WO2014141632A1 - 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法 - Google Patents

多層溶接継手ctod特性に優れた厚鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014141632A1
WO2014141632A1 PCT/JP2014/001218 JP2014001218W WO2014141632A1 WO 2014141632 A1 WO2014141632 A1 WO 2014141632A1 JP 2014001218 W JP2014001218 W JP 2014001218W WO 2014141632 A1 WO2014141632 A1 WO 2014141632A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
thick steel
toughness
haz
temperature
Prior art date
Application number
PCT/JP2014/001218
Other languages
English (en)
French (fr)
Inventor
祐介 寺澤
克行 一宮
長谷 和邦
遠藤 茂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480014302.2A priority Critical patent/CN105008574B/zh
Priority to US14/774,366 priority patent/US10023946B2/en
Priority to KR1020157025141A priority patent/KR101719943B1/ko
Priority to JP2014530840A priority patent/JP5618036B1/ja
Priority to EP14762492.8A priority patent/EP2975148B1/en
Publication of WO2014141632A1 publication Critical patent/WO2014141632A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the present invention relates to a steel plate used for ships, offshore structures, line pipes, pressure vessels and the like, and is not only excellent in low-temperature toughness of a base material but also in a multi-layer welded joint with low to medium heat input and excellent in CTOD characteristics, and its It relates to a manufacturing method.
  • Charpy test has been mainly used as an evaluation standard for toughness of steel.
  • a crack opening displacement test Cracking Opening Displacement Test, hereinafter referred to as CTOD test
  • CTOD test Cracking Opening Displacement Test
  • This test evaluates the resistance to brittle fracture by performing a bending test at low temperature on a specimen with fatigue cracks introduced in the toughness evaluation section, and measuring the crack opening (plastic deformation) just before fracture. It is.
  • multilayer welding HAZ weld heat affected zone of multilayer welding
  • CGHAZ Coarse Grain Heat Affected Zone
  • MA Martensite-Austenite Constituent
  • the ICCGHAZ structure is included in the evaluation region in which fatigue precrack is introduced when multilayer welding HAZ is used.
  • the joint CTOD characteristic obtained by the joint CTOD test is very small, it is governed by the toughness of the region that becomes the most brittle in the evaluation region. It also reflects the toughness of the tissue. For this reason, improvement of the toughness of the ICCGHAZ structure is also necessary for improving the joint CTOD characteristics of the multilayer welded HAZ.
  • austenite grain growth suppression by dispersion of REM oxysulfide produced by adding REM austenite grain growth inhibition by dispersion of Ca oxysulfide produced by adding Ca, ferrite BN Techniques that combine productivity and oxide dispersion have also been used.
  • Patent Literature 1 and Patent Literature 2 propose a technique for suppressing the coarsening of the austenite structure of HAZ using REM and TiN particles.
  • Patent Document 3 proposes a HAZ toughness improving technique using CaS and a base metal toughness improving technique by hot rolling.
  • Patent Document 4 proposes a technique that suppresses the formation of MA by reducing C and Si and further increases the strength of the base material by adding Cu.
  • Patent Document 5 proposes a technique that uses BN as a ferrite transformation nucleus in a high heat input welding heat-affected zone, refines the HAZ structure, and improves the HAZ toughness.
  • CTOD specification temperature of a standard for example, API standard RP-2Z
  • API standard RP-2Z the CTOD specification temperature of a standard (for example, API standard RP-2Z) that prescribes joint CTOD characteristics
  • CTOD specification temperature the CTOD specification temperature which API specification establishes
  • these techniques have not been able to sufficiently satisfy the joint CTOD characteristics required for multi-layer welded joints for low-temperature specifications that have been demanded in recent years.
  • REM oxysulfides and Ca oxysulfides are effective in suppressing austenite grain growth.
  • the joint CTOD characteristic at the low temperature specification temperature cannot be satisfied only by the effect of improving the toughness by suppressing the austenite grain coarsening of HAZ.
  • the ferrite nucleation ability of BN was effective in the case of a structure in which the cooling rate of the weld heat affected zone is slow in high heat input welding and HAZ is mainly composed of ferrite.
  • HAZ structure is mainly bainite, and the effect cannot be obtained.
  • Patent Document 3 the joint CTOD characteristic at the normal specification temperature ( ⁇ 10 ° C.) is satisfied.
  • the joint CTOD characteristic at the low temperature specification temperature has not been studied.
  • Patent Document 5 is effective in the case of a structure in which the cooling rate of the weld heat affected zone is slow and HAZ is mainly composed of ferrite, such as large heat input welding.
  • HAZ is mainly composed of ferrite, such as large heat input welding.
  • the amount of alloy components contained in the base metal is relatively high, and multilayer welding has a relatively small amount of heat input, so the HAZ structure is mainly bainite, and the effect cannot be obtained.
  • an object of the present invention is to provide a thick steel plate having excellent multilayer weld joint CTOD characteristics and a method for producing the same.
  • ACR (Ca ⁇ (0.18 + 130 ⁇ Ca) ⁇ O) / (1.25 ⁇ S) (2) Since the inclusion form is a composite inclusion composed of a sulfide containing Ca and Mn and an oxide containing Al, austenite can exist stably even in a region where the temperature is raised to a high temperature near the weld line. The effect of grain coarsening can be sufficiently exhibited. Further, since a Mn dilute layer is formed around the composite inclusion, it has a nucleation effect of bainite or acicular ferrite. (3) Nucleation sites during cooling of HAZ are mainly austenite grain boundaries.
  • the presence of the above complex inclusions having a nucleation effect in the austenite grains nucleation starts from within the austenite grains in addition to the austenite grain boundaries, the HAZ structure finally obtained becomes fine, HAZ toughness and joint CTOD characteristics are improved.
  • the nucleation effect of bainite, acicular ferrite, and ferrite by the composite inclusion is insufficient if the inclusion size is too small, and a circle equivalent diameter of 0.1 ⁇ m or more is required.
  • the austenite grain size near the weld line is about 200 ⁇ m, so the density of inclusions needs to be 25 / mm 2 or more.
  • the composite inclusions themselves have low toughness the HAZ toughness is rather lowered with an excessive amount of inclusions.
  • inclusions tend to accumulate at 1/4 t (t: plate thickness) position by floating the unsolidified part in the slab due to the density difference between the inclusions and steel. It is necessary to prevent the number of objects from becoming excessive.
  • the reduction ratio / pass is 5% or more.
  • a large reduction per pass such as a cumulative reduction rate of 35% or more, the strain applied to the center of the plate thickness is increased, and the coarse inclusions are stretched and further divided to increase the density of fine inclusions.
  • the present inventors have determined the transformation region / untransformed region of the base material during welding, which is required by BS standard EN10225 (2009) and API standard Recommended Practice 2Z (2005) in which joint CTOD test methods are defined.
  • “multi-layer welded joint CTOD characteristics are excellent” means that the crack opening displacement is 0.4 mm or more at the test temperature of ⁇ 40 ° C. in each of the notch position bond and SC / ICHAZ.
  • the present invention has been made based on the obtained knowledge and further studies, that is, the present invention, 1.
  • the component composition is C: 0.03 to 0.10%, Si: 0.5% or less, Mn: 1.0 to 2.0%, P: 0.015% or less, S: 0.005% by mass.
  • the effective crystal grain size of the base material at the center is 20 ⁇ m or less, and the equivalent circle diameter of 0 and 1/2 of the plate thickness (t: mm) is made of a sulfide containing Ca and Mn and an oxide containing Al. thick steel composite inclusions or .1 ⁇ m and excellent multilayer welded joint CTOD characteristics that exist 2 25-250 particles / mm .
  • the thick steel plate having excellent CTOD characteristics according to 1 above, comprising one or more of 0.0060%.
  • the steel slab having the component composition described in 3.1 or 2 is heated to 950 ° C. or more and 1200 ° C. or less, and the rolling reduction rate at a plate thickness center temperature of 950 ° C. or more / pass is 8% or more, and the cumulative rolling reduction rate is 30% or more.
  • the cumulative reduction rate is 40% or more when the sheet thickness center temperature is less than 950 ° C.
  • cooling is performed so that the average cooling rate between 700 and 500 ° C. at the sheet thickness center is 1 to 50 ° C./sec.
  • the steel slab having the component composition described in 4.1 or 2 is heated to 950 ° C. or more and 1200 ° C. or less, and the rolling reduction ratio / pass when the sheet thickness center temperature is 950 ° C. or more is 5% or more is 35% or more.
  • cooling is performed so that the average cooling rate between 700 and 500 ° C. at the sheet thickness center is 1 to 50 ° C./sec.
  • C 0.03-0.10% C is an element that improves the strength of steel, and needs to be contained by 0.03% or more. However, if C exceeds 0.10% and excessively contains C, the joint CTOD characteristics deteriorate. Therefore, C is limited to the range of 0.03 to 0.10%. It is preferably 0.04 to 0.08%.
  • Si 0.5% or less
  • the joint CTOD characteristics deteriorate.
  • Si was limited to the range of 0.5% or less.
  • it is 0.4% or less, More preferably, it exceeds 0.1% and is 0.3% or less.
  • Mn 1.0 to 2.0% Mn is an element that improves the strength through improving the hardenability of steel. However, when added in excess, the joint CTOD characteristics are significantly reduced. Therefore, Mn is limited to the range of 1.0 to 2.0%. The preferred range is 1.2 to 1.8%.
