WO2014136934A1 - Polarized-light emission device for optical alignment - Google Patents

Polarized-light emission device for optical alignment Download PDF

Info

Publication number
WO2014136934A1
WO2014136934A1 PCT/JP2014/055945 JP2014055945W WO2014136934A1 WO 2014136934 A1 WO2014136934 A1 WO 2014136934A1 JP 2014055945 W JP2014055945 W JP 2014055945W WO 2014136934 A1 WO2014136934 A1 WO 2014136934A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
light irradiation
alignment
photo
Prior art date
Application number
PCT/JP2014/055945
Other languages
French (fr)
Japanese (ja)
Inventor
和重 橋本
敏成 新井
克登 井関
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020157023876A priority Critical patent/KR20150127064A/en
Priority to CN201480009344.7A priority patent/CN105008990B/en
Publication of WO2014136934A1 publication Critical patent/WO2014136934A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarized light irradiation apparatus for photo-alignment used for photo-alignment processing.
  • alignment films films and layers having the function of aligning liquid crystal molecules
  • alignment films such as alignment films for liquid crystal elements and alignment layers for optical films using ultraviolet curable liquid crystals.
  • light having a selected wavelength for example, ultraviolet light
  • a polarization state for example, a linearly polarized state
  • a polarized light irradiation apparatus for photo-alignment processing arranges a rod-shaped light source (long arc lamp) along the width direction of the alignment film, and this light source and polarized light
  • a technique in which polarized light having a selected wavelength is irradiated along a width direction of an alignment film and scanned in a direction crossing the width direction of the alignment film see Patent Document 1 below.
  • Such a polarized light irradiation apparatus for photo-alignment is required to periodically maintain a light source during long-term use in order to maintain desired light irradiation intensity and wavelength characteristics.
  • For maintenance of the light source replacement and cleaning of the lamp are performed, but optical components such as a polarizer are placed close to the lamp, so that workability such as lamp replacement is poor and during the work. If dust, coupling parts, or the like may fall on the optical part, there is a risk that the expensive optical part is soiled or damaged.
  • the width of the alignment film has increased with the enlargement of the liquid crystal panel, etc., and if the light source provided in the entire width is extended outside the scanning region along the width direction, it is equivalent to the width of the alignment film. Since a space is required outside the scanning region, there is a problem that it is difficult to secure a space inside the optical alignment processing facility.
  • the present invention is an example of a problem to deal with such a problem. That is, it is an object of the present invention that maintenance of the light source in the polarized light irradiation apparatus for photo-alignment can be performed with good workability and space saving.
  • the polarized light irradiation apparatus for photo-alignment has at least the following configuration.
  • a light irradiation unit including a light source and an optical component including a polarizer is extended in the width direction of the substrate on which the alignment film is formed, and the substrate or the light irradiation unit extends in the scanning direction intersecting the width direction of the substrate.
  • a polarized light irradiation device for photo-alignment that irradiates polarized light of a specific wavelength on the substrate while scanning along the light source, wherein the light irradiation unit supports the light source at a light irradiation position on the optical component and A light source support guide for supporting at a maintenance position away from the optical component in the scanning direction, and the light source support guide irradiates the direction of the light source when moving the light source from the light irradiation position to the maintenance position.
  • the polarization irradiation apparatus for photo-alignment wherein the side is changed so as to be along the scanning direction.
  • the present invention can move the light source to a maintenance position separated from the optical component in the scanning direction, and the direction of the light source is changed so that the light irradiation side follows the scanning direction at the maintenance position. Therefore, maintenance of the light source in the polarized light irradiation device for photo-alignment can be performed with good workability and in a small space.
  • FIG. 1 is an explanatory diagram showing the overall configuration of a photo-alignment polarized light irradiation apparatus according to an embodiment of the present invention.
  • the polarized light irradiation device 1 for photo-alignment includes a light irradiation unit 10 and a substrate stage 20.
  • the light irradiation unit 10 includes an optical component including the light source 2 and a polarizer, and these are extended in the width direction (X direction in the drawing) of the substrate W on which the alignment film is formed.
  • a substrate W is placed on the substrate stage 20.
  • the light irradiation unit 10 and the substrate stage 20 relatively move along the scanning direction S.
  • the polarized light irradiation device 1 for photo-alignment irradiates the substrate W with polarized light having a specific wavelength while scanning the substrate W or the light irradiation unit 10 along the scanning direction S intersecting the width direction of the substrate W.
  • the light source 2 of the light irradiation unit 10 includes a long arc lamp 2P.
  • the long arc lamp 2P has a length extending in the entire width direction of the substrate W, and the direction intersecting the longitudinal direction of the long arc lamp 2P is the scanning direction.
  • the light irradiation unit 10 includes a light source support guide 11 that supports the light source 2. Moreover, the light irradiation part 10 is provided with the moving means 12 which moves the light source 2 on the light source support guide 11 as needed.
  • the moving means 12 can be composed of an electric cylinder or a motor. When the moving means 12 is not provided, the movement of the light source 2 on the light source support guide 11 is performed manually.
  • FIG. 2 is an explanatory view showing a specific configuration of the light source support guide (FIG. 2 (a) is a plan view, and FIG. 2 (b) is a side view showing a moving state of the light source).
  • the light source support guide 11 supports the light source 2 at a light irradiation position P1 on an optical component (such as the wavelength selection filter 3 and the polarizer 4), and at a maintenance position P2 away from the optical component in the scanning direction (Y direction in the drawing). Support with.
  • an optical component such as the wavelength selection filter 3 and the polarizer 4
