WO2014146620A1 - 一种光学元件的磨抛装置及方法 - Google Patents

一种光学元件的磨抛装置及方法 Download PDF

Info

Publication number
WO2014146620A1
WO2014146620A1 PCT/CN2014/076076 CN2014076076W WO2014146620A1 WO 2014146620 A1 WO2014146620 A1 WO 2014146620A1 CN 2014076076 W CN2014076076 W CN 2014076076W WO 2014146620 A1 WO2014146620 A1 WO 2014146620A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
polishing
disc
workpiece
arc
Prior art date
Application number
PCT/CN2014/076076
Other languages
English (en)
French (fr)
Inventor
陈耀龙
张川
陈晓燕
Original Assignee
西安交通大学
西安交通大学苏州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201320123105 external-priority patent/CN203171383U/zh
Priority claimed from CN 201320123777 external-priority patent/CN203171384U/zh
Priority claimed from CN 201320124181 external-priority patent/CN203171385U/zh
Application filed by 西安交通大学, 西安交通大学苏州研究院 filed Critical 西安交通大学
Priority to US14/772,307 priority Critical patent/US20160008944A1/en
Priority to DE112014000978.4T priority patent/DE112014000978T5/de
Publication of WO2014146620A1 publication Critical patent/WO2014146620A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0006Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor for intraocular lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0012Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor for multifocal lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0018Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor for plane optical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • B24B13/012Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools conformable in shape to the optical surface, e.g. by fluid pressure acting on an elastic membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • B24B13/026Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made the contact between tool and workpiece being a line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/06Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor grinding of lenses, the tool or work being controlled by information-carrying means, e.g. patterns, punched tapes, magnetic tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/146Accessories, e.g. lens mounting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/148Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled

Definitions

  • the present invention relates to optical component processing, and more particularly to optical component grinding and polishing apparatus and method.
  • the polishing process of the conventional spherical and planar light components is mostly performed by the quasi-spherical method, and the processing equipment is low in cost and simple in operation.
  • the control of the contact pressure between the grinding disc and the workpiece is relatively ambiguous, and the floating range is large, so that it is not easy to achieve a certain amount of processing.
  • the workpiece of the radius of the seed radius requires a disc substrate, and the same diameter: a half or a workpiece having a different radius of curvature requires different grinding and polishing discs, which is: Upgrade.
  • Aspherical optics have great advantages over spherical optics in aerospace optics in all areas of modern society Huge demand. Therefore, how to process aspherical components with high precision and high efficiency has become an urgent problem in today's society.
  • the mature aspherical optical component numerical control polishing technology is mainly applied to the processing of optical components with large diameters and diameters, such as CNC optical surface forming technology, stress disk polishing technology, ion beam polishing technology, magnetorheological polishing technology, etc.
  • the numerical control machining technology as described above has a very high surface precision, which can achieve an accuracy better than ⁇ / 10, but its processing cost is for the application of a wide range of aspherical optical components. Unbearable.
  • the processing of large-diameter aspherical optical components has largely been freed from the manual processing.
  • An object of the present invention is to provide a polishing and polishing apparatus and method for an optical component which can improve processing accuracy, processing efficiency, and production cost.
  • the core of the invention is the grinding and polishing method:
  • the polishing skin of the polishing tool is trimmed into a spherical surface, a torus surface, a cylindrical surface, a conical surface or a flat surface during the grinding and polishing process.
  • the contact between the polishing pad and the workpiece forms a theoretical point contact, line contact and surface contact depending on the surface shape of the workpiece being polished.
  • the polishing pressure between the polishing tool and the workpiece depends on the elastic modulus of the polishing pad, the geometry of the workpiece and the polishing tool, and the depth of penetration of the polishing tool (equivalent to the depth of cut during grinding).
  • the polishing pressure is relative to the polishing tool. Motion track control of the workpiece.
  • the trajectory of the polishing tool relative to the workpiece is the same as that used during grinding, and trajectory control is used to ensure that the penetration depth of the polishing tool corresponds to the required polishing pressure.
  • the material removal mechanism is the same as the traditional polishing process, depending on the polishing pressure, relative line speed, polishing skin and workpiece characteristics, and the characteristics of the polishing fluid.
  • a surface contact grinding and polishing device for spherical and planar optical components characterized in that it comprises a tool shank and a cylindrical grinding and polishing disc base, the tool shank is used for connecting a cylindrical grinding and polishing disc substrate and can be mounted on a tool of a numerical control processing device On the shaft, or the cylindrical grinding and polishing disc base body and the tool shank are integrated as a whole, as a separate polishing device, the cylindrical grinding and polishing disc substrate is pasted with a polishing film.
  • the bottom of the tool handle has a protruding grinding and polishing disc connecting rod for matching with the grinding and polishing disc positioning interface of the bottom of the cylindrical grinding and polishing disc base body, and the tool holder and the cylindrical grinding and polishing disc base body are connected and fixed.
  • the grinding disc connecting rod is pressed into the grinding disc positioning interface, and no gap exists between the two. Thereby, the coaxiality of the cylindrical grinding and polishing disc substrate and the tool shank is ensured.
  • the tool handle and the cylindrical grinding and polishing disc base are provided with a threaded interface, and the two are fixed by a screw connection.
  • the screw is preferably a hexagon socket screw. It not only ensures the reliability of the connection between the two, but also facilitates installation and maintenance.
  • the cylindrical grinding and polishing disc base has a cylindrical shape and a bottom end having an arc shape
  • the cylindrical grinding and polishing disc base body comprises a grinding and polishing disc positioning interface with a top downward recessed, and a cylindrical grinding machine.
  • the lower arc of the base of the disc is used to paste the polishing film.
  • the polishing film can be selected according to the material of the workpiece to be processed, and the shape of the polishing film can be arbitrarily selected, and the bonding is convenient and fastened as a criterion.
  • the circular arc curvature radius of the arc-shaped bottom end of the cylindrical grinding and polishing disc base body is used to trim the polishing film attached to the arc end of the cylindrical grinding and polishing disc base body before use, so that the surface section curve is a precise circle.
  • the radius of curvature of the arc is r 2
  • the thickness of the polishing film is h, which satisfies o
  • a surface contact grinding and polishing method for spherical and planar optical components comprising the following steps:
  • the grinding and polishing device is installed on the tool shaft of the numerical control equipment, and the workpiece to be processed is mounted on the workpiece shaft of the numerical control equipment.
  • the relevant parameters of the surface shape of the workpiece to be processed are firstly
  • the size data of the grinding and polishing device is input into the process software, and the NC NC file is generated, and the grinding and polishing device and the workpiece to be processed can be under the precise positioning control of the numerical control device, so that the curvature center of the polishing film and the workpiece to be processed are at any processing position.
  • the center of curvature coincides at all times, and the grinding and polishing device is in contact with the surface of the workpiece to be processed to achieve polishing processing.
  • the grinding and polishing device is mounted on the tool shaft of the numerical control device, can rotate around the axis of the tool shaft, and swings around the center B of the tool shaft, and the grinding and polishing device can be fed in the horizontal direction; On the workpiece axis of the numerical control device, it can rotate around the axis of the workpiece axis, and the workpiece to be processed can be fed in the vertical direction.
  • the CNC machining equipment controls the feed speed of the grinding and polishing disc substrate and the rotation speed of the workpiece to be processed at each processing position. That is to ensure that the contact pressure between the grinding disc and the workpiece is constant at each processing position. The constant amount of removal is ensured, which in turn enables a certain amount of processing.
  • the dressing tool may be a grinding wheel with a cutting edge geometry uncertainty or a milling cutter disc with a cutting edge geometry determined.
  • the circular arc curvature radius of the arc-shaped bottom end of the cylindrical grinding and polishing disc base body is used to trim the polishing film attached to the arc end of the cylindrical grinding and polishing disc base body before use, so that the surface section curve is a precise circle.
  • the radius of curvature of the arc is r 2
  • the thickness of the polishing film is h, which satisfies o
  • a wire contact grinding and polishing device for spherical and planar optical components characterized in that it comprises a tool shank and a grinding and polishing disc base, the tool shank is used for connecting the grinding and polishing disc base body and can be mounted on the tool shaft of the numerical control processing equipment, or
  • the cylindrical grinding and polishing disc base body and the tool shank are integrated as a single polishing device, and the polishing disc substrate is pasted with a polishing film, and the grinding and polishing disc base body may be a profile grinding disc substrate or a cylindrical grinding disc substrate.
  • the bottom of the tool handle has a protruding grinding and polishing disc connecting rod for cooperating with the grinding and polishing disc positioning interface of the bottom of the grinding and polishing disc base body.
  • the grinding and polishing disc is connected.
  • the rod is pressed into the grinding disc positioning interface without gaps between the two. Thereby, the cylindrical shaft and the base of the tool holder are ensured.
  • the tool handle and the grinding and polishing disc base are provided with a threaded interface, and the two are fixed by a screw connection.
  • the screw is preferably a hexagon socket screw. It not only ensures the reliability of the connection between the two, but also facilitates installation and maintenance.
  • the profile grinding disc base has a shape of a rotating body
  • the bus bar is a circular arc
  • the radius of curvature is r 1
  • a grinding and polishing disc positioning interface is provided at one end of the base of the profile grinding disc for the purpose of
  • the base of the profile grinding disc is mounted on the tool handle, and the polishing film is attached to the rotating surface of the base of the profile grinding disc before use.
  • the bus bar of the precisely polished film is an arc with a radius of curvature of r 2 ;
  • the cylindrical grinding and polishing disc base has a cylindrical shape, one end of which is arc-shaped, the radius of curvature of the circular arc is r 3 , and the other end is provided with a grinding and polishing disc positioning interface for the cylindrical grinding machine.
  • the disc substrate is mounted on the tool shank.
  • the polishing film is attached to the arc end of the base of the cylindrical grinding disc.
  • the cross-section curve of the precisely polished film is a fine
  • the grinding and polishing device When using, the grinding and polishing device is installed on the tool shaft of the numerical control equipment, and the workpiece to be processed is mounted on the workpiece shaft of the numerical control equipment.
  • the relevant parameters of the aspheric surface to be processed and the grinding and polishing are firstly used.
  • the size data of the device is input into the process software, and the NC NC file is generated, and the grinding and polishing device and the workpiece to be processed can be under the control of the numerical control device, so that the grinding and polishing device and the workpiece to be processed are in line contact at any processing position.
  • the contact trajectory of the profile grinding disc substrate and the workpiece to be processed is part of the meridional section curve of the workpiece, which belongs to the profiling process;
  • the contact trajectory of the cylindrical grinding disc substrate and the workpiece is an envelope circle, which belongs to the Fan Cheng method. .
  • the grinding and polishing device is mounted on the tool shaft of the numerical control device, can rotate around the axis of the tool shaft, and swings around the center B of the tool shaft, and the grinding and polishing device can be fed in the horizontal direction;
  • On the workpiece axis of the numerical control device it can rotate around the axis of the workpiece axis, and the workpiece to be processed can be fed in the vertical direction.
  • the CNC machining equipment controls the feed speed of the grinding and polishing disc substrate and the rotation speed of the workpiece to be processed at each processing position. That is, it is ensured that the contact pressure between the grinding disc and the workpiece is constant at each processing position, and a constant removal amount is ensured, thereby realizing a certain amount of processing.
  • the dressing tool may be a grinding wheel with a cutting edge geometry uncertainty or a milling cutter disc with a cutting edge geometry determined.
  • the polishing film on the base of the profile grinding disc is adhered to the rotating surface of the base of the profile grinding disc, and the bonding height is adhered to and covered by the entire rotating surface; the polishing film of the cylindrical grinding disc substrate Adhered to the arc-shaped bottom end of the base of the cylindrical grinding and polishing disc.
  • the polishing film can be selected according to the material of the workpiece to be processed, and the shape of the polishing film can be arbitrarily selected, and the bonding is convenient and fastened as a criterion.
  • the profile of the profile grinding disc base is a rotating body
  • the bus bar is a circular arc
  • the radius of curvature is a circular arc of the polished film of the precisely trimmed surface
  • the radius of curvature is r 2
  • the cylindrical grinding and polishing disc base has a cylindrical shape, one end of which is arc-shaped, the radius of curvature of the circular arc is r 3 , and the cross-section curve of the precisely polished polishing film
  • the radius of curvature of the arc is r 4
  • the third way proposed by the present invention is:
  • the technical solution of the present invention is: a point contact polishing device for an aspherical optical component, comprising a tool shank and a grinding and polishing disc base, the tool shank being used for connecting the grinding disc substrate and being mounted on a tool shaft of a numerical control processing device, or
  • the polishing disc substrate and the tool shank are integrated as a single polishing device, and the polishing disc substrate is pasted with a polishing film, and the grinding disc substrate may be a bowl-shaped grinding disc substrate or a spherical grinding disc substrate.
  • the bottom of the tool handle has a protruding grinding and polishing disc connecting rod for cooperating with the grinding and polishing disc positioning interface of the bottom of the grinding and polishing disc base body.
  • the grinding and polishing disc is connected.
  • the rod is pressed into the grinding disc positioning interface without gaps between the two. Thereby ensuring the coaxiality of the grinding and polishing disc substrate and the tool handle.
  • the tool handle and the grinding and polishing disc base are provided with a threaded interface, and the two are fixed by a screw connection.
  • the screw is preferably a hexagon socket screw. It not only ensures the reliability of the connection between the two, but also facilitates installation and maintenance.
  • the grinding and polishing disc base body may be a bowl-shaped grinding and polishing disc base body having a cylindrical shape and a bottom end having an arc shape
  • the bowl-shaped grinding and polishing disc base body comprises a bowl-shaped grinding and polishing disc positioning interface with a top downward recessed body, the bowl
  • the lower arc of the base of the grinding disc is used for pasting the polishing film
  • the radius of curvature of the bottom arc of the base of the bowl-shaped grinding and polishing disc is: the curved surface curve of the polished film after trimming is a precise arc
  • the radius of curvature of the arc is r 2
  • the grinding and polishing disc base body may be a spherical grinding and polishing disc base body having a spherical shape or a part of a ball, and the spherical grinding and polishing disc base body comprises a spherical grinding and polishing disc positioning interface with a top downward recessed, and the polishing film is pasted on the spherical surface.
  • a point contact polishing method for an aspherical optical element comprising the steps of:
  • the grinding and polishing device is mounted on the tool shaft of the numerical control equipment, and the workpiece to be processed is mounted on the workpiece shaft of the numerical control equipment.
  • the relevant parameters of the aspheric surface to be processed and the grinding are firstly performed.
  • the size data of the throwing device is input into the process software, and the NC NC file is generated.
  • the grinding and polishing device and the workpiece to be processed can be controlled under the control of the numerical control device, so that the grinding and polishing device and the workpiece to be processed are at the P point at any processing position. The contact is achieved, and the trajectory of the P point relative to the workpiece to be machined is completely matched to the meridional section curve of the aspheric surface to be processed.
  • the workpiece to be processed is convex and the outer polishing method is used for grinding and polishing, only the outer arc of the polishing film is trimmed; if the workpiece to be processed is convex and the inner polishing method is used for grinding and polishing, only The inner arc of the polishing film needs to be trimmed; if the workpiece to be processed is concave, only the outer arc of the polishing film is trimmed; the outer arc and the inner arc of the polishing film may be trimmed at the same time.
  • the dressing tool may be a grinding wheel with a cutting edge geometry uncertainty or a milling cutter disc with a cutting edge geometry determined.
  • the polishing film can be selected according to the material of the workpiece to be processed, and the shape of the polishing film can be arbitrarily selected, and the bonding is convenient and fastened as a criterion.
  • the grinding and polishing device is mounted on the tool shaft of the numerical control device, can rotate around the axis of the tool shaft, and swings around the center B of the tool shaft, and the grinding and polishing device can be fed in the horizontal direction;
  • On the workpiece axis of the numerical control device it can be rotated around the axis of the workpiece axis, and the workpiece to be processed can be fed in the vertical direction, by CNC machining
  • the device controls the feed rate of the grinding and polishing disc substrate and the rotational speed of the workpiece to be processed at each processing position. That is, it is ensured that the contact pressure between the grinding disc and the workpiece is constant at each processing position, and a constant removal amount is ensured, thereby realizing a certain amount of processing.
  • the spherical grinding disc substrate has a spherical curvature radius of r 3
  • the polished surface of the polishing film has a radius of curvature of r 4
  • the radius of curvature of the surface of the polishing film in the apparatus of the present invention can be accurately trimmed in place.
  • the separate tool shank of the present invention is versatile, thereby reducing the processing cost of the device.
  • the polishing process of the conventional spherical and planar optical components is such that the grinding and polishing disc is in contact with the entire surface of the workpiece, which is a spherical or planar contact, and relies on the swinging of the grinding and polishing disc to realize the disordered polishing; the grinding and polishing disc of the present invention adopts a cylindrical appearance. In the process of polishing, it is a toroidal contact. By trimming the shape of the polishing film, the grinding and polishing disc of the same outer shape can be applied to the grinding and polishing of workpieces with various curvature radii.
  • the traditional spherical grinding and polishing process adopts the quasi-sphere polishing method.
  • the grinding and polishing disc is in surface contact with the workpiece, and the polishing method is performed by the profiling method.
  • the grinding and polishing disc of the invention is in line contact with the workpiece, that is, in the whole processing process.
  • the contact trajectory of the grinding disc with the surface of the workpiece is a closed or non-closed curve, and the desired surface is obtained due to the rotation of the workpiece.
  • the grinding and polishing disc of the invention in particular the bowl-shaped grinding and polishing disc, has versatility, and the grinding and polishing disc of the same outer shape can be applied to the grinding and polishing of workpieces with various curvature radius by virtue of the trimming of the shape of the polishing film.
  • the invention controls the feed speed of the grinding and polishing disc substrate and the rotation speed of the workpiece to be processed at each processing position by the numerical control processing device, that is, the contact pressure between the grinding and polishing disc and the workpiece is constant at each processing position, and a constant one is ensured.
  • the amount of removal is removed to achieve a defined amount of processing.
  • FIG. 1 is a structural view of a first embodiment of a grinding and polishing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a structural view of a tool holder 1 of the present invention
  • Figure 3 is a structural view of the base of the cylindrical grinding and polishing disc of Figure 1;
  • FIG. 4 is a schematic view showing the polishing film trimming of the structure of the first embodiment in the first embodiment
  • FIG. 5 is a schematic view showing the grinding and polishing process of the concave component by using the structure of the first embodiment
  • Figure 6 is a structural view of the second embodiment of the grinding and polishing device of the first embodiment of the present invention
  • Figure 7 is a structural view of the cylindrical grinding and polishing disk substrate of Figure 6;
  • Figure 8 is a schematic view showing the grinding and polishing of the convex component by the structure of the second embodiment in the first embodiment
  • Figure 9 is a structural view of a third embodiment of the grinding and polishing device of the first embodiment of the present invention.
  • Figure 10 is a structural view of the cylindrical grinding and polishing disk substrate of Figure 9;
  • Fig. 11 is a schematic view showing the grinding and polishing of a planar member by the structure of the third embodiment in the first embodiment.
  • Figure 12 is a structural view of Embodiment 4 of the second embodiment of the grinding and polishing device of the present invention
  • Figure 13 is a structural view of the base of the profile grinding and polishing disk of Figure 12;
  • FIG. 14 is a schematic view showing the polishing film trimming of the fourth embodiment in the second embodiment
  • FIG. 15 is a schematic view showing the outer polishing processing of the convex surface member by using the structure of the fourth embodiment
  • Figure 16 is a structural view of the fifth embodiment of the grinding and polishing device of the present invention
  • Figure 17 is a structural view of the bowl-shaped grinding and polishing disk base 12 of Figure 16;