  • P 0.015% or less
  • P is an element that is inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to reduce the toughness of the steel.
  • the content exceeds 0.015%, the joint CTOD characteristics are remarkably deteriorated, so the content is limited to 0.015% or less. Preferably it is 0.010% or less.
  • S 0.0005 to 0.0050% S is an element necessary for inclusions for improving the toughness of the multilayer welded HAZ, and should be contained in an amount of 0.0005% or more. However, if the content exceeds 0.0050%, the joint CTOD characteristics are deteriorated, so the content is limited to 0.0050% or less. Preferably it is 0.0045% or less.
  • Al 0.005 to 0.060%
  • Al is an element necessary for inclusions for improving the toughness of the multilayer welded HAZ, and it is necessary to contain 0.005% or more.
  • the content exceeding 0.060% is limited to 0.060% or less in order to reduce the joint CTOD characteristics.
  • Ni 0.5 to 2.0%
  • Ni is an element that can increase the strength without greatly degrading the toughness of both the base material and the joint. In order to acquire the effect, 0.5% or more of content is required. However, if it exceeds 2.0%, the effect of increasing the strength is saturated, so that an increase in cost becomes a problem. Therefore, the upper limit was made 2.0%. It is preferably 0.5 to 1.8%.
  • Ti 0.005 to 0.030%
  • Ti precipitates as TiN and is an element that suppresses HAZ austenite grain coarsening, refines the HAZ structure, and improves toughness. In order to acquire such an effect, 0.005% or more of content is required.
  • the content exceeds 0.030%, the weld heat-affected zone toughness decreases due to precipitation of solute Ti and coarse TiC. Therefore, Ti is limited to the range of 0.005 to 0.030%.
  • the content is 0.005 to 0.025%.
  • N 0.0015 to 0.0065% N is an element effective for improving toughness by suppressing the coarsening of austenite grains of HAZ by being precipitated as TiN and by refining the HAZ structure. In order to acquire such an effect, 0.0015% or more of content is required. On the other hand, when it exceeds 0.0065% and it contains excessively, the heat-affected zone toughness will fall. Therefore, the content is limited to 0.0015 to 0.0065%. Preferably it is 0.0015 to 0.0055%.
  • O 0.0010 to 0.0050%
  • O is an element necessary for inclusions for improving the toughness of the multilayer welded HAZ, and should be contained in an amount of 0.0010% or more.
  • the content is limited to the range of 0.0010 to 0.0050%.
  • the content is 0.0010 to 0.0045%.
  • Ca 0.0005 to 0.0060%
  • Ca is an element necessary for inclusions for improving the toughness of the multilayer welded HAZ, and it is necessary to contain 0.0005% or more.
  • the content is limited to the range of 0.0005 to 0.0060%. Preferably it is 0.0007 to 0.0050%.
  • Ti / N controls the amount of solid solution N in HAZ and the precipitation state of TiC. If Ti / N is less than 1.5, the HAZ toughness deteriorates due to the presence of solid solution N not fixed as TiN. On the other hand, if Ti / N exceeds 5.0, the HAZ toughness deteriorates due to precipitation of coarse TiC. Therefore, Ti / N was limited to the range of 1.5 to 5.0. Preferably, it is 1.8 or more and 4.5 or less. In said formula (1), each alloy element shall be content (mass%).
  • Ceq 0.45% or less
  • the HAZ toughness deteriorates due to an increase in the amount of inferior toughness such as island martensite and bainite in the HAZ structure.
  • Ceq is larger than 0.45%, the required joint CTOD characteristic cannot be satisfied even if the HAZ toughness improving technique by inclusions is used due to the toughness deterioration of the HAZ base structure itself, so the upper limit was made 0.45%.
  • Ceq [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5 (2)
  • Each alloy element has a content (mass%).
  • Pcm 0.20% or less
  • the structure of inferior toughness such as island martensite and bainite in the HAZ structure increases and HAZ toughness deteriorates. If the Pcm exceeds 0.20%, the toughness of the HAZ base structure itself deteriorates, and the required joint CTOD characteristics cannot be obtained even by using the HAZ toughness improvement technology by inclusions. It was.
  • Pcm [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20+ [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B] (3)
  • each alloy element has a content (mass%).
  • each alloy element has a content (mass%).
  • the thick steel plate according to the present invention has the above-mentioned component composition as a basic composition, with the remainder being Fe and inevitable impurities. Further, for the purpose of adjusting strength, toughness, and improving joint toughness, Cu: 0.05 to 2.0%, Cr: 0.05 to 0.30%, Mo: 0.05 to 0.30%, Nb: 0.0. 005 to 0.035%, V: 0.01 to 0.10%, W: 0.01 to 0.50%, B: 0.0005 to 0.0020%, REM: 0.0020 to 0.0200% Mg: One or more of 0.0002 to 0.0060% can be contained.
  • Cu 0.05 to 2.0%
  • Cu is an element that can be increased in strength without greatly degrading the base metal and joint toughness. In order to obtain the effect, it is necessary to contain 0.05% or more. However, if 2.0% or more is added, cracking of the steel sheet due to the Cu concentrated layer generated immediately below the scale becomes a problem, so when added, the content is made 0.05 to 2.0%. It is preferably 0.1 to 1.5%.
  • Cr 0.05-0.30% Cr is an element that improves the strength by improving the hardenability of the steel. However, if added excessively, the joint CTOD characteristics are deteriorated, so when added, the content is made 0.05 to 0.30%.
  • Mo 0.05-0.30% Mo is an element that improves the strength through the improvement of the hardenability of steel, but if added in excess, the joint CTOD characteristics are lowered. Therefore, when added, the content is made 0.05 to 0.30%.
  • Nb 0.005 to 0.035%
  • Nb is an element that widens the non-recrystallization temperature region of the austenite phase, and is an effective element for efficiently performing non-recrystallization region rolling to obtain a fine structure.
  • 0.005% or more of content is required. However, if it exceeds 0.035%, the joint CTOD characteristics are deteriorated. Therefore, when added, the content is made 0.005 to 0.035%.
  • V 0.01 to 0.10%
  • V is an element that improves the strength of the base material, and is effective when added in an amount of 0.01% or more. However, if it exceeds 0.10%, the HAZ toughness is lowered, so when added, the content is made 0.01 to 0.10%. It is preferably 0.02 to 0.05%.
  • W 0.01 to 0.50% W is an element that improves the strength of the base material, and exhibits an effect when added in an amount of 0.01% or more. However, if it exceeds 0.50%, the HAZ toughness is lowered, so when added, the content is made 0.01 to 0.50%. It is preferably 0.05 to 0.35%.
  • B 0.0005 to 0.0020%
  • B is an element effective for improving the hardenability and thereby improving the strength of the steel sheet by containing a very small amount thereof. To obtain such an effect, B needs to be contained in an amount of 0.0005% or more. However, if the content exceeds 0.0020%, the HAZ toughness decreases, so when added, the content is made 0.0005 to 0.0020%.
  • REM 0.0020 to 0.0200% REM suppresses HAZ austenite grain growth and improves HAZ toughness by forming oxysulfide inclusions. In order to acquire such an effect, 0.0020% or more needs to be contained. However, an excessive content exceeding 0.0200% lowers the base metal and HAZ toughness, so when added, the content is made 0.0020 to 0.0200%.
  • Mg 0.0002 to 0.0060%
  • Mg is an element effective in improving the weld heat affected zone toughness by suppressing the growth of austenite grains in the weld heat affected zone by forming oxide inclusions.
  • the content 0.0002% or more is necessary.
  • the content exceeds 0.0060%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when added, the content is made 0.0002 to 0.0060%.
  • the effective crystal grain size of the material microstructure is set to 20 ⁇ m or less.
  • the phase of the base material microstructure is not particularly limited as long as a desired strength can be obtained.
  • the effective crystal grain size in the present invention is a circle equivalent diameter of a crystal grain surrounded by a large-angle grain boundary whose orientation difference from an adjacent crystal grain is 15 ° or more.
  • Inclusions Compound inclusions of sulfides containing Ca and Mn and oxides containing Al: 25-250 pieces / mm 2 when the equivalent circle diameter is 0.1 ⁇ m or more When a sulfide containing Mn is formed, a Mn-diluted region is formed around the inclusions, which is effective as a transformation nucleus. Further, since Ca is contained in the sulfide, it has a high melting point, and remains even at a temperature rise in the vicinity of the HAZ weld line, thereby exhibiting an austenite grain growth suppressing effect and a transformation nucleus effect.
  • the composite inclusion has a circle-equivalent diameter of 0.1 ⁇ m or more, and 25 to 250 / mm 2 at each of the 1/4 and 1/2 positions of the plate thickness, preferably 35-170 pieces / mm 2 . 4).
  • the reasons for limiting the conditions for the manufacturing method are described below. The following temperatures are the steel surface temperatures unless otherwise specified.
  • Heating condition of steel slab The steel slab shall be continuously cast and heated to 950 ° C or higher and 1200 ° C or lower.
  • the heating temperature is lower than 950 ° C., an untransformed region remains during heating and a coarse structure during solidification remains, so that a desired fine grain structure cannot be obtained.
  • the heating temperature is higher than 1200 ° C., austenite grains become coarse, and a desired fine grain structure cannot be obtained after controlled rolling.
  • heating temperature is limited to 950 degreeC or more and 1200 degrees C or less.