  • the light source 2 is movably supported by a light source support guide 11 via a guide roller 13, and a guide roller 13A on the rear side in the scanning direction is supported on the horizontal movement guide 11A, and a guide on the front side in the scanning direction.
  • the roller 13B is supported by the inclined movement guide 11B.
  • the light source 2 is supported on the light source support guide 11 at the light irradiation position P1, and the light emitted from the light source 2 in this state passes through the wavelength selection filter 3 and the polarizer 4. The light is transmitted and irradiated onto the substrate W.
  • the maintenance position P2 is a position away from the light irradiation position P1 in the scanning direction, and is set to a position away from the optical components such as the wavelength selection filter 3 and the polarizer 4.
  • the guide roller 13A at the rear in the scanning direction moves on the horizontal movement guide 11A, and the guide roller 13B at the front in the scanning direction moves on the inclined movement guide 11B.
  • the direction of the light source 2 is changed so that the light irradiation side is along the scanning direction.
  • FIG. 3 shows an example of a light irradiation unit having a different form.
  • FIG. 3A is a plan view
  • FIG. 3B is a side view showing a moving state of the light source.
  • the light source 2 of the light irradiation unit 10 includes a plurality of light source units 2U arranged in parallel.
  • Each of the light source units 2U is provided with a short long arc lamp 2P1, and each long arc lamp 2P1 is arranged with its longitudinal direction facing the scanning direction.
  • the light source units 2U arranged in parallel are arranged in a plurality of stages (two stages), and the positions of the first-stage light source unit 2U and the second-stage light source unit 2U are arranged at shifted positions.
  • the light source support guide 11 that supports the light source 2 integrally supports a plurality of light source units 2U. Further, the moving means (not shown) is configured to move the plurality of light source units 2U together.
  • the example shown in FIG. 3 also includes a light source support guide 11 similar to that in FIG. 2, and the light source support guide 11 places the light source 2 on a light irradiation position P1 on an optical component (such as the wavelength selection filter 3 or the polarizer 4). And at a maintenance position P2 away from the optical component in the scanning direction (Y direction in the figure).
  • the light source 2 is movably supported by a light source support guide 11 via a guide roller 13, a guide roller 13A on the rear side in the scanning direction is supported on the horizontal movement guide 11A, and a guide roller 13B on the front side in the scanning direction is inclined and moved. It is supported by the guide 11B.
  • the guide roller 13A at the rear in the scanning direction moves on the horizontal movement guide 11A, and the guide roller 13B at the front in the scanning direction moves on the inclined movement guide 11B.
  • the direction of the light source 2 is changed so that the light irradiation side is along the scanning direction.
  • the lamp of the light source 2 is directed to the front in the scanning direction at the time of maintenance. be able to.
  • the space where the maintenance position P2 is provided is a space required when scanning the substrate stage 20, it is not necessary to add a separate space as a space for installing the polarized light irradiation device 1 for photo-alignment. . Thereby, the maintenance work of the light source 2 can be performed in a space-saving manner.
  • FIG. 4 is an explanatory diagram ((a) is a plan view and (b) is a side view) showing a polarizer used in the polarized light irradiation apparatus for photo-alignment according to the embodiment of the present invention.
  • the polarizer 4 is a wire grid type polarizer that is less dependent on the polarization characteristic with respect to the incident angle of light.
  • This polarizer 4 has a plurality of grids 4g arranged in parallel on the surface of a substrate 4a that is transparent to light of a specific wavelength to be irradiated.
  • the grid 4g is made of a linear electric conductor having a considerably long length with respect to the width, and is arranged in a plurality of rows in parallel at a predetermined pitch.
  • the pitch of the grid 4g is appropriately set according to the wavelength of the polarized light.
  • the material of the grid 4g is molybdenum silicon alloy (MoSix).
  • MoSix molybdenum silicon alloy
  • Aluminum (Al) or titanium oxide (TiOx) has been used as a grid material for wire grid polarizers.
  • Aluminum grids have polarization characteristics in a relatively wide wavelength range, but are prone to deterioration due to oxidation and therefore require use in an anaerobic environment of oxygen.
  • Titanium oxide grids are resistant to oxidation, but have polarization characteristics only in the wavelength range of about 240 nm to 300 nm, and therefore cannot be used at wavelengths of 300 nm or more.
  • the polarizer 4 including the grid 4g made of molybdenum silicon alloy is not deteriorated due to oxidation, and can be sufficiently used in a clean room environment without an anaerobic environment. Moreover, since it has a polarization characteristic with respect to light in a wide wavelength range of 240 nm or more, it is possible to perform photo-alignment processing on various photosensitive material films having different photosensitive wavelengths.
  • FIG. 5 is a graph showing the relationship between the wavelength of light incident on the polarizer and the extinction ratio.
  • a polarizer made of a titanium oxide (TiOx) grid shows a characteristic that the peak is at a wavelength near 285 nm and the extinction ratio is lowered at a wavelength higher than that, and a polarization characteristic cannot be obtained near 360 nm. For this reason, it cannot be applied to an alignment film that performs light alignment treatment by irradiating light with a wavelength of 360 nm or more.
  • An aluminum (Al) grid polarizer has a low extinction ratio in the wavelength range of 240 to 300 nm, and thus is difficult to apply to an alignment film that performs photo-alignment processing by irradiating light in the wavelength range in the vicinity.
  • the polarizer 4 provided with the grid 4g made of molybdenum silicon alloy has an extinction ratio equivalent to that of the polarizer made of a titanium oxide grid in the wavelength region of 240 to 280 nm, and further in the wavelength region of 280 nm or more, aluminum.
  • a higher extinction ratio can be obtained than a polarizer having a grid.
  • the polarizer 4 including the grid 4g made of molybdenum silicon alloy can obtain high polarization characteristics in a wide wavelength range as compared with the polarizer made of titanium oxide or aluminum grid.
  • 1 polarized light irradiation device for photo-alignment
  • 2 light source
  • 3 wavelength selection filter
  • 4 Polarizer
  • 4a substrate
  • 4g grid
  • 10 light irradiation unit
  • 11 light source support guide
  • 12 moving means
  • 20 Substrate stage
  • W Substrate

Abstract

In the present invention, a light source in a polarized-light emission device for optical alignment can be maintained easily and in a space-saving manner. This polarized-light emission device (1) for optical alignment includes a light-emission unit (10) provided with the following: a light source (2); and optical components, including a polarizer (4). The light-emission unit (10) is also provided with a light-source support guide (11) that can support the light source (2) at the following positions: a light-emission position (P1) above the optical components; and a maintenance position (P2) that is separated from the optical components in a scanning direction. When moving the light source (2) from the light-emission position (P1) to the maintenance position (P2), the light-source support guide (11) changes the orientation of the light source (2) such that the light-emission side thereof points in the aforementioned scanning direction.

Description

光配向用偏光照射装置Polarized light irradiation device for photo-alignment
 本発明は、光配向処理に用いられる光配向用偏光照射装置に関するものである。 The present invention relates to a polarized light irradiation apparatus for photo-alignment used for photo-alignment processing.
 液晶素子の配向膜や紫外線硬化型液晶を用いた光学フィルムの配向層など、液晶分子を配向させる機能を有する膜や層(以下、総称して配向膜という)の形成に、近年、光配向処理が採用されている。光配向処理を行うには、配向膜となる感光性樹脂膜に選択された波長(例えば紫外光)の光を偏光軸が特定した偏光状態(例えば直線偏光状態)で照射する。 In recent years, photo-alignment treatment has been used to form films and layers having the function of aligning liquid crystal molecules (hereinafter collectively referred to as alignment films), such as alignment films for liquid crystal elements and alignment layers for optical films using ultraviolet curable liquid crystals. Is adopted. In order to perform the photo-alignment treatment, light having a selected wavelength (for example, ultraviolet light) is irradiated on the photosensitive resin film serving as the alignment film in a polarization state (for example, a linearly polarized state) specified by the polarization axis.
 光配向処理用の偏光照射装置は、所定の幅を有する配向膜を連続的に形成するために、配向膜の幅方向に沿って棒状の光源(ロングアークランプ)を配置し、この光源と偏光子を組み合わせて、選択波長の偏光光を配向膜の幅方向に沿って照射し、これを配向膜の幅方向と交差する方向に走査するものが知られている(下記特許文献1参照)。 In order to continuously form an alignment film having a predetermined width, a polarized light irradiation apparatus for photo-alignment processing arranges a rod-shaped light source (long arc lamp) along the width direction of the alignment film, and this light source and polarized light There is known a technique in which polarized light having a selected wavelength is irradiated along a width direction of an alignment film and scanned in a direction crossing the width direction of the alignment film (see Patent Document 1 below).
特開2006-133498号公報JP 2006-133498 A
 このような光配向用偏光照射装置は、所望の光照射強度や波長特性を維持するために長期間の使用に際して定期的に光源をメンテナンスすることが求められている。光源のメンテナンスには、ランプの交換や清掃が行われるが、ランプの下には偏光子などの光学部品が近接して配置されているので、ランプ交換等の作業性が悪く、また作業中に塵や結合部品などが光学部品上に落下することがあると、高価な光学部品を汚したり損傷したりする虞があった。 Such a polarized light irradiation apparatus for photo-alignment is required to periodically maintain a light source during long-term use in order to maintain desired light irradiation intensity and wavelength characteristics. For maintenance of the light source, replacement and cleaning of the lamp are performed, but optical components such as a polarizer are placed close to the lamp, so that workability such as lamp replacement is poor and during the work. If dust, coupling parts, or the like may fall on the optical part, there is a risk that the expensive optical part is soiled or damaged.
 このような事態を避けるためには、光源全体を走査方向と交差する方向に引き出してメンテナンス作業を行うことも考えられる。しかしながら、液晶パネルの大型化などに伴い配向膜の幅は大きくなっており、その幅全体に配備される光源を幅方向に沿って走査領域の外側に引き出そうとすると、配向膜の幅と同等のスペースが走査領域の外側に必要になるので、光配向処理施設内部でのスペース確保が困難になる問題があった。 In order to avoid such a situation, it may be possible to perform maintenance work by pulling out the entire light source in a direction crossing the scanning direction. However, the width of the alignment film has increased with the enlargement of the liquid crystal panel, etc., and if the light source provided in the entire width is extended outside the scanning region along the width direction, it is equivalent to the width of the alignment film. Since a space is required outside the scanning region, there is a problem that it is difficult to secure a space inside the optical alignment processing facility.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、光配向用偏光照射装置における光源のメンテナンスを作業性良く、省スペースで行うことができること、等が本発明の目的である。 The present invention is an example of a problem to deal with such a problem. That is, it is an object of the present invention that maintenance of the light source in the polarized light irradiation apparatus for photo-alignment can be performed with good workability and space saving.
 このような目的を達成するために、本発明による光配向用偏光照射装置は、以下の構成を少なくとも具備するものである。 In order to achieve such an object, the polarized light irradiation apparatus for photo-alignment according to the present invention has at least the following configuration.
 光源と偏光子を含む光学部品とを備えた光照射部を配向膜が形成される基板の幅方向に延設し、前記基板又は前記光照射部を前記基板の幅方向と交差する走査方向に沿って走査しながら前記基板上に特定波長の偏光光を照射する光配向用偏光照射装置であって、前記光照射部は、前記光源を前記光学部品の上の光照射位置で支持すると共に前記光学部品から前記走査方向に離れたメンテナンス位置で支持する光源支持ガイドを備え、前記光源支持ガイドは、前記光照射位置から前記メンテナンス位置まで前記光源を移動させる際に、前記光源の向きを光照射側が前記走査方向に沿うように変更させることを特徴とする光配向用偏光照射装置。 A light irradiation unit including a light source and an optical component including a polarizer is extended in the width direction of the substrate on which the alignment film is formed, and the substrate or the light irradiation unit extends in the scanning direction intersecting the width direction of the substrate. A polarized light irradiation device for photo-alignment that irradiates polarized light of a specific wavelength on the substrate while scanning along the light source, wherein the light irradiation unit supports the light source at a light irradiation position on the optical component and A light source support guide for supporting at a maintenance position away from the optical component in the scanning direction, and the light source support guide irradiates the direction of the light source when moving the light source from the light irradiation position to the maintenance position. The polarization irradiation apparatus for photo-alignment, wherein the side is changed so as to be along the scanning direction.
 本発明は、このような特徴を備えることで、光学部品から走査方向に離れたメンテナンス位置に光源を移動させることができ、このメンテナンス位置では光源の向きを光照射側が走査方向に沿うように変更させることができるので、光配向用偏光照射装置における光源のメンテナンスを作業性良く、省スペースで行うことができる。 By providing such a feature, the present invention can move the light source to a maintenance position separated from the optical component in the scanning direction, and the direction of the light source is changed so that the light irradiation side follows the scanning direction at the maintenance position. Therefore, maintenance of the light source in the polarized light irradiation device for photo-alignment can be performed with good workability and in a small space.
本発明の一実施形態に係る光配向用偏光照射装置の全体構成を示した説明図である。It is explanatory drawing which showed the whole structure of the polarized light irradiation apparatus for photo-alignment which concerns on one Embodiment of this invention. 本発明の実施形態に係る光配向用偏光照射装置における光源支持ガイドの具体的な構成を示した説明図である。It is explanatory drawing which showed the specific structure of the light source support guide in the polarized light irradiation apparatus for photo-alignment which concerns on embodiment of this invention. 本発明の他の実施形態に係る光配向用偏光照射装置における光源支持ガイドの具体的な構成を示した説明図である。It is explanatory drawing which showed the specific structure of the light source support guide in the polarized light irradiation apparatus for photo-alignment which concerns on other embodiment of this invention. 本発明の実施形態に係る光配向用偏光照射装置に用いられる偏光子を示した説明図((a)が平面図、(b)が側面図)である。It is explanatory drawing ((a) is a top view, (b) is a side view) which showed the polarizer used for the polarized light irradiation apparatus for photo-alignment which concerns on embodiment of this invention. 偏光子に入射する光の波長と消光比の関係を示したグラフである。It is the graph which showed the relationship between the wavelength of the light which injects into a polarizer, and an extinction ratio.
 以下、図面を参照しながら本発明の実施形態を説明する。以下の図においては、走査方向をY方向、鉛直上向きをZ方向、走査方向及び鉛直上向きと直交する方向をX方向として示している。図1は本発明の一実施形態に係る光配向用偏光照射装置の全体構成を示した説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the scanning direction is shown as the Y direction, the vertically upward direction as the Z direction, and the direction orthogonal to the scanning direction and the vertical upward direction as the X direction. FIG. 1 is an explanatory diagram showing the overall configuration of a photo-alignment polarized light irradiation apparatus according to an embodiment of the present invention.
 光配向用偏光照射装置1は、光照射部10と基板ステージ20を備える。光照射部10は、光源2と偏光子を含む光学部品を備えており、これらを配向膜が形成される基板Wの幅方向(図示X方向)に延設している。基板ステージ20には基板Wが載置される。光照射部10と基板ステージ20は走査方向Sに沿って相対的に移動する。これによって、光配向用偏光照射装置1は、基板W又は光照射部10を基板Wの幅方向と交差する走査方向Sに沿って走査しながら基板W上に特定波長の偏光光を照射する。 The polarized light irradiation device 1 for photo-alignment includes a light irradiation unit 10 and a substrate stage 20. The light irradiation unit 10 includes an optical component including the light source 2 and a polarizer, and these are extended in the width direction (X direction in the drawing) of the substrate W on which the alignment film is formed. A substrate W is placed on the substrate stage 20. The light irradiation unit 10 and the substrate stage 20 relatively move along the scanning direction S. Thereby, the polarized light irradiation device 1 for photo-alignment irradiates the substrate W with polarized light having a specific wavelength while scanning the substrate W or the light irradiation unit 10 along the scanning direction S intersecting the width direction of the substrate W.
 図1に示した例では、光照射部10の光源2は、ロングアークランプ2Pを備えている。ロングアークランプ2Pは、基板Wの幅方向全体に延設される長さを備えており、ロングアークランプ2Pの長手方向に交差する方向を走査方向にしている。 In the example shown in FIG. 1, the light source 2 of the light irradiation unit 10 includes a long arc lamp 2P. The long arc lamp 2P has a length extending in the entire width direction of the substrate W, and the direction intersecting the longitudinal direction of the long arc lamp 2P is the scanning direction.
 光照射部10は、光源2を支持する光源支持ガイド11を備えている。また、光照射部10は、光源2を光源支持ガイド11上で移動させる移動手段12を必要に応じて備えている。移動手段12は、電動シリンダ或いはモータなどで構成することができる。移動手段12を備えない場合には、光源2の光源支持ガイド11上での移動は手動によってなされる。 The light irradiation unit 10 includes a light source support guide 11 that supports the light source 2. Moreover, the light irradiation part 10 is provided with the moving means 12 which moves the light source 2 on the light source support guide 11 as needed. The moving means 12 can be composed of an electric cylinder or a motor. When the moving means 12 is not provided, the movement of the light source 2 on the light source support guide 11 is performed manually.
 図2は、光源支持ガイドの具体的な構成を示した説明図である(図2(a)が平面図であり、図2(b)が光源の移動状態を示した側面図である。)。光源支持ガイド11は、光源2を光学部品(波長選択フィルタ3や偏光子4など)の上の光照射位置P1で支持すると共に、光学部品から走査方向(図示Y方向)に離れたメンテナンス位置P2で支持する。図示の例では、光源2はガイドローラ13を介して光源支持ガイド11に移動自在に支持されており、走査方向後方側のガイドローラ13Aが水平移動ガイド11A上に支持され、走査方向前方のガイドローラ13Bが傾斜移動ガイド11Bに支持されている。 FIG. 2 is an explanatory view showing a specific configuration of the light source support guide (FIG. 2 (a) is a plan view, and FIG. 2 (b) is a side view showing a moving state of the light source). . The light source support guide 11 supports the light source 2 at a light irradiation position P1 on an optical component (such as the wavelength selection filter 3 and the polarizer 4), and at a maintenance position P2 away from the optical component in the scanning direction (Y direction in the drawing). Support with. In the illustrated example, the light source 2 is movably supported by a light source support guide 11 via a guide roller 13, and a guide roller 13A on the rear side in the scanning direction is supported on the horizontal movement guide 11A, and a guide on the front side in the scanning direction. The roller 13B is supported by the inclined movement guide 11B.
 基板Wを走査露光する通常の使用時には、光源2は光照射位置P1で光源支持ガイド11上に支持されており、この状態で光源2から出射された光は波長選択フィルタ3及び偏光子4を透過して基板W上に照射される。 During normal use for scanning and exposing the substrate W, the light source 2 is supported on the light source support guide 11 at the light irradiation position P1, and the light emitted from the light source 2 in this state passes through the wavelength selection filter 3 and the polarizer 4. The light is transmitted and irradiated onto the substrate W.
 光源2に対して交換等のメンテナンスを行う際には、光源支持ガイド11におけるメンテナンス位置P2まで光源2を移動させる。メンテナンス位置P2は、光照射位置P1に対して走査方向に離れた位置であり、波長選択フィルタ3や偏光子4などの光学部品上から離れた位置に設定される。 When performing maintenance such as replacement on the light source 2, the light source 2 is moved to the maintenance position P2 in the light source support guide 11. The maintenance position P2 is a position away from the light irradiation position P1 in the scanning direction, and is set to a position away from the optical components such as the wavelength selection filter 3 and the polarizer 4.
 光源2を光照射位置P1からメンテナンス位置P2まで移動させる際に、走査方向後方のガイドローラ13Aが水平移動ガイド11A上を移動し、走査方向前方のガイドローラ13Bが傾斜移動ガイド11B上を移動することによって、光源2の向きは光照射側が走査方向に沿うように変更される。 When moving the light source 2 from the light irradiation position P1 to the maintenance position P2, the guide roller 13A at the rear in the scanning direction moves on the horizontal movement guide 11A, and the guide roller 13B at the front in the scanning direction moves on the inclined movement guide 11B. Thus, the direction of the light source 2 is changed so that the light irradiation side is along the scanning direction.
 図3は、形態が異なる光照射部の例を示している。図3(a)が平面図であり、図3(b)が光源の移動状態を示した側面図である。この例では、光照射部10の光源2は、複数の光源ユニット2Uが並列配置されている。光源ユニット2Uのそれぞれは短尺のロングアークランプ2P1を備えており、各ロングアークランプ2P1は、その長手方向を走査方向に向けて配置されている。また、並列配置されている光源ユニット2Uが複数段(2段)に配置されており、1段目の光源ユニット2Uと2段目の光源ユニット2Uの位置がシフトした位置に配置されている。 FIG. 3 shows an example of a light irradiation unit having a different form. FIG. 3A is a plan view, and FIG. 3B is a side view showing a moving state of the light source. In this example, the light source 2 of the light irradiation unit 10 includes a plurality of light source units 2U arranged in parallel. Each of the light source units 2U is provided with a short long arc lamp 2P1, and each long arc lamp 2P1 is arranged with its longitudinal direction facing the scanning direction. In addition, the light source units 2U arranged in parallel are arranged in a plurality of stages (two stages), and the positions of the first-stage light source unit 2U and the second-stage light source unit 2U are arranged at shifted positions.
 このような光源2を支持する光源支持ガイド11は、複数の光源ユニット2Uを一体に支持している。また、図示省略した移動手段は、複数の光源ユニット2Uを一体にして移動させる構成になっている。 The light source support guide 11 that supports the light source 2 integrally supports a plurality of light source units 2U. Further, the moving means (not shown) is configured to move the plurality of light source units 2U together.
 図3に示した例も図2と同様の光源支持ガイド11を備えており、光源支持ガイド11は、光源2を光学部品(波長選択フィルタ3や偏光子4など)の上の光照射位置P1で支持すると共に、光学部品から走査方向(図示Y方向)に離れたメンテナンス位置P2で支持する。光源2はガイドローラ13を介して光源支持ガイド11に移動自在に支持されており、走査方向後方側のガイドローラ13Aが水平移動ガイド11A上に支持され、走査方向前方のガイドローラ13Bが傾斜移動ガイド11Bに支持されている。 The example shown in FIG. 3 also includes a light source support guide 11 similar to that in FIG. 2, and the light source support guide 11 places the light source 2 on a light irradiation position P1 on an optical component (such as the wavelength selection filter 3 or the polarizer 4). And at a maintenance position P2 away from the optical component in the scanning direction (Y direction in the figure). The light source 2 is movably supported by a light source support guide 11 via a guide roller 13, a guide roller 13A on the rear side in the scanning direction is supported on the horizontal movement guide 11A, and a guide roller 13B on the front side in the scanning direction is inclined and moved. It is supported by the guide 11B.
 そして、光源2を光照射位置P1からメンテナンス位置P2まで移動させる際に、走査方向後方のガイドローラ13Aが水平移動ガイド11A上を移動し、走査方向前方のガイドローラ13Bが傾斜移動ガイド11B上を移動することによって、光源2の向きは光照射側が走査方向に沿うように変更される。 Then, when the light source 2 is moved from the light irradiation position P1 to the maintenance position P2, the guide roller 13A at the rear in the scanning direction moves on the horizontal movement guide 11A, and the guide roller 13B at the front in the scanning direction moves on the inclined movement guide 11B. By moving, the direction of the light source 2 is changed so that the light irradiation side is along the scanning direction.
 以上説明したように、本発明の実施形態に係る光配向用偏光照射装置1によると、メンテナンス時に光源2のランプなどが走査方向正面に向けられることになるので、ランプ等の交換を容易に行うことができる。また、メンテナンス位置P2が設けられるスペースは、基板ステージ20を走査する際に必要となるスペースであるから、光配向用偏光照射装置1を設置するためのスペースとしては別途スペースを追加する必要が無い。これによって、省スペースで光源2のメンテナンス作業を行うことができる。 As described above, according to the polarized light irradiating device 1 for photo-alignment according to the embodiment of the present invention, the lamp of the light source 2 is directed to the front in the scanning direction at the time of maintenance. be able to. In addition, since the space where the maintenance position P2 is provided is a space required when scanning the substrate stage 20, it is not necessary to add a separate space as a space for installing the polarized light irradiation device 1 for photo-alignment. . Thereby, the maintenance work of the light source 2 can be performed in a space-saving manner.
 図4は、本発明の実施形態に係る光配向用偏光照射装置に用いられる偏光子を示した説明図((a)が平面図、(b)が側面図)である。偏光子4は、光源2にロングアークランプ2P,2P1を用いる場合には、光の入射角度に対する偏光特性の依存性が少ないワイヤーグリッド型偏光子が用いられる。この偏光子4は、照射する特定波長の光に対して透過性を有する基板4aの表面に複数のグリッド4gを並列配置したものである。グリッド4gは、幅に対して長さがかなり長い線状の電気導体からなり、これを所定のピッチで複数列平行に並べて配置したものである。グリッド4gのピッチは偏光する光の波長に応じて適宜設定される。 FIG. 4 is an explanatory diagram ((a) is a plan view and (b) is a side view) showing a polarizer used in the polarized light irradiation apparatus for photo-alignment according to the embodiment of the present invention. When the long arc lamps 2P and 2P1 are used for the light source 2, the polarizer 4 is a wire grid type polarizer that is less dependent on the polarization characteristic with respect to the incident angle of light. This polarizer 4 has a plurality of grids 4g arranged in parallel on the surface of a substrate 4a that is transparent to light of a specific wavelength to be irradiated. The grid 4g is made of a linear electric conductor having a considerably long length with respect to the width, and is arranged in a plurality of rows in parallel at a predetermined pitch. The pitch of the grid 4g is appropriately set according to the wavelength of the polarized light.
 グリッド4gの材料はモリブデン珪素合金(MoSix)を用いる。従来、ワイヤーグリッド型偏光子のグリッド材料としては、アルミニウム(Al)や酸化チタン(TiOx)が用いられてきた。アルミニウム製のグリッドは、比較的広い波長域で偏光特性を有するが、酸化によって劣化し易いので酸素の嫌気的環境での使用が必要になる。酸化チタン製のグリッドは、酸化には強いが、約240nm~300nmの波長域でしか偏光特性を持たないため、300nm以上の波長での使用ができない問題がある。 The material of the grid 4g is molybdenum silicon alloy (MoSix). Conventionally, aluminum (Al) or titanium oxide (TiOx) has been used as a grid material for wire grid polarizers. Aluminum grids have polarization characteristics in a relatively wide wavelength range, but are prone to deterioration due to oxidation and therefore require use in an anaerobic environment of oxygen. Titanium oxide grids are resistant to oxidation, but have polarization characteristics only in the wavelength range of about 240 nm to 300 nm, and therefore cannot be used at wavelengths of 300 nm or more.
 これに対して、モリブデン珪素合金製のグリッド4gを備える偏光子4は、酸化による劣化がないので、嫌気的な環境下でないクリーンルーム環境で十分に使用が可能である。また、240nm以上の広い波長域の光に対して偏光特性を持っているので、感光波長の異なる様々な感光材料膜に対して光配向処理を施すことができる。 On the other hand, the polarizer 4 including the grid 4g made of molybdenum silicon alloy is not deteriorated due to oxidation, and can be sufficiently used in a clean room environment without an anaerobic environment. Moreover, since it has a polarization characteristic with respect to light in a wide wavelength range of 240 nm or more, it is possible to perform photo-alignment processing on various photosensitive material films having different photosensitive wavelengths.
 図5は、偏光子に入射する光の波長と消光比の関係を示したグラフである。酸化チタン(TiOx)製グリッドの偏光子は285nm付近の波長をピークとしてそれ以上の波長では消光比が低下する特性を示し、360nm付近では偏光特性が得られなくなる。このため、360nm以上の波長の光を照射して光配向処理を行う配向膜には適用できない。アルミニウム(Al)製グリッドの偏光子は240~300nmの波長域では消光比が低いので、この付近の波長域の光を照射して光配向処理を行う配向膜には適用しにくい。これに対して、モリブデン珪素合金製のグリッド4gを備える偏光子4は、240~280nmの波長域で酸化チタン製グリッドの偏光子と同等の消光比が得られ、更に280nm以上の波長域ではアルミニウム製グリッドを有する偏光子よりも高い消光比が得られる。このように、モリブデン珪素合金製のグリッド4gを備える偏光子4は、広い波長域で酸化チタン製やアルミニウム製グリッドの偏光子と比較して高い偏光特性を得ることができる。 FIG. 5 is a graph showing the relationship between the wavelength of light incident on the polarizer and the extinction ratio. A polarizer made of a titanium oxide (TiOx) grid shows a characteristic that the peak is at a wavelength near 285 nm and the extinction ratio is lowered at a wavelength higher than that, and a polarization characteristic cannot be obtained near 360 nm. For this reason, it cannot be applied to an alignment film that performs light alignment treatment by irradiating light with a wavelength of 360 nm or more. An aluminum (Al) grid polarizer has a low extinction ratio in the wavelength range of 240 to 300 nm, and thus is difficult to apply to an alignment film that performs photo-alignment processing by irradiating light in the wavelength range in the vicinity. On the other hand, the polarizer 4 provided with the grid 4g made of molybdenum silicon alloy has an extinction ratio equivalent to that of the polarizer made of a titanium oxide grid in the wavelength region of 240 to 280 nm, and further in the wavelength region of 280 nm or more, aluminum. A higher extinction ratio can be obtained than a polarizer having a grid. Thus, the polarizer 4 including the grid 4g made of molybdenum silicon alloy can obtain high polarization characteristics in a wide wavelength range as compared with the polarizer made of titanium oxide or aluminum grid.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.
1:光配向用偏光照射装置,2:光源,3:波長選択フィルタ,
4:偏光子,4a:基板,4g:グリッド,
10:光照射部,11:光源支持ガイド,12:移動手段,
20:基板ステージ,W:基板
1: polarized light irradiation device for photo-alignment, 2: light source, 3: wavelength selection filter,
4: Polarizer, 4a: substrate, 4g: grid,
10: light irradiation unit, 11: light source support guide, 12: moving means,
20: Substrate stage, W: Substrate

Claims (4)

  1.  光源と偏光子を含む光学部品とを備えた光照射部を配向膜が形成される基板の幅方向に延設し、前記基板又は前記光照射部を前記基板の幅方向と交差する走査方向に沿って走査しながら前記基板上に特定波長の偏光光を照射する光配向用偏光照射装置であって、
     前記光照射部は、
     前記光源を前記光学部品の上の光照射位置で支持すると共に前記光学部品から前記走査方向に離れたメンテナンス位置で支持する光源支持ガイドを備え、
     前記光源支持ガイドは、前記光照射位置から前記メンテナンス位置まで前記光源を移動させる際に、前記光源の向きを光照射側が前記走査方向に沿うように変更させることを特徴とする光配向用偏光照射装置。
    A light irradiation unit including a light source and an optical component including a polarizer is extended in the width direction of the substrate on which the alignment film is formed, and the substrate or the light irradiation unit extends in the scanning direction intersecting the width direction of the substrate. A polarization irradiation device for photo-alignment that irradiates polarized light of a specific wavelength on the substrate while scanning along the substrate,
    The light irradiator is
    A light source support guide for supporting the light source at a light irradiation position on the optical component and supporting the light source at a maintenance position away from the optical component in the scanning direction;
    The light source support guide changes the direction of the light source so that the light irradiation side is along the scanning direction when moving the light source from the light irradiation position to the maintenance position. apparatus.
  2.  前記光照射部は、前記光源を前記光照射位置から前記メンテナンス位置まで移動させる移動手段を備えることを特徴とする請求項1に記載の光配向用偏光照射装置。 2. The polarized light irradiation apparatus for photo-alignment according to claim 1, wherein the light irradiation unit includes a moving unit that moves the light source from the light irradiation position to the maintenance position.
  3.  前記光源は複数の光源ユニットが並列配置されており、
     前記光源支持ガイドは、複数の前記光源ユニットを一体に支持し、
     前記移動手段は、複数の前記光源ユニットを一体にして移動させることを特徴とする請求項2記載の光配向用偏光照射装置。
    The light source has a plurality of light source units arranged in parallel,
    The light source support guide integrally supports the plurality of light source units,
    The polarized light irradiation apparatus for photo-alignment according to claim 2, wherein the moving means moves the plurality of light source units together.
  4.  前記偏光子は、複数のグリッドを並列配置したワイヤーグリッド型偏光子であり、前記グリッドがモリブデン珪素合金で形成されていることを特徴とする請求項1~3のいずれかに記載された光配向用偏光照射装置。 The photo-alignment according to any one of claims 1 to 3, wherein the polarizer is a wire grid polarizer in which a plurality of grids are arranged in parallel, and the grid is formed of a molybdenum silicon alloy. Polarized light irradiation device.
PCT/JP2014/055945 2013-03-07 2014-03-07 Polarized-light emission device for optical alignment WO2014136934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157023876A KR20150127064A (en) 2013-03-07 2014-03-07 Polarized-light emission device for optical alignment
CN201480009344.7A CN105008990B (en) 2013-03-07 2014-03-07 Light orientation polarisation irradiation unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013045995 2013-03-07
JP2013-045995 2013-03-07
JP2014-044257 2014-03-06
JP2014044257A JP6308816B2 (en) 2013-03-07 2014-03-06 Polarized light irradiation device for photo-alignment