  • Figure 18 is a schematic view showing the outer projection processing of the concave member by the structure of the fifth embodiment in the second embodiment
  • Figure 19 is a structural view of the sixth embodiment of the grinding and polishing device of the present invention.
  • Figure 20 is a structural view of the cylindrical grinding and polishing disk base of Figure 19;
  • Figure 21 is a schematic view showing the polishing process of the convex element by the structure of the sixth embodiment in the second embodiment
  • Figure 22 is a schematic view showing the polishing process of the concave member by the structure of the sixth embodiment in the second embodiment
  • Figure 23 is a plan view of the second embodiment of the second embodiment of the planar element polishing Schematic diagram
  • Figure 24 is a structural view of a seventh embodiment of the grinding and polishing device of the present invention.
  • Figure 25 is a structural view of a cylindrical grinding and polishing disk base;
  • Figure 26 is a schematic view showing the polishing of a cylindrical grinding and polishing disc
  • Figure 27 is a schematic view showing the outer projection processing of the convex aspheric optical element by the seventh embodiment
  • Figure 28 is a schematic illustration of the inner projection processing of the convex aspherical optical element using the seventh embodiment
  • Figure 29 is a schematic view showing the grinding and polishing process of the concave aspherical optical element by the seventh embodiment
  • Figure 30 is a structural view of an eighth embodiment of the third embodiment of the grinding and polishing apparatus of the present invention.
  • Figure 3 is a structural view of the base of the spherical grinding and polishing disc of Figure 30;
  • Figure 32 is a schematic view showing the grinding and polishing process of the convex aspherical optical element using the eighth embodiment
  • Fig. 33 is a schematic view showing the grinding and polishing process of the concave aspherical optical element using the eighth embodiment in the third embodiment.
  • Scheme 1 is a surface contact grinding and polishing device for spherical and planar optical components: Embodiment 1:
  • the lower portion of the tool shank 1 is provided with a grinding and polishing disc connecting rod 1 1, which can be pressed into the grinding and polishing disc positioning interface 21 of the upper portion of the cylindrical grinding and polishing disc base 2.
  • the grinding and polishing disc connecting rod 1 1 is pressed into the grinding and polishing disc positioning interface 2 1 and fixed to the cylindrical grinding and polishing disc base 2 so that no gap occurs between the grinding and polishing disc connecting rod 1 1 and the grinding and polishing disc positioning interface 21 .
  • the tool handle 1 is fastened to the cylindrical grinding and polishing disc base 2 by any type of wrench interface, such as an inner triangle, an inner corner, an inner hexagon, a double hole interface, etc., thereby ensuring connection reliability between the two, and facilitating installation and maintenance. .
  • the base of the cylindrical grinding and polishing disc 2 is used to paste the polishing film 3 at the lower arc.
  • the polishing film 3 can be selected according to the material of the workpiece 7 to be processed, and the shape of the polishing film 3 can be arbitrarily selected, and the bonding is convenient and fastened as a guideline.
  • the polishing film 3 is adhered to the arc of the lower portion of the base of the cylindrical grinding and polishing disc by an adhesive, and the bonding height is adhered to the criterion of adhesion.
  • the grinding and polishing disc connecting rod 1 1 is first pressed into the grinding and polishing disc positioning interface 2 1 , preferably by the hexagonal screw 4 and the cylindrical grinding and polishing disc base 2 , so that the grinding and polishing disc connecting rod 1 1 and the grinding and polishing disc positioning interface 2 There is no gap between the two; the adhesive film 3 is coated on the surface of the cylindrical grinding disc base 2 at the arc of the lower part of the base of the cylindrical grinding disc. After the adhesive is solidified, the preparation is completed.
  • the polishing film 3 can be trimmed to the polishing and polishing apparatus 100.
  • the grinding and polishing device 100 is mounted on the workpiece shaft of the numerical control processing equipment, and the dressing grinding wheel 5 is mounted on the tool shaft of the numerical control processing equipment, and the radius of curvature of the circular arc surface of the polishing film 3 is trimmed by point contact.
  • the radius of curvature of the polished film 3 after finishing is uniform, and the radius of curvature of the surface of the polished film is the same as the radius of curvature of the spherical or planar workpiece to be processed, and the opposite sign is used to improve the positioning accuracy during grinding and polishing. Precision.
  • Fig. 5 is a schematic view showing the grinding and polishing process of the concave member by the first embodiment of the polishing and polishing apparatus of the present invention.
  • the grinding and polishing device 100 is mounted on the tool shaft of the numerical control device, can rotate around the tool axis, and swing around the tool center swing center B, and the grinding and polishing device 100 can be fed in the horizontal direction;
  • 6 Mounted on the workpiece axis of the CNC machine, it can rotate around the axis of the workpiece axis, and the workpiece can be fed in the vertical direction.
  • the relevant parameters of the surface shape of the workpiece to be processed and the size data of the grinding and polishing device 100 are input into the process software, and a numerical control NC file is generated, and the grinding and polishing device 100 and the workpiece 6 to be processed can be used in the numerical control device.
  • the grinding and polishing device and the workpiece 6 to be processed can be in contact with each other at any processing position, and the polishing process can be realized.
  • FIG. 6 is a structural view showing a second embodiment of the grinding and polishing apparatus 100 of the present invention, and the structural diagrams of the tool shank 1 and the cylindrical grinding and polishing disc base 2 are respectively shown in FIG. 2 and FIG.
  • the grinding and polishing apparatus 100 comprises: a tool shank 1 for mounting a cylindrical grinding and polishing disc; a cylindrical grinding and polishing disc base 2 for attaching the polishing film 3; a polishing film 3 for The workpiece 6 (not shown) is contacted to achieve grinding and polishing.
  • This embodiment is applicable to the grinding and polishing process of the convex element, and the assembly process and the trimming of the polishing film 3 are the same as those of the first embodiment, and will not be described herein.
  • Fig. 8 is a schematic view showing the grinding and polishing process of the convex member by the second embodiment, and the use of the second embodiment is the same as that of the first embodiment, and will not be described again.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 9 is a structural view showing a third embodiment of the grinding and polishing apparatus of the present invention, and the structural diagrams of the tool shank 1 and the cylindrical grinding and polishing disc base 2 are respectively shown in FIG. 2 and FIG.
  • the grinding and polishing apparatus 100 comprises: a tool shank 1 for mounting a cylindrical grinding and polishing disc; a cylindrical grinding and polishing disc base 2 for attaching the polishing film 3; a polishing film 3 for The workpiece 6 (not shown) is contacted to achieve grinding and polishing.
  • This embodiment is suitable for the grinding and polishing of the planar member, and the assembly process and the trimming of the polishing film 3 are the same as those of the first embodiment, and will not be described herein.
  • This embodiment is actually a special form of the first and second embodiments, that is, a special case when the radius of curvature of the arc end of the base of the grinding and polishing disc approaches the infinity in the first and second embodiments.
  • Fig. 11 is a schematic view showing the grinding and polishing process of the planar member by the third embodiment.
  • the use of the third embodiment is the same as that of the first embodiment, and will not be described again.
  • the set of grinding and polishing device 100 has certain universality, and only needs to accurately trim the radius of curvature of the surface of the polishing film 3, so that the grinding and polishing process of the workpiece with multi-caliber and multi-curvature radius can be realized by the single grinding and polishing device 100.
  • the second solution of the present invention is:
  • Scheme 2 is a line contact grinding and polishing device for spherical and planar optical components:
  • Embodiment 4 is a line contact grinding and polishing device for spherical and planar optical components:
  • the lower part of the tool shank 1 is provided with a grinding and polishing disc connecting rod 1 1, which can be pressed into the grinding and polishing disc positioning interface 21 of the upper part of the contour grinding disc base 7.
  • the grinding and polishing disc connecting rod 1 1 is pressed into the grinding and polishing disc positioning interface 21, and is fixed with the contouring polishing disc base body 7 so that no gap occurs between the grinding and polishing disc connecting rod 1 1 and the grinding and polishing disc positioning interface 21.
  • the tool handle 1 is fastened with the profile grinding disc base 7 through any type of wrench interface, such as an inner triangle, an inner corner, an inner hexagon, a double hole interface, etc., thereby ensuring connection reliability and convenience between the two. Installation and maintenance.
  • the profile grinding disc base 7 has a shape of a rotating body, the bus bar is a circular arc, and the radius of curvature is ⁇ ⁇ , and the shape of the profile grinding disc is suitable for polishing the convex component.
  • the rotating surface of the profile grinding disc base 7 is used to adhere the polishing film 3.
  • the polishing film 3 can be selected according to the material of the workpiece 6 to be processed, and the shape of the polishing film 3 can be arbitrarily selected, and the bonding and the fastening are the criteria.
  • the polishing film 3 is adhered to the rotating surface of the dummy grinding and polishing disc substrate 7 by an adhesive, and the bonding height is adhered to and covered by the entire rotating surface.
  • the grinding and polishing disc connecting rod 1 1 is first pressed into the grinding and polishing disc positioning interface 21, preferably by the hexagonal screw 4 and the contour grinding disc 7 so that the grinding disc connecting rod 1 1 and the grinding and polishing disc positioning interface 21 are There is no gap; then the adhesive film 3 is coated on the surface of the surface of the profile grinding disc base 7, and the preparation is completed after the binder is solidified.
  • the polishing film 3 can be trimmed to the polishing and polishing apparatus 100.
  • Fig. 14 is a schematic view showing the trimming of the polishing film 3 of the first embodiment.
  • the grinding and polishing device 100 is mounted on a workpiece axis (not shown) of the numerical control processing device, and the grinding and polishing device 100 can rotate around the axis of the workpiece axis and swing around the center of the workpiece axis of the numerical control processing device, and can be advanced in the horizontal direction.
  • the dressing wheel 5 is mounted on a tool shaft (not shown) of the numerical control machining device, and the dressing wheel 5 is rotatable about the tool axis and can be fed in the vertical direction.
  • the radius of curvature of the arc of the polishing film 3 is trimmed by point contact.
  • the surface of the polished film 3 after trimming has the same curvature radius at the circular arc, which improves the positioning accuracy and processing accuracy during polishing.
  • FIG. 15 is a schematic view showing the polishing process of the convex member by the first embodiment of the polishing and polishing apparatus 100 of the present invention.
  • the grinding and polishing device 100 is mounted on the CNC
  • the tool shaft of the device (not shown) can be rotated around the axis of the tool axis and oscillated around the center B of the tool shaft, and the grinding and polishing device 100 can be fed in the horizontal direction;
  • the workpiece to be machined 6 is mounted on the workpiece of the numerical control device. On the shaft, it can rotate around the axis of the workpiece axis, and the workpiece can be fed in the vertical direction.
  • the relevant parameters of the aspheric surface to be processed and the size data of the grinding and polishing device 100 are input into the process software, and a numerical control NC file is generated, and the grinding and polishing device 100 and the workpiece 6 to be processed can be controlled in the numerical control device.
  • the grinding and polishing device 100 is in line contact with the workpiece 6 to be processed, and the contact trajectory completely matches the meridional section curve of the spherical workpiece to be processed.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Fig. 17 is a schematic view showing the structure of a fifth embodiment of the grinding and polishing apparatus 100 of the present invention.
  • the structure of the tool holder 1 and the profile grinding and polishing disc base 7 of the fifth embodiment are as shown in Figs. 2 and 17, respectively.
  • the grinding and polishing apparatus 100 comprises: a tool shank 1 for mounting a profile grinding disc substrate 7; a profile grinding disc substrate 7 for attaching the polishing film 3; a polishing film 3, for Polishing is achieved by contact with the workpiece 6 to be machined (not shown).
  • the profiled abrasive disc substrate 7 of this shape is suitable for the polishing of concave elements.
  • the assembly process and the trimming of the polishing film 3 are the same as those of the fourth embodiment, and will not be described herein.
  • Fig. 18 is a schematic view showing the outer projection processing of the concave member by the fifth embodiment.
  • the use of the fifth embodiment is the same as that of the fourth embodiment, and will not be described again.
  • the grinding and polishing apparatus 100 comprises: a tool handle 1 for mounting a cylindrical grinding and polishing disc substrate 2; a cylindrical grinding and polishing disc substrate 2 for attaching the polishing film 3; a polishing film 3, for Polishing is achieved by contact with the workpiece 6 to be machined (not shown).
  • the assembly flow of this embodiment and the trimming of the polishing film 3 (shown in Fig. 24) are the same as those of the fourth embodiment, and will not be described herein.
  • the cylindrical grinding and polishing disc base 2 adopts a cylindrical appearance, and the outer shape has the advantage that the same size grinding and polishing disc is suitable for workpiece surface processing of a plurality of calibers with various curvature radii. Because the processing principle is the same as the milling principle of the spherical surface, it is processed by Fan Cheng method.
  • the contact trajectory of the light film 3 with the workpiece is an envelope circle.
  • 21, 22, and 23 are schematic views showing the polishing process of the convex surface member, the concave surface member, and the planar member, respectively, using the sixth embodiment of the polishing and polishing apparatus of the present invention.
  • the third solution of the present invention is:
  • Embodiment 7 As shown in Fig. 2 and Fig. 24-25, the lower part of the tool shank 1 is provided with a grinding and polishing disc connecting rod 1 1, which can be pressed into the cylindrical grinding and polishing disc positioning interface 21 at the upper part of the cylindrical grinding and polishing disc base 2. During installation, the grinding and polishing disc connecting rod 1 1 is pressed into the cylindrical grinding and polishing disc positioning interface 21, and is fixed with the cylindrical grinding and polishing disc base 2, so that the grinding and polishing disc connecting rod 1 1 does not appear between the barrel and the disc grinding disc positioning interface 21 gap.
  • the tool handle 1 is fastened to the cylindrical grinding and polishing disc base 2 through any type of wrench interface, such as an inner triangle, an inner four corner, an inner hexagonal, a double hole interface, etc., thereby ensuring connection reliability between the two, and being convenient Installation and maintenance.
  • any type of wrench interface such as an inner triangle, an inner four corner, an inner hexagonal, a double hole interface, etc.
  • the base of the cylindrical grinding and polishing disc 2 is used to paste the polishing film 3 at the lower arc.
  • the polishing film 3 can be selected according to the material of the workpiece 6 to be processed, and the shape of the polishing film 3 can be arbitrarily selected, and the bonding and the fastening are the criteria.
  • the polishing film 3 is adhered to the arc of the lower portion of the base of the cylindrical grinding and polishing disc by an adhesive, and the bonding height is adhered to the criterion of adhesion.
  • the grinding and polishing disc connecting rod 1 1 is first pressed into the cylindrical grinding and polishing disc positioning interface 21, preferably by the hexagonal screw and the cylindrical grinding and polishing disc base 2, so that the grinding and polishing disc connecting rod 1 1 and the cylindrical grinding and polishing disc are positioned. There is no gap between the interfaces 21; then the adhesive is applied to the circular arc of the lower portion of the cylindrical grinding and polishing disc base 2 on the surface of the cut polishing film 3, and the preparation is completed after the adhesive is solidified.
  • the polishing film 3 can be trimmed to the polishing and polishing apparatus 100.
  • the grinding and polishing device 100 is mounted on the workpiece shaft of the numerical control processing device, and the dressing grinding wheel 5 is mounted on the tool shaft of the numerical control processing device, and the radius of curvature of the circular arc of the polishing film 3 is trimmed by point contact.
  • the workpiece 6 to be processed is convex and the outer polishing method is used for grinding and polishing, only the outer arc 3 1 of the polishing film 3 is trimmed; if the workpiece 6 to be processed is convex and the inner polishing method is used for grinding and polishing, Then, only the inner circular arc 32 of the polishing film 3 is trimmed; if the workpiece 6 to be processed is concave, only the outer circular arc 3 1 of the polishing film 3 is trimmed; 3 1 and the inner arc 32 are trimmed. After the trimmed polishing film 3 has a radius of curvature of the arc Therefore, the positioning accuracy and machining accuracy during grinding and polishing are improved.
  • Fig. 27 is a schematic view showing the outer throwing process of the convex aspheric optical element using the seventh embodiment.
  • the grinding and polishing device 100 is mounted on the tool shaft of the numerical control device, can rotate around the tool axis, and swing around the tool center swing center B, and the grinding and polishing device 100 can be fed in the horizontal direction; 6 Mounted on the workpiece axis of the CNC machine, it can rotate around the axis of the workpiece axis, and the workpiece can be fed in the vertical direction.
  • the P point is located outside the polishing film 3.
  • the relevant parameters of the aspheric surface to be processed and the dimensional data of the grinding and polishing device 100 are first input into the process software, and a numerical control NC file is generated, and the grinding and polishing device 100 and the workpiece 6 to be processed can be used in the numerical control device.
  • the grinding and polishing device 100 and the workpiece 6 to be processed are brought into contact at the P point at any processing position, and the movement trajectory of the P point with respect to the workpiece completely coincides with the meridional section curve of the aspheric surface to be processed.
  • FIG. 28 is a schematic view showing the internal throwing process of the convex aspheric optical element using the seventh embodiment.
  • the difference from the outer throwing method is that in the inner throwing processing mode, the P point is located in the inner region of the polishing film 3.
  • Fig. 29 is a schematic view showing the grinding and polishing process of the concave aspherical optical element by the seventh embodiment.
  • Embodiment 8 As shown in FIG. 2 and FIG. 30, the grinding and polishing apparatus 100 of the present embodiment includes a tool shank 1 and a spherical grinding and polishing disk base body 8.
  • the tool shank 1 is the same as that in the first embodiment, and the spherical grinding and polishing disk
  • the base 8 is shown in FIG. 31, the tool shank 1 is used for mounting a spherical grinding and polishing disc base 8; the spherical squeegee base 8 is for attaching a polishing film 3; and the polishing film 3 is used for designating a P point.
  • the contact point is in contact with the workpiece (not shown) to achieve grinding and polishing.
  • the assembly flow of this embodiment and the trimming of the polishing film are the same as those of the first embodiment.
  • the spherical grinding and polishing disc base 8 adopts a spherical appearance, and the shape has the advantage that the position selection range of the designated contact point P is larger than that of the seventh embodiment, so the linear velocity range of the P point is also large, which is favorable for grinding and polishing. machining.
  • the convex member can be processed only by external throwing.
  • Fig. 32 and Fig. 33 are schematic views showing the grinding and polishing processing of the convex aspherical optical element and the concave aspherical optical element by the eighth embodiment.
  • the seventh embodiment or the eighth embodiment is adopted, It is a point-contact processing method, and continuous wear occurs at the specified contact point P and its vicinity. After the wear occurs, the machining accuracy is inevitably lowered. At this time, the processing accuracy can be restored by changing the position of the specified contact point P on the polishing film 3 or re-finishing the polishing film 3. Preferably, the position of the contact point P is changed. Since the circular arc shape of the polishing film 3 is a standard circle by the trimming, the P point is at an arbitrary position on the circular arc, and the distance relationship with the center of the circular arc is uniquely determined. Changing the position of the contact point P can avoid repeated trimming of the polishing film 3 and improve the utilization of the polishing film 3. After changing the position of the specified contact point P several times, in order to ensure the machining accuracy, the polishing film 3 must be trimmed again.

Abstract

一种光学元件的磨抛装置,该装置包括工具柄(1)和磨抛盘基体,工具柄(1)用于磨抛盘基体并可安装在数控加工设备的工具轴上,磨抛盘基体上粘贴有抛光膜(3),磨抛盘基体是仿形磨抛盘基体(7)、筒形磨抛盘基体(2)、碗形磨抛盘基体(12)或球形磨抛盘基体(8)之一。磨抛装置中独立的工具柄(2)具有通用性,降低了装置的加工成本。一种基于上述磨抛盘基体形状而进行的光学元件的抛光方法。

Description

一种光学元件的磨抛装置及方法 技术领域
本发明涉及光学元件加工, 尤其是光学元件磨抛装置及方法 背景技术
传统的球面、 平面光 元件的抛光加工工艺多采用准球心法进 行 速抛光, 其加工设备 价低廉, 且操作简单。 但是这种设备对 于磨抛盘与工件之间接触压力的控制较为模糊, 浮动范围大 因此 不容易实现确定量加工。 而且, 在传统的抛光方法中, '种 率半 径 口径的工件就需要一 抛盘基体, 同口径不同曲 :半 或者 同曲率半径不同口径的工件都需要不同的磨抛盘, 这就 :成 加工 成本的提升。
非球面光学元件相对于球面光学元 具有巨大的优势 在现代 社会的各个领域都对非球面光学元件具
Figure imgf000003_0001
巨大的需求。 因此, 如何 高精度高效率地进行非球面元件的加工成为当今社会亟待解决的问 目前, 成熟的非球面光学元件数控抛光技术主要应用在大口径 径了曲 的光学元件加工中, 诸如
Figure imgf000003_0002
小研抛盘工具的数控光学表面成形技 术、 应力盘抛光技术、 离子束抛光技术、 磁流变抛光技术等等。 如 上所述的数控加工技术, 其加工的面形精度非常高, 均能达到优于 λ / 10 的精度, 但是其加工成本对于应用范围越来越广泛的非球面 光学元件加工而言, 却是无法承受的。 大口径非球面光学元件的加 工已经基本上摆脱了手工加工的方式。
对于中小口径的非球面光学元件, 现阶段仍是手工加工及数控 加工的并存状态。 手工加工对工人的经验有较高的要求, 加工精度 较高, 具有丰富经验的加工工人加工出来的元件的面形精度同样能 达到 λ / 10 的程度, 但是加工效率低下, 很难适应社会对非球面光 学元件的需求; 而中小口径非球面光学元件的数控加工技术普遍采 用模压成形、 注塑成形等技术, 这些数控技术的加工效率相当高, 但是因为其加工原理均属于复制加工范畴, 加工精度在很大程度上 受限模具的精度, 而且其可加工材料也有一定的局限性。
发明内容
本发明的目的在于提供一种光学元件的磨抛装置及方法, 其能 够达到提高加工精度及加工效率、 降低生产成本。
本发明的核心是磨抛方法: 磨抛过程中抛光工具的抛光皮修整 成球面、 圆环面、 圆柱面、 圆锥面或平面。 抛光皮与工件之间的接 触根据工件被抛光的表面形状形成理论上的点接触, 线接触和面接 触。 抛光工具与工件之间的抛光压力取决于抛光皮的弹性模量, 工 件与抛光工具的几何形状以及抛光工具的压入深度 (相当于磨削时 的切削深度), 抛光压力大小受抛光工具相对工件的运动轨迹控制。 抛光工具相对于工件的运动轨迹与磨削时相同, 采用轨迹控制, 以 确保抛光工具的压入深度与需求的抛光压力相对应。 材料的去除机 理与传统的抛光过程相同, 取决于抛光压力、 相对线速度、 抛光皮 和工件特性以及抛光液的特性。
本发明提出的第一种技术方案是:
一种球面及平面光学元件的面接触磨抛装置, 其特征在于: 它 包括工具柄和筒形磨抛盘基体, 所述工具柄用于连接筒形磨抛盘基 体并可安装在数控加工设备的工具轴上, 或者将筒形磨抛盘基体与 工具柄合为一个整体, 作为一个独立的抛光装置, 所述筒形磨抛盘 基体上粘贴有抛光膜。
优选的, 所述工具柄底部有突出的磨抛盘连接杆, 用于跟所述 筒形磨抛盘基体顶部凹陷的磨抛盘定位接口进行配合, 将工具柄和 筒形磨抛盘基体连接固定后, 所述磨抛盘连接杆被压入磨抛盘定位 接口中, 两者之间不出现空隙。 从而保证所述筒形磨抛盘基体、 工 具柄的同轴度。
优选的, 所述工具柄和筒形磨抛盘基体上都设有螺纹接口, 两 者通过螺钉连接固定。 所述螺钉优选为内六角螺钉。 既保证两者间 的连接可靠性, 又方便安装维护。
优选的, 所述筒形磨抛盘基体外形为圆筒形, 底端为圆弧状, 所述筒形磨抛盘基体包括顶部向下凹陷的磨抛盘定位接口, 筒形磨 抛盘基体下部圆弧处用于粘贴抛光膜。 所述抛光膜可依据待加工工 件的材料进行选取, 抛光膜裁剪形状可任意, 以粘贴方便、 紧固为 准则。
优选的, 所述筒形磨抛盘基体圆弧状底端的圆弧曲率半径为 使用前, 对贴附在筒形磨抛盘基体圆弧端的抛光膜进行修整, 使其 表面截面曲线为一精确的圆弧,圆弧曲率半径为 r2,抛光膜厚度为 h, 满足 o
一种球面及平面光学元件的面接触磨抛方法, 包括以下步骤:
( 1 ) 将磨抛盘连接杆压入磨抛盘定位接口中, 并通过螺钉将两 者固定, 使磨抛盘连接杆与磨抛盘定位接口之间不出现间隙;
( 2 ) 采用粘结剂将抛光膜粘贴于筒形磨抛盘基体下部圆弧处, 待粘贴剂凝固后对抛光膜的圆弧曲率半径进行修整;
( 3 ) 修整时, 将磨抛装置安装在数控加工设备的工件轴上, 将 修整砂轮安装在数控加工设备的工具轴上, 采用点接触方式对抛光 膜的圆弧表面的曲率半径进行修整, 使抛光膜上的圆弧曲率半径处 处一致, 并且使经过修整的抛光膜表面曲率半径与待加工的球面或 平面工件的曲率半径大小相同, 符号相反;
( 4 ) 在使用过程中, 磨抛装置安装在数控设备的工具轴上, 待 加工工件安装在数控设备的工件轴上, 在磨抛加工过程中, 首先将 待加工工件面形的相关参数及磨抛装置的尺寸数据输入工艺软件, 并生成数控 NC文件,磨抛装置及待加工工件即可在数控设备的精确 定位控制下, 使得在任意加工位置上, 抛光膜的曲率中心与待加工 工件的曲率中心时刻重合, 磨抛装置与待加工工件表面成环面接触, 实现抛光加工。
优选的, 使用时, 磨抛装置安装在数控设备的工具轴上, 可绕 工具轴轴线转动, 以及绕工具轴摆动中心 B 点摆动, 而且磨抛装置 可在水平方向上进给; 待加工工件安装在数控设备的工件轴上, 可 绕工件轴轴线转动, 待加工工件可在竖直方向上进给, 由数控加工 设备控制各个加工位置上磨抛盘基体的进给速度及待加工工件的转 速。 即可以保证在各个加工位置上磨抛盘与工件之间的接触压力恒 定, 保证了恒定的去除量, 进而实现确定量加工。
优选的, 所述修整工具可以是切削刃几何形状不确定的砂轮或 者切削刃几何形状确定的铣刀盘。
优选的, 所述筒形磨抛盘基体圆弧状底端的圆弧曲率半径为 使用前, 对贴附在筒形磨抛盘基体圆弧端的抛光膜进行修整, 使其 表面截面曲线为一精确的圆弧,圆弧曲率半径为 r2,抛光膜厚度为 h, 满足 o
本发明提出的第二种技术方案是:
一种球面及平面光学元件的线接触磨抛装置, 其特征在于: 它 包括工具柄和磨抛盘基体, 所述工具柄用于连接磨抛盘基体并可安 装在数控加工设备的工具轴上, 或者将筒形磨抛盘基体与工具柄合 为一个整体, 作为一个独立的抛光装置, 所述磨抛盘基体上粘贴有 抛光膜, 所述磨抛盘基体可以是仿形磨抛盘基体或筒形磨抛盘基体。
优选的, 所述工具柄底部有突出的磨抛盘连接杆, 用于跟所述 磨抛盘基体顶部凹陷的磨抛盘定位接口进行配合, 将工具柄和磨抛 盘基体连接固定后, 所述磨抛盘连接杆被压入磨抛盘定位接口中, 两者之间不出现空隙。 从而保证所述筒形磨抛盘基体、 工具柄的同 轴度。
优选的, 所述工具柄和磨抛盘基体上都设有螺纹接口, 两者通 过螺钉连接固定。 所述螺钉优选为内六角螺钉。 既保证两者间的连 接可靠性, 又方便安装维护。
优选的, 所述仿形磨抛盘基体的外形为一回转体, 其母线为一 圆弧, 曲率半径为 r1 ; 在仿形磨抛盘基体的一端设有一个磨抛盘定 位接口, 用于将所述仿形磨抛盘基体安装在工具柄上, 使用之前将 抛光膜贴附于仿形磨抛盘基体的回转面上, 精确修整后的抛光膜的 母线为一圆弧, 曲率半径为 r2 ;选用的抛光膜厚度为 h,满足 r2=r i+h。
优选的, 所述筒形磨抛盘基体的外形为圆筒形, 其一端为圆弧 状, 圆弧曲率半径为 r3 ; 另一端设有一个磨抛盘定位接口, 用于将 所述筒形磨抛盘基体安装在工具柄上, 使用之前将抛光膜贴附在筒 形磨抛盘基体下方圆弧端, 精确修整后的抛光膜的截面曲线为一精 确的圆弧, 圆弧曲率半径为 r4 ;选用的抛光膜厚度为 h,满足 r4=r3+h。 一种球面及平面光学元件的线接触磨抛方法, 其特征在于包括 以下步骤:
1 ) 将磨抛盘连接杆压入磨抛盘定位接口中, 并通过螺钉将两者 固定, 使磨抛盘连接杆与磨抛盘定位接口之间不出现间隙;
2 ) 采用粘结剂将抛光膜粘贴于磨抛盘基体下部, 待粘贴剂凝固 后对抛光膜的圆弧曲率半径进行修整;
3 ) 修整时, 将磨抛装置安装在数控加工设备的工件轴上, 将修 整砂轮安装在数控加工设备的工具轴上, 采用点接触方式对抛光膜 的圆弧曲率半径进行修整, 使抛光膜上的圆弧曲率半径处处一致;
4 ) 使用时, 将磨抛装置安装在数控设备的工具轴上, 待加工工 件安装在数控设备的工件轴上, 在磨抛的加工过程中, 首先将待加 工非球面的相关参数及磨抛装置的尺寸数据输入工艺软件, 并生成 数控 NC文件, 磨抛装置及待加工工件即可在数控设备的控制下, 使 得在任意加工位置上, 磨抛装置与待加工工件均为线接触, 在加工 过程中, 仿形磨抛盘基体与待加工工件的接触轨迹为工件的子午截 面曲线的一部分, 属于仿形法加工; 筒形磨抛盘基体与工件的接触 轨迹为一包络圆, 属于范成法加工。
优选的, 使用时, 磨抛装置安装在数控设备的工具轴上, 可绕 工具轴轴线转动, 以及绕工具轴摆动中心 B 点摆动, 而且磨抛装置 可在水平方向上进给; 待加工工件安装在数控设备的工件轴上, 可 绕工件轴轴线转动, 待加工工件可在竖直方向上进给, 由数控加工 设备控制各个加工位置上磨抛盘基体的进给速度及待加工工件的转 速。 即可以保证在各个加工位置上磨抛盘与工件之间的接触压力恒 定, 保证了恒定的去除量, 进而实现确定量加工。
优选的, 所述修整工具可以是切削刃几何形状不确定的砂轮或 者切削刃几何形状确定的铣刀盘。
优选的, 所述仿形磨抛盘基体上的抛光膜粘贴在仿形磨抛盘基 体的回转面上, 粘贴高度以粘贴紧固且覆盖整个回转面为准则; 所 述筒形磨抛盘基体的抛光膜粘贴在筒形磨抛盘基体的圆弧状底端。 所述抛光膜可依据待加工工件的材料进行选取, 抛光膜裁剪形状可 任意, 以粘贴方便、 紧固为准则。
优选的, 所述仿形磨抛盘基体的外形为一回转体, 其母线为一 圆弧, 曲率半径为 精确修整后的抛光膜的母线为一圆弧, 曲率 半径为 r2, 选用的抛光膜厚度为 h, 满足 r2=r i+h ; 所述筒形磨抛盘 基体的外形为圆筒形, 其一端为圆弧状, 圆弧曲率半径为 r3, 精确 修整后的抛光膜的截面曲线为一精确的圆弧, 圆弧曲率半径为 r4 ; 选用的抛光膜厚度为 h, 满足 r4=r3+h。
本发明提出的第三种方式是:
本发明的技术方案是: 一种非球面光学元件的点接触抛光装置, 包括工具柄和磨抛盘基体, 所述工具柄用于连接磨抛盘基体并可安 装在数控加工设备的工具轴上, 或者将磨抛盘基体与工具柄合为一 个整体, 作为一个独立的抛光装置, 所述磨抛盘基体上粘贴有抛光 膜, 所述磨抛盘基体可以是碗形磨抛盘基体或球形磨抛盘基体。
优选的, 所述工具柄底部有突出的磨抛盘连接杆, 用于跟所述 磨抛盘基体顶部凹陷的磨抛盘定位接口进行配合, 将工具柄和磨抛 盘基体连接固定后, 所述磨抛盘连接杆被压入磨抛盘定位接口中, 两者之间不出现空隙。 从而保证所述磨抛盘基体、 工具柄的同轴度。
优选的, 所述工具柄和磨抛盘基体上都设有螺纹接口, 两者通 过螺钉连接固定。 所述螺钉优选为内六角螺钉。 既保证两者间的连 接可靠性, 又方便安装维护。
优选的, 所述磨抛盘基体可以是碗形磨抛盘基体, 外形为圆筒 形, 底端为圆弧状, 所述碗形磨抛盘基体包括顶部向下凹陷的碗形 磨抛盘定位接口, 碗形磨抛盘基体下部圆弧处用于粘贴抛光膜; 所 述碗形磨抛盘基体底端圆弧的曲率半径为 , 修整后的抛光膜表面 截面曲线为一精确的圆弧, 圆弧曲率半径为 r2, 抛光膜厚度为 h, 满 足 r2= ri+h o
优选的, 所述磨抛盘基体可以是球形磨抛盘基体, 外形为球形 或是球的一部分, 所述球形磨抛盘基体包括顶部向下凹陷的球形磨 抛盘定位接口, 所述抛光膜粘贴在球面上; 所述球形磨抛盘基体的 球面曲率半径为 r3, 修整后的抛光膜球面曲率半径为 r4, 抛光膜厚 度为 h, 满足 r4= r3+h。
一种非球面光学元件的点接触抛光方法, 其特征在于包括以下 步骤:
( 1 ) 将磨抛盘连接杆压入磨抛盘定位接口中, 并通过螺钉将两 者固定, 使磨抛盘连接杆与磨抛盘定位接口之间不出现间隙;
( 2 ) 采用粘结剂将抛光膜粘贴于磨抛盘基体上, 待粘贴剂凝固 后对抛光膜的圆弧曲率半径进行修整;
( 3 ) 修整时, 将磨抛装置安装在数控加工设备的工件轴上, 将 修整砂轮安装在数控加工设备的工具轴上, 采用点接触方式对抛光 膜的圆弧曲率半径进行修整, 使抛光膜上的圆弧曲率半径处处一致;
( 4 ) 使用时, 将磨抛装置安装在数控设备的工具轴上, 待加工 工件安装在数控设备的工件轴上, 在磨抛的加工过程中, 首先将待 加工非球面的相关参数及磨抛装置的尺寸数据输入工艺软件, 并生 成数控 NC文件, 磨抛装置及待加工工件即可在数控设备的控制下, 使得在任意加工位置上, 磨抛装置与待加工工件均在 P 点处实现接 触, 且 P 点相对于待加工工件的运动轨迹完全吻合于待加工非球面 的子午截面曲线。
优选的, 若待加工工件为凸面且采用外抛方式进行磨抛加工, 则只需对抛光膜的外侧圆弧进行修整; 若待加工工件为凸面且采用 内抛方式进行磨抛加工, 则只需对抛光膜的内侧圆弧进行修整; 若 待加工工件为凹面, 则只需对抛光膜的外侧圆弧进行修整; 也可同 时对抛光膜的外侧圆弧及内侧圆弧进行修整。 所述修整工具可以是 切削刃几何形状不确定的砂轮或者切削刃几何形状确定的铣刀盘。 所述抛光膜可依据待加工工件的材料进行选取, 抛光膜裁剪形状可 任意, 以粘贴方便、 紧固为准则。
优选的, 使用时, 磨抛装置安装在数控设备的工具轴上, 可绕 工具轴轴线转动, 以及绕工具轴摆动中心 B 点摆动, 而且磨抛装置 可在水平方向上进给; 待加工工件安装在数控设备的工件轴上, 可 绕工件轴轴线转动, 待加工工件可在竖直方向上进给, 由数控加工 设备控制各个加工位置上磨抛盘基体的进给速度及待加工工件的转 速。 即可以保证在各个加工位置上磨抛盘与工件之间的接触压力恒 定, 保证了恒定的去除量, 进而实现确定量加工。
优选的, 所述碗形磨抛盘基体底端圆弧的曲率半径为 修整 后的抛光膜表面截面曲线为一精确的圆弧, 圆弧曲率半径为 r2, 抛 光膜厚度为 h, 满足 r2= ri+h ; 所述球形磨抛盘基体的球面曲率半径 为 r3, 修整后的抛光膜球面曲率半径为 r4, 抛光膜厚度为 h, 满足 r4= r3+h。
本发明具有以下有益效果:
1. 本发明装置中的抛光膜表面的曲率半径可以实现在位精确 修整。
2. 本发明中独立的工具柄具有通用性, 从而降低了装置的加工 成本。
3. 传统的球面及平面光学元件的抛光工艺是使磨抛盘与工件 的整个表面接触, 是球面或平面接触, 依靠磨抛盘的摆动来实现乱 序抛光; 本发明的磨抛盘采用筒形的外观, 抛光过程中为环面接触, 依靠对抛光膜形状的修整, 使同一外形尺寸的磨抛盘可适用于多种 曲率半径的工件的磨抛加工。
4.传统的球面磨抛工艺采用准球心法抛光, 磨抛盘与工件是面 接触方式, 采用仿形法进行抛光加工, 本发明的磨抛盘与工件为线 接触方式, 即在整个加工过程中, 磨抛盘与工件表面的接触轨迹为 一条闭合的或非闭合的曲线, 由于工件的旋转, 从而得到所需表面。
5.本发明的磨抛盘, 特别是碗形磨抛盘具有通用性, 依靠对抛 光膜形状的修整, 使同一外形尺寸的磨抛盘可适用于多种曲率半径 的工件的磨抛加工。
6. 本发明由数控加工设备控制各个加工位置上磨抛盘基体的 进给速度及待加工工件的转速, 即可以保证在各个加工位置上磨抛 盘与工件之间的接触压力恒定, 保证了恒定的去除量, 进而实现确 定量加工。
附图说明 图 1 是本发明方案一中磨抛装置的第一实施例的结构图; 图 2 是本发明中工具柄 1 的结构图;
图 3 是图 1 中筒形磨抛盘基体的结构图;
图 4 是方案一中对实施例一的结构进行抛光膜修整的示意图; 图 5 是方案一中采用实施例一的结构对凹面元件进行磨抛加 工的示意图;
图 6 是本发明方案一中磨抛装置的实施例二的结构图; 图 7 是图 6中筒形磨抛盘基体的结构图;
图 8 是方案一中采用实施例二的结构对凸面元件进行磨抛加 工的示意图;
图 9 是本发明方案一中磨抛装置的实施例三的结构图; 图 10 是图 9中筒形磨抛盘基体的结构图;
图 11 是方案一中采用实施例三的结构对平面元件进行磨抛加 工的示意图。
图 12 是本发明磨抛装置方案二中的实施例四的结构图; 图 13是图 12中仿形磨抛盘基体的结构图;
图 14是对方案二中实施例四进行抛光膜修整的示意图; 图 15是方案二中采用实施例四的结构对凸面元件进行外抛加工 的示意图;
图 16是本发明磨抛装置方案二中的实施例五的结构图; 图 17是图 16中碗形磨抛盘基体 12的结构图;
图 18是方案二中采用实施例五的结构对凹面元件进行外抛加工 的示意图;
图 19是本发明磨抛装置方案二中的实施例六的结构图; 图 20 是图 19中筒形磨抛盘基体的结构图;
图 21是方案二中采用实施例六的结构对凸面元件进行抛光加工 的示意图;
图 22是方案二中采用实施例六的结构对凹面元件进行抛光加工 的示意图;
图 23是方案二中采用实施例六的结构对平面元件进行抛光加工 的示意图;
图 24为本发明磨抛装置方案三的第七实施例的结构图; 图 25为筒形磨抛盘基体的结构图;
图 26 是筒形磨抛盘进行抛光膜修整的示意图;
图 27 是采用第七实施例对凸非球面光学元件进行外抛加工的 示意图;
图 28是采用第七实施例对凸非球面光学元件进行内抛加工的示 意图;
图 29 是采用第七实施例对凹非球面光学元件进行磨抛加工的 示意图;
图 30 是本发明磨抛装置方案三的第八实施例的结构图; 图 3 1是图 30中球形磨抛盘基体的结构图;
图 32 是方案三采用第八实施例对凸非球面光学元件进行磨抛 加工的示意图;
图 33 是方案三中采用第八实施例对凹非球面光学元件进行磨 抛加工的示意图。
其中: 1、 工具柄; 2、 筒形磨抛盘基体; 3、 抛光膜; 4、 螺钉; 5、 修整砂轮; 6、 待加工工件; 7、 仿形磨抛盘基体; 8、 球形磨抛 盘基体; 9、 螺钉; 1 1、 磨抛盘连接杆; 12、 碗形磨抛盘基体; 21、 磨抛盘定位接口; 3 1、 外侧圆弧; 32、 内侧圆弧; 100、 磨抛装置。
具体实施方式
以下结合具体实施例对上述方案做进一歩说明。
首先介绍本发明的方案一参见图 1- 1 1 :
方案一是一种球面及平面光学元件的面接触磨抛装置: 实施例一:
如图 1 -图 5所示, 工具柄 1下部设有磨抛盘连接杆 1 1, 可压入 筒形磨抛盘基体 2上部的磨抛盘定位接口 21 中。 安装时, 将磨抛盘 连接杆 1 1压入磨抛盘定位接口 2 1 中, 并与筒形磨抛盘基体 2固定, 使得磨抛盘连接杆 1 1与磨抛盘定位接口 21之间不出现间隙。 其中, 工具柄 1 通过任意一种扳手接口, 如内三角、 内四角、 内六角、 双 孔接口等与筒形磨抛盘基体 2 紧固, 由此既保证两者间的连接可靠 性, 又方便安装维护。
筒形磨抛盘基体 2下部圆弧处用于粘贴抛光膜 3。抛光膜 3可依 据待加工工件 7 的材料进行选取, 抛光膜 3 裁剪形状可任意, 以粘 贴方便、 紧固为准则。 采用粘结剂将抛光膜 3 粘贴于筒形磨抛盘基 体 2下部的圆弧处, 粘贴高度以粘贴紧固为准则。
装配时, 首先将磨抛盘连接杆 1 1 压入磨抛盘定位接口 2 1 中, 优选地通过内六角螺钉 4 与筒形磨抛盘基体 2 固定, 使得磨抛盘连 接杆 1 1 与磨抛盘定位接口 2 1 之间不出现间隙; 再在裁剪好的抛光 膜 3 —面涂抹粘结剂粘贴于筒形磨抛盘基体 2 下部的圆弧处, 待粘 结剂凝固后, 即完成加工准备。
按照上述结构并装配后, 即可对磨抛装置 100进行抛光膜 3 的 修整。 将磨抛装置 100 安装在数控加工设备的工件轴上, 将修整砂 轮 5 安装在数控加工设备的工具轴上, 采用点接触方式对抛光膜 3 的圆弧表面的曲率半径进行修整。 经过修整后的抛光膜 3 的曲率半 径处处一致, 并且使经过修整的抛光膜表面曲率半径与待加工的球 面或平面工件的曲率半径大小相同, 符号相反, 提高了磨抛加工时 的定位精度及加工精度。
如图 5 所示为采用本发明磨抛装置第一实施例对凹面元件进行 磨抛加工的示意图。 在使用过程中, 磨抛装置 100 安装在数控设备 的工具轴上, 可绕工具轴轴线转动, 及绕工具轴摆动中心 B 点摆动, 而且磨抛装置 100 可在水平方向上进给; 待加工工件 6 安装在数控 设备的工件轴上, 可绕工件轴轴线转动, 工件可在竖直方向上进给。 在磨抛加工过程中, 首先将待加工工件 6 面形的相关参数及磨抛装 置 100 的尺寸数据输入工艺软件, 并生成数控 NC 文件, 磨抛装置 100及待加工工件 6即可在数控设备的精确定位控制下,使得在任意 加工位置上, 磨抛装置与待加工工件 6 均能吻合接触, 实现抛光加 工。
实施例二: 如图 6所示为本发明磨抛装置 100第二实施例的结构图, 其工 具柄 1、 筒形磨抛盘基体 2的结构示意图分别如图 2、 图 7所示。 在 该实施例中, 磨抛装置 100 包括: 一工具柄 1, 用于安装筒形磨抛 盘; 一筒形磨抛盘基体 2, 用于贴附抛光膜 3 ; —抛光膜 3, 用于与 待加工工件 6 (图未示) 接触实现磨抛加工。 本实施例适用于凸面元 件的磨抛加工, 其装配流程及对抛光膜 3的修整与第一实施例相同, 在此不再赘述。
如图 8 所示为采用第二实施例对凸面元件进行磨抛加工的示意 图, 第二实施例的使用与第一实施例的使用方法相同, 在此不再赘 述。
实施例三:
如图 9 所示为本发明磨抛装置的第三实施例的结构图, 其工具 柄 1、 筒形磨抛盘基体 2 的结构示意图分别如图 2、 图 10所示。 在 该实施例中, 磨抛装置 100包括: 一工具柄 1, 用于安装筒形磨抛盘; 一筒形磨抛盘基体 2, 用于贴附抛光膜 3 ; —抛光膜 3, 用于与待加 工工件 6 (图未示) 接触实现磨抛加工。 本实施例适用于平面元件的 磨抛加工, 其装配流程及对抛光膜 3 的修整与第一实施例相同, 在 此不再赘述。 本实施例其实是第一、 第二实施例的特殊形式, 即当 第一、 第二实施例中磨抛盘基体圆弧端的曲率半径趋近于无穷大时 的特例。
如图 1 1所示为采用第三实施例对平面元件进行磨抛加工的示意 图, 第三实施例的使用与第一实施例的使用方法相同, 在此不再赘 述。
可以理解的是, 无论是采用第一实施例还是第二实施例还是第 三实施例, 由于抛光膜 3 与待加工工件 6 的接触面积较小, 因此抛 光膜 3 的磨损会较快, 但是该套磨抛装置 100 具有一定的普适性, 只需要对抛光膜 3 表面的曲率半径进行精确修整, 即可实现单一磨 抛装置 100对多口径多曲率半径的工件的磨抛加工。
本发明的方案二为:
方案二是一种球面及平面光学元件的线接触磨抛装置: 实施例四:
如图 12- 14所示, 工具柄 1 下部设有磨抛盘连接杆 1 1, 可压入 仿形磨抛盘基体 7上部的磨抛盘定位接口 21 中。 安装时, 将磨抛盘 连接杆 1 1压入磨抛盘定位接口 21 中, 并与仿形磨抛盘基体 7固定, 使得磨抛盘连接杆 1 1与磨抛盘定位接口 21之间不出现间隙。 其中, 工具柄 1 通过任意一种扳手接口, 如内三角、 内四角、 内六角、 双 孔接口等与仿形磨抛盘基体 7 紧固, 由此既保证两者间的连接可靠 性, 又方便安装维护。 所述仿形磨抛盘基体 7 的外形为一回转体, 其母线为一圆弧, 曲率半径为 Γ ι, 该形状的仿形磨抛盘适用于凸面 元件的抛光加工。
仿形磨抛盘基体 7 的回转面用于粘贴抛光膜 3。 抛光膜 3可依 据待加工工件 6 的材料进行选取, 抛光膜 3 裁剪形状可任意, 以粘 贴方便、 紧固为准则。 采用粘结剂将抛光膜 3 粘贴于仿形磨抛盘基 体 7的回转面上, 粘贴高度以粘贴紧固且覆盖整个回转面为准则。
装配时, 首先将磨抛盘连接杆 1 1 压入磨抛盘定位接口 21 中, 优选地通过内六角螺钉 4 与仿形磨抛盘 7 固定, 使得磨抛盘连接杆 1 1与磨抛盘定位接口 21之间不出现间隙; 再在裁剪好的抛光膜 3— 面涂抹粘结剂粘贴于仿形磨抛盘基体 7 的回转面上, 待粘结剂凝固 后, 即完成加工准备。
按照上述结构并装配后, 即可对磨抛装置 100进行抛光膜 3 的 修整。 如图 14所示为对第一实施例进行抛光膜 3修整的示意图。 将 磨抛装置 100 安装在数控加工设备的工件轴 (图未示) 上, 磨抛装 置 100可绕工件轴轴线旋转,并绕数控加工设备的工件轴摆动中心 B 摆动, 且可在水平方向上进给; 将修整砂轮 5 安装在数控加工设备 的工具轴 (图未示) 上, 修整砂轮 5 可绕工具轴轴线旋转, 且可在 竖直方向上进给。 采用点接触方式对抛光膜 3 圆弧曲率半径进行修 整。 经过修整后的抛光膜 3 的表面, 其圆弧曲率半径处处一致, 提 高了抛光加工时的定位精度及加工精度。
如图 15所示为采用本发明磨抛装置 100第一实施例对凸面元件 进行抛光加工的示意图。 在使用过程中, 磨抛装置 100 安装在数控 设备的工具轴 (图未示) 上, 可绕工具轴轴线转动, 及绕工具轴摆 动中心 B 点摆动, 而且磨抛装置 100可在水平方向上进给; 待加工 工件 6 安装在数控设备的工件轴上, 可绕工件轴轴线转动, 工件可 在竖直方向上进给。 在抛光的加工过程中, 首先将待加工非球面的 相关参数及磨抛装置 100的尺寸数据输入工艺软件, 并生成数控 NC 文件, 磨抛装置 100及待加工工件 6 即可在数控设备的控制下, 使 得在任意加工位置上, 磨抛装置 100与待加工工件 6 均为线接触, 且接触轨迹完全吻合于待加工球面工件的子午截面曲线。
实施例五:
如图 17所示为本发明磨抛装置 100第五实施例的结构示意图, 实施例五的工具柄 1、 仿形磨抛盘基体 7 的结构分别如图 2和图 17 所示。 在该实施例中, 磨抛装置 100包括: 一工具柄 1, 用于安装仿 形磨抛盘基体 7 ; —仿形磨抛盘基体 7, 用于贴附抛光膜 3 ; —抛光 膜 3, 用于与待加工工件 6 (图未示) 接触实现抛光加工。 该形状的 仿形磨抛盘基体 7 适用于凹面元件的抛光加工。 其装配流程及对抛 光膜 3 的修整与第四实施例相同, 在此不再赘述。
如图 18所示为采用第五实施例对凹面元件进行外抛加工的示意 图, 第五实施例的使用与第四实施例的使用方法相同, 在此不再赘 述。
实施例六:
如图 19和图 20所示为本发明磨抛装置 100实施例的结构图, 本实施例的工具柄 1、筒形磨抛盘基体 2的结构分别如图 2、20所示。 在该实施例中, 磨抛装置 100包括: 一工具柄 1, 用于安装筒形磨抛 盘基体 2 ; —筒形磨抛盘基体 2, 用于贴附抛光膜 3 ; —抛光膜 3, 用于与待加工工件 6 (图未示) 接触实现抛光加工。 本实施例的装配 流程及对抛光膜 3 的修整 (如图 24所示) 与第四实施例相同, 在此 不再赘述。
本实施例中, 筒形磨抛盘基体 2 采用了筒形外观, 此外形的优 点在于同一尺寸的磨抛盘适用于多种口径多种曲率半径的工件面形 加工。 因其加工原理与球面的铣磨原理相同, 均是范成法加工, 抛 光膜 3与工件的接触轨迹为一包络圆。
如图 21、 图 22及图 23所示, 分别为采用本发明磨抛装置第六 实施例对凸面元件、 凹面元件、 平面元件进行抛光加工的示意图。
本发明的方案三为:
实施例七:
实施例七: 如图 2及图 24-25所示, 工具柄 1 下部设有磨抛盘 连接杆 1 1, 可压入筒形磨抛盘基体 2上部的筒形磨抛盘定位接口 21 中。 安装时, 将磨抛盘连接杆 1 1 压入筒形磨抛盘定位接口 21 中, 并与筒形磨抛盘基体 2固定, 使得磨抛盘连接杆 1 1与筒形磨抛盘定 位接口 21之间不出现间隙。其中,工具柄 1 通过任意一种扳手接口, 如内三角、 内四角、 内六角、 双孔接口等与筒形磨抛盘基体 2紧固, 由此既保证两者间的连接可靠性, 又方便安装维护。
筒形磨抛盘基体 2下部圆弧处用于粘贴抛光膜 3。抛光膜 3可依 据待加工工件 6 的材料进行选取, 抛光膜 3 裁剪形状可任意, 以粘 贴方便、 紧固为准则。 采用粘结剂将抛光膜 3 粘贴于筒形磨抛盘基 体 2下部的圆弧处, 粘贴高度以粘贴紧固为准则。
装配时, 首先将磨抛盘连接杆 1 1 压入筒形磨抛盘定位接口 21 中, 优选地通过内六角螺钉与筒形磨抛盘基体 2 固定, 使得磨抛盘 连接杆 1 1 与筒形磨抛盘定位接口 21 之间不出现间隙; 再在裁剪好 的抛光膜 3—面涂抹粘结剂粘贴于筒形磨抛盘基体 2下部的圆弧处, 待粘结剂凝固后, 即完成加工准备。
按照上述结构并装配后, 即可对磨抛装置 100进行抛光膜 3 的 修整。 将磨抛装置 100 安装在数控加工设备的工件轴上, 将修整砂 轮 5 安装在数控加工设备的工具轴上, 采用点接触方式对抛光膜 3 圆弧曲率半径进行修整。 若待加工工件 6 为凸面且采用外抛方式进 行磨抛加工, 则只需对抛光膜 3 的外侧圆弧 3 1进行修整; 若待加工 工件 6 为凸面且采用内抛方式进行磨抛加工, 则只需对抛光膜 3 的 内侧圆弧 32进行修整; 若待加工工件 6为凹面, 则只需对抛光膜 3 的外侧圆弧 3 1 进行修整; 也可同时对抛光膜 3 的外侧圆弧 3 1 及内 侧圆弧 32进行修整。 经过修整后的抛光膜 3 的圆弧曲率半径处处一 致, 提高了磨抛加工时的定位精度及加工精度。
如图 27所示为采用本实施例七对凸非球面光学元件进行外抛加 工的示意图。 在使用过程中, 磨抛装置 100 安装在数控设备的工具 轴上, 可绕工具轴轴线转动, 及绕工具轴摆动中心 B 点摆动, 而且 磨抛装置 100可在水平方向上进给; 待加工工件 6 安装在数控设备 的工件轴上, 可绕工件轴轴线转动, 工件可在竖直方向上进给。 在 外抛的加工方式中, P点位于抛光膜 3外侧区域。 在磨抛的加工过程 中, 首先将待加工非球面的相关参数及磨抛装置 100 的尺寸数据输 入工艺软件, 并生成数控 NC 文件, 磨抛装置 100 及待加工工件 6 即可在数控设备的控制下, 使得在任意加工位置上, 磨抛装置 100 与待加工工件 6均在 P点处实现接触, 且 P点相对于工件的运动轨 迹完全吻合于待加工非球面的子午截面曲线。
如图 28所示为采用本实施例七对凸非球面光学元件进行内抛加 工的示意图。 与外抛加工方式所不同的是, 在内抛的加工方式中, P 点位于抛光膜 3 的内侧区域。
如图 29所示为采用本实施例七对凹非球面光学元件进行磨抛加 工的示意图。
实施例八: 如图 2及图 30所示, 本实施例的磨抛装置 100包括 工具柄 1和球形磨抛盘基体 8, 所述工具柄 1与实施例一中的相同, 所述球形磨抛盘基体 8如图 3 1所示, 所述工具柄 1用于安装球形磨 抛盘基体 8 ; 所述球形磨抛盘基体 8用于贴附抛光膜 3 ; 所述抛光膜 3用于以 P点作为指定接触点与工件 (图未示) 接触实现磨抛加工。 本实施例的装配流程及对抛光膜的修整与第一实施例相同。
本实施例中, 球形磨抛盘基体 8 采用了球形外观, 此外形的优 点在于指定接触点 P 的位置选择范围较第七实施例大, 因此 P 点的 线速度范围也较大, 有利于磨抛加工。 与第七实施例不同的是, 采 用第八实施例进行加工时, 凸面元件只能采用外抛的方式进行加工。
如图 32、图 33所示,分别为采用实施例八对凸非球面光学元件、 凹非球面光学元件进行磨抛加工的示意图。
可以理解的是, 无论是采用第七实施例还是第八实施例, 由于 是点接触的加工方式, 在指定接触点 P 处及其附近区域内会出现持 续的磨损, 在出现磨损后, 加工精度必然会出现下降。 此时, 可以 通过改变指定接触点 P在抛光膜 3 上的位置或重新对抛光膜 3进行 修整来恢复加工精度。 优选地采用更改接触点 P 的位置, 由于通过 修整, 抛光膜 3的圆弧形状是标准的圆, P点在圆弧上任意位置, 其 与圆弧中心的距离关系都是唯一确定的。 更改接触点 P 的位置可以 避免对抛光膜 3 的反复修整, 提高抛光膜 3 的利用率。 在多次更改 指定接触点 P 的位置后, 为了保证加工精度, 则必须对抛光膜 3 进 行再次修整。
当然上述实施例只为说明本发明的技术构思及特点, 其目的在 于让熟悉此项技术的人能够了解本发明的内容并据以实施, 并不能 以此限制本发明的保护范围。 凡根据本发明主要技术方案的精神实 质所做的修饰, 都应涵盖在本发明的保护范围之内。