  • it is 970 degreeC or more and 1170 degrees C or less.
  • Hot rolling defines pass conditions in the recrystallization temperature range and pass conditions in the non-recrystallization temperature range.
  • the rolling reduction / pass when the plate thickness center temperature is 950 ° C. or higher is 8% or higher so that the cumulative rolling reduction is 30% or higher.
  • the reduction ratio / pass at a plate thickness center temperature of 950 ° C. or higher is reduced to 5% or more so that the cumulative reduction ratio is 35% or more.
  • the rolling rate / pass is less than 8%, there is no grain refinement due to recrystallization. Even when the rolling reduction / pass is 8% or more, if the cumulative rolling amount is 30% or less, crystal grain refining is insufficient, so that the rolling reduction with a rolling reduction / pass of 8% or more is 30%. % Or more. Further, the present inventors have further studied that even when the rolling reduction / pass is 5% or more, the grain reduction by recrystallization occurs sufficiently by setting the cumulative rolling amount to 35% or more. It was. Therefore, when the rolling reduction / pass is 5% or higher, the cumulative rolling reduction is set to 35% or higher.
  • the cumulative reduction ratio when the sheet thickness center temperature is less than 950 ° C. is 40% or more.
  • recrystallization hardly occurs during rolling at less than 950 ° C., and the introduced strain is recrystallized. Accumulated without being consumed, the final structure is refined by acting as a transformation nucleus at the time of subsequent cooling.
  • the cumulative rolling reduction is less than 40%, the effect of crystal grain refinement is insufficient, so the cumulative rolling reduction when the plate thickness center temperature is less than 950 ° C. is limited to 40% or more.
  • Cooling conditions Cooling after hot rolling is performed so that the average cooling rate between 700 and 500 ° C. at the center of the plate thickness is 1 to 50 ° C./sec, and the cooling stop temperature is 600 ° C. or less.
  • tempering is performed at 700 ° C. or lower after cooling is stopped.
  • the tempering temperature is higher than 700 ° C., a coarse ferrite phase is generated and the toughness of SCHAZ is deteriorated.
  • 650 degrees C or less is preferable.
  • Table 1 shows the composition of the test steel. It should be noted that the casting speed was 0.2 to 0.4 m / min. The water density in the cooling zone is 1000 to 2000 l / min. A steel piece continuously cast under the condition of m 2 was used. Steel types A to K are invention examples whose component compositions satisfy the scope of the present invention, and steel types L to T are comparative examples whose component compositions are outside the scope of the present invention. Using these steel types, thick steel plates were produced under the production conditions shown in Table 2. Moreover, the multilayer pile-welded joint was created for every obtained thick steel plate. At the time of hot rolling, a thermocouple was attached to the plate length, width, and plate thickness center position, and the plate thickness center temperature was measured.
  • the average effective crystal grain size in the microstructure of the base material and the distribution of inclusions in the thickness direction were investigated.
  • the average effective grain size is measured by taking a sample from the longitudinal, width, and thickness direction center of the plate, performing mirror polishing and performing EBSP analysis under the following conditions, and being adjacent to the obtained crystal orientation map
  • the equivalent circle diameter of a structure surrounded by large-angle grain boundaries whose orientation difference from the crystal grains was 15 ° or more was evaluated as the effective crystal grain size.
  • EBSP conditions Analysis area 1 mm x 1 mm area at the center of plate thickness Step size: 0.4 ⁇ m
  • the density of inclusions is measured by taking samples from 1/4 and 1/2 positions of the plate length, width and plate thickness direction, mirror polishing with diamond buff + alcohol, and then field emission type. Inclusions existing in an evaluation region of 1 mm ⁇ 1 mm were identified by EDX analysis using a scanning electron microscope (FE-SEM), and the inclusion density was evaluated together. In addition, in the evaluation of the inclusion type, when various elements were contained in an atomic fraction of 3% or more with respect to the chemical composition of the inclusion quantified by the ZAF method, it was determined that the inclusion was included.
  • the welded joint used in the joint CTOD test was created using submerged arc welding (multilayer welding) with a K groove shape and a heat input of 5.0 kJ / mm.
  • the test method was based on BS standard EN10225 (2009), and a CTOD value ( ⁇ ) was evaluated at a test temperature of ⁇ 40 ° C. using a test piece having a cross-sectional shape of t (plate thickness) ⁇ t (plate thickness).
  • Three steels were tested at each notch position for each steel type, and a steel sheet having an average CTOD value of 0.40 mm or more was determined as a steel sheet excellent in joint CTOD characteristics.
  • the notch position is CGHAZ (position of 0.25 mm from the weld line to the base metal side) directly on the K groove and the SC / ICHAZ boundary (corrosion HAZ boundary that appears when the joint CTOD specimen is etched with nitric acid). 0.25 mm position on the side).
  • CGHAZ position of 0.25 mm from the weld line to the base metal side
  • SC / ICHAZ boundary corrosion HAZ boundary that appears when the joint CTOD specimen is etched with nitric acid. 0.25 mm position on the side.
  • Table 2 shows the test results.
  • No. 1 to 11 are steel types that are within the scope of the invention in terms of chemical composition, average crystal grain size of the base material, inclusion density, and production conditions, and the notch position exhibits excellent joint CTOD characteristics at both the CGHAZ and SC / ICHAZ boundaries.
  • No. 12 to 26 are comparative examples, and the joint CTOD characteristics at the CGHAZ and / or SC / ICHAZ boundary are inferior.
  • No. No. 12 has a large amount of C, and the HAZ structure becomes a hard structure with poor toughness, so the joint CTOD value of CGHAZ is low.
  • No. No. 13 has a small amount of Ti and Ti / N, and the amount of TiN necessary for suppressing the coarsening of the HAZ structure is small. Therefore, the joint CTOD value of CGHAZ is low.
  • No. No. 14 has a large Ti / N, and has low HAZ toughness due to the precipitation of coarse TiC and the presence of solute Ti, so the joint CTOD value at the CGHAZ / SC / ICHAZ boundary is low.
  • No. No. 15 has a high Ceq outside the range of the present invention, and the HAZ structure has become a hard structure with poor toughness, so the joint CTOD value of CGHAZ is low.
  • the amount of B and Pcm are high outside the range of the present invention, and the HAZ structure becomes a hard structure with poor toughness, so the joint CTOD value of CGHAZ is low.
  • No. No. 17 has a small ACR, the main component of sulfide inclusions is MnS, and the amount of Ca-based composite inclusions required for refining the HAZ structure is small, so the joint CTOD value of CGHAZ is low.
  • No. No. 18 has a large ACR, the main component of sulfide inclusions is CaS, and the amount of Ca-based composite inclusions necessary for refining the HAZ structure is small, so the joint CTOD value of CGHAZ is low.
  • No. No. 19 has a small amount of Ca and a small amount of Ca-based composite inclusions necessary for refining the HAZ structure, so that the joint CTOD value of CGHAZ is low.
  • No. No. 20 has a large amount of S and Ca, and the joint CTOD value at the boundary of CGHAZ and SC / ICHAZ is low due to an increase in the amount of inclusions.
  • No. No. 21 has a high heating temperature, and the average crystal grain size of the base material becomes coarse due to grain growth during high-temperature heating, so the joint CTOD value at the SC / ICHAZ boundary is low.
  • No. No. 22 has a low heating temperature, the cast structure remains, and the average crystal grain size of the base material becomes coarse, so the joint CTOD value at the SC / ICHAZ boundary is low.
  • No. No. 23 has a small reduction amount in the recrystallization region, and the average crystal grain size of the base material becomes coarse, so the joint CTOD value at the SC / ICHAZ boundary is low.
  • No. No. 24 has a low rolling reduction in the non-recrystallized region and the average crystal grain size of the base material is coarse, so the joint CTOD value at the SC / ICHAZ boundary is low.
  • No. No. 25 has a low cooling rate and the average crystal grain size of the base material becomes coarse due to the formation of coarse ferrite, so the joint CTOD value at the SC / ICHAZ boundary is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 小~中入熱の多層溶接継手CTOD特性に優れる厚鋼板およびその製造方法を提供する。 質量%で、成分組成が、C:0.03~0.10%、Si:0.5%以下、Mn:1.0~2.0%、P:0.015%以下、S:0.0005~0.0050%、Al:0.005~0.060%、Ni:0.5~2.0%、Ti:0.005~0.030%、N:0.0015~0.0065%、O:0.0010~0.0050%、Ca:0.0005~0.0060%、必要に応じて、Cu等の1種または2種以上を含み、Ti/N、Ceq、PcmおよびACRの値が特定範囲で、板厚中心における母材の有効結晶粒径が20μm以下、板厚の1/4と1/2のそれぞれにおいてCaとMnを含む硫化物とAlを含む酸化物からなる円相当直径0.1μm以上の複合介在物が特定量存在する鋼板。上記組成の鋼を、特定温度で加熱後、熱間圧延、冷却する。

Description

多層溶接継手CTOD特性に優れた厚鋼板およびその製造方法
 本発明は、船舶や海洋構造物、ラインパイプ、圧力容器等に使用される鋼材に関して、母材の低温靭性に優れるだけでなく小~中入熱の多層溶接継手CTOD特性に優れる厚鋼板およびその製造方法に関するものである。
 鋼の靭性の評価基準として、主にシャルピー試験が用いられてきた。近年では破壊抵抗をより高精度に評価する方法として、き裂開口変位試験(Crack Tip Opening Displacement Test、以降CTOD試験と称する。)が、構造物に使用される厚鋼板を対象に用いられることが多い。この試験は、靭性評価部に疲労予き裂を導入した試験片を低温で曲げ試験し、破壊直前のき裂の開口量(塑性変形量)を測定して脆性破壊の発生抵抗を評価するものである。
 厚鋼板を構造物に適用する場合の溶接は、多層溶接となる。多層溶接の溶接熱影響部(以下、多層溶接HAZと称する。)には、先行の溶接パスにより溶接線近傍が粗大な組織(CGHAZ:Coarse Grain Heat Affected Zone)となった領域が、次層の溶接パスによりフェライト+オーステナイトの2相域に再加熱されて、粗大な基地組織中に島状マルテンサイト(MA:Martensite-Austenite Constituent)組織が混在して著しく靭性が低くなった領域(以下、ICCGHAZ:Inter Critically Reheated Coarse Grain Heat Affected Zoneと称する。)が含まれることが知られている。
 継手CTOD試験は基本的に板全厚で試験するものであるため、多層溶接HAZを対象とする場合、疲労予き裂を導入する評価領域にはICCGHAZ組織が含まれる。一方、継手CTOD試験により得られる継手CTOD特性は微小であっても、評価領域で最脆化となる領域の靭性に支配されるため、多層溶接HAZの継手CTOD特性は、CGHAZ組織だけでなくICCGHAZ組織の靭性も反映される。このため、多層溶接HAZの継手CTOD特性の向上にはICCGHAZ組織の靭性向上も必要である。
 従来より、溶接熱影響部(HAZとも言う)の靭性向上技術としてTiNの微細分散によるCGHAZのオーステナイト粒粗大化の抑制や、TiNのフェライト変態核利用が行われてきた。
 また、REMを添加して生成したREM系酸硫化物の分散によるオーステナイト粒の粒成長抑制、Caを添加して生成したCa系酸硫化物の分散によるオーステナイト粒の粒成長抑制、BNのフェライト核生成能と酸化物分散とを組合わせる技術も用いられてきた。
 例えば、特許文献1、特許文献2には、REMとTiN粒子によるHAZのオーステナイト組織の粗大化抑制技術が提案されている。また、特許文献3には、CaS利用によるHAZ靭性向上技術と熱間圧延による母材靭性向上技術が提案されている。
 また、ICCGHAZの靭性低下対策として、低C、低Si化することによりMAの生成を抑制し、さらにCuを添加することにより母材強度を高める技術(例えば、特許文献4)が提案されている。特許文献5には、大入熱溶接熱影響部においてBNをフェライト変態核として利用し、HAZ組織を微細化し、HAZ靭性を向上させる技術が提案されている。
特公平03-053367号公報 特開昭60-184663号公報 特開2012-184500号公報 特開平05-186823号公報 特開昭61-253344
 しかしながら、通常、継手CTOD特性を規定している規格(例えば、API規格RP-2Z)のCTOD仕様温度は-10℃である。一方、近年のエネルギー需要の増加に対応し新たな資源を確保するために、海洋構造物等の建造地域がこれまで資源採掘を行えていなかった寒冷域にシフトしている。このため、API規格が定めるCTOD仕様温度よりも低温のCTOD仕様温度(以下、特別低温CTOD仕様ともいう)に対応できる鋼材の要求が増加している。発明者の検討によれば、これらの技術では近年求められている低温仕様向けの多層溶接継手に要求される継手CTOD特性を十分満足させることはできなかった。例えば、特許文献1、特許文献2のREMとTiN粒子によるHAZのオーステナイト組織の粗大化抑制技術については、TiNは溶接時に高温に達するボンド部では溶解してしまうため、オーステナイト粒の粒成長抑制に対して十分な効果を発揮できない。
 また、REM系酸硫化物やCa系酸硫化物はオーステナイト粒成長抑制には有効である。しかしながら、HAZのオーステナイト粒粗大化抑制による靭性向上の効果のみでは上記の低温仕様温度での継手CTOD特性を満足することはできない。また、BNのフェライト核生成能は、大入熱溶接で溶接熱影響部の冷速が遅く、HAZがフェライト主体となる組織の場合には有効であった。しかしながら、厚鋼板の場合、母材に含有される合金成分量が比較的高くなる一方で、多層溶接は入熱量が比較的小さいので、HAZ組織がベイナイト主体となり、その効果が得られない。
 また、特許文献3では、通常仕様温度(-10℃)での継手CTOD特性を満足する。しかしながら、上記の低温仕様温度での継手CTOD特性については検討されていない。
 特許文献4についても、上記の低温仕様温度での継手CTOD特性については検討されておらず、母材成分組成の低減によるICCGHAZ靭性の向上のみでは特別低温CTOD仕様を満足することはできないと考えられる。また、ICCGHAZの靭性を向上させるため、母材成分組成の合金元素含有量を低減することは、母材の特性を損なうことがあり、海洋構造物などに使用される厚鋼板には適用しがたい。
 特許文献5については、大入熱溶接のように溶接熱影響部の冷速が遅く、HAZがフェライト主体となる組織の場合には有効である。しかしながら、厚鋼板の場合、母材に含有される合金成分量が比較的高く、また、多層溶接は入熱量が比較的小さいので、HAZ組織がベイナイト主体となり、その効果が得られない。
 このように、厚鋼板の多層溶接熱影響部で、CGHAZとICCGHAZの靭性を向上させる技術が確立されているとは言いがたく、切欠位置をCGHAZやICCGHAZが混在するボンド部とする継手CTOD特性を向上させることは困難であった。
 そこで、本発明は、多層溶接継手CTOD特性に優れる厚鋼板およびその製造方法を提供することを目的とする。
 発明者等は上記問題点を解決するために、Ca系複合介在物に注目し、多層溶接HAZにおけるオーステナイト粒粗大化抑制効果とベイナイトやアシキュラーフェライト、フェライトの核生成効果および多層溶接HAZの靭性向上について鋭意検討を行い、以下の知見を得た。
(1)鋼中のCa、OおよびSを、下式で示される原子濃度比(ACR:Atomic Concentration Ratio)が0.2~1.4の範囲内となるように制御すると、硫化物の形態がMnの一部固溶したCa系硫化物とAl系酸化物の複合介在物となる。
     ACR=(Ca-(0.18+130×Ca)×O)/(1.25×S)
(2)介在物形態をCaとMnを含む硫化物とAlを含む酸化物からなる複合介在物とすることで、溶接線近傍の高温まで昇温される領域においても安定的に存在できるためオーステナイト粒粗大化効果を十分に発揮できる。さらに、複合介在物周囲にMn希薄層が形成されるためベイナイトやアシキュラーフェライトの核生成効果を有する。
(3)HAZの冷却時の核生成サイトは主にオーステナイト粒界である。本発明では、オーステナイト粒内に核生成効果を有する上記複合介在物が存在することで、オーステナイト粒界に加えオーステナイト粒内からも核生成が開始し、最終的に得られるHAZ組織が微細となり、HAZの靭性および継手CTOD特性が向上する。
(4)上記複合介在物によるベイナイトやアシキュラーフェライト、フェライトの核生成効果は介在物サイズが微小すぎると不十分であり、円相当直径0.1μm以上必要である。
(5)上記複合介在物の変態核生成効果を十分に活用するためには、溶接昇温時にHAZのオーステナイト粒内中に少なくとも1個以上の介在物が存在する必要があり、入熱量が5kJ/mm程度では溶接線近傍のオーステナイト粒径は約200μmとなるため、介在物の密度は25個/mm以上必要となる。
(6)一方、上記複合介在物自体の靭性は低いため、過剰な量の介在物ではかえってHAZ靭性が低下してしまう。特に連続鋳造によりスラブが製造される際、介在物と鋼の密度差によりスラブ中の未凝固部分を浮上することで1/4t(t:板厚)位置に介在物が集積し易いため、介在物個数が過剰とならないようにする必要がある。また、元素の偏析が存在し多層溶接HAZ靭性の劣る板厚中心部分においても介在物個数を適切にする必要があり、介在物個数を250個/mm以下とすることで良好な多層溶接継手CTOD特性が確保できる。
(7)通常、スラブの板厚中心の元素偏析部には合金元素が濃化することで粗大な介在物が低密度で分散してしまう問題が生じる。しかしながら、板厚中心温度が950℃以上における圧下率/パスが8%以上のパスの累積圧下率が30%以上、もしくは、板厚中心温度が950℃以上における圧下率/パスが5%以上のパスの累積圧下率が35%以上といった1パス当たり大きな圧下を加えることで、板厚中心に加わる歪みを増加させ、粗大介在物を伸長、さらには分断させることで細かな介在物を高密度に分散させることができ、介在物によるHAZ靭性向上効果を確保することができるとともに、特別CTOD仕様にも対応可能な良好なCTOD特性を実現することができる。
 また、介在物形態制御による多層溶接HAZの微細化に加え、オーステナイト粒成長抑制に有効なTiNを鋼中に微細分散させるために1.5≦Ti/N≦5.0とすること、および炭素当量Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5<0.45、溶接割れ感受性指数Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]<0.20に制御することにより、多層溶接HAZの基地組織の靭性向上が可能である。
