WO2014135113A1 - 自移动机器人激光引导行走作业系统及其控制方法 - Google Patents

自移动机器人激光引导行走作业系统及其控制方法 Download PDF

Info

Publication number
WO2014135113A1
WO2014135113A1 PCT/CN2014/073035 CN2014073035W WO2014135113A1 WO 2014135113 A1 WO2014135113 A1 WO 2014135113A1 CN 2014073035 W CN2014073035 W CN 2014073035W WO 2014135113 A1 WO2014135113 A1 WO 2014135113A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
self
signal
receiver
mobile robot
Prior art date
Application number
PCT/CN2014/073035
Other languages
English (en)
French (fr)
Inventor
冯勇兵
Original Assignee
科沃斯机器人科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人科技(苏州)有限公司 filed Critical 科沃斯机器人科技(苏州)有限公司
Priority to EP14760485.4A priority Critical patent/EP2966528A1/en
Priority to US14/773,653 priority patent/US20160082595A1/en
Publication of WO2014135113A1 publication Critical patent/WO2014135113A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot

Definitions

  • the invention relates to a self-mobile robot laser guided walking operation system and a control method thereof, and belongs to the technical field of small household appliance manufacturing. Background technique
  • Method 1 The rope pulls the glass machine and the person moves vertically.
  • the disclosure of the utility model patent of CN 201482774 U the hoist is placed on the top of the glass or wall to be cleaned, one end of the rope is connected to the hoist, and the other end is connected to the top of the glass-cleaning robot, through the hoist
  • the rotation realizes the retraction of the rope, thereby driving the glass-washing robot to move up and down vertically.
  • the hoist controls the movement of the robot through the rope, and the cooperation of various mechanisms is required, resulting in a complicated structure of the hoisting machine, which causes inconvenience to installation and movement.
  • the mechanism can only realize the vertical movement of the robot, and it has certain restraint on the horizontal motion control of the robot.
  • Method 2 Control the horizontal or vertical movement of the glass-cleaning robot with an acceleration sensor.
  • another existing method is to plan the movement trajectory of the robot as a combination of two horizontal and vertical movement modes.
  • the acceleration sensor is mounted on the glass-cleaning robot and connected to the control unit, and the motion state of the robot is detected by the acceleration sensor, and the detection result is fed back to the control unit, and the control unit issues an instruction if the tilt or deviation from the predetermined route occurs. Make the appropriate adjustments.
  • the horizontal and vertical states of the glass-wiping robot are determined by electronic components such as an acceleration sensor.
  • the technical problem to be solved by the present invention is to provide a self-moving robot laser-guided walking operation system and a control method thereof, which utilizes the characteristics of good concentrating performance of the laser, and through the line laser beam emitter.
  • Reasonable setting of the receiver and the laser beam signal of the line laser not only meet the requirements of long-distance guidance, but also facilitate the reception of the laser signal.
  • the system is compact and the control method is simple and easy. Control the self-moving robot to move linearly with a small linear error at a long distance, and work efficiently.
  • a self-moving robot laser-guided walking operation system comprising a self-mobile robot and a laser beam emitter, the self-mobile robot comprising a body, a control mechanism and a running mechanism are arranged on the body, and the laser beam emitter is arranged in the self-mobile robot a laser receiver is disposed on the edge of the working area; the control mechanism controls the walking mechanism to guide the self-mobile robot in the working area according to the laser beam signal emitted by the laser beam emitter Straight path walking operation.
  • the laser beam emitter is disposed at a lateral or longitudinal edge of the work area.
  • the laser beam emitter is movably disposed at an edge of the work area by a bracket.
  • the laser beam emitter is a line laser beam emitter, and the laser signal emitted by the laser beam signal is a line laser beam signal.
  • the line laser beam signal is covered in a plane perpendicular to the work area.
  • the body is provided with an edge sensor and a signal generator, and the laser beam transmitter is correspondingly provided with a signal receiver, a control unit and a driving device;
  • the control mechanism controls the signal generator on the body to emit a corresponding signal; the signal receiver on the laser beam transmitter receives the After the corresponding signal, the control unit controls the drive to drive the laser beam emitter to translate.
  • the translation distance of the laser beam emitter is a body width of the self-moving robot body.
  • the laser receiver is disposed at the top of the body, and includes only a center laser receiver disposed at a center position of the body; or the laser receiver is disposed at the top of the body, and is disposed to be disposed along the self-moving robot A central laser receiver on the center line of the body and a deviated laser receiver symmetrically disposed with the central laser receiver.
  • the center laser receiver and the off-laser receiver are uniformly disposed on the top of the body.
  • the central laser receiver and the off-laser receiver are both omnidirectional receivers, including a laser omnidirectional receiver cover and a laser omnidirectional receiver mount, the inner surface of the laser omnidirectional receiver mount being a parabolic curved surface, Light incident in different directions converges onto a laser receiving device disposed on the laser omnidirectional receiver mount.
  • the laser receiver can also be disposed at the front, the rear, and the left and right sides of the body at the same time, the front and the rear of the body only include the center laser receiver, or the front and rear portions of the body are disposed at the center.
  • the center of the laser receiver and the laser receiver symmetrical with the center.
  • the laser receivers on the front, rear and left and right sides of the body are unidirectional laser receivers.
  • the laser receiver is an omnidirectional receiver disposed at the center of the top of the body.
  • the self-moving robot is a glass cleaning robot, a ground cleaning robot or a monitoring robot.
  • a control method for a laser guided walking operation system of a mobile robot comprising the following steps: Step 100: A laser beam emitter disposed at an edge of a working area of the mobile robot emits a laser signal at a fixed position on the support;
  • Step 200 A laser receiver is disposed on the body of the mobile robot, and the laser receiver receives the laser signal. According to the guidance of the laser signal, the control mechanism of the mobile robot controls the traveling mechanism to follow a straight line in the working area. Path walking operation.
  • the step 200 specifically includes:
  • Step 210 The self-moving robot takes the first edge of the working area as a starting position, according to the guidance of the laser signal emitted by the laser beam emitter, along the second edge of the working area, and faces the third edge in the longitudinal direction. Walking straight
  • Step 220 After the mobile robot moves to the third edge of the working area, after the edge sensor detects the edge signal, the control mechanism controls the signal generator on the body to emit a corresponding signal; the signal receiving on the laser beam transmitter After receiving the corresponding signal, the control unit controls the driving device to drive the laser beam emitter to stop along the bracket, and then shifts in a lateral direction and stops;
  • Step 230 The mobile robot stops and turns to 90° in situ, and translates a distance correspondingly in the lateral direction along the third edge, and determines whether an obstacle is encountered. If the obstacle is encountered, the process proceeds to step 270, otherwise the self-moving robot continues to translate. Until the laser receiver on the mobile robot receives the laser signal again, it stops and turns to 90 ° in place;
  • Step 240 The mobile robot follows the guidance of the laser signal to walk straight along the fourth edge of the working area in the longitudinal direction toward the first edge;
  • Step 250 After the mobile robot moves to the first edge of the working area, after the edge sensor detects the edge signal, the control mechanism controls the signal generator on the body to send a corresponding signal; the signal receiving on the laser beam transmitter After receiving the corresponding signal, the control unit controls the driving device to drive the laser beam emitter to stop along the bracket, and then shifts in a lateral direction and stops;
  • Step 260 The mobile robot stops and turns to 90° in situ, and correspondingly shifts a distance along the first edge in the lateral direction, and determines whether an obstacle is encountered. If the obstacle is encountered, the process proceeds to step 270, otherwise the self-moving robot continues to translate. Until the laser receiver on the mobile robot receives the laser signal again, stops and turns to 90 ° in place, and returns to step 210;
  • Step 270 the robot completes the laser guided walking operation.
  • the laser receiver includes a center laser receiver and a deviation laser receiver
  • the steps 210 and steps The straight line in 240 specifically includes:
  • the central laser receiver and the offset laser receiver having the same number of sides receive the laser beam signal, and the control mechanism controls to determine that the self-moving robot is located in the linear path;
  • the central laser receiver does not receive the laser beam signal, and the direction from the walking direction of the mobile robot is used as the reference, only the left or right deviation laser receiver receives the laser beam signal;
  • the central laser receiver and the different number of off-laser receivers on both sides receive the laser beam signal, and the number of deviation laser receivers that receive the laser beam signal on the left side is greater than the number of deviation laser receivers that receive the laser beam signal on the right or the right side is larger than the left side. Then, the control mechanism determines that the mobile robot is deviated to the right or left.
  • step 210 If the laser receiver includes only the central laser receiver, the straight line in step 210 and step 240 includes:
  • the control mechanism determines that the self-moving robot is located in the linear path
  • control mechanism determines that the self-moving robot deviates from the linear path, and the control mechanism performs a leftward or rightward steering adjustment based on the traveling direction of the mobile robot until the central laser receiver receives the laser beam signal again.
  • the present invention provides a self-moving robot laser-guided walking operation system and a control method thereof.
  • the laser beam signal of the line laser is used to satisfy the long distance.
  • the guiding requirement makes the laser signal receiving very convenient.
  • the system is compact in structure, simple in control method, and can control the self-moving robot to move linearly with small linear error at a long distance, and the working efficiency is high.
  • FIG. 1 is a schematic overall structural view of an embodiment of the present invention
  • Figure 2 is a view taken along line A of Figure 1;
  • FIG. 3 is a schematic view showing the internal structure of a laser omnidirectional receiver according to the present invention.
  • FIG. 4 is a schematic diagram of a motion state according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a second motion state according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a motion state 3 according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a motion path according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a motion process according to Embodiment 1 of the present invention
  • FIG. 9 is a schematic structural view of Embodiment 2 of the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural view of Embodiment 4 of the present invention. detailed description
  • FIG. 1 is a schematic view of an overall structure of a first embodiment of the present invention
  • FIG. 2 is a view taken along line A of FIG.
  • a first embodiment of the present invention provides a self-moving robot laser-guided walking operation system, including a self-mobile robot 10 and a laser beam emitter 20, and the self-mobile robot 10 includes a body 11, The control unit 12 and the traveling mechanism 13 are disposed on the body 11.
  • the laser beam emitter 20 is disposed at the edge of the working area Y of the mobile robot 10, and the laser body 15 is correspondingly disposed on the body 11; By controlling the traveling mechanism 13, the self-moving robot 10 travels in a straight path guided by the laser beam signal emitted from the laser beam emitter 20 in the work area Y.
  • the laser beam emitter 20 may be disposed at a lateral edge or a longitudinal edge of the work area Y according to a predetermined direction of the traveling path of the mobile robot 10 in advance.
  • the laser beam emitter 20 is facilitated during the linear motion of the mobile robot 10 in order to facilitate the fixation of the laser beam emitter 20 and to facilitate the movement of the laser beam emitter 20 during the re-determination of the linear path from the rotation of the mobile robot 10. It is movably disposed at the edge of the work area Y by the bracket.
  • the laser beam emitter 20 is a line laser beam emitter 20' which emits a laser signal which is a line laser beam signal. Since the laser has a good condensing property, it can make the light condensing well at a long distance. However, if a point laser is used, the direction of laser emission and reception is very high, and the reception of the laser signal is very inconvenient; if the line laser is used, the requirement of the long-distance guidance and the reception of the laser signal can be satisfied. It has become more convenient. As shown in FIG. 2, the line laser beam signal L in this embodiment is covered at an angle in a plane perpendicular to the work area Y, so that only the laser receiver on the self-mobile robot 10 is enveloped in the signal coverage. within.
  • the laser emitting device is disposed on the edge of the work area Y.
  • the moving track of the mobile robot 10 needs to be turned or turned in addition to the linear mode.
  • the body 11 of the mobile robot 10 is provided with an edge sensor and
  • the signal generator, the laser beam emitter 20 is correspondingly provided with a signal receiver, a control unit and a driving device.
  • the control mechanism 12 controls the signal generator on the body 11 to emit a corresponding signal; the laser beam emitter 20 After the upper signal receiver receives the corresponding signal, the control unit controls the driving device to drive the laser beam emitter 20 to translate.
  • the industrial area Y, the translation distance of the laser beam emitter 20 is preferably a body width of the body 11 of the mobile robot 10, so that the operation of the mobile robot 10 in the work area can be ensured.
  • the laser receiver 15 is disposed on the top of the body 11, and the number is set to three, including one center laser disposed on the center line of the body 11 along the traveling direction of the mobile robot.
  • the receiver 151 and the two off-laser receivers 152 are symmetrically disposed with the center laser receiver. In order to ensure that an accurate laser beam signal is received, the laser receiver needs to be evenly distributed on the top of the body 11.
  • FIG. 3 is a schematic view showing the internal structure of a laser omnidirectional receiver of the present invention.
  • the center laser receiver 151 and the off-laser receiver 152 in this embodiment are both omnidirectional receivers 15'.
  • Each omnidirectional receiver 15' includes a laser omnidirectional receiver cover 15'' and a laser omnidirectional receiver mount 152', and the inner surface of the laser omnidirectional receiver mount 152' is a parabolic curved surface.
  • the laser omnidirectional receiver adopts the above structure, and its main working principle is as follows:
  • the laser omnidirectional receiver cover 151' functions to reflect light incident in various directions into downward vertical light.
  • the inner surface of the laser omnidirectional receiver mount 152' is a parabolic curved surface that is capable of focusing parallel light incident perpendicular to the bottom surface of the laser omnidirectional receiver mount to a point, i.e., the focus of the paraboloid.
  • the laser receiving device 153' is mounted at a focus position of the laser omnidirectional receiver mount to receive the laser signal focused by the laser omnidirectional receiver mount 152'. After the laser omnidirectional receiver cover 15 ⁇ and the laser omnidirectional receiver mount 152' are assembled, the laser omnidirectional receiver can converge the light incident into the laser omnidirectional receiver in different directions onto the laser omnidirectional receiver mount.
  • the laser receiving device 153' is configured to acquire a laser signal. It is also because of the above characteristics of the laser omnidirectional receiver that a small amount is placed on the top of the body 11, and an accurate signal can be obtained to correctly guide the self-moving robot 10 to move along a predetermined trajectory.
  • FIGS. 4 to FIG. 6 are respectively schematic diagrams of the state of motion 1 to the state of motion according to the first embodiment of the present invention.
  • the wired laser beam generator 20' is mounted in the lateral direction from the upper end edge of the work area of the mobile robot 10, and the line laser beam generator 20' is fixed to the bracket.
  • Three laser omnidirectional receivers are provided on the top of the mobile robot 10 for receiving the line laser signals, a central laser receiver 151 is mounted in the middle, and two off-laser receivers 152 are symmetrically mounted on both sides.
  • the center laser receiver 151 receives a signal (when the mobile robot is closer to the laser beam generator 20'), or the center laser receiver 151 and both sides
  • the off-laser receiver 152 receives the signal (when the mobile laser is farther away from the laser beam generator 20', the line laser beam signal L has a certain angle of divergence), then the robot is considered to be in a longitudinal walking state; if the center laser receives The receiver 151 does not receive the signal, or based on the direction in which the mobile robot is traveling, only the left or right offset laser receiver 152 receives the signal, or the center laser receiver 151 and the left offset laser receiver 152 receive the laser signal; Alternatively, if the center laser receiver 151 and the right deviation laser receiver 152 receive the laser signal, the machine is considered to have deviated from the longitudinal direction, and the direction and judgment are automatically adjusted a plurality of times to return to the longitudinal walking state again.