Claims

O 2014/146620 权 利 要 求 书 PCT/CN2014/076076
1. 一种光学元件的磨抛装置, 其特征在于, 包括工具柄 ( 1) 和 筒形磨抛盘基体 (2), 所述工具柄 ( 1) 用于连接筒形磨抛盘基体 (2) 并可安装在数控加工设备的工具轴上, 所述筒形磨抛盘基体 (2) 上粘 贴有抛光膜 (3)。
2.根据权利要求 1所述的光学元件的磨抛装置, 其特征在于, 所 述工具柄 ( 1) 底部有突出的磨抛盘连接杆 ( 11), 用于跟所述筒形磨 抛盘基体 (2) 顶部凹陷的磨抛盘定位接口 (21) 进行配合, 将工具柄
( 1) 和筒形磨抛盘基体 (2) 连接固定后, 所述磨抛盘连接杆 ( 11) 被压入磨抛盘定位接口 (21) 中, 两者之间不出现空隙;
所述工具柄 ( 1) 和筒形磨抛盘基体 (2) 上都设有螺纹接口, 两 者通过螺钉 (4) 连接固定。
3. 根据权利要求 1所述的光学元件的磨抛装置, 其特征在于, 所 述筒形磨抛盘基体 (2) 外形为圆筒形, 底端为圆弧状, 所述筒形磨抛 盘基体 (2) 包括顶部向下凹陷的磨抛盘定位接口 (21), 筒形磨抛盘 基体 (2) 下部圆弧处用于粘贴抛光膜 (3);
所述筒形磨抛盘基体 (2) 圆弧状底端的圆弧曲率半径为 Γι, 使用 前, 对贴附在筒形磨抛盘基体 (2) 圆弧端的抛光膜 (3) 进行修整, 使其表面截面曲线为一精确的圆弧, 圆弧曲率半径为 r2, 抛光膜 (3) 厚度为 h, 满足 ^=^+11。
4.一种基于权利要求 1-3任意一项的球面及平面光学元件的面接 触磨抛方法, 其特征在于, 包括以下步骤:
1) 将磨抛盘连接杆 ( 11) 压入磨抛盘定位接口 (21) 中, 并通过 螺钉 (4) 将两者固定, 使磨抛盘连接杆 ( 11) 与磨抛盘定位接口 (21) 之间不出现间隙;
2) 采用粘结剂将抛光膜 (3) 粘贴于筒形磨抛盘基体 (2) 下部圆 弧处, 待粘贴剂凝固后对抛光膜 (3) 的圆弧曲率半径进行修整;
3) 修整时, 将磨抛装置 ( 100) 安装在数控加工设备的工件轴上, 将修整砂轮 (5) 安装在数控加工设备的工具轴上, 采用点接触方式对 抛光膜 (3) 的圆弧表面的曲率半径进行修整, 使抛光膜 (3) 上的圆 弧曲率半径处处一致, 并且使经过修整的抛光膜 (3) 表面曲率半径与 待加工的球面或平面工件的曲率半径大小相同, 符号相反; 4) 在使用过程中, 磨抛装置 ( 100) 安装在数控设备的工具轴上, 待加工工件 (6) 安装在数控设备的工件轴上, 在磨抛加工过程中, 首 先将待加工工件 (6) 面形的相关参数及磨抛装置 ( 100) 的尺寸数据 输入工艺软件, 并生成数控 NC文件, 磨抛装置 ( 100) 及待加工工件 (6) 即可在数控设备的精确定位控制下, 使得在任意加工位置上, 抛 光膜 (3) 的曲率中心与待加工工件 (6) 的曲率中心时刻重合, 磨抛 装置 ( 100) 与待加工工件 (6) 表面成环面接触, 实现抛光加工。
5.根据权利要求 4所述的球面及平面光学元件的面接触磨抛方 法, 其特征在于, 使用时, 磨抛装置 ( 100) 安装在数控设备的工具轴 上, 可绕工具轴轴线转动, 以及绕工具轴摆动中心 B点摆动, 而且磨 抛装置 ( 100) 可在水平方向上进给; 待加工工件 (6) 安装在数控设 备的工件轴上, 可绕工件轴轴线转动, 待加工工件 (6) 可在竖直方向 上进给, 由数控加工设备控制各个加工位置上磨抛盘基体的进给速度 及待加工工件 (6) 的转速;
所述筒形磨抛盘基体 (2) 圆弧状底端的圆弧曲率半径为 rl, 使 用前, 对贴附在筒形磨抛盘基体 (2) 圆弧端的抛光膜 (3) 进行修整, 使其表面截面曲线为一精确的圆弧, 圆弧曲率半径为 r2, 抛光膜 (3) 厚度为 h, 满足 r2=rl+h。
6.—种光学元件的磨抛装置, 其特征在于, 包括工具柄 ( 1) 和磨 抛盘基体, 所述工具柄 ( 1) 用于连接磨抛盘基体并可安装在数控加工 设备的工具轴上, 所述磨抛盘基体上粘贴有抛光膜 (3), 所述磨抛盘 基体可以是仿形磨抛盘基体 (7) 或筒形磨抛盘基体; 所述工具柄 ( 1) 底部有突出的磨抛盘连接杆 ( 11), 用于跟所述磨抛盘基体顶部凹陷的 磨抛盘定位接口 (21) 进行配合, 将工具柄 ( 1) 和磨抛盘基体连接固 定后, 所述磨抛盘连接杆 ( 11) 被压入磨抛盘定位接口 (21) 中, 两 者之间不出现空隙。
7. 根据权利要求 6所述的光学元件的磨抛装置, 其特征在于, 所 述工具柄 ( 1) 和磨抛盘基体上都设有螺纹接口, 两者通过螺钉 (4) 连接固定; 所述仿形磨抛盘基体 (7) 的外形为一回转体, 其母线为一 圆弧, 曲率半径为 r1; 在仿形磨抛盘基体 (7) 的一端设有一个磨抛盘 定位接口 (21), 用于将所述仿形磨抛盘基体 (7) 安装在工具柄 ( 1) 上, 使用之前将抛光膜 (3) 贴附于仿形磨抛盘基体 (7) 的回转面上, 精确修整后的抛光膜 (3) 的母线为一圆弧, 曲率半径为 r2; 选用的抛 光膜 (3) 厚度为 h, 满足 Γ2=Γι+ΐ!; 所述筒形磨抛盘基体的外形为圆筒 形, 其一端为圆弧状, 圆弧曲率半径为 r3; 另一端设有一个磨抛盘定 位接口 (21), 用于将所述筒形磨抛盘基体安装在工具柄 ( 1) 上, 使 用之前将抛光膜 (3) 贴附在筒形磨抛盘基体下方圆弧端, 精确修整后 的抛光膜 (3) 的截面曲线为一精确的圆弧, 圆弧曲率半径为 r4; 选用 的抛光膜 (3) 厚度为 h, 满足 r4=r3+h。
8. 一种基于权利要求 6或 7的球面及平面光学元件的线接触磨抛 方法, 其特征在于, 包括以下步骤:
1) 将磨抛盘连接杆 ( 11) 压入磨抛盘定位接口 (21) 中, 并通过 螺钉 (4) 将两者固定, 使磨抛盘连接杆 ( 11) 与磨抛盘定位接口 (5) 之间不出现间隙;
2) 采用粘结剂将抛光膜 (3) 粘贴于磨抛盘基体下部, 待粘贴剂 凝固后对抛光膜 (3) 的圆弧曲率半径进行修整;
3) 修整时, 将磨抛装置 ( 100) 安装在数控加工设备的工件轴上, 将修整砂轮 (5) 安装在数控加工设备的工具轴上, 采用点接触方式对 抛光膜 (3) 的圆弧曲率半径进行修整, 使抛光膜 (3) 上的圆弧曲率 半径处处一致;
4) 使用时, 将磨抛装置 ( 100) 安装在数控设备的工具轴上, 待 加工工件 (6) 安装在数控设备的工件轴上, 在磨抛的加工过程中, 首 先将待加工非球面的相关参数及磨抛装置 ( 100) 的尺寸数据输入工艺 软件, 并生成数控 NC文件, 磨抛装置 ( 100) 及待加工工件 (6) 即可 在数控设备的控制下, 使得在任意加工位置上, 磨抛装置 ( 100) 与待 加工工件 (6) 均为线接触, 在加工过程中, 仿形磨抛盘基体 (7) 与 待加工工件 (6) 的接触轨迹为工件的子午截面曲线的一部分, 属于仿 形法加工; 筒形磨抛盘基体与工件的接触轨迹为一包络圆, 属于范成 法加工。
9. 根据权利要求 8 所述的球面及平面光学元件的线接触磨抛方 法, 其特征在于: 使用时, 磨抛装置 ( 100) 安装在数控设备的工具轴 上, 可绕工具轴轴线转动, 以及绕工具轴摆动中心 B 点摆动, 而且磨 抛装置 ( 100) 可在水平方向上进给; 待加工工件 (6) 安装在数控设 备的工件轴上, 可绕工件轴轴线转动, 待加工工件 (6) 可在竖直方向 上进给, 由数控加工设备控制各个加工位置上磨抛盘基体的进给速度 及待加工工件 (6) 的转速。
10. 根据权利要求 8所述的球面及平面光学元件的线接触磨抛方 法, 其特征在于: 所述仿形磨抛盘基体 (7) 上的抛光膜 (3) 粘贴在 仿形磨抛盘基体 (7) 的回转面上, 粘贴高度以粘贴紧固且覆盖整个回 转面为准则; 所述筒形磨抛盘基体的抛光膜 (3) 粘贴在筒形磨抛盘基 体的圆弧状底端。
11. 根据权利要求 8所述的球面及平面光学元件的线接触磨抛方 法, 其特征在于: 所述仿形磨抛盘基体 (7) 的外形为一回转体, 其母 线为一圆弧, 曲率半径为 Γι, 精确修整后的抛光膜 (3) 的母线为一圆 弧, 曲率半径为 r2, 选用的抛光膜 (3) 厚度为 h, 满足 r2=ri+h; 所述 筒形磨抛盘基体的外形为圆筒形, 其一端为圆弧状, 圆弧曲率半径为 r3, 精确修整后的抛光膜 (3) 的截面曲线为一精确的圆弧, 圆弧曲率 半径为 r4; 选用的抛光膜 (3) 厚度为 h, 满足 r4=r3+h。
12. 一种光学元件的磨抛装置, 其特征在于, 包括工具柄 ( 1) 和 磨抛盘基体, 所述工具柄 ( 1) 用于连接磨抛盘基体并可安装在数控加 工设备的工具轴上, 所述磨抛盘基体上粘贴有抛光膜 (3), 所述磨抛 盘基体可以是碗形磨抛盘基体 ( 12) 或球形磨抛盘基体 (8)。
13. 根据权利要求 12所述的光学元件的磨抛装置, 其特征在于: 所述工具柄 ( 1) 底部有突出的磨抛盘连接杆 ( 11), 用于跟所述磨抛 盘基体顶部凹陷的磨抛盘定位接口进行配合, 将工具柄 ( 1) 和磨抛盘 基体连接固定后, 所述磨抛盘连接杆 ( 11) 被压入磨抛盘定位接口中, 两者之间不出现空隙。
14. 根据权利要求 12所述的光学元件的磨抛装置, 其特征在于: 所述工具柄 ( 1) 和磨抛盘基体上都设有螺纹接口, 两者通过螺钉 (4) 连接固定。
15. 根据权利要求 12所述的光学元件的磨抛装置, 其特征在于: 所述磨抛盘基体可以是碗形磨抛盘基体 ( 12), 外形为圆筒形, 底端为 圆弧状, 所述碗形磨抛盘基体 ( 12) 包括顶部向下凹陷的碗形磨抛盘 定位接口(21),碗形磨抛盘基体( 12)下部圆弧处用于粘贴抛光膜(3), 所述碗形磨抛盘基体 ( 12) 底端圆弧的曲率半径为 , 修整后的抛光 膜(3)表面截面曲线为一精确的圆弧, 圆弧曲率半径为 r2, 抛光膜(3) 厚度为 h, 满足 r2= n+ho
16. 根据权利要求 12所述的光学元件的磨抛装置, 其特征在于: 所述磨抛盘基体可以是球形磨抛盘基体 (8), 外形为球形或是球的一 部分, 所述球形磨抛盘基体 (8) 包括顶部向下凹陷的球形磨抛盘定位 接口 (21), 所述抛光膜 (3) 粘贴在球面上, 所述球形磨抛盘基体 (8) 的球面曲率半径为 r3, 修整后的抛光膜 (3) 球面曲率半径为 r4, 抛光 膜 (3) 厚度为 h, 满足 r4= r3+h。
17. 一种基于权利要求 12-16 任意一项的非球面光学元件的点接 触抛光方法, 其特征在于包括以下步骤:
1)将磨抛盘连接杆( 11)压入磨抛盘定位接口中, 并通过螺钉(4) 将两者固定, 使磨抛盘连接杆 ( 11) 与磨抛盘定位接口之间不出现间 隙;
2) 采用粘结剂将抛光膜 (3) 粘贴于磨抛盘基体下部的圆弧处, 待粘贴剂凝固后对抛光膜 (3) 的圆弧曲率半径进行修整;
3) 修整时, 将磨抛装置 ( 100) 安装在数控加工设备的工件轴上, 将修整砂轮 (5) 安装在数控加工设备的工具轴上, 采用点接触方式对 抛光膜 (3) 的圆弧曲率半径进行修整, 使抛光膜 (3) 上的圆弧曲率 半径处处一致;
4) 使用时, 将磨抛装置 ( 100) 安装在数控设备的工具轴上, 待 加工工件 (6) 安装在数控设备的工件轴上, 在磨抛的加工过程中, 首 先将待加工非球面的相关参数及磨抛装置 ( 100) 的尺寸数据输入工艺 软件, 并生成数控 NC 文件, 磨抛装置 ( 100) 及待加工工件 (6) 即 可在数控设备的控制下, 使得在任意加工位置上, 磨抛装置 ( 100) 与 待加工工件 (6)均在 P 点处实现接触, 且 P点相对于待加工工件 (6) 的运动轨迹完全吻合于待加工非球面的子午截面曲线。
18. 根据权利要求 17 所述的一种非球面光学元件的点接触抛光 方法, 其特征在于: 若待加工工件 (6) 为凸面且采用外抛方式进行磨 抛加工, 则只需对抛光膜 (3) 的外侧圆弧 (31) 进行修整; 若待加工 工件 (6) 为凸面且采用内抛方式进行磨抛加工, 则只需对抛光膜 (3) 的内侧圆弧 (32) 进行修整; 若待加工工件 (6) 为凹面, 则只需对抛 光膜 (3) 的外侧圆弧 (31) 进行修整; 也可同时对抛光膜 (3) 的外 侧圆弧 (31) 及内侧圆弧 (32) 进行修整。
19. 根据权利要求 17 所述的一种非球面光学元件的点接触抛光 方法, 其特征在于: 使用时, 磨抛装置 ( 100) 安装在数控设备的工具 轴上, 可绕工具轴轴线转动, 以及绕工具轴摆动中心 B点摆动, 而且 磨抛装置 ( 100) 可在水平方向上进给; 待加工工件 (6) 安装在数控 设备的工件轴上, 可绕工件轴轴线转动, 待加工工件 (6) 可在竖直方 向上进给, 由数控加工设备控制各个加工位置上磨抛盘基体的进给速 度及待加工工件 (6) 的转速。
20. 根据权利要求 17 所述的一种非球面光学元件的点接触抛光 方法, 其特征在于: 所述碗形磨抛盘基体 ( 12) 底端圆弧的曲率半径 为 Γι, 修整后的抛光膜 (3) 表面截面曲线为一精确的圆弧, 圆弧曲率 半径为 r2, 抛光膜 (3) 厚度为 h, 满足 r2= n+h; 所述球形磨抛盘基 体 (8) 的球面曲率半径为 r3, 修整后的抛光膜 (3) 球面曲率半径为 r4, 抛光膜 (3) 厚度为 h, 满足 r4= r3+h。
PCT/CN2014/076076 2013-03-19 2014-04-24 一种光学元件的磨抛装置及方法 WO2014146620A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/772,307 US20160008944A1 (en) 2013-03-19 2014-04-24 Polishing device for optical elements and method thereof
DE112014000978.4T DE112014000978T5 (de) 2013-03-19 2014-04-24 Poliervorrichtung für optische Elemente und entsprechendes Verfahren