 さらに、本発明者等は、継手CTOD試験方法が規定されているBS規格EN10225(2009)やAPI規格Recommended Practice 2Z(2005)で要求される、溶接時の母材の変態領域/未変態領域の境界であるSC/ICHAZ(Subcritically reheated HAZ/ Intercritically rehaeted HAZ)境界についても検討を行い、SC/ICHAZ境界の継手CTOD特性は母材靭性が支配的となるため、SC/ICHAZ境界で、試験温度-40℃における継手CTOD特性を満足させるには母材ミクロ組織の有効結晶粒径を20μm以下として、結晶粒微細化により母材靭性を向上させなければならないことを知見した。本発明で、多層溶接継手CTOD特性に優れるとは、切欠位置ボンド及びSC/ICHAZのそれぞれにおいて、試験温度-40℃で、亀裂開口変位量が0.4mm以上であることとする。
 本発明は得られた知見を基に、更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、成分組成が、C:0.03~0.10%、Si:0.5%以下、Mn:1.0~2.0%、P:0.015%以下、S:0.0005~0.0050%、Al:0.005~0.060%、Ni:0.5~2.0%、Ti:0.005~0.030%、N:0.0015~0.0065%、O:0.0010~0.0050%、Ca:0.0005~0.0060%を含み、(1)~(4)の各式を満足し、残部Feおよび不可避的不純物からなり、板厚中心における母材の有効結晶粒径が20μm以下、板厚(t:mm)の1/4と1/2のそれぞれにおいてCaとMnを含む硫化物とAlを含む酸化物からなる円相当直径0.1μm以上の複合介在物が25~250個/mm存在する多層溶接継手CTOD特性に優れた厚鋼板。
1.5≦Ti/N≦5.0    (1)
Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.45     (2)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.20 (3)
0.2<(Ca-(0.18+130×Ca)×O)/(1.25×S)<1.4    (4)
(1)~(4)式において、各合金元素は含有量(質量%)とする。
2.更に、質量%で、Cu:0.05~2.0%、Cr:0.05~0.30%、Mo:0.05~0.30%、Nb:0.005~0.035%、V:0.01~0.10%、W:0.01~0.50%、B:0.0005~0.0020%、REM:0.0020~0.0200%、Mg:0.0002~0.0060%のうちの1種または2種以上を含むことを特徴とする1に記載の多層溶接継手CTOD特性に優れた厚鋼板。
3.1または2記載の成分組成の鋼片を950℃以上1200℃以下に加熱し、板厚中心温度が950℃以上における圧下率/パスが8%以上のパスの累積圧下率が30%以上、板厚中心温度が950℃未満での累積圧下率が40%以上となる熱間圧延後、板厚中心での700-500℃間の平均冷却速度が1~50℃/secとなる冷却を600℃以下まで行うことを特徴とする1または2記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
4.1または2記載の成分組成の鋼片を950℃以上1200℃以下に加熱し、板厚中心温度が950℃以上における圧下率/パスが5%以上のパスの累積圧下率が35%以上、板厚中心温度が950℃未満での累積圧下率が40%以上となる熱間圧延後、板厚中心での700-500℃間の平均冷却速度が1~50℃/secとなる冷却を600℃以下まで行うことを特徴とする請求項1または2記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
5.冷却後、700℃以下の温度で焼戻し処理を行うことを特徴とする3または4に記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
 本発明によれば、多層溶接継手で優れたCTOD特性が得られる厚鋼板およびその製造方法を提供することが可能で、産業上極めて有用である。
 以下に本発明の各構成要件の限定理由について説明する。
 1.化学成分について
 はじめに、本発明の鋼の化学成分を規定した理由を説明する。なお、%は全て質量%を意味する。
 C:0.03~0.10%
 Cは、鋼の強度を向上させる元素であり、0.03%以上の含有を必要とする。しかし、0.10%を超えてCを過剰に含有すると継手CTOD特性が低下する。このため、Cは0.03~0.10%の範囲に限定した。なお好ましくは0.04~0.08%である。
 Si:0.5%以下
 0.5%を超えてSiを過剰に含有すると継手CTOD特性が低下する。このため、Siは0.5%以下の範囲に限定した。なお好ましくは0.4%以下であり、さらに好ましくは0.1%超え0.3%以下である。
 Mn:1.0~2.0%
 Mnは、鋼の焼入れ性の向上を介して強度を向上させる元素である。しかしながら、過剰に添加すると継手CTOD特性を著しく低下させる。このため、Mnは1.0~2.0%の範囲に限定した。なお好ましくは1.2~1.8%の範囲である。
 P:0.015%以下
 Pは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性を低下させるため、できるだけ低減することが望ましい。特に0.015%を超える含有は、著しく継手CTOD特性を低下させるため、0.015%以下に限定した。好ましくは0.010%以下である。
 S:0.0005~0.0050%
 Sは、多層溶接HAZの靭性を向上させるための介在物に必要な元素であり、0.0005%以上の含有が必要である。しかしながら、0.0050%を超える含有は、継手CTOD特性を低下させるため、0.0050%以下に限定した。好ましくは0.0045%以下である。
 Al:0.005~0.060%
 Alは、多層溶接HAZの靭性を向上させるための介在物に必要な元素であり、0.005%以上の含有が必要である。一方、0.060%を超える含有は、継手CTOD特性を低下させるため、0.060%以下に限定した。
 Ni:0.5~2.0%
 Niは、母材と継手の両方の靭性を大きく劣化させることなく高強度化が可能な元素である。その効果を得るためには、0.5%以上の含有を必要とする。しかし、2.0%を超えると強度上昇の効果が飽和するためコスト増加が問題となる。そのため、上限を2.0%とした。なお好ましくは0.5~1.8%である。
 Ti:0.005~0.030%
 Tiは、TiNとして析出することでHAZのオーステナイト粒粗大化を抑制し、HAZ組織を微細化し、靭性向上に有効な元素である。このような効果を得るためには0.005%以上の含有を必要とする。一方、0.030%を超えて過剰に含有すると、固溶Tiや粗大TiCの析出により溶接熱影響部靭性が低下するようになる。このため、Tiは0.005~0.030%の範囲に限定した。好ましくは0.005~0.025%である。
 N:0.0015~0.0065%
 Nは、TiNとして析出することでHAZのオーステナイト粒粗大化を抑制し、HAZ組織の微細化により、靭性向上に有効な元素である。このような効果を得るためには0.0015%以上の含有を必要とする。一方、0.0065%を超えて過剰に含有すると、溶接熱影響部靭性が低下するようになる。このため、0.0015~0.0065%の範囲に限定した。好ましくは0.0015~0.0055%である。
 O:0.0010~0.0050%
 Oは、多層溶接HAZの靭性を向上させるための介在物に必要な元素であり、0.0010%以上の含有が必要である。一方、0.0050%を超える含有は、継手CTOD特性が低下するようになるため、本発明では0.0010~0.0050%の範囲に限定した。好ましくは0.0010~0.0045%である。
 Ca:0.0005~0.0060%
 Caは、多層溶接HAZの靭性を向上させるための介在物に必要な元素であり、0.0005%以上の含有が必要である。一方、0.0060%を超える含有は、かえって継手CTOD特性が低下するため、本発明では0.0005~0.0060%の範囲に限定した。好ましくは0.0007~0.0050%である。
 1.5≦Ti/N≦5.0…(1)
 Ti/Nは、HAZにおける固溶N量とTiCの析出状態を制御する。Ti/Nが1.5未満では、TiNとして固定されていない固溶Nの存在によりHAZ靭性が劣化する、一方Ti/Nが5.0より大きいと粗大TiCの析出によりHAZ靭性が劣化する。そのためTi/Nを1.5以上5.0以内の範囲に限定した。なお好ましくは1.8以上4.5以下である。上記式(1)において、各合金元素は含有量(質量%)とする。
 Ceq:0.45%以下
 Ceqが増加すると、HAZ組織中の島状マルテンサイトやベイナイトといった靭性の劣る組織量の増加によりHAZ靭性が劣化する。Ceqが0.45%より大きくなると、HAZの基地組織自体の靭性劣化により介在物によるHAZ靭性向上技術を用いても必要な継手CTOD特性を満足できなくなるため上限を0.45%とした。なお、Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5…(2)とし、式(2)において、各合金元素は含有量(質量%)とする。
 Pcm:0.20%以下
 Pcmが増加すると、HAZ組織中の島状マルテンサイトやベイナイトなど靭性の劣る組織が増加してHAZ靭性が劣化する。Pcmが0.20%を超えると、HAZの基地組織自体の靭性が劣化して、介在物によるHAZ靭性向上技術を用いても必要な継手CTOD特性が得られないため、上限を0.20%とした。Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]…(3)とし、式(3)において、各合金元素は含有量(質量%)とする。
 0.2≦(Ca-(0.18+130×Ca)×O)/(1.25×S)≦1.4…(4)
 (Ca-(0.18+130×Ca)×O)/(1.25×S)は鋼中のCa、OおよびSの原子濃度比(ACR:Atomic Concentration Ratio)で、0.2未満では硫化物系介在物の主要形態がMnSとなる。MnSは融点が低く溶接時の溶接線近傍では溶解してしまうため、溶接線近傍でのオーステナイト粒粗大化抑制効果および溶接後の冷却時の変態核効果も得られない。一方、(Ca-(0.18+130×Ca)×O)/(1.25×S)が1.4を超えると硫化物系介在物の主要形態はCaSとなるため、CaS周囲に変態核となるために必要なMn希薄層が形成されないため変態核効果が得られない。従って、0.2以上1.4以下とする。なお好ましくは0.3以上1.2以下の範囲である。式(4)において、各合金元素は含有量(質量%)とする。
 本発明に係る厚鋼板は、上記成分組成を基本組成とし、残部Feおよび不可避的不純物とする。さらに強度、靭性調整、継手靭性向上を目的として、Cu:0.05~2.0%、Cr:0.05~0.30%、Mo:0.05~0.30%、Nb:0.005~0.035%、V:0.01~0.10%、W:0.01~0.50%、B:0.0005~0.0020%、REM:0.0020~0.0200%、Mg:0.0002~0.0060%の1種または2種以上を含有できる。
 Cu:0.05~2.0%
 Cuは、母材、継手靭性を大きく劣化させることなく高強度化が可能な元素で、その効果を得るためには、0.05%以上の含有を必要する。しかし、2.0%以上の添加を行うとスケール直下に生成するCu濃化層起因の鋼板割れが問題となるため、添加する場合は、0.05~2.0%とする。なお好ましくは0.1~1.5%である。
 Cr:0.05~0.30%
 Crは、鋼の焼入れ性の向上を介して強度を向上させる元素であるが、過剰に添加すると継手CTOD特性を低下させるため、添加する場合は、0.05~0.30%とする。
 Mo:0.05~0.30%
 Moは、鋼の焼入れ性の向上を介して強度を向上させる元素であるが、過剰に添加すると継手CTOD特性を低下させる。このため、添加する場合は0.05~0.30%とする。
 Nb:0.005~0.035%
 Nbは、オーステナイト相の未再結晶温度域を広げる元素であり、未再結晶域圧延を効率的に行い微細組織を得るために有効な元素である。その効果を得るためには0.005%以上の含有を必要とする。しかしながら、0.035%を超えると継手CTOD特性の低下を招くため、添加する場合は、0.005~0.035%とする。
 V:0.01~0.10%
 Vは、母材の強度を向上させる元素であり、0.01%以上の添加で効果を発揮する。しかし、0.10%を超えるとHAZ靭性の低下を招くため、添加する場合は、0.01~0.10%とする。なお好ましくは0.02~0.05%である。
 W:0.01~0.50%
 Wは、母材の強度を向上させる元素であり、0.01%以上の添加で効果を発揮する。しかし、0.50%を超えるとHAZ靭性の低下を招くため、添加する場合は、0.01~0.50%とする。なお好ましくは0.05~0.35%である。
 B:0.0005~0.0020%
 Bは、極微量の含有で焼入れ性を向上させ、それにより鋼板の強度を向上させるのに有効な元素であり、このような効果を得るには0.0005%以上の含有を必要とする。しかし、0.0020%を超えて含有すると、HAZ靭性が低下するようになるため、添加する場合は、0.0005~0.0020%とする。
 REM:0.0020~0.0200%
 REMは、酸硫化物系介在物を形成することでHAZのオーステナイト粒成長を抑制しHAZ靭性を向上させる。このような効果を得るためには、0.0020%以上の含有を必要とする。しかし、0.0200%を超える過剰の含有は、母材、HAZ靭性を低下させるようになるため、添加する場合は0.0020~0.0200%とする。
 Mg:0.0002~0.0060%
 Mgは、酸化物系介在物を形成することで溶接熱影響部においてオーステナイト粒の成長を抑制し、溶接熱影響部靭性の改善に有効な元素である。このような効果を得るには0.0002%以上の含有が必要である。しかし、0.0060%を超える含有は、効果が飽和して含有量に見合う効果が期待できずに経済的に不利となるため、添加する場合は0.0002~0.0060%とする。
 2.母材のミクロ組織
 SC/ICHAZ境界の継手CTOD特性を向上させるため、中心偏析が存在しやすい、板厚中心での結晶粒微細化により母材靭性が向上するように、板厚中心での母材ミクロ組織の有効結晶粒径を20μm以下とする。母材ミクロ組織の相は、所望する強度が得られれば良く、特に規定しない。なお、本発明における有効結晶粒径とは、隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた結晶粒の円相当直径である。
 3.介在物について
 CaとMnを含む硫化物とAlを含む酸化物の複合介在物:円相当直径が0.1μm以上で25~250個/mm
 Mnを含んだ硫化物が形成される際、介在物周囲にMn希薄域が形成されることで変態核として有効となる。さらに硫化物にCaも含有されることで高融点下し、HAZの溶接線近傍の昇温でも残存しオーステナイト粒成長抑制効果と変態核効果が発揮される。このような効果を得るため、複合介在物は円相当直径を0.1μm以上の大きさとし、板厚の1/4と1/2のそれぞれの位置において、25~250個/mm、好ましくは35~170個/mmとする。
4.製造方法について
 製造方法について、各条件の限定理由を以下に述べる。なお以下の温度は特に断らない限り鋼材の表面温度とする。
 鋼片の加熱条件
鋼片は連続鋳造によるものとし、950℃以上1200℃以下に加熱する。加熱温度が950℃より低くなると加熱時に未変態領域が残存し、凝固時の粗大組織が残存してしまうため所望の細粒組織が得られなくなる。一方、加熱温度が1200℃よりも高くなると、オーステナイト粒が粗大になり制御圧延後に所望の細粒組織が得られなくなる。このため、加熱温度を950℃以上1200℃以下に限定する。なお好ましくは970℃以上1170℃以下である。
 熱間圧延条件
熱間圧延は再結晶温度域のパス条件と未再結晶温度域のパス条件を規定する。再結晶温度域では、板厚中心温度が950℃以上における圧下率/パスが8%以上の圧下を累積圧下率が30%以上となるように行う。もしくは、再結晶温度域では、板厚中心温度が950℃以上における圧下率/パスが5%以上の圧下を累積圧下率が35%以上となるように行う。
 950℃未満での圧延では再結晶が起こり難くなり、オーステナイト粒の微細化が不十分となるため、950℃以上に限定した。
 また、圧下率/パスが8%未満の圧下では再結晶による細粒化が生じない。圧下率/パスが8%以上の圧下でも、累積圧下量が30%以下では再結晶による結晶粒微細化が不十分であるため、圧下率/パスが8%以上の圧下の累積圧下率を30%以上とする。また、本発明者らがさらに検討したところ、圧下率/パスが5%以上の圧下でも、累積圧下量を35%以上にすることにより、再結晶による結晶粒微細化が十分に起こることがわかった。したがって、圧下率/パスが5%以上の圧下の場合、累積圧下率を35%以上とする。
 未再結晶温度域では、板厚中心温度が950℃未満での累積圧下率が40%以上
 本発明鋼は950℃未満での圧延では再結晶が起こり難くなり、導入された歪みは再結晶に消費されずに蓄積され、後の冷却時の変態核として作用することで最終組織が微細化する。また、累積圧下率が40%未満では結晶粒微細化効果が不十分であるため、板厚中心温度が950℃未満での累積圧下率を40%以上に限定した。
 冷却条件
 熱間圧延後の冷却は、板厚中心位置における、700-500℃間での平均冷速が1~50℃/secとなるように行い、冷却停止温度は600℃以下とする。
 板厚中心位置での平均冷速が1℃/sec未満になると、母材組織に粗大なフェライト相が生じるためSC/ICHAZのCTOD特性が劣化する。一方、平均冷速が50℃/secよりも大きくなると、母材強度の増加によりSC/ICHAZのCTOD特性が劣化するため、板厚中心位置での700-500℃間の平均冷速を1~50℃/secに限定した。冷却停止温度が600℃超えでは、冷却による変態強化が不十分で母材強度が不足するため、600℃以下とする。
 母材の強度を低下させ、靭性を向上させる場合、冷却停止後、700℃以下で焼戻しを行う。焼戻し温度が700℃よりも高くなると、粗大フェライト相が生成して、SCHAZの靭性が劣化するため、700℃以下に限定した。なお、650℃以下が好ましい。
 表1に供試鋼の組成を示す。なお、垂直部長さ17m連続鋳造機にて、鋳造速度0.2~0.4m/min.、冷却帯の水量密度1000~2000l/min.・mの条件で連続鋳造された鋼片を用いた。鋼種A~Kは成分組成が本発明の範囲を満足する発明例であり、鋼種L~Tは成分組成が本発明の範囲外の比較例である。これらの鋼種を用いて表2に示す製造条件により厚鋼板を製造した。また、得られた厚鋼板毎に、多層盛溶接継手を作成した。熱間圧延時に板長手、幅、板厚中心位置に熱電対を取り付け板厚中心温度を実測した。
 各厚鋼板毎に、母材のミクロ組織における平均有効結晶粒径と板厚方向での介在物の分布状態を調査した。平均有効結晶粒径の測定は、板の長手、幅、板厚方向中心よりサンプルを採取し、鏡面研磨仕上げを行った後下記の条件でEBSP解析を行い、得られた結晶方位マップより隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を有効結晶粒径として評価した。
 EBSP条件
 解析領域:板厚中心の1mm×1mm領域
 ステップサイズ:0.4μm
 介在物の密度測定は、板の長手、幅、板厚方向の板厚の1/4、1/2位置よりサンプルを採取し、ダイヤモンドバフ+アルコールで鏡面研磨仕上げを行った後、電界放出型走査型電子顕微鏡(FE-SEM)を用いて1mm×1mmの評価領域に存在する介在物をEDX分析により同定し、合わせて介在物密度を評価した。なお介在物種類の評価は、ZAF法で定量化した介在物の化学組成に対し各種元素が原子分率で3%以上含まれる場合、その元素が含まれる介在物であると判断した。
 引張試験は板厚(t)の1/4位置から板幅方向に平行に平行部直径14mm、平行部長さ70mmの丸棒引張試験片を採取し、EN10002-1に従って引張試験を行った。なお、表2に示す降伏強度(YS)は上降伏点が現れた場合は上降伏応力を、上降伏点が現れなかった場合は0.2%耐力を用いている。
 継手CTOD試験に使用する溶接継手はK開先形状、入熱量5.0kJ/mmのサブマージアーク溶接(多層溶接)を用い作成した。試験方法はBS規格EN10225(2009)に準拠し、t(板厚)×t(板厚)の断面形状の試験片を用い、試験温度-40℃においてCTOD値(δ)を評価した。各鋼種に対し各切欠位置毎に3本ずつ試験し平均CTOD値が0.40mm以上であるものを継手CTOD特性に優れた鋼板とした。切欠位置はK開先の直側のCGHAZ(溶接線から母材側に0.25mmの位置)と、SC/ICHAZ境界(継手CTOD試験片を硝酸でエッチングした際に現れる腐食HAZ境界より母材側に0.25mm位置)のそれぞれとした。試験後、試験片破面で、疲労予亀裂の先端がEN10225(2009)で規定するCGHAZと、SC/ICHAZ境界のそれぞれにあることを確認した。なお、多層溶接の継手CTOD試験の場合、切欠位置がCGHAZであっても、一定量のICCGHAZが含まれるため、試験結果には、CGHAZとICCGHAZの両方の靭性が反映される。
 表2に試験結果を示す。No.1~11は化学成分、母材の平均結晶粒径、介在物密度、製造条件ともに発明範囲の鋼種であり、切欠位置がCGHAZ、SC/ICHAZ境界共に優れた継手CTOD特性を示す。
 一方、No.12~26は比較例で、CGHAZおよび/またはSC/ICHAZ境界の継手CTOD特性が劣位である。
 No.12はC量が多くHAZ組織が靭性の劣る硬質組織となったためCGHAZの継手CTOD値が低い。
 No.13はTi量、Ti/Nが小さくHAZ組織の粗大化抑制に必要なTiN量が少ないためCGHAZの継手CTOD値が低い。
 No.14はTi/Nが大きく、粗大TiCの析出や固溶Tiの存在によりHAZ靭性が低いためCGHAZ、SC/ICHAZ境界の継手CTOD値が低い。
 No.15はCeqが本発明範囲外で高く、HAZ組織が靭性の劣る硬質組織となったためCGHAZの継手CTOD値が低い。
 No.16はB量とPcmが本発明範囲外で高く、HAZ組織が靭性の劣る硬質組織となったためCGHAZの継手CTOD値が低い。
 No.17はACRが小さく、硫化物系介在物の主体がMnSとなり、HAZ組織の微細化に必要なCa系複合介在物量が少ないため、CGHAZの継手CTOD値が低い。
 No.18はACRが大きく、硫化物系介在物の主体がCaSとなり、HAZ組織の微細化に必要なCa系複合介在物量が少ないため、CGHAZの継手CTOD値が低い。
 No.19はCa量が少なく、HAZ組織の微細化に必要なCa系複合介在物量が少ないため、CGHAZの継手CTOD値が低い。
 No.20はS量とCa量が多く、介在物量の増加によりCGHAZ、SC/ICHAZ境界の継手CTOD値が低い。
 No.21は加熱温度が高く、高温加熱時の粒成長により母材の平均結晶粒径が粗大となったため、SC/ICHAZ境界の継手CTOD値が低い。
 No.22は加熱温度が低く、鋳造組織が残存して、母材の平均結晶粒径が粗大となったため、SC/ICHAZ境界の継手CTOD値が低い。
 No.23は再結晶域の圧下量が小さく、母材の平均結晶粒径が粗大となったため、SC/ICHAZ境界の継手CTOD値が低い。
 No.24は未再結晶域の圧下量が小さく、母材の平均結晶粒径が粗大となったためSC/ICHAZ境界の継手CTOD値が低い。
 No.25は冷却速度が遅く粗大フェライトの生成により母材の平均結晶粒径が粗大となったためSC/ICHAZ境界の継手CTOD値が低い。
 No.26は焼戻し温度が高いため、粗大フェライトが生成し、母材の平均結晶粒径が粗大となったためSC/ICHAZ境界の継手CTOD値が低い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1.  質量%で、成分組成がC:0.03~0.10%、Si:0.5%以下、Mn:1.0~2.0%、P:0.015%以下、S:0.0005~0.0050%、Al:0.005~0.060%、Ni:0.5~2.0%、Ti:0.005~0.030%、N:0.0015~0.0065%、O:0.0010~0.0050%、Ca:0.0005~0.0060%を含み、(1)~(4)の各式を満足し、残部Feおよび不可避的不純物からなり、板厚中心における母材の有効結晶粒径が20μm以下、板厚(t:mm)の1/4と1/2のそれぞれにおいてCaとMnを含む硫化物とAlを含む酸化物からなる円相当直径0.1μm以上の複合介在物が25~250個/mm存在する多層溶接継手CTOD特性に優れた厚鋼板。
    1.5≦Ti/N≦5.0    (1)
    Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.45     (2)
    Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.20    (3)
    0.2<(Ca-(0.18+130×Ca)×O)/(1.25×S)<1.4    (4)
    (1)~(4)式において、各合金元素は含有量(質量%)とする。
  2.  更に、質量%で、Cu:0.05~2.0%、Cr:0.05~0.30%、Mo:0.05~0.30%、Nb:0.005~0.035%、V:0.01~0.10%、W:0.01~0.50%、B:0.0005~0.0020%、REM:0.0020~0.0200%、Mg:0.0002~0.0060%のうちの1種または2種以上を含むことを特徴とする請求項1に記載の多層溶接継手CTOD特性に優れた厚鋼板。
  3.  請求項1または2記載の成分組成の鋼片を950℃以上1200℃以下に加熱し、板厚中心温度が950℃以上における圧下率/パスが8%以上のパスの累積圧下率が30%以上、板厚中心温度が950℃未満での累積圧下率が40%以上となる熱間圧延後、板厚中心での700-500℃間の平均冷却速度が1~50℃/secとなる冷却を600℃以下まで行うことを特徴とする請求項1または2記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
  4.  請求項1または2記載の成分組成の鋼片を950℃以上1200℃以下に加熱し、板厚中心温度が950℃以上における圧下率/パスが5%以上のパスの累積圧下率が35%以上、板厚中心温度が950℃未満での累積圧下率が40%以上となる熱間圧延後、板厚中心での700-500℃間の平均冷却速度が1~50℃/secとなる冷却を600℃以下まで行うことを特徴とする請求項1または2記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
  5.  冷却後、700℃以下の温度で焼戻し処理を行うことを特徴とする請求項3または4に記載の多層溶接継手CTOD特性に優れた厚鋼板の製造方法。
PCT/JP2014/001218 2013-03-12 2014-03-05 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法 WO2014141632A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480014302.2A CN105008574B (zh) 2013-03-12 2014-03-05 多层焊接接头ctod特性优良的厚钢板及其制造方法
US14/774,366 US10023946B2 (en) 2013-03-12 2014-03-05 Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR1020157025141A KR101719943B1 (ko) 2013-03-12 2014-03-05 다층 용접 조인트 ctod 특성이 우수한 후강판 및 그 제조 방법
JP2014530840A JP5618036B1 (ja) 2013-03-12 2014-03-05 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
EP14762492.8A EP2975148B1 (en) 2013-03-12 2014-03-05 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048819 2013-03-12
JP2013048819 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014141632A1 true WO2014141632A1 (ja) 2014-09-18

Family

ID=51536312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001218 WO2014141632A1 (ja) 2013-03-12 2014-03-05 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US10023946B2 (ja)
EP (1) EP2975148B1 (ja)
JP (1) JP5618036B1 (ja)
KR (1) KR101719943B1 (ja)
CN (1) CN105008574B (ja)
WO (1) WO2014141632A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110249A (ja) * 2015-12-15 2017-06-22 新日鐵住金株式会社 耐サワー鋼板
EP3276026A4 (en) * 2015-03-26 2018-04-18 JFE Steel Corporation Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
WO2018216665A1 (ja) * 2017-05-22 2018-11-29 Jfeスチール株式会社 厚鋼板およびその製造方法
JP2019183205A (ja) * 2018-04-05 2019-10-24 Jfeスチール株式会社 鋼板およびその製造方法
WO2023112634A1 (ja) * 2021-12-14 2023-06-22 Jfeスチール株式会社 鋼板およびその製造方法
WO2023219146A1 (ja) * 2022-05-12 2023-11-16 Jfeスチール株式会社 鋼板およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141633A1 (ja) * 2013-03-12 2014-09-18 Jfeスチール株式会社 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
WO2014141632A1 (ja) 2013-03-12 2014-09-18 Jfeスチール株式会社 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
EP3128024B1 (en) * 2014-03-31 2018-09-26 JFE Steel Corporation Welded joint
KR101899694B1 (ko) * 2016-12-23 2018-09-17 주식회사 포스코 저온 충격인성 및 ctod 특성이 우수한 후강판 및 그 제조방법
CN110408840A (zh) * 2018-04-27 2019-11-05 宝山钢铁股份有限公司 具有优良焊接接头ctod性能的超高强度海洋工程用钢及其制造方法
CN110616300B (zh) * 2018-06-19 2021-02-19 宝山钢铁股份有限公司 一种优良ctod特性的低温用钢及其制造方法
WO2021054344A1 (ja) * 2019-09-20 2021-03-25 Jfeスチール株式会社 厚鋼板および厚鋼板の製造方法
CN114763593B (zh) * 2021-01-12 2023-03-14 宝山钢铁股份有限公司 具有耐高湿热大气腐蚀性的海洋工程用钢及其制造方法
CN113025903B (zh) * 2021-03-04 2022-03-25 东北大学 一种细晶粒热轧板带钢及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184663A (ja) 1984-02-29 1985-09-20 Kawasaki Steel Corp 大入熱溶接用低温用高張力鋼
JPS61253344A (ja) 1985-05-01 1986-11-11 Kawasaki Steel Corp 大入熱溶接用鋼板とその製造方法
JPH0277521A (ja) * 1988-09-13 1990-03-16 Kawasaki Steel Corp 板厚方向の均質性に優れた溶接用超高張力鋼板の製造方法
JPH0353367B2 (ja) 1984-01-20 1991-08-14 Kawasaki Steel Co
JPH05186823A (ja) 1991-11-13 1993-07-27 Kawasaki Steel Corp 高靱性Cu含有高張力鋼の製造方法
JPH05271766A (ja) * 1992-03-30 1993-10-19 Nippon Steel Corp 耐水素誘起割れ性の優れた高強度鋼板の製造方法
JPH1017982A (ja) * 1996-06-28 1998-01-20 Nippon Steel Corp 耐破壊性能に優れた建築用低降伏比高張力鋼材及びその製造方法
JPH11140582A (ja) * 1997-11-11 1999-05-25 Kawasaki Steel Corp 溶接熱影響部靱性に優れた高靱性厚鋼板およびその製造方法
WO2009072753A1 (en) * 2007-12-04 2009-06-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
