüberwachung
US20110238251A1 (en) * 2010-03-29 2011-09-29 Ian Wright System and method for vehicle dynamics control in electric drive vehicles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065015A1 (fr) * 2016-10-06 2018-04-12 Continental Teves Ag & Co. Ohg Procédé de détermination de l'orientation d'un véhicule
CN109791049A (zh) * 2016-10-06 2019-05-21 大陆-特韦斯贸易合伙股份公司及两合公司 用于确定车辆的姿态的方法
US11485370B2 (en) 2018-06-22 2022-11-01 Thyssenkrupp Presta Ag Method for determining a corrected wheel radius on the basis of the measured yaw rate
CN110789532A (zh) * 2018-07-16 2020-02-14 大众汽车有限公司 估计车轮的当前的车轮周长的方法和设备
DE102018123092A1 (de) * 2018-09-20 2020-03-26 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer lateralen Geschwindigkeit sowie einer Gierrate für eine Eigenbewegung eines Kraftfahrzeugs
CN114423663A (zh) * 2019-09-27 2022-04-29 蒂森克虏伯普利斯坦股份公司 用于迭代地确定机动车辆车轮的半径的方法

Also Published As

Publication number Publication date
DE102013004900A1 (de) 2014-09-25
EP2976248A1 (fr) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2014146821A1 (fr) Procédé permettant de déterminer la portée actuelle d'une roue d'un véhicule automobile, dispositif d'aide à la conduite et véhicule automobile
DE102014200100B4 (de) Lenkwinkelfehlerkorrektur
EP2183140B1 (fr) Procédé et dispositif de soutien des processus de démarrage de véhicules à moteur
EP1826530B1 (fr) Procédé et dispositif destinés à la détection de la dimension d'une roue
EP2795345B1 (fr) Procédé et dispositif pour la détermination de la position de montage d'un module capteur dans un véhicule et véhicule doté d'un tel dispositif
EP2010419B1 (fr) Procédé de calibrage d'une mesure de la vitesse de lacet
EP2111557B1 (fr) Procédé et dispositif pour déterminer la vitesse d'un véhicule
EP1826099B1 (fr) Procédé destiné à la détermination du rapport de direction d'un véhicule
EP3328715B1 (fr) Procédé permettant de manoeuvrer un véhicule automobile de manière au moins semi-automatique par une correction de position, système d'aide à la conduite et véhicule automobile
WO2013072134A1 (fr) Procédé et dispositif permettant de définir une stratégie de sortie d'une place de stationnement
DE102016225140B3 (de) Verfahren zum Bestimmen einer relativen Position eines Kraftfahrzeugs, Positionsbestimmungssystem für ein Kraftfahrzeug und Kraftfahrzeug
DE102013219662B3 (de) Verfahren, Steuergerät und System zum Ermitteln einer Profiltiefe eines Profils zumindest eines Reifens
WO2008003562A1 (fr) Procédé pour assister un processus de stationnement d'un vehicule
DE102017122945B4 (de) Bestimmung des lenkradwinkels eines lenkungssystems
EP3147182B1 (fr) Procede de man uvre au moins semi-autonome d'un vehicule automobile avec reconnaissance d'une erreur odometrique, dispositif de calcul, systeme d'assistance au conducteur et vehicule automobile
DE102014117926A1 (de) Verfarhren und Systeme zum Ausrichten eines Lenksystems eines Fahrzeugs
DE102011109712A1 (de) Verfahren und Vorrichtung zum unterstützten Einparken eines Kraftfahrzeugs
DE102006060456B4 (de) Verfahren und System zum Lenken eines Fahrzeugs in eine Parklücke
DE102008013988A1 (de) Verfahren und Vorrichtung zum Durchführen eines Ausweichmanövers
WO2009112166A1 (fr) Procédé de commande d’un système d’aide au stationnement pour véhicules et système d’aide au stationnement
DE102015118468A1 (de) Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs in eine Parklücke mit Bordstein, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102011008337A1 (de) Verfahren und Vorrichtung zur Detektion mindestens eines Defekts in einem Fahrzeug
DE102012023021A1 (de) Verfahren zur Ermittlung eines Reifenprofilwertes innerhalb eines Fahrbetriebes eines Kraftfahrzeugs
EP1568570A2 (fr) Calcul d'un angle de braquage d'une roue de voiture
DE102008054648A1 (de) Verfahren zum Ermitteln einer Fahrtrichtungsinformation für ein Fahrzeug und Sensorvorrichtung für ein Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14702834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014702834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE