WO2014136755A1 - 被覆切削工具 - Google Patents

被覆切削工具 Download PDF

Info

Publication number
WO2014136755A1
WO2014136755A1 PCT/JP2014/055408 JP2014055408W WO2014136755A1 WO 2014136755 A1 WO2014136755 A1 WO 2014136755A1 JP 2014055408 W JP2014055408 W JP 2014055408W WO 2014136755 A1 WO2014136755 A1 WO 2014136755A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coarse
cutting tool
coated cutting
coating layer
Prior art date
Application number
PCT/JP2014/055408
Other languages
English (en)
French (fr)
Inventor
正和 菊池
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to US14/772,580 priority Critical patent/US9725811B2/en
Priority to CN201480011745.6A priority patent/CN105026083B/zh
Priority to JP2015504320A priority patent/JP5962846B2/ja
Priority to EP14761096.8A priority patent/EP2965842B1/en
Publication of WO2014136755A1 publication Critical patent/WO2014136755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • the present invention relates to a coated cutting tool.
  • coated cutting tools in which a TiN layer or TiAlN layer is formed on the surface of a substrate such as cemented carbide, cermet, or cBN sintered body are widely used. ing.
  • coated cutting tools there are two or more kinds selected from IVa, Va, VIa group metal elements and Al, Si on the surface of the base material made of WC base cemented carbide, cermet, ceramics, high speed steel, etc.
  • a surface-coated hard member characterized by having a coating composed of a nitride, oxide, carbide, carbonitride or boride of an alloy composed of elements with a particle diameter of 50 nm or less by physical vapor deposition (for example, (See Patent Document 1).
  • the hard film coated tool in which the substrate surface is coated with a single layer hard film or a multilayer hard film composed of two or more kinds of composite nitride, composite carbide, composite carbonitride mainly composed of Ti and Al,
  • the average value of the crystal grain size (b) in the transverse direction of the hard film crystal grains is in the range of 0.1 to 0.4 ⁇ m, and the average value of the aspect ratio a / b of the crystal grain size of the hard film
  • a hard film-coated tool characterized by a value of 1.5 to 7 (see, for example, Patent Document 2).
  • An object of the present invention is to provide a coated cutting tool that is superior in wear resistance and has a long tool life.
  • the present inventor has conducted research on the improvement of the wear resistance of the coating layer, and optimized the composition of the coating layer.
  • the particle size is coarse, the wear resistance is improved and the life of the coated cutting tool is extended. As a result, the present invention has been completed.
  • the gist of the present invention is as follows. (1) It includes a base material and a coating layer formed on the surface of the base material, and at least one of the coating layers has an average particle diameter Lx as measured in a direction parallel to the interface between the coating layer and the base material Exceeds 200 nm and the composition is (Al a Ti b M c ) X [where M is selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, B and Si X represents at least one element, X represents at least one element selected from the group consisting of C, N and O, and a represents the atomic ratio of Al element to the total of Al, Ti and M elements , B represents the atomic ratio of Ti element to the sum of Al element, Ti element and M element, c represents the atomic ratio of M element to the sum of Al element, Ti element and M element, and a, b and c are 0.30 ⁇ a ⁇ 0.65, 0.35 ⁇ b
  • Coarse-grained layer when measured in a direction perpendicular to the interface between the coating layer and the substrate relative to the average particle diameter Lx of the coarse-grained layer when measured in a direction parallel to the interface between the coating layer and the substrate The coated cutting tool according to any one of (1) to (4), wherein the particle size ratio (Ly / Lx) of the average particle size Ly is 0.7 or more and less than 1.5.
  • the coating layer includes a lower layer formed on the surface of the substrate and a coarse layer formed on the surface of the lower layer.
  • a metal comprising at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, Al and Si;
  • a compound comprising at least one of these metallic elements and at least one nonmetallic element selected from the group consisting of carbon, nitrogen, oxygen and boron;
  • the coated cutting tool according to any one of (1) to (7), which is a single layer or a multilayer composed of at least one selected from the group consisting of: (9)
  • Exceeds 200 nm and its composition is (Al d Cr e L f ) Z
  • L is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y, B and Si
  • Z represents at least one element selected from the group consisting of C, N and O
  • d represents the atomic ratio of Al element to the total of Al, Cr and L elements
  • E represents the atomic ratio of Cr element to the sum of Al element, Cr element and L element
  • f represents the atomic ratio of L element to the sum of Al element, Cr element and L element
  • d, e and f are 0.25 ⁇ d ⁇ 0.70, 0.30 ⁇ e ⁇ 0.75, 0 ⁇ f ⁇ 0.
  • a coated cutting tool in which the average layer thickness of the coarse layer is 0.2 to 10 ⁇ m.
  • the coated cutting tool according to any one of (10) to (12), wherein the average particle diameter Lx of the coarse-grained layer is more than 400 nm and not more than 1000 nm when measured in a direction parallel to the interface between the coating layer and the substrate. . (14) of the coarse-grained layer when measured in the direction perpendicular to the interface between the coating layer and the substrate relative to the average particle diameter Lx of the coarse-grained layer when measured in the direction parallel to the interface between the coating layer and the substrate The coated cutting tool according to any one of (10) to (13), wherein a particle size ratio (Ly / Lx) of the average particle size Ly is 0.7 or more and less than 1.5.
  • the coated cutting tool according to any one of (10) to (14), wherein the coarse particle layer is cubic.
  • the coated cutting tool according to (15), wherein the half width of the X-ray diffraction peak of the (200) plane of the coarse grain layer is 0.6 degrees or less.
  • the coating layer includes a lower layer formed on the surface of the base material and a coarse layer formed on the lower surface, and the lower layer is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W
  • a metal composed of at least one metal element selected from the group consisting of Y, Al, and Si, and a non-metallic element selected from the group consisting of at least one metal element and carbon, nitrogen, oxygen, and boron.
  • coated cutting tool according to any one of (10) to (16), wherein the coated cutting tool is a single layer or a multilayer composed of at least one selected from the group consisting of at least one compound.
  • the coated cutting tool of the present invention includes a base material and a coating layer formed on the surface of the base material.
  • the substrate of the present invention is not particularly limited as long as it is used as a substrate of a coated cutting tool.
  • the base material is a cemented carbide because it is excellent in wear resistance and fracture resistance.
  • the coating layer of the present invention is not particularly limited as long as it is used as a coating layer of a coated cutting tool.
  • a metal comprising at least one metal element selected from the group consisting of Si, at least one of these metal elements, and at least one non-metal element selected from the group consisting of carbon, nitrogen, oxygen and boron Since at least one single layer or multiple layers selected from the group consisting of the compounds consisting of the above compounds is more preferred, the wear resistance is improved.
  • each layer constituting the coating layer of the present invention is an energy dispersive X-ray attached to an electron microscope such as a scanning electron microscope (SEM), a field emission scanning electron microscope (FE-SEM), or a transmission electron microscope (TEM). Measurement can be performed using a spectroscope (EDS), a wavelength dispersive X-ray spectrometer (WDS), or the like.
  • SEM scanning electron microscope
  • FE-SEM field emission scanning electron microscope
  • TEM transmission electron microscope
  • EDS spectroscope
  • WDS wavelength dispersive X-ray spectrometer
  • the average layer thickness of the entire coating layer of the present invention is preferably 0.2 to 10 ⁇ m. This is because if the average coating thickness of the entire coating layer of the present invention is less than 0.2 ⁇ m, the effect of improving the wear resistance is small, and if it exceeds 10 ⁇ m, peeling tends to occur.
  • the thickness of the entire coating layer of the present invention and the layer thickness of each layer constituting the coating layer are determined from the cutting edge of the surface facing the metal evaporation source using an optical microscope, SEM, FE-SEM, TEM, etc. Five or more locations were measured at a position of 50 ⁇ m toward the part, and the average value thereof was defined as the average layer thickness of the entire coating layer and the average layer thickness of each layer constituting the coating layer.
  • At least one of the coating layers has an average particle size of more than 200 nm when measured in a direction parallel to the interface between the coating layer and the substrate, and the composition is (Al a Ti b M c ) X
  • M represents at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, B and Si
  • X represents C, N and O
  • the coarse layer may contain at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, B and Si in addition to the Al element and the Ti element.
  • X represents at least one element selected from the group consisting of C, N, and O. Among them, X represents CN or N because it improves wear resistance. Among them, X represents N. This is more preferable because the wear resistance is improved.
  • At least one of the coating layers has an average particle size Lx of more than 200 nm when measured in a direction parallel to the interface between the coating layer and the substrate, and the composition is (Al d Cr e L f ) Z [wherein L represents at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y, B and Si, Z represents C, N and Represents at least one element selected from the group consisting of O, d represents the atomic ratio of Al element to the sum of Al element, Cr element and L element, and e represents the sum of Al element, Cr element and L element.
  • f represents the atomic ratio of L element to the sum of Al element, Cr element and L element
  • the coarse layer may contain at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo, W, Y, B and Si in addition to the Al element and the Cr element.
  • f is in the range of 0 or more and 0.20 or less, the structure of the coarse grain layer becomes dense, the strength of the coarse grain layer is improved, and the wear resistance of the entire coating layer can be enhanced. If f exceeds 0.20, it becomes too fine and wear resistance decreases.
  • Z represents at least one element selected from the group consisting of C, N, and O. Among them, Z represents CN or N, which is preferable because of improved wear resistance. Among them, Z represents N. This is more preferable because the wear resistance is improved.
  • the composition of at least one of the coating layers is represented by (Al a Ti b M c ) X or (Al d Cr e L f ) Z, and the content of Ti or Cr is the above When it is in the range, a coated cutting tool excellent in both wear resistance and fracture resistance can be obtained.
  • the Ti content falls within the range of 0.35 ⁇ b ⁇ 0.70
  • the Cr content is preferably suppressed to 0.20 or less
  • the Cr content is preferably 0.3 ⁇ e.
  • the Ti content is preferably suppressed to 0.20 or less.