Publications (1)

Publication Number Publication Date
WO2014136934A1 true WO2014136934A1 (en) 2014-09-12

Family

ID=51491441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055945 WO2014136934A1 (en) 2013-03-07 2014-03-07 Polarized-light emission device for optical alignment

Country Status (4)

Country Link
JP (1) JP6308816B2 (en)
KR (1) KR20150127064A (en)
CN (1) CN105008990B (en)
WO (1) WO2014136934A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118369A (en) * 2013-11-13 2015-06-25 大日本印刷株式会社 Polarizer, substrate for polarizer, and optical aligning device
JP2015135459A (en) * 2013-12-20 2015-07-27 大日本印刷株式会社 Polarizer and light orientation apparatus
JPWO2015108075A1 (en) * 2014-01-15 2017-03-23 大日本印刷株式会社 Polarizer, polarizer manufacturing method, photo-alignment apparatus, and polarizer mounting method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554768B2 (en) * 2014-07-08 2019-08-07 大日本印刷株式会社 Polarizer, laminated substrate, and photo-alignment apparatus
JP6884501B2 (en) * 2015-08-25 2021-06-09 大日本印刷株式会社 Polarizer
JP6870391B2 (en) * 2017-03-06 2021-05-12 ウシオ電機株式会社 Light irradiation device
CN110554536A (en) * 2018-05-31 2019-12-10 上海微电子装备(集团)股份有限公司 Optical alignment equipment and replacement method of lamp tube in optical alignment equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212790A1 (en) * 2003-04-24 2004-10-28 Eastman Kodak Company Optical exposure apparatus for forming an alignment layer
JP2006133498A (en) * 2004-11-05 2006-05-25 Ushio Inc Polarized light irradiation device for optical orientation
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
JP2010501085A (en) * 2006-08-15 2010-01-14 エーピーアイ ナノファブリケーション アンド リサーチ コーポレーション Polarizer thin film and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540174B2 (en) * 1998-10-12 2004-07-07 ウシオ電機株式会社 Proximity exposure method for irradiating light obliquely
JP4506412B2 (en) * 2004-10-28 2010-07-21 ウシオ電機株式会社 Polarizing element unit and polarized light irradiation device
WO2008022097A2 (en) * 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Methods for forming patterned structures
JP5607104B2 (en) * 2012-04-25 2014-10-15 岩崎電気株式会社 Polarized UV irradiation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212790A1 (en) * 2003-04-24 2004-10-28 Eastman Kodak Company Optical exposure apparatus for forming an alignment layer
JP2006133498A (en) * 2004-11-05 2006-05-25 Ushio Inc Polarized light irradiation device for optical orientation
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
JP2010501085A (en) * 2006-08-15 2010-01-14 エーピーアイ ナノファブリケーション アンド リサーチ コーポレーション Polarizer thin film and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118369A (en) * 2013-11-13 2015-06-25 大日本印刷株式会社 Polarizer, substrate for polarizer, and optical aligning device
JP2015135459A (en) * 2013-12-20 2015-07-27 大日本印刷株式会社 Polarizer and light orientation apparatus
JPWO2015108075A1 (en) * 2014-01-15 2017-03-23 大日本印刷株式会社 Polarizer, polarizer manufacturing method, photo-alignment apparatus, and polarizer mounting method

Also Published As

Publication number Publication date
JP6308816B2 (en) 2018-04-11
JP2014197189A (en) 2014-10-16
KR20150127064A (en) 2015-11-16
CN105008990B (en) 2018-03-30
CN105008990A (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP6308816B2 (en) Polarized light irradiation device for photo-alignment
JP4815995B2 (en) Polarized light irradiation device for photo-alignment
TW201520661A (en) Polarization light irradiation device for photo alignment
JP6119035B2 (en) Exposure equipment
JP6206944B2 (en) Polarized light irradiation device for photo-alignment
JP5200271B1 (en) Polarized light irradiation device
TWI521258B (en) Light alignment illumination device
WO2014119779A1 (en) Laser repair device
TWI606287B (en) Ultraviolet illumination device
JP2015106015A (en) Polarized light irradiation device, polarized light irradiation method and polarized light irradiation program
WO2017068962A1 (en) Light irradiation device
JP4045892B2 (en) Display panel bonding method and apparatus
KR20120060483A (en) Cleaning device using uv-ozone and cleaning method using the device
JP2013066899A (en) Laser machining apparatus
JP6534567B2 (en) Light irradiation device
US20120013876A1 (en) Exposure apparatus and exposure method using the same
JP6870391B2 (en) Light irradiation device
JP2015057639A (en) Polarizing element unit and polarized light irradiation device using polarizing element unit
CN109212837B (en) Optical alignment device and method
JP7035376B2 (en) Polarized light irradiation device and polarized light irradiation method
CN115586673A (en) Polarized light irradiation device, exposure device provided with same, and polarized light irradiation method
JP6124201B2 (en) Polarized light irradiation method for photo-alignment
JP2016180882A (en) Polarizer, photo-aligning device and photo-aligning method
JP5979179B2 (en) Polarized light irradiation device
JP2017173603A (en) Polarized light irradiation device for optical alignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023876

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761143

Country of ref document: EP

Kind code of ref document: A1