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 201320123105 CN203171383U (zh) 2013-03-19 2013-03-19 一种球面及平面光学元件的线接触磨抛装置
CN 201320123777 CN203171384U (zh) 2013-03-19 2013-03-19 一种非球面光学元件的点接触抛光装置
CN201320123777.8 2013-03-19
CN201320124181.X 2013-03-19
CN201320123105.7 2013-03-19
CN 201320124181 CN203171385U (zh) 2013-03-19 2013-03-19 一种球面及平面光学元件的面接触磨抛装置

Publications (1)

Publication Number Publication Date
WO2014146620A1 true WO2014146620A1 (zh) 2014-09-25

Family

ID=51579330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076076 WO2014146620A1 (zh) 2013-03-19 2014-04-24 一种光学元件的磨抛装置及方法

Country Status (3)

Country Link
US (2) US20160008944A1 (zh)
DE (1) DE112014000978T5 (zh)
WO (1) WO2014146620A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322411A (zh) * 2017-06-09 2017-11-07 中国科学院西安光学精密机械研究所 一种大口径非球面光学元件抛光装置
CN108818213A (zh) * 2018-07-27 2018-11-16 望江县天长光学仪器有限公司 一种抛光装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470445B1 (ko) * 2016-07-08 2022-11-23 가부시키가이샤 고지마 엔지니어링 컵형 숫돌을 사용한 렌즈구면 가공방법 및 렌즈구면 가공장치
EP3418000B1 (de) * 2017-06-19 2024-02-21 Schneider GmbH & Co. KG Werkzeugaufnahme und vorrichtung zum polieren von linsen
CN110216560B (zh) * 2019-06-06 2024-04-16 浙江工业大学 一种平面抛光装置
CN113579917B (zh) * 2019-12-25 2022-05-03 苏州大学 一种离轴非球面镜数控铣磨成形方法
CN111136569B (zh) * 2020-01-08 2021-02-12 青岛阜外心血管病医院 骨科植入物球面精密加工组件
CN113305653B (zh) * 2021-07-07 2022-09-27 鹤山市嘉米基光电科技有限公司 光学镜片铣磨加工方法
CN114310640A (zh) * 2021-11-26 2022-04-12 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种半球谐振子抛光方法
CN114523408B (zh) * 2022-03-10 2022-12-27 浙江师范大学 一种基于纺锤式抛光头的机器人抛光装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679709B2 (ja) * 2000-12-20 2005-08-03 キヤノン株式会社 レンズ加工方法
CN200948551Y (zh) * 2006-08-31 2007-09-19 如东县宇迪光学仪器厂有限公司 加工小直径球面镜片的抛光模具
CN103144005A (zh) * 2013-03-19 2013-06-12 西安交通大学苏州研究院 一种球面及平面光学元件的面接触磨抛装置及方法
CN103170886A (zh) * 2013-03-19 2013-06-26 西安交通大学苏州研究院 一种球面及平面光学元件的线接触磨抛装置及方法
CN103192305A (zh) * 2013-03-19 2013-07-10 西安交通大学苏州研究院 一种非球面光学元件的点接触抛光装置及方法
CN203171383U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种球面及平面光学元件的线接触磨抛装置
CN203171384U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种非球面光学元件的点接触抛光装置
CN203171385U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种球面及平面光学元件的面接触磨抛装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932925A (en) * 1956-02-20 1960-04-19 American Optical Corp Apparatus and method of forming ophthalmic lenses
US2966767A (en) * 1957-02-26 1961-01-03 American Optical Corp Method of making multifocal lenses
US3128580A (en) * 1963-01-30 1964-04-14 Super Cut Composite lap for grinding and polishing machines
US3815294A (en) * 1972-06-26 1974-06-11 American Optical Corp Method for making one-piece multifocal lenses
US4291508A (en) * 1979-11-30 1981-09-29 American Optical Corporation Lens surfacing pad
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4733502A (en) * 1986-09-04 1988-03-29 Ferro Corporation Method for grinding and polishing lenses on same machine
US4979337A (en) * 1986-10-03 1990-12-25 Duppstadt Arthur G Polishing tool for contact lenses and associated method
DE4023730C2 (de) * 1989-07-26 1993-11-11 Olympus Optical Co Verfahren und Vorrichtung für die Bearbeitung optischer Bauteile
EP0807491B1 (de) * 1996-05-17 1999-01-20 Opto Tech GmbH Halterung für optische Linsen und Verfahren zum Polieren von Linsen
JPH10337645A (ja) * 1997-04-08 1998-12-22 Olympus Optical Co Ltd 研削方法およびその研削方法により加工されたガラスレンズ
DE19827897A1 (de) * 1998-06-23 1999-12-30 Oerlikon Geartec Ag Zuerich Verfahren zum Schleifen von wenigstens einer Fläche an einem in der Zerspantechnik eingesetzten Schneidmesser, Verwendung des Verfahrens und Schleifscheibe zur Durchführung des Verfahrens
US6106366A (en) * 1998-10-29 2000-08-22 Gerber Coburn Optical, Inc. Lens grinder
US6875090B2 (en) * 1999-12-01 2005-04-05 Gerber Coburn Optical, Inc. Apparatus for finishing optical surfaces, including a pad compensation device
DE60232497D1 (de) * 2001-01-05 2009-07-16 Seiko Epson Corp Poliervorrichtung und -verfahren
JP2002329687A (ja) * 2001-05-02 2002-11-15 Speedfam Co Ltd デバイスウエハの外周研磨装置及び研磨方法
DE10319945A1 (de) * 2003-05-02 2005-01-27 Loh Optikmaschinen Ag Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen
US8241534B2 (en) * 2004-03-09 2012-08-14 Hoya Corporation Spectacle lens manufacturing method and spectacle lens manufacturing system
EP1652619B1 (de) * 2004-10-29 2007-01-10 Schneider GmbH + Co. KG Polierwerkzeug mit mehreren Druckzonen
EP1655102B1 (en) * 2004-11-09 2008-01-09 Seiko Epson Corporation Elastic polishing tool and lens polishing method using this tool
DE102005010583A1 (de) * 2005-03-04 2006-09-07 Satisloh Gmbh Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern
DE102006028164B4 (de) * 2006-06-16 2009-04-02 Satisloh Ag Schleif- und Poliermaschine zum Schleifen und/oder Polieren von Werkstücken in optischer Qualität
DE102008062097A1 (de) * 2008-12-16 2010-06-17 Schneider Gmbh & Co. Kg Polierkopf zum zonalen Bearbeiten von optischen Brillenflächen
JP2010158727A (ja) * 2009-01-06 2010-07-22 Hoya Corp レンズ加工用パッド、その製造方法、プラスチックレンズの製造方法および粘着部材
ES2323935B1 (es) * 2009-03-30 2010-07-07 Indo Internacional S.A. Lente oftalmica acabada y procedimientos correspondientes.
US20120289127A1 (en) * 2010-01-29 2012-11-15 Kojima Engineering Co., Ltd. Lens spherical surface grinding method using dish-shaped grindstone
WO2015068500A1 (ja) * 2013-11-11 2015-05-14 オリンパス株式会社 研磨工具、研磨方法および研磨装置
DE112015002769T5 (de) * 2014-06-10 2017-03-23 Olympus Corporation Polierwerkzeug, Polierverfahren und Poliervorrichtung
JP6378626B2 (ja) * 2014-12-17 2018-08-22 オリンパス株式会社 光学素子の加工用工具および光学素子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679709B2 (ja) * 2000-12-20 2005-08-03 キヤノン株式会社 レンズ加工方法
CN200948551Y (zh) * 2006-08-31 2007-09-19 如东县宇迪光学仪器厂有限公司 加工小直径球面镜片的抛光模具
CN103144005A (zh) * 2013-03-19 2013-06-12 西安交通大学苏州研究院 一种球面及平面光学元件的面接触磨抛装置及方法
CN103170886A (zh) * 2013-03-19 2013-06-26 西安交通大学苏州研究院 一种球面及平面光学元件的线接触磨抛装置及方法
CN103192305A (zh) * 2013-03-19 2013-07-10 西安交通大学苏州研究院 一种非球面光学元件的点接触抛光装置及方法
CN203171383U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种球面及平面光学元件的线接触磨抛装置
CN203171384U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种非球面光学元件的点接触抛光装置
CN203171385U (zh) * 2013-03-19 2013-09-04 西安交通大学苏州研究院 一种球面及平面光学元件的面接触磨抛装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322411A (zh) * 2017-06-09 2017-11-07 中国科学院西安光学精密机械研究所 一种大口径非球面光学元件抛光装置
CN107322411B (zh) * 2017-06-09 2023-04-11 中国科学院西安光学精密机械研究所 一种大口径非球面光学元件抛光装置
CN108818213A (zh) * 2018-07-27 2018-11-16 望江县天长光学仪器有限公司 一种抛光装置

Also Published As

Publication number Publication date
DE112014000978T5 (de) 2016-01-07
US20190152013A1 (en) 2019-05-23
US20160008944A1 (en) 2016-01-14
US10967475B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2014146620A1 (zh) 一种光学元件的磨抛装置及方法
AU2005318290B2 (en) Polishing wheel
CN108907905A (zh) 一种用于汽车轮毂铸造模具的机器人打磨抛光方法及装置
CN104551894A (zh) 一种L型ZnSe转向棱镜的加工方法
CN103659577B (zh) 球面工件研磨抛光用固结磨料垫及制备方法
CN106239835A (zh) 一种注塑模具的光面镶件及其制造方法
CN103170886B (zh) 一种球面及平面光学元件的线接触磨抛装置及方法
CN103192305A (zh) 一种非球面光学元件的点接触抛光装置及方法
CN109807720B (zh) 一种微透镜阵列光学元件的范成式加工方法
CN203171384U (zh) 一种非球面光学元件的点接触抛光装置
CN203557222U (zh) 磁流变液回转内表面抛光系统
CN102626901B (zh) 一种球头抛光轮的数控加工方法
CN102862108B (zh) 一种金刚石砂轮加工钴铬钨涂层的磨削方法
CN105522172A (zh) 铝合金车轮镜面加工工艺
CN212977799U (zh) 一种机械制造用零件打磨设备
CN203611119U (zh) 球面工件研磨抛光用固结磨料垫
CN113275837A (zh) 一种柔性压料装置的数控加工方法
CN111168477A (zh) 一种石英玻璃球类零件的精密磨削工装及工艺
CN105345613A (zh) 一种用于角镜深孔精密加工的方法
CN101973000B (zh) 液流悬浮超精密圆柱体抛光头的配模装置
JP4649592B2 (ja) 単結晶ダイヤモンド切れ刃の2面加工装置及び加工方法
CN205363631U (zh) 蜂窝式可重配非球面修正抛光盘
CN204686684U (zh) 圆筒式抛光轮
CN203171385U (zh) 一种球面及平面光学元件的面接触磨抛装置
JP2007118143A (ja) ツルーイング装置及びツルーイング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767581

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000978

Country of ref document: DE

Ref document number: 1120140009784

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767581

Country of ref document: EP

Kind code of ref document: A1