  • the coarse particle layer of the present invention is excellent in wear resistance because the average particle size Lx measured in a direction parallel to the interface between the coating layer and the substrate exceeds 200 nm.
  • the reason is considered as follows. If the average particle size of the coating layer is small as shown in FIG. 1, the external force generated during cutting tends to cause the crystal grains of the coating layer to fall off as shown in FIG. On the other hand, when the average particle size of the coating layer is large as shown in FIG. 3, due to the external force generated at the time of cutting, the crystal grains of the coating layer are unlikely to fall off as shown in FIG.
  • the coarse particle layer of the present invention has an average particle size Lx of more than 200 nm when measured in a direction parallel to the interface between the coating layer and the substrate.
  • the average particle size Lx is more preferably 400 nm or more, but it is difficult to produce a coarse particle layer having an average particle size Lx exceeding 1000 nm.
  • the average particle diameter Lx is more preferably in the range of 400 to 1000 nm.
  • the coarse particle layer of the present invention is excellent in wear resistance. Therefore, the wear resistance of the coating layer is improved, and the tool life of the coated cutting tool of the present invention can be extended.
  • the average particle diameter Lx of the coarse layer when measured in the direction parallel to the interface between the coating layer and the substrate is 100 nm in diameter from the surface structure obtained by mirror polishing the surface side interface of the coarse layer. It is measured in the tissue excluding the above droplets. Specifically, from the surface side interface of the coarse particle layer to a depth of 100 nm is removed by polishing or the like, and the average particle size Lx of the coarse particle layer is measured with a mirror surface texture.
  • the polishing method include a method of polishing a mirror surface using diamond paste or colloidal silica, ion milling, and the like.
  • the surface texture of the coarse-grained layer in the mirror surface is observed with an SEM, FE-SEM, TEM, electron beam backscattering diffractometer (EBSD), and the like.
  • the diameter of a circle having an area equal to the area of one crystal grain is defined as the grain size of the crystal grain.
  • the grain size of the crystal grains contained in the observed surface structure is obtained.
  • a particle size distribution is created which includes a horizontal axis indicating the grain size divided at intervals of 5 nm and a vertical axis indicating the area ratio of all the crystal grains included in the interval of 5 nm intervals.
  • the central value of the 5 nm interval division (for example, the central value of the 5-10 nm division is 7.5 nm) is multiplied by the area ratio of all the crystal grains included in the division.
  • a value obtained by multiplying all values obtained by multiplying the center value of the 5 nm-interval division and the area ratio of all the crystal grains included in the division is defined as the average particle diameter Lx of the coarse grain layer.
  • EBSD is preferable because the grain boundary of crystal grains becomes clear.
  • the step size is 0.01 ⁇ m
  • the measurement range is 2 ⁇ m ⁇ 2 ⁇ m
  • the boundary where the orientation difference is 5 ° or more is used. The setting of considering it as a boundary is preferable.
  • a droplet having a diameter of 100 nm or more and a structure other than the droplet can be easily distinguished from the surface structure of the coarse-grained layer having a mirror surface.
  • the droplet When the surface texture of the mirror surface is observed, the droplet is circular, and a gap with a thickness of several nanometers to several tens of nanometers is formed around the droplet.
  • the droplets may fall off the coarse grain layer during mirror polishing. In that case, circular holes are formed in the coarse-grained layer. Therefore, it is possible to easily distinguish a droplet having a diameter of 100 nm or more and a structure other than the droplet in the coarse particle layer.
  • the average particle diameter Ly of the coarse grain layer when measured in the direction perpendicular to the interface between the coating layer and the substrate is a drop having a width of 100 nm or more from the cross-sectional structure obtained by mirror polishing the cross section of the coarse grain layer. Measured in tissue excluding lett.
  • the method of mirror polishing the cross section of the coarse layer include a method of polishing with a diamond grindstone and then polishing with a diamond paste or colloidal silica, ion milling, and the like.
  • the length from the substrate side interface of the coarse layer or the surface side interface of the coarse layer to the point where the straight line and the grain boundary intersect, or from the point where the straight line and the grain boundary intersect, The length to the point was Ln (n 1, 2, 3,).
  • Ln 1, 2, 3,
  • the number of straight lines used for measurement is preferably 10 or more. Note that a droplet having a width of 100 nm or more and a structure other than the droplet can be easily distinguished from the cross-sectional structure of the coarse-grained layer having a mirror surface.
  • the droplets are circular, elliptical, or teardrop-shaped, and voids having a thickness of several nanometers to several tens of nanometers are formed at the base material side interface of the droplets. Also, the droplets may fall off the coarse grain layer during mirror polishing. In that case, circular, elliptical or teardrop-shaped holes are formed in the coarse layer. Therefore, a droplet having a width of 100 nm or more and a structure other than the droplet can be easily distinguished in the coarse layer.
  • the coarse particle layer when measured in the direction perpendicular to the interface between the coating layer and the substrate with respect to the average particle diameter Lx of the coarse particle layer when measured in the direction parallel to the interface between the coating layer and the substrate
  • the particle diameter ratio (Ly / Lx) of the average particle diameter Ly exceeds 1.5, cracks generated from the tool surface easily develop due to the load applied to the cutting edge during cutting, and the fracture resistance tends to decrease. Be looked at.
  • the particle size ratio of Ly to Lx (Ly / Lx) is 0.7 or more and 1.5 or less, both wear resistance and fracture resistance tend to be improved. Therefore, the particle size ratio of Ly to Lx (Ly / Lx) is more preferably 0.7 or more and 1.5 or less.
  • the average layer thickness of the coarse particle layer of the present invention was 0.2 to 10 ⁇ m. If the thickness is less than 0.2 ⁇ m, the effect of the coarse layer improving the wear resistance is reduced, and if it exceeds 10 ⁇ m, the adhesion between the substrate and the coating layer is lowered, and peeling and chipping are likely to occur. Among these, the average layer thickness of the coarse particle layer of the present invention is more preferably 0.5 to 10 ⁇ m.
  • the coarse-grained layer of the present invention is a cubic crystal because it has high hardness and excellent wear resistance.
  • the half width of the X-ray diffraction peak of the (200) plane of the coarse particle layer of the present invention obtained by X-ray diffraction measurement using Cu-K ⁇ rays is 0.6 degrees or less, This is more preferable because dropping of crystal grains in the coarse layer is suppressed.
  • the half width of the X-ray diffraction peak of the (200) plane of the coarse grain layer can be measured using a commercially available X-ray diffractometer.
  • target Cu
  • tube current 250 mA
  • Cu-K ⁇ line scanning axis: 2 ⁇ / ⁇
  • incident side solar slit 5 degrees
  • divergence longitudinal slit 2/3 degrees divergence longitudinal restriction slit: 5 mm
  • Scattering slit 2/3 degree
  • light receiving side solar slit 5 degree
  • light receiving slit 0.30 mm
  • light receiving monochrome slit 0.8 mm
  • X-ray monochromation graphite light receiving monochromator (curving mode)
  • sampling width X-ray diffraction measurement may be performed by setting the measurement range of 0.01 degrees, scan speed: 4 degrees / min, and Bragg angle (2 ⁇ ) to 30 degrees to 70 degrees.
  • an X-ray diffraction peak of the cubic (200) plane of the coarse particle layer of the present invention is observed.
  • the half width of the X-ray diffraction peak of the (200) plane of the coarse particle layer thus obtained is preferably measured.
  • the half-value width may be measured using analysis software attached to the X-ray diffractometer. When analysis software is used, background processing and K ⁇ 2 peak removal are performed using cubic approximation, profile fitting is performed using the Pearson-VII function, and then the peak position is obtained by the peak top method. Derived.
  • a layer formed on the surface side with respect to a predetermined layer is an upper layer
  • a layer formed on the base material side with respect to a predetermined layer is a lower layer It can be called.
  • the coating layer of the present invention includes a lower layer formed on the surface of the base material and a coarse layer formed on the lower surface, and the lower layer is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W
  • a metal composed of at least one metal element selected from the group consisting of Y, Al, and Si, and a non-metallic element selected from the group consisting of at least one metal element and carbon, nitrogen, oxygen, and boron.
  • Cutting performance can be further improved by laminating a lower layer excellent in adhesion to the substrate and fracture resistance and a coarse particle layer excellent in wear resistance.
  • An upper layer may be formed on the surface of the coarse layer of the present invention, but the uppermost layer of the coating layer is preferably a coarse layer.
  • the coating layer of the present invention can be formed by various physical vapor deposition methods such as an arc ion plating method, an ion plating method, a sputtering method, and an ion mixing method.
  • a base material is placed in a reaction vessel of a physical vapor deposition apparatus, and after the surface of the base material is subjected to ion bombardment treatment, a metal evaporation source corresponding to the composition of the coating layer is evaporated, and the reaction vessel is filled with N
  • the coating layer of the present invention is formed by filling with a reaction gas such as 2 or CH 4 , applying a predetermined bias voltage to the base material with a predetermined pressure in the reaction vessel.
  • the arc ion plating method is used, the magnetic flux density at the center of the metal evaporation source is lowered, and the substrate temperature at the time of formation is lowered, thereby improving the wear resistance.
  • the pressure in the reaction vessel is set to a predetermined pressure of 0.5 to 5.0 Pa, a bias voltage of ⁇ 10 V to ⁇ 150 V is applied to the substrate, and the magnetic flux density at the center of the metal evaporation source is 7 mT.
  • the coarse particle layer of the present invention is formed with a predetermined magnetic flux density of ⁇ 12 mT and a sample temperature of 500-700 ° C.
  • the magnetic flux density at the center of the metal evaporation source can be measured with a gauss meter.
  • the coated cutting tool of the present invention has excellent wear resistance and long tool life.
  • an ISO standard SEKN1203AGTN insert-shaped P20 equivalent cemented carbide was prepared.
  • a metal evaporation source as a raw material for the coating layer shown in Table 1 and Table 2 is installed, and the base material is attached to the sample holder in the reaction vessel of the arc ion plating apparatus,