JP2010202949A (ja) * 2009-03-05 2010-09-16 Sumitomo Metal Ind Ltd ラインパイプ用鋼材の製造方法
JP2012162797A (ja) * 2011-01-18 2012-08-30 Kobe Steel Ltd 溶接熱影響部の靱性に優れた鋼材およびその製造方法
JP2012184500A (ja) 2011-02-15 2012-09-27 Jfe Steel Corp 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP2013023713A (ja) * 2011-07-19 2013-02-04 Jfe Steel Corp Sr後の溶接部靱性に優れた低降伏比耐hic溶接鋼管およびその製造方法
JP2013095927A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法
JP2013095928A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353367A (ja) 1989-07-20 1991-03-07 Toshiba Corp 分散型情報処理システム
JP3218447B2 (ja) 1994-04-22 2001-10-15 新日本製鐵株式会社 優れた低温靱性を有する耐サワー薄手高強度鋼板の製造方法
EP1262571B1 (en) * 2000-02-10 2005-08-10 Nippon Steel Corporation Steel having weld heat-affected zone excellent in toughness
JP3699657B2 (ja) * 2000-05-09 2005-09-28 新日本製鐵株式会社 溶接熱影響部のCTOD特性に優れた460MPa以上の降伏強度を有する厚鋼板
JP2002235114A (ja) * 2001-02-05 2002-08-23 Kawasaki Steel Corp 大入熱溶接部靱性に優れた厚肉高張力鋼の製造方法
JP4096839B2 (ja) 2003-08-22 2008-06-04 Jfeスチール株式会社 超大入熱溶接熱影響部靱性に優れた低降伏比高張力厚鋼板の製造方法
JP5435837B2 (ja) * 2006-03-20 2014-03-05 新日鐵住金株式会社 高張力厚鋼板の溶接継手
JP4356950B2 (ja) * 2006-12-15 2009-11-04 株式会社神戸製鋼所 耐応力除去焼鈍特性と溶接性に優れた高強度鋼板
JP4547037B2 (ja) * 2007-12-07 2010-09-22 新日本製鐵株式会社 溶接熱影響部のctod特性が優れた鋼およびその製造方法
JP5439887B2 (ja) 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
EP2241646B1 (en) * 2008-10-23 2012-09-05 Nippon Steel Corporation High tensile strength steel thick plate having excellent weldability and tensile strength of 780mpa or above, and process for manufacturing same
WO2014141632A1 (ja) 2013-03-12 2014-09-18 Jfeスチール株式会社 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353367B2 (ja) 1984-01-20 1991-08-14 Kawasaki Steel Co
JPS60184663A (ja) 1984-02-29 1985-09-20 Kawasaki Steel Corp 大入熱溶接用低温用高張力鋼
JPS61253344A (ja) 1985-05-01 1986-11-11 Kawasaki Steel Corp 大入熱溶接用鋼板とその製造方法
JPH0277521A (ja) * 1988-09-13 1990-03-16 Kawasaki Steel Corp 板厚方向の均質性に優れた溶接用超高張力鋼板の製造方法
JPH05186823A (ja) 1991-11-13 1993-07-27 Kawasaki Steel Corp 高靱性Cu含有高張力鋼の製造方法
JPH05271766A (ja) * 1992-03-30 1993-10-19 Nippon Steel Corp 耐水素誘起割れ性の優れた高強度鋼板の製造方法
JPH1017982A (ja) * 1996-06-28 1998-01-20 Nippon Steel Corp 耐破壊性能に優れた建築用低降伏比高張力鋼材及びその製造方法
JPH11140582A (ja) * 1997-11-11 1999-05-25 Kawasaki Steel Corp 溶接熱影響部靱性に優れた高靱性厚鋼板およびその製造方法
WO2009072753A1 (en) * 2007-12-04 2009-06-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
JP2010202949A (ja) * 2009-03-05 2010-09-16 Sumitomo Metal Ind Ltd ラインパイプ用鋼材の製造方法
JP2012162797A (ja) * 2011-01-18 2012-08-30 Kobe Steel Ltd 溶接熱影響部の靱性に優れた鋼材およびその製造方法
JP2012184500A (ja) 2011-02-15 2012-09-27 Jfe Steel Corp 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP2013023713A (ja) * 2011-07-19 2013-02-04 Jfe Steel Corp Sr後の溶接部靱性に優れた低降伏比耐hic溶接鋼管およびその製造方法
JP2013095927A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法
JP2013095928A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276026A4 (en) * 2015-03-26 2018-04-18 JFE Steel Corporation Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
US10767250B2 (en) 2015-03-26 2020-09-08 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP2017110249A (ja) * 2015-12-15 2017-06-22 新日鐵住金株式会社 耐サワー鋼板
WO2018216665A1 (ja) * 2017-05-22 2018-11-29 Jfeスチール株式会社 厚鋼板およびその製造方法
JP6477993B1 (ja) * 2017-05-22 2019-03-06 Jfeスチール株式会社 厚鋼板およびその製造方法
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same
JP2019183205A (ja) * 2018-04-05 2019-10-24 Jfeスチール株式会社 鋼板およびその製造方法
WO2023112634A1 (ja) * 2021-12-14 2023-06-22 Jfeスチール株式会社 鋼板およびその製造方法
JP7323086B1 (ja) * 2021-12-14 2023-08-08 Jfeスチール株式会社 鋼板およびその製造方法
WO2023219146A1 (ja) * 2022-05-12 2023-11-16 Jfeスチール株式会社 鋼板およびその製造方法
JP7468800B2 (ja) 2022-05-12 2024-04-16 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
EP2975148A1 (en) 2016-01-20
EP2975148B1 (en) 2019-02-27
CN105008574B (zh) 2018-05-18
KR101719943B1 (ko) 2017-03-24
US10023946B2 (en) 2018-07-17
CN105008574A (zh) 2015-10-28
KR20150119285A (ko) 2015-10-23
JPWO2014141632A1 (ja) 2017-02-16
JP5618036B1 (ja) 2014-11-05
EP2975148A4 (en) 2016-04-27
US20160040274A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP5618036B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
JP5733484B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
JP5618037B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
KR102289071B1 (ko) 후강판 및 그 제조 방법
JP6108116B2 (ja) 脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用厚鋼板およびその製造方法
JP7262288B2 (ja) 母材と溶接熱影響部の靭性に優れかつ音響異方性の小さい高強度低降伏比厚鋼板およびその製造方法
JP4220871B2 (ja) 高張力鋼板およびその製造方法
WO2016157863A1 (ja) 高強度・高靭性鋼板およびその製造方法
JP4585483B2 (ja) 溶接部靭性と変形能に優れた高強度鋼管および高強度鋼板の製造方法
JP2007177325A (ja) 低降伏比を有する高張力厚鋼板およびその製造方法
JP5515954B2 (ja) 耐溶接割れ性と溶接熱影響部靭性に優れた低降伏比高張力厚鋼板
JP6226163B2 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP7493140B2 (ja) 鋼板およびその製造方法
JP7468800B2 (ja) 鋼板およびその製造方法
JP7534593B2 (ja) スパイラル鋼管
JP5857693B2 (ja) 大入熱用鋼板およびその製造方法
KR20240134178A (ko) 강판 및 그의 제조 방법
JP2019183205A (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14774366

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157025141

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014762492

Country of ref document: EP