  • the pressure in the reaction vessel was set to a vacuum of 1 ⁇ 10 ⁇ 2 Pa or less, and the substrate was heated with a furnace heater until the temperature of the base material reached 500 ° C.
  • the Ar gas was discharged, and the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less.
  • N 2 gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen atmosphere at a pressure of 3 Pa.
  • the bias voltage applied to the substrate is set to ⁇ 50 V
  • the magnetic flux density at the center of the metal evaporation source is set to Table 1.
  • the coating layers shown in Table 1 and Table 2 were formed on the surface of the base material under the coating conditions in which the magnetic flux density was as shown in Table 2 and the arc current was 150 A. After forming the coating layer, the sample was cooled, and the sample was taken out from the reaction container after the sample temperature became 100 ° C. or lower.
  • the thickness of the coating layer was measured at five locations using an optical microscope and FE-SEM at a position of 50 ⁇ m from the blade edge of the surface facing the metal evaporation source toward the center of the surface, The average of these was taken as the average thickness of the coating layer.
  • the composition of the coating layer was measured using EDS attached to FE-SEM and WDS attached to FE-SEM.
  • the obtained sample was polished with a diamond paste from the surface of the coating layer to a depth of 100 nm, and further polished to a mirror surface using colloidal silica.
  • the surface texture of the coating layer that became a mirror surface was observed by EBSD, and the average particle diameter Lx of the coating layer was measured.
  • EBSD was set such that a boundary having a step size of 0.01 ⁇ m, a measurement range of 2 ⁇ m ⁇ 2 ⁇ m, and an orientation difference of 5 ° or more was regarded as a grain boundary.
  • the diameter of a circle having an area equal to the area of one crystal grain having the coating layer was defined as the grain diameter of the crystal grain.
  • a particle size distribution is created which includes a horizontal axis indicating the grain size divided at 5 nm intervals and a vertical axis indicating the area ratio of all the crystal grains included in the 5 nm interval.
  • the area ratio of all the crystal grains included in the classification was multiplied.
  • the total value of the values obtained by multiplying the center value of the 5-nm interval division and the area ratio of all the crystal grains included in the division was defined as the average particle size Lx of the coarse layer.
  • the cross section of the sample obtained by cutting with a cutting machine was polished with diamond paste, and further polished to a mirror surface using colloidal silica.
  • the cross-section of the coating layer that became a mirror surface was observed with EBSD, and the average particle diameter Ly of the coating layer was measured when measured in the direction perpendicular to the interface between the coating layer and the substrate.
  • the EBSD was set such that a boundary having a step size of 0.01 ⁇ m, a measurement range of 2 ⁇ m ⁇ 2 ⁇ m, and an orientation difference of 5 ° or more was regarded as a grain boundary.
  • target Cu
  • tube current 250 mA
  • Cu-K ⁇ ray scanning axis: 2 ⁇ / ⁇
  • receiving monochrome slit 0.8 mm
  • the invention products having a large average particle size Lx in the direction parallel to the interface between the coating layer and the base material are superior in wear resistance, so that the tool life is longer than that of the comparative product.
  • the machining distance was long.
  • Example 1 A metal evaporation source serving as a raw material for the coating layer shown in Table 5 was installed in a reaction vessel of the arc ion plating apparatus, and a substrate was attached to a sample holder in the reaction container of the arc ion plating apparatus.
  • Ar ion bombardment treatment was performed under the same conditions as those described above. After the Ar ion bombardment treatment, the Ar gas was discharged, and the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less. N 2 gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen atmosphere with a pressure of 3 Pa.
  • the bias voltage applied to the substrate is -50V
  • the magnetic flux density at the center of the metal evaporation source is the magnetic flux density shown in Table 5
  • the arc The coating layer shown in Table 5 was formed on the surface of the base material under the coating conditions where the current was 150 A. After forming the coating layer, the sample was cooled, and the sample was taken out from the reaction container after the sample temperature became 100 ° C. or lower.
  • the crystal system of the coating layer, the composition, the average particle diameter Lx in the direction parallel to the interface between the coating layer and the substrate, and perpendicular to the interface between the coating layer and the substrate The average particle size Ly in any direction, the particle size ratio of the average particle size Ly to the average particle size Lx (Ly / Lx), and the average layer thickness of the entire coating layer were measured.
  • the results are shown in Table 5.
  • all the coating layers of the obtained samples were cubic.
  • the obtained sample was attached to the following cutter, and the cutting tests 2 and 3 were performed. Table 6 shows the working distance to the end of the tool life.
  • the cutting test 2 is a test for mainly evaluating wear resistance
  • the cutting test 3 is a test for mainly evaluating fracture resistance.
  • Work material S45C
  • Cutting speed 250 m / min
  • Feed 0.1 mm / tooth
  • Cutting depth 2.0 mm
  • Cutting width 50 mm
  • Effective cutter diameter ⁇ 100mm
  • Coolant Not used (dry processing)
  • Judgment of tool life Tool life when the maximum flank wear width reaches 0.2 mm
  • the inventive product having a large average particle diameter Lx in the direction parallel to the interface between the coating layer and the base material is superior in wear resistance and fracture resistance, and therefore has a longer tool life than the comparative product.
  • the processing distance of was long.
  • Example 1 A metal evaporation source serving as a raw material for the coating layer shown in Table 7 was installed in a reaction vessel of the arc ion plating apparatus, and a substrate was attached to a sample holder in the reaction container of the arc ion plating apparatus.
  • Ar ion bombardment treatment was performed under the same conditions as those described above. After the Ar ion bombardment treatment, the Ar gas was discharged, and the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less. N 2 gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen atmosphere with a pressure of 3 Pa.
  • the bias voltage applied to the substrate is -50 V
  • the magnetic flux density at the center of the metal evaporation source is the magnetic flux density shown in Table 7.
  • the coating layer shown in Table 7 was formed on the surface of the base material under the coating conditions where the arc current was 150 A. After forming the coating layer, the sample was cooled, and the sample was taken out from the reaction container after the sample temperature became 100 ° C. or lower.
  • the crystal system of the coating layer, the composition, the average particle diameter Lx in the direction parallel to the interface between the coating layer and the substrate, and perpendicular to the interface between the coating layer and the substrate The average particle size Ly in any direction, the particle size ratio of the average particle size Ly to the average particle size Lx (Ly / Lx), and the average layer thickness of the coating layer were measured.
  • all the coating layers of the obtained samples were cubic.
  • XRD analysis software JADEver. 6 was used to perform background processing and K ⁇ 2 peak removal by cubic approximation, profile fitting using the Pearson-VII function, and then the peak position was determined by the peak top method to derive the half width. The results are shown in Table 7.
  • the invention having a large average particle diameter Lx in the direction parallel to the interface between the coating layer and the base material and a small half width of the X-ray diffraction peak of the (200) plane of the coating layer is Since it is excellent in abrasion, the machining distance until the tool life is longer than that of the comparative product.
  • Example 1 As a base material, an ISO standard SEKN1203AGTN insert-shaped P20 equivalent cemented carbide was prepared.
  • Example 1 A metal evaporation source as a raw material for the coating layer shown in Table 9 was installed in the reaction vessel of the arc ion plating apparatus, and the base material was attached to the sample holder in the reaction container of the arc ion plating apparatus.
  • Ar ion bombardment treatment was performed under the same conditions as those described above. After the Ar ion bombardment treatment, the Ar gas was discharged, and the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less. N 2 gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen atmosphere with a pressure of 3 Pa.
  • the bias voltage applied to the substrate is ⁇ 50 V
  • the magnetic flux density at the center of the metal evaporation source is 20 mT
  • the arc current is 150 A.
  • the layers A and B shown in Table 9 were alternately coated to form a lower layer of an alternately laminated structure on the surface of the substrate.
  • the bias voltage applied to the substrate is -50 V
  • the magnetic flux density at the center of the metal evaporation source is the highest in Table 9.
  • the uppermost layer shown in Table 10 was formed on the surface of the lower layer under the coating conditions in which the magnetic flux density of the upper layer was set and the arc current was 150 A. After forming the uppermost layer, the sample was cooled, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.
  • the composition of the lower layer A and layer B was measured using an optical microscope, FE-SEM, and TEM at a position of 50 ⁇ m from the cutting edge of the surface facing the metal evaporation source toward the center of the surface. Measure the average layer thickness, the total layer thickness of the lower layer A and the lower layer B, the number of repetitions of the stack cycle, the composition and average layer thickness of the top layer, and the average layer thickness of the entire coating layer did. In addition, about each layer thickness of the lower layer A layer, the lower layer B layer, the uppermost layer, and the whole coating layer, it measured five places, and averaged them, and it was set as the average layer thickness of each layer.
  • compositions of the lower layer A, the lower layer B, and the uppermost layer were measured using EDS attached to the FE-SEM, WDS attached to the FE-SEM, EDS attached to the TEM, and WDS attached to the TEM.
  • the results are shown in Table 9.
  • the obtained sample was subjected to X-ray diffraction measurement under the same measurement conditions as in Example 1 to measure the uppermost crystal system.
  • the top layer of the obtained sample was all cubic.
  • the average particle diameter Lx of the uppermost layer in the direction parallel to the interface between the coating layer and the substrate under the same measurement conditions as in Example 1, and the average particle diameter of the uppermost layer in the direction perpendicular to the interface between the coating layer and the substrate was measured. The results are shown in Table 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 耐摩耗性に優れ工具寿命が長い被覆切削工具を提供することを目的とし、基材と被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlTi)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiの少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、XはC、NおよびOの少なくとも1種の元素を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2~10μmである被覆切削工具を提供する。

Description

被覆切削工具
 本発明は、被覆切削工具に関するものである。
 鋼、鋳鉄、ステンレス鋼、耐熱合金などの切削加工には、超硬合金、サーメット、cBN焼結体などの基材の表面にTiN層やTiAlN層などを形成させた被覆切削工具が広く用いられている。
 被覆切削工具の従来技術としては、WC基超硬合金、サーメット、セラミックス、高速度鋼等から成る母材の表面に、IVa、Va、VIa族金属元素およびAl、Siから選んだ2種類以上の元素からなる合金の窒化物、酸化物、炭化物、炭窒化物又はホウ化物を物理的蒸着法により50nm以下の粒子径で構成した被膜を持つことを特徴とする表面被覆硬質部材がある(例えば、特許文献1参照。)。
 また、基体表面にTiとAlを主とする複合窒化物、複合炭化物、複合炭窒化物のいずれか一種の単層硬質膜または二種以上からなる多層硬質膜を被覆した硬質膜被覆工具において、前記硬質膜結晶粒の横方向の結晶粒径(b)の平均値を0.1~0.4μmの範囲とし、且つ、前記硬質膜の結晶粒径の縦/横比a/bの平均値を1.5~7の範囲としたことを特徴とする硬質膜被覆工具がある(例えば、特許文献2参照。)。
特許第3341328号公報 特許第3526392号公報
 近年の工作機械の高性能化はめざましく、これに伴って高速切削、高送り加工など過酷な切削条件で切削加工が行われるようになった。このような切削条件で従来の被覆切削工具を使用すると耐摩耗性が低下するという問題があった。本発明は、従来よりも、耐摩耗性に優れ、工具寿命が長い被覆切削工具を提供することを目的とする。
 本発明者は、被覆層の耐摩耗性の向上について研究を重ね、被覆層の組成を最適化するとともに、その粒径を粗粒にすると耐摩耗性が向上し、被覆切削工具の長寿命化を実現できるという知見を得て、本発明を完成させるに至った。
 すなわち、本発明の要旨は以下の通りである。
(1)基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlTi)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、XはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2~10μmである被覆切削工具。
(2)a、b、cは、0.30≦a≦0.50、0.50≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する(1)の被覆切削工具。
(3)粗粒層のXはNを表す(1)または(2)の被覆切削工具。
(4)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である(1)~(3)のいずれかの被覆切削工具。
(5)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である(1)~(4)のいずれかの被覆切削工具。
(6)粗粒層は立方晶である(1)~(5)のいずれかの被覆切削工具。
(7)粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である(6)の被覆切削工具。
(8)被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層は、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、
これら金属元素の少なくとも1種と、炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物と、
から成る群より選択された少なくとも1種からなる単層または多層である(1)~(7)のいずれかの被覆切削工具。
(9)粗粒層は最上層である(1)~(8)のいずれかの被覆切削工具。
(10)基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlCr)Z[但し、LはTi、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、ZはC、NおよびOから成る群より選択される少なくとも1種の元素を表し、dはAl元素とCr元素とL元素の合計に対するAl元素の原子比を表し、eはAl元素とCr元素とL元素の合計に対するCr元素の原子比を表し、fはAl元素とCr元素とL元素の合計に対するL元素の原子比を表し、d、e、fは、0.25≦d≦0.70、0.30≦e≦0.75、0≦f≦0.20、d+e+f=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2~10μmである被覆切削工具。
(11)d、e、fは、0.40≦d≦0.70、0.30≦e≦0.50、0≦f≦0.20、d≧e、d+e+f=1を満足する(10)の被覆切削工具。
(12)粗粒層のZはNを表す(10)または(11)の被覆切削工具。
(13)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である(10)~(12)のいずれかの被覆切削工具。
(14)被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である(10)~(13)のいずれかの被覆切削工具。
(15)粗粒層は立方晶である(10)~(14)のいずれかの被覆切削工具。
(16)粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である(15)の被覆切削工具。
(17)被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とから成る群より選択された少なくとも1種からなる単層または多層である(10)~(16)のいずれかの被覆切削工具。
(18)粗粒層は最上層である(10)~(17)のいずれかの被覆切削工具。
 本発明の被覆切削工具は、基材と、基材の表面に形成された被覆層とを含む。本発明の基材は被覆切削工具の基材として用いられるものであれば特に限定されないが、例えば、超硬合金、サーメット、セラミックス、立方晶窒化硼素焼結体、ダイヤモンド焼結体、高速度鋼などを挙げることができる。その中でも、基材が超硬合金であると、耐摩耗性および耐欠損性に優れるので、さらに好ましい。
 本発明の被覆層は、被覆切削工具の被覆層として使用されるものであれば特に限定されないが、その中でも、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とからなる群より選択された少なくとも1種の単層または多層であると耐摩耗性が向上するのでさらに好ましい。本発明の被覆層を構成する各層の組成は、走査電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE-SEM)、透過電子顕微鏡(TEM)などの電子顕微鏡に付属するエネルギー分散型X線分光器(EDS)や波長分散型X線分光器(WDS)などを用いて測定することができる。
 本発明の被覆層全体の平均層厚は0.2~10μmであると好ましい。これは、本発明の被覆層全体の平均層厚が0.2μm未満では耐摩耗性を向上させる効果が少なく、10μmを超えると剥離しやすくなるためである。本発明の被覆層全体の層厚および被覆層を構成する各層の層厚は、光学顕微鏡、SEM、FE-SEM、TEMなどを用いて、金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置で、5箇所以上測定し、それらの平均値を、被覆層全体の平均層厚および被覆層を構成する各層の平均層厚とした。
 本発明の1つは、被覆層の少なくとも1層が、被覆層と基材との界面に平行な方向で測定したときの平均粒径が200nmを超え、その組成が(AlTi)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、XはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層である。aが0.30未満であると粗粒になりすぎて耐欠損性が低下し、aが0.65を超えて多くなると微粒になりすぎて耐摩耗性が低下し、bが0.35未満であると微粒になりすぎて耐摩耗性が低下し、bが0.70を超えて多くなると粗粒になりすぎて耐欠損性が低下する。粗粒層にはAl元素とTi元素以外に、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を含んでもよいが、cが0以上0.20以下の範囲であると、粗粒層の組織が緻密化し、粗粒層の強度が向上し、被覆層全体の耐摩耗性を高めることができる。cが0.20を超えて多くなると、微粒になりすぎて耐摩耗性が低下する。そのため、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1とした。その中でも0.30≦a≦0.50、0.50≦b≦0.70、0≦c≦0.20、a+b+c=1であると、平均粒径が大きくなりやすく、耐摩耗性が向上する傾向が見られるため、さらに好ましい。XはC、NおよびOから成る群より選択された少なくとも1種の元素を表すが、その中でもXはCNまたはNを表すと耐摩耗性が向上するので好ましく、その中でもXはNを表すと耐摩耗性が向上するのでさらに好ましい。
 本発明の1つは、被覆層の少なくとも1層が、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlCr)Z[但し、LはTi、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、ZはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、dはAl元素とCr元素とL元素の合計に対するAl元素の原子比を表し、eはAl元素とCr元素とL元素の合計に対するCr元素の原子比を表し、fはAl元素とCr元素とL元素の合計に対するL元素の原子比を表し、d、e、fは、0.25≦d≦0.70、0.30≦e≦0.75、0≦f≦0.20、d≦e、d+e+f=1を満足する。]と表される粗粒層である。dが0.25未満であると、粗粒になりすぎて耐欠損性が低下し、dが0.70を超えて多くなると、微粒になりすぎて耐摩耗性が低下し、eが0.3未満であると、微粒になりすぎて耐摩耗性が低下し、eが0.75を超えて多くなると、粗粒になりすぎて耐欠損性が低下する。粗粒層にはAl元素とCr元素以外に、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を含んでもよく、fが0以上0.20以下の範囲であると、粗粒層の組織が緻密化し、粗粒層の強度が向上し、被覆層全体の耐摩耗性を高めることができる。fが0.20を超えて多くなると、微粒になりすぎて耐摩耗性が低下する。そのため、0.25≦d≦0.70、0.3≦e≦0.75、0≦f≦0.20、d+e+f=1とした。その中でもd≦eであり、0.40≦d≦0.70、0.3≦e≦0.50、0≦f≦0.20、d+e+f=1であると、平均粒径が大きくなりやすく、耐摩耗性が向上する傾向が見られるため、さらに好ましい。ZはC、NおよびOから成る群より選択された少なくとも1種の元素を表すが、その中でもZはCNまたはNを表すと耐摩耗性が向上するので好ましく、その中でもZはNを表すと耐摩耗性が向上するのでさらに好ましい。
 以上のように、本発明では、被覆層の少なくとも1層の組成が、(AlTi)Xまたは(AlCr)Zで表され、TiまたはCrの含有量が上記の範囲にある場合に、耐摩耗性及び耐欠損性の両方に優れた被覆切削工具を得ることができる。なお、Tiの含有量を0.35≦b≦0.70の範囲に収めた場合には、Crの含有量は0.20以下に抑えることが好ましく、Crの含有量を0.3≦e≦0.75の範囲に収めた場合には、Tiの含有量を0.20以下に抑えることが好ましい。
 本発明の粗粒層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超えるので、耐摩耗性に優れる。その理由は以下のように考えられる。図1に示すように被覆層の平均粒径が小さいと、切削時に発生する外力によって、図2に示すように被覆層の結晶粒の脱落が生じやすくなる。一方、図3に示すように被覆層の平均粒径が大きいと、切削時に発生する外力によって、図4に示すように被覆層の結晶粒の脱落が生じにくい。本発明の粗粒層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超える。平均粒径Lxが大きいほど優れた耐摩耗性を示すので、平均粒径Lxが400nm以上であるとさらに好ましいが、平均粒径Lxが1000nmを超える粗粒層の製造は困難であり、生産性を考慮すると、平均粒径Lxは400~1000nmの範囲がさらに好ましい。また、切削時は被覆層の表面から結晶粒の脱落が生じるので、被覆層の最も表面側が粗粒層であると、すなわち最上層が粗粒層であると耐摩耗性を向上させる効果が高くなるので、さらに好ましい。本発明の粗粒層は耐摩耗性に優れる。そのため被覆層の耐摩耗性は向上し、本発明の被覆切削工具の工具寿命を長くすることができる。
 本発明において被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは、粗粒層の表面側界面を鏡面研磨して得られた表面組織から直径100nm以上のドロップレットを除いた組織で測定される。具体的には、粗粒層の表面側界面から深さ100nmまでを研磨等で除去し、鏡面になった表面組織で粗粒層の平均粒径Lxを測定する。研磨方法としては、ダイヤモンドペーストやコロイダルシリカを用いて鏡面に研磨する方法や、イオンミリングなどを挙げることができる。鏡面になった粗粒層の表面組織をSEM、FE-SEM、TEM、電子線後方散乱回折装置(EBSD)などで観察して、直径100nm以上のドロップレットを除いた組織から、粗粒層のある1つの結晶粒の面積と等しい面積の円の直径をその結晶粒の粒径とする。同様の方法により、観察した表面組織中に含まれる結晶粒の粒径を求める。その後、5nm間隔の区分けした粒径を示す横軸と、5nm間隔の区分けに含まれる結晶粒全部の面積比を示す縦軸とからなる粒度分布を作成する。次に、5nm間隔の区分けの中心値(例えば、5~10nmの区分けの中心値は7.5nm)とその区分けに含まれる結晶粒全部の面積比を乗じる。5nm間隔の区分けの中心値とその区分けに含まれる結晶粒全部の面積比を乗じて得られた値をすべて合計した値を粗粒層の平均粒径Lxとする。測定装置としては、EBSDが、結晶粒の粒界が明瞭になるので好ましく、EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定が好ましい。なお、鏡面になった粗粒層の表面組織から直径100nm以上のドロップレットとドロップレット以外の組織は容易に区別できる。鏡面の表面組織を観察すると、ドロップレットは円形であり、ドロップレットの周りには厚さ数nm~数十nmの空隙ができている。また、ドロップレットは鏡面研磨中に粗粒層から抜け落ちることがある。その場合は粗粒層に円形の孔が生じる。そのため、粗粒層において直径100nm以上のドロップレットとドロップレット以外の組織とは容易に区別することができる。
 本発明において被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyは粗粒層の断面を鏡面研磨して得られた断面組織から幅100nm以上のドロップレットを除いた組織で測定される。粗粒層の断面を鏡面研磨する方法としては、ダイヤモンド砥石により研削した後、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法や、イオンミリングなどを挙げることができる。鏡面になった粗粒層の断面組織をSEM、FE-SEM、TEM、EBSDなどで観察して、被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyを測定することができる。具体的には粗粒層の断面組織をSEM、FE-SEM、TEM、EBSDなどで5000~50000倍に拡大して観察して得られた画像に、図5に示すように被覆層と基材との界面に垂直な方向に直線を500nm間隔で引いた。直線が幅100nm以上のドロップレットにかかった場合は、さらに500nm離れた場所に直線を引いた。粗粒層の基材側界面または粗粒層の表面側界面から直線と粒界の交差した点までの長さ、もしくは、直線と粒界の交差した点から直線と粒界の交差した次の点までの長さをLn(n=1,2,3,…)とした。直線と粒界が交差しないときは粗粒層の基材側界面から粗粒層の表面側界面までの長さをLnとした。それらを平均した値を平均粒径Lyとした。このとき測定に用いる直線の本数は、10本以上であると好ましい。なお、鏡面になった粗粒層の断面組織から幅100nm以上のドロップレットとドロップレット以外の組織は容易に区別できる。鏡面の断面組織を観察すると、ドロップレットは円形、楕円形もしくは涙滴形であり、ドロップレットの基材側の界面には厚さ数nm~数十nmの空隙ができている。また、ドロップレットは鏡面研磨中に粗粒層から抜け落ちることがある。その場合は粗粒層には円形、楕円形もしくは涙滴形の孔が生じる。そのため、粗粒層において幅100nm以上のドロップレットとドロップレット以外の組織とは容易に区別することができる。
 本発明において、被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が1.5を超えると、切削加工中に刃先にかかる負荷により工具表面から発生したクラックが進展しやすくなり耐欠損性が低下する傾向がみられる。一方、Lxに対するLyの粒径比(Ly/Lx)が0.7以上1.5以下であると耐摩耗性および耐欠損性の両方が良くなる傾向が見られる。そのため、Lxに対するLyの粒径比(Ly/Lx)は0.7以上1.5以下であると、さらに好ましい。
 本発明の粗粒層の平均層厚は0.2~10μmとした。0.2μm未満では耐摩耗性を向上させる粗粒層の効果が少なくなり、10μmを超えるとの基材と被覆層の密着性が低下して剥離やチッピングが生じやすくなるためである。その中でも本発明の粗粒層の平均層厚は0.5~10μmであるとさらに好ましい。
 本発明の粗粒層が立方晶であると、硬さが高く、耐摩耗性に優れるのでさらに好ましい。その中でも、Cu-Kα線を用いたX線回折測定で得られる本発明の粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下であると、本発明の粗粒層の結晶粒の脱落が抑制されるため、さらに好ましい。粗粒層の(200)面のX線回折ピークの半価幅は市販のX線回折装置を用いて測定することができる。例えば、ターゲット:Cu、管電圧:50kV、管電流:250mA、Cu-Kα線、走査軸:2θ/θ、入射側ソーラースリット:5度、発散縦スリット2/3度、発散縦制限スリット:5mm、散乱スリット:2/3度、受光側ソーラースリット:5度、受光スリット:0.30mm、受光モノクロスリット:0.8mm、X線の単色化:グラファイト受光モノクロメータ(湾曲モード)、サンプリング幅:0.01度、スキャンスピード:4度/min、ブラッグ角(2θ)の測定範囲を30度~70度とするX線回折測定を行うとよい。この測定条件で本発明の粗粒層のX線回折測定を行うと、本発明の粗粒層の立方晶の(200)面のX線回折ピークが観察される。このようにして得られた粗粒層の(200)面のX線回折ピークについて半価幅を測定するとよい。半価幅の測定はX線回折装置付属の解析ソフトウエアを用いてもよい。解析ソフトウエアを用いる場合、三次式近似を用いてバックグラウンド処理およびKα2ピーク除去を行い、Pearson-VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、半価幅が導出される。
 基材上に形成される被覆層において、所定の層(例えば、粗粒層)に対して表面側に形成された層を上層、所定の層に対して基材側に形成された層を下層と称することができる。本発明の被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とから成る群より選択された少なくとも1種からなる単層または多層であると、さらに好ましい。基材との密着性や耐欠損性に優れる下層と、耐摩耗性に優れる粗粒層とを積層すると、切削性能をさらに向上させることができる。本発明の粗粒層の表面に上層を形成しても良いが、被覆層の最上層は粗粒層の方が好ましい。
 本発明の被覆層はアークイオンプレーティング法、イオンプレーティング法、スパッター法、イオンミキシング法などの種々の物理蒸着法によって形成することができる。具体的には、物理蒸着装置の反応容器内に基材を入れて、基材の表面をイオンボンバードメント処理した後に、被覆層の組成に応じた金属蒸発源を蒸発させ、反応容器内をN、CHなどの反応ガスで満たし、反応容器内を所定の圧力にして、基材に所定のバイアス電圧を印加して本発明の被覆層を形成するとよい。
 本発明の粗粒層を形成する方法としては、アークイオンプレーティング法を用い、金属蒸発源の中心の磁束密度を低くし、形成時の基材温度を低くすると、耐摩耗性を向上させる効果が高くなるので、さらに好ましい。具体的には、反応容器内の圧力を0.5~5.0Paの所定の圧力にして、基材に-10V~-150Vのバイアス電圧を印加し、金属蒸発源の中心の磁束密度を7mT~12mTの所定の磁束密度とし、試料の温度を500~700℃の所定の温度にして、本発明の粗粒層を形成すると、さらに好ましい。なお、金属蒸発源の中心の磁束密度は、ガウスメーターで測定することができる。
 本発明の被覆切削工具は、耐摩耗性に優れ、工具寿命が長いという効果を奏する。
切削試験前の平均粒径が小さい被覆層の断面組織の概念図の一例である。 切削試験後の平均粒径が小さい被覆層の断面組織の概念図の一例である。 切削試験前の平均粒径が大きい被覆層の断面組織の概念図の一例である。 切削試験後の平均粒径が大きい被覆層の断面組織の概念図の一例である。 被覆切削工具の断面組織の概念図である。
 基材として、ISO規格SEKN1203AGTNインサート形状のP20相当超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表1および表2に示す被覆層の原料となる金属蒸発源を設置し、基材をアークイオンプレーティング装置の反応容器内の試料ホルダーに取り付けて、反応容器内の圧力を1×10-2Pa以下の真空とし、炉内ヒーターで基材の温度が500℃になるまで加熱した。基材の温度が500℃になった後、反応容器内の圧力が5PaになるまでArガスを導入し、反応容器内の雰囲気をAr雰囲気とし、反応容器内の圧力を5Paとし、基材に-1000Vのバイアス電圧を印加するイオンボンバードメント条件でArイオンボンバードメント処理を行った。
 Arイオンボンバードメント処理後、Arガスを排出して反応容器内の圧力を1×10-2Pa以下の真空にした。試料番号1~16、19~36についてはNガスを反応容器内に導入して反応容器内を圧力3Paの窒素雰囲気にした。試料番号17、18についてはNガスとCHガスの分圧比がN:CH=1:1となるように混合した混合ガスを反応容器内に導入して反応容器内の圧力3Paの混合ガス雰囲気にした。次に炉内ヒーターで基材温度が表1および表2に示す基材温度になるまで加熱した後、基材に印加するバイアス電圧を-50Vとし、金属蒸発源の中心の磁束密度を表1および表2に示す磁束密度とし、アーク電流を150Aとする被覆条件で、基材の表面に表1および表2に示す被覆層を形成した。被覆層を形成した後、試料を冷却し、試料温度が100℃以下になった後で反応容器内から試料を取り出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた試料について、金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置で、光学顕微鏡およびFE-SEMを用いて被覆層の層厚を5箇所測定して、それらを平均したものを被覆層の平均層厚とした。被覆層の組成はFE-SEM付属のEDSおよびFE-SEM付属のWDSを用いて測定した。
 得られた試料について、被覆層の表面から深さ100nmまでをダイヤモンドペーストで研磨して、さらにコロイダルシリカを用いて鏡面に研磨した。鏡面になった被覆層の表面組織をEBSDで観察して、被覆層の平均粒径Lxを測定した。EBSDは、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。被覆層のある1つの結晶粒の面積と等しい面積の円の直径をその結晶粒の粒径とした。同様の方法により、観察した表面組織中に含まれる結晶粒の粒径を求めた。その後、5nm間隔の区分けした粒径を示す横軸と、5nm間隔の区分けに含まれる結晶粒全部の面積比を示す縦軸とからなる粒度分布を作成し、5nm間隔の区分けの中心値とその区分けに含まれる結晶粒全部の面積比を乗じた。5nm間隔の区分けの中心値とその区分けに含まれる結晶粒全部の面積比を乗じて得られた値をすべて合計した値を粗粒層の平均粒径Lxとした。
 切断機で切断して得られた試料の断面をダイヤモンドペーストで研磨して、さらにコロイダルシリカを用いて鏡面に研磨した。鏡面になった被覆層の断面をEBSDで観察して、被覆層と基材との界面に垂直な方向で測定したときの被覆層の平均粒径Lyを測定した。このときEBSDは、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。被覆層の断面組織をEBSDで5000~50000倍に拡大した画像に、被覆層と基材との界面に垂直な方向に直線を500nm間隔で10本引いた。被覆層の基材側界面または被覆層の表面側界面から直線と粒界の交差した点までの長さ、もしくは、直線と粒界の交差した点から直線と粒界の交差した次の点までの長さをLn(n=1,2,3,…)とした。また、直線と粒界が交差しないときは被覆層の基材側界面から粗粒層の表面側界面までの長さをLnとした。これらのLnを平均した値を平均粒径Lyとした。
 得られた試料について、ターゲット:Cu、管電圧:50kV、管電流:250mA、Cu-Kα線、走査軸:2θ/θ、入射側ソーラースリット:5度、発散縦スリット2/3度、発散縦制限スリット:5mm、散乱スリット:2/3度、受光側ソーラースリット:5度、受光スリット:0.30mm、受光モノクロスリット:0.8mm、X線の単色化:グラファイト受光モノクロメータ(湾曲モード)、サンプリング幅:0.01度、スキャンスピード:4度/min、ブラッグ角(2θ)の測定範囲を30度~70度とするX線回折測定を行った。その結果、得られた被覆層の結晶系はすべて立方晶であることが分かった。被覆層の組成、被覆層と基材との界面に平行な方向の平均粒径Lx、被覆層と基材との界面に垂直な方向の平均粒径Ly、平均粒径Lxに対する平均粒径Lyの粒径比(Ly/Lx)、被覆層全体の平均層厚は表1および表2に記載した。
 得られた試料を下記のカッターに取り付けて切削試験1を行った。工具寿命に至るまでの加工距離は表3および表4に示した。
[切削試験1]
被削材:S45C、
切削速度:200m/min、
送り:0.2mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
カッター有効径:φ100mm、
クーラント:不使用(ドライ加工)、
工具寿命の判定:逃げ面最大摩耗幅が0.2mmに至ったときを工具寿命とした
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4に示すように、被覆層と基材との界面に平行な方向の平均粒径Lxが大きい発明品は、耐摩耗性に優れるので、比較品よりも工具寿命に至るまでの加工距離が長かった。
 基材として、ISO規格SEKN1203AGTNインサート形状のP20相当超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表5に示す被覆層の原料となる金属蒸発源を設置し、基材をアークイオンプレーティング装置の反応容器内の試料ホルダーに取り付けて、実施例1と同様な条件でArイオンボンバードメント処理を行った。Arイオンボンバードメント処理後、Arガスを排出して反応容器内の圧力を1×10-2Pa以下の真空にした。Nガスを反応容器内に導入して反応容器内を圧力3Paの窒素雰囲気にした。炉内ヒーターで基材温度が表5に示す温度になるまで加熱した後、基材に印加するバイアス電圧を-50Vとし、金属蒸発源の中心の磁束密度を表5に示す磁束密度とし、アーク電流を150Aとする被覆条件で、基材の表面に表5に示す被覆層を形成した。被覆層を形成した後、試料を冷却し、試料温度が100℃以下になった後で反応容器内から試料を取り出した。
Figure JPOXMLDOC01-appb-T000005
 得られた試料について実施例1と同じ測定条件で、被覆層の結晶系、組成、被覆層と基材との界面に平行な方向の平均粒径Lx、被覆層と基材との界面に垂直な方向の平均粒径Ly、平均粒径Lxに対する平均粒径Lyの粒径比(Ly/Lx)、被覆層全体の平均層厚を測定した。それらの結果を表5に記載した。なお、得られた試料の被覆層はすべて立方晶であった。
 得られた試料は下記のカッターに取り付けて切削試験2、3を行った。工具寿命に至るまでの加工距離は表6に示した。なお、切削試験2は主に耐摩耗性を評価する試験であり、切削試験3は主に耐欠損性を評価する試験である。
[切削試験2]
被削材:S45C、
切削速度:250m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
カッター有効径:φ100mm、
クーラント:不使用(ドライ加工)、
工具寿命の判定:逃げ面最大摩耗幅が0.2mmに至ったときを工具寿命とした
[切削試験3]
被削材:SCM440、
切削速度:250m/min、
送り:0.4mm/tooth、
切り込み:2.0mm、
切削幅:105mm、
カッター有効径:φ125mm、
クーラント:不使用(ドライ加工)、
工具寿命の判定:試料が欠損に至ったときを工具寿命とした
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、被覆層と基材との界面に平行な方向の平均粒径Lxが大きい発明品は、耐摩耗性および耐欠損性に優れるので、比較品よりも工具寿命に至るまでの加工距離が長かった。
 基材として、ISO規格SEKN1203AGTNインサート形状のP20相当超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表7に示す被覆層の原料となる金属蒸発源を設置し、基材をアークイオンプレーティング装置の反応容器内の試料ホルダーに取り付けて、実施例1と同様な条件でArイオンボンバードメント処理を行った。Arイオンボンバードメント処理後、Arガスを排出して反応容器内の圧力を1×10-2Pa以下の真空にした。Nガスを反応容器内に導入して反応容器内を圧力3Paの窒素雰囲気にした。炉内ヒーターで基材温度が表7に示す基材温度になるまで加熱した後、基材に印加するバイアス電圧を-50Vとし、金属蒸発源の中心の磁束密度を表7に示す磁束密度とし、アーク電流を150Aとする被覆条件で、基材の表面に表7に示す被覆層を形成した。被覆層を形成した後、試料を冷却し、試料温度が100℃以下になった後で反応容器内から試料を取り出した。
Figure JPOXMLDOC01-appb-T000007
 得られた試料について実施例1と同じ測定条件で、被覆層の結晶系、組成、被覆層と基材との界面に平行な方向の平均粒径Lx、被覆層と基材との界面に垂直な方向の平均粒径Ly、平均粒径Lxに対する平均粒径Lyの粒径比(Ly/Lx)、被覆層の平均層厚を測定した。なお、得られた試料の被覆層はすべて立方晶であった。さらに、粗粒層の(200)面のX線回折ピークについて、MDI社製XRD解析ソフトウエアJADEver.6を用い、三次式近似でバックグラウンド処理およびKα2ピーク除去を行い、Pearson-VII関数を用いてプロファイルフィッティングを行った後、ピークトップ法よりピーク位置を求め、半価幅を導出した。それらの結果は表7に記載した。
 得られた試料は下記のカッターに取り付けて切削試験4を行った。工具寿命に至るまでの加工距離は表8に示した。
[切削試験4]
被削材:SCM440、
切削速度:200m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
カッター有効径:φ100mm、
クーラント:不使用(ドライ加工)、
工具寿命の判定:逃げ面最大摩耗幅が0.2mmに至ったときを工具寿命とした
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、被覆層と基材との界面に平行な方向の平均粒径Lxが大きく、被覆層の(200)面のX線回折ピークの半価幅の小さい発明品は、耐摩耗性に優れるので、比較品よりも工具寿命に至るまでの加工距離が長い。
 基材として、ISO規格SEKN1203AGTNインサート形状のP20相当超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表9に示す被覆層の原料となる金属蒸発源を設置し、基材をアークイオンプレーティング装置の反応容器内の試料ホルダーに取り付けて、実施例1と同様な条件でArイオンボンバードメント処理を行った。Arイオンボンバードメント処理後、Arガスを排出して反応容器内の圧力を1×10-2Pa以下の真空にした。Nガスを反応容器内に導入して反応容器内を圧力3Paの窒素雰囲気にした。炉内ヒーターで基材温度が700℃になるまで加熱した後、基材に印加するバイアス電圧を-50Vとし、金属蒸発源の中心の磁束密度を20mTとし、アーク電流を150Aとする被覆条件で、表9に示すA層とB層とを交互に被覆して、基材の表面に交互積層構造の下層を形成した。
 引き続き、炉内ヒーターで試料温度が表9に示す最上層の試料温度になるまで加熱した後、基材に印加するバイアス電圧を-50Vとし、金属蒸発源の中心の磁束密度を表9の最上層の磁束密度とし、アーク電流を150Aとする被覆条件で、下層の表面に、表10に示す最上層を形成した。最上層を形成した後、試料を冷却し、試料温度が100℃以下になった後で反応容器内から試料を取り出した。
Figure JPOXMLDOC01-appb-T000009
 得られた試料について、金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置で、光学顕微鏡、FE-SEMおよびTEMを用いて下層のA層とB層の組成と平均層厚、下層のA層の層厚と下層のB層の層厚とを合計した積層周期、積層周期の繰り返し数、最上層の組成と平均層厚、被覆層全体の平均層厚を測定した。なお、下層のA層、下層のB層、最上層、被覆層全体の各層厚については5箇所測定し、それらを平均して、各層の平均層厚とした。また、下層のA層、下層のB層、最上層のそれぞれの組成を、FE-SEM付属のEDS、FE-SEM付属のWDS、TEM付属のEDS、TEM付属のWDSを用いて測定した。それらの結果は表9に記載した。得られた試料について実施例1と同じ測定条件でX線回折測定を行い、最上層の結晶系を測定した。なお、得られた試料の最上層はすべて立方晶であった。また、実施例1と同じ測定条件で被覆層と基材との界面に平行な方向の最上層の平均粒径Lx、被覆層と基材との界面に垂直な方向の最上層の平均粒径Ly、平均粒径Lxに対する平均粒径Lyの粒径比(Ly/Lx)を測定した。それらの結果は表10に記載した。
Figure JPOXMLDOC01-appb-T000010
 得られた試料は下記のカッターに取り付けて切削試験5を行った。工具寿命に至るまでの加工距離は表11に示した。
[切削試験5]
被削材:SCM440、
切削速度:250m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
カッター有効径:φ100mm、
クーラント:不使用(ドライ加工)、
工具寿命の判定:逃げ面最大摩耗幅が0.2mmに至ったときを工具寿命とした
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、被覆層と基材との界面に平行な方向の平均粒径Lxが大きい発明品は、耐摩耗性に優れるので、比較品よりも工具寿命に至るまでの加工距離が長かった。
1 被覆層の結晶粒
2 被覆層の結晶粒が脱落したところ
3 被覆層
4 基材
5 表面側界面
6 基材側界面

Claims (18)

  1.  基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlTi)X[但し、MはZr、Hf、V、Nb、Ta、Cr、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、XはC、NおよびOから成る群より選択された少なくとも1種の元素を表し、aはAl元素とTi元素とM元素の合計に対するAl元素の原子比を表し、bはAl元素とTi元素とM元素の合計に対するTi元素の原子比を表し、cはAl元素とTi元素とM元素の合計に対するM元素の原子比を表し、a、b、cは、0.30≦a≦0.65、0.35≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2~10μmである被覆切削工具。
  2.  a、b、cは、0.30≦a≦0.50、0.50≦b≦0.70、0≦c≦0.20、a+b+c=1を満足する請求項1に記載の被覆切削工具。
  3.  粗粒層のXはNを表す請求項1または2に記載の被覆切削工具。
  4.  被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である請求項1~3のいずれか1項に記載の被覆切削工具。
  5.  被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である請求項1~4のいずれか1項に記載の被覆切削工具。
  6.  粗粒層は立方晶である請求項1~5のいずれか1項に記載の被覆切削工具。
  7.  粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である請求項6に記載の被覆切削工具。
  8.  被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層は、
    Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、
    これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物と、
    から成る群より選択された少なくとも1種からなる単層または多層である請求項1~7のいずれか1項に記載の被覆切削工具。
  9.  粗粒層は最上層である請求項1~8のいずれか1項に記載の被覆切削工具。
  10.  基材と、基材の表面に形成された被覆層とを含み、被覆層の少なくとも1層は、被覆層と基材との界面に平行な方向で測定したときの平均粒径Lxが200nmを超え、その組成が(AlCr)Z[但し、LはTi、Zr、Hf、V、Nb、Ta、Mo、W、Y、BおよびSiから成る群より選択された少なくとも1種の元素を表し、ZはC、NおよびOから成る群より選択される少なくとも1種の元素を表し、dはAl元素とCr元素とL元素の合計に対するAl元素の原子比を表し、eはAl元素とCr元素とL元素の合計に対するCr元素の原子比を表し、fはAl元素とCr元素とL元素の合計に対するL元素の原子比を表し、d、e、fは、0.25≦d≦0.70、0.30≦e≦0.75、0≦f≦0.20、d+e+f=1を満足する。]と表される粗粒層であり、粗粒層の平均層厚が0.2~10μmである被覆切削工具。
  11.  d、e、fは、0.40≦d≦0.70、0.30≦e≦0.50、0≦f≦0.20、d≧e、d+e+f=1を満足する請求項10に記載の被覆切削工具。
  12.  粗粒層のZはNを表す請求項10または11に記載の被覆切削工具。
  13.  被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxは400nmを超え1000nm以下である請求項10~12のいずれか1項に記載の被覆切削工具。
  14.  被覆層と基材との界面に平行な方向で測定したときの粗粒層の平均粒径Lxに対する被覆層と基材との界面に垂直な方向で測定したときの粗粒層の平均粒径Lyの粒径比(Ly/Lx)が0.7以上1.5未満である請求項10~13のいずれか1項に記載の被覆切削工具。
  15.  粗粒層は立方晶である請求項10~14のいずれか1項に記載の被覆切削工具。
  16.  粗粒層の(200)面のX線回折ピークの半価幅が0.6度以下である請求項15に記載の被覆切削工具。
  17.  被覆層は、基材の表面に形成された下層と、下層の表面に形成された粗粒層を含み、下層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiから成る群より選択された金属元素の少なくとも1種からなる金属と、これら金属元素の少なくとも1種と炭素、窒素、酸素および硼素から成る群より選択された非金属元素の少なくとも1種とからなる化合物とから成る群より選択された少なくとも1種からなる単層または多層である請求項10~16のいずれか1項に記載の被覆切削工具。
  18.  粗粒層は最上層である請求項10~17のいずれか1項に記載の被覆切削工具。
PCT/JP2014/055408 2013-03-04 2014-03-04 被覆切削工具 WO2014136755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/772,580 US9725811B2 (en) 2013-03-04 2014-03-04 Coated cutting tool
CN201480011745.6A CN105026083B (zh) 2013-03-04 2014-03-04 被覆切削工具
JP2015504320A JP5962846B2 (ja) 2013-03-04 2014-03-04 被覆切削工具
EP14761096.8A EP2965842B1 (en) 2013-03-04 2014-03-04 Coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041775 2013-03-04
JP2013041775 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136755A1 true WO2014136755A1 (ja) 2014-09-12

Family

ID=51491271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055408 WO2014136755A1 (ja) 2013-03-04 2014-03-04 被覆切削工具

Country Status (5)

Country Link
US (1) US9725811B2 (ja)
EP (1) EP2965842B1 (ja)
JP (1) JP5962846B2 (ja)
CN (1) CN105026083B (ja)
WO (1) WO2014136755A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084939A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2016107396A (ja) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
EP3916126A1 (en) 2020-05-25 2021-12-01 Tungaloy Corporation Coated cutting tool
EP3951013A1 (en) 2020-08-07 2022-02-09 Tungaloy Corporation Coated cutting tool
WO2022230182A1 (ja) * 2021-04-30 2022-11-03 住友電工ハードメタル株式会社 切削工具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570501B2 (en) 2017-05-31 2020-02-25 Kennametal Inc. Multilayer nitride hard coatings
CN107313008B (zh) * 2017-06-19 2019-03-12 常熟理工学院 γ-TiAl合金表面AlYMoSi耐高温防护涂层及其制备方法
JP6642836B2 (ja) * 2017-09-19 2020-02-12 株式会社タンガロイ 被覆ドリル
WO2020179809A1 (ja) * 2019-03-05 2020-09-10 三菱マテリアル株式会社 cBN焼結体および切削工具
CN110616402B (zh) * 2019-09-30 2021-10-26 株洲华锐精密工具股份有限公司 切削刀具用多层梯度结构涂层及其制备方法
JP7167965B2 (ja) * 2020-07-08 2022-11-09 株式会社タンガロイ 被覆切削工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341328B2 (ja) 1993-01-28 2002-11-05 住友電気工業株式会社 表面被覆硬質部材
JP3526392B2 (ja) 1997-05-15 2004-05-10 日立金属株式会社 硬質膜被覆工具及び硬質膜被覆ロール並びに硬質膜被覆金型
US20040110039A1 (en) * 2002-09-03 2004-06-10 Seco Tools Ab Precipitation hardened wear resistant coating
JP2006239792A (ja) * 2005-03-02 2006-09-14 Hitachi Tool Engineering Ltd 硬質皮膜被覆超硬合金部材
JP2009050997A (ja) * 2006-09-27 2009-03-12 Kyocera Corp 切削工具
JP2012061539A (ja) * 2010-09-15 2012-03-29 Mitsubishi Materials Corp 仕上げ面粗さに優れたcbnインサート

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160107A (ja) * 2000-11-27 2002-06-04 Kyocera Corp 表面被覆工具
JP3454428B2 (ja) * 2001-05-11 2003-10-06 日立ツール株式会社 耐摩耗皮膜被覆工具
WO2005089990A1 (ja) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
JP4845490B2 (ja) * 2005-11-24 2011-12-28 京セラ株式会社 表面被覆切削工具
EP2100681B1 (en) 2006-12-25 2012-07-18 Kyocera Corporation Surface-coated tool and method of working cutting object
JP5127477B2 (ja) 2008-01-29 2013-01-23 京セラ株式会社 切削工具
JP5121486B2 (ja) 2008-02-12 2013-01-16 京セラ株式会社 切削工具
CN102612417A (zh) * 2009-11-06 2012-07-25 株式会社图格莱 被覆工具
JP5515806B2 (ja) 2010-02-03 2014-06-11 三菱マテリアル株式会社 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
KR101800039B1 (ko) * 2010-02-04 2017-12-20 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 Αl-Cr-B-N/Ti-Al-N 멀티레이어 코팅을 구비한 커팅 툴
JP5590331B2 (ja) * 2011-02-14 2014-09-17 三菱マテリアル株式会社 耐摩耗性と切屑排出性に優れた表面被覆ドリル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341328B2 (ja) 1993-01-28 2002-11-05 住友電気工業株式会社 表面被覆硬質部材
JP3526392B2 (ja) 1997-05-15 2004-05-10 日立金属株式会社 硬質膜被覆工具及び硬質膜被覆ロール並びに硬質膜被覆金型
US20040110039A1 (en) * 2002-09-03 2004-06-10 Seco Tools Ab Precipitation hardened wear resistant coating
JP2006239792A (ja) * 2005-03-02 2006-09-14 Hitachi Tool Engineering Ltd 硬質皮膜被覆超硬合金部材
JP2009050997A (ja) * 2006-09-27 2009-03-12 Kyocera Corp 切削工具
JP2012061539A (ja) * 2010-09-15 2012-03-29 Mitsubishi Materials Corp 仕上げ面粗さに優れたcbnインサート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DALE A. DELISLE ET AL.: "Surface morphology and texture of TiAlN/CrN multilayer coatings", THIN SOLID FILMS, vol. 524, pages 100 - 106, XP055288622, Retrieved from the Internet <URL:WWW.elsevier.com/locate/tsf> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084939A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2016107396A (ja) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
CN107000068A (zh) * 2014-11-27 2017-08-01 三菱综合材料株式会社 耐崩刀性、耐磨性优异的表面包覆切削工具
US10556273B2 (en) 2014-11-27 2020-02-11 Mitsubishi Materials Corporation Surface-coated cutting tool having excellent chipping resistance and wear resistance
EP3916126A1 (en) 2020-05-25 2021-12-01 Tungaloy Corporation Coated cutting tool
US11548074B2 (en) 2020-05-25 2023-01-10 Tungaloy Corporation Coated cutting tool
EP3951013A1 (en) 2020-08-07 2022-02-09 Tungaloy Corporation Coated cutting tool
US11471950B2 (en) 2020-08-07 2022-10-18 Tungaloy Corporation Coated cutting tool
WO2022230182A1 (ja) * 2021-04-30 2022-11-03 住友電工ハードメタル株式会社 切削工具
JPWO2022230182A1 (ja) * 2021-04-30 2022-11-03

Also Published As

Publication number Publication date
US9725811B2 (en) 2017-08-08
US20160017499A1 (en) 2016-01-21
JP5962846B2 (ja) 2016-08-03
CN105026083B (zh) 2017-02-08
JPWO2014136755A1 (ja) 2017-02-09
EP2965842A1 (en) 2016-01-13
EP2965842B1 (en) 2018-12-12
CN105026083A (zh) 2015-11-04
EP2965842A4 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5962846B2 (ja) 被覆切削工具
CN106457413B (zh) 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具
CN103801718B (zh) 表面包覆切削工具
CN110883345B (zh) 被覆切削工具
WO2017175803A1 (ja) 被覆切削工具
JP2016137549A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6390706B2 (ja) 被覆切削工具
JP6519952B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2017061058A1 (ja) 表面被覆切削工具
JP6071100B1 (ja) 被覆切削工具
CN105916617A (zh) 涂层切削刀具
JP6264391B2 (ja) 被覆切削工具
JP2019038097A (ja) 被覆切削工具
JP6198137B2 (ja) 表面被覆切削工具
JP2019217579A (ja) 硬質被覆層が優れた耐欠損性および耐チッピング性を発揮する表面被覆切削工具
JP6635347B2 (ja) 被覆切削工具
JP2018161736A (ja) 表面被覆切削工具
US10751805B2 (en) Coated cutting tool
CN104508185B (zh) 涂层切削刀片
JP2019084671A (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具
JP7310340B2 (ja) 被覆切削工具
WO2014200005A1 (ja) 被覆切削工具
KR20170103828A (ko) 표면 피복 절삭 공구
CN113714526B (zh) 被覆切削工具
JP7418714B2 (ja) 被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011745.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504320

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014761096

Country of ref document: EP