  • the robot body has just deviated from the longitudinal angle.
  • the central laser receiver receives the laser signal, and the control mechanism still considers the body to be in a vertical state.
  • the central laser receiver does not receive the signal, or only deviates from the laser receiver to receive the signal, the control mechanism determines that the body deviates from the longitudinal direction and performs the walking direction of the body. Adjust accordingly.
  • FIG. 7 is a schematic diagram of a motion path according to Embodiment 1 of the present invention
  • FIG. 8 is a schematic diagram of a motion process according to Embodiment 1 of the present invention.
  • the motion path of the self-moving robot 10 is of a "bow" shape.
  • the specific motion process of the mobile robot 10 is shown in conjunction with FIG. 8.
  • the laser beam emitter 20 disposed at the edge of the working area Y of the mobile robot 10 emits a laser signal at a fixed position on the support, from the body of the mobile robot 10.
  • 11 is correspondingly provided with a laser receiver 15, and the laser receiver 15 receives the laser signal.
  • the control mechanism 12 of the mobile robot 10 controls the traveling mechanism 13 to follow a straight path in the work area Y. Walking homework.
  • the mobile robot 10 follows the guidance of the laser signal emitted by the laser beam emitter 20 along the working area Y with the first edge M of a vertex angle of the working area Y as the starting position B l .
  • the second edge N travels straight in the longitudinal direction toward the third edge P.
  • the self-moving robot 10 is located at the B1 position of the work area Y, and at this time, the laser beam emitter 20 is located at the A1 position of one end of the holder. Since the mobile robot 10 moves to the third edge P of the work area Y, at this time, the self-mobile robot 10 is located at the B2 position, and after the edge sensor detects the edge signal, the control mechanism 12 controls the signal generation on the body 11.
  • the control unit controls the driving device to drive the laser beam emitter 20 along the bracket to translate a distance X in the lateral direction. After stopping at the A2 position.
  • the mobile robot 10 stops and turns to 90 ° in the B2 position, and shifts a distance in the lateral direction along the third edge P, and determines whether an obstacle is encountered. If the obstacle robot stops walking, the self-mobile robot continues. Panning, until the laser receiver on the mobile robot 10 receives the laser signal again, stops at the B3 position and turns to 90 ° in place. At this time, the distance from the mobile robot 10 is the same as the distance from the laser beam emitter 20, and the length is X.
  • the self-moving robot 10 again follows the guidance of the laser signal, and travels straight from the B3 position along the fourth edge Q of the work area Y toward the first edge M in the longitudinal direction.
  • the control mechanism 12 controls the signal generator on the body 11 to emit a corresponding signal; After the signal receiver on the device 20 receives the corresponding signal, the control unit controls the driving device to drive the laser beam emitter 20 along the bracket to shift in the lateral direction by a distance X and then stops at the A3 position.
  • the mobile robot 10 stops at the B4 position and turns to 90 ° in situ, along the first edge M in the lateral direction. Should shift a distance and judge whether it encounters an obstacle. If the obstacle robot stops walking, the self-moving robot continues to translate until the laser receiver on the mobile robot 10 receives the laser signal again and stops at the B5 position. And turned to 90 ° in place. At this time, the distance from the mobile robot 10 is shifted by the same distance as the translation of the laser beam emitter 20, and the length thereof is X.
  • the above self-mobile robot 10 completes one of the complete path units of the overall "bow"-shaped motion path as shown in FIG. 7, repeating the above steps, causing the self-moving robot 10 to be folded back multiple times until the completion of the work area Y operation.
  • the laser emitting device laterally moves the distance of one body, when installed in the self
  • the laser omnidirectional receiver at the center of the top of the mobile robot 10 body 11 receives the line laser signal, it is considered that the mobile robot 10 has moved to an accurate position, thereby continuing the vertical straight line operation. Therefore, the distance moved from the mobile robot 10 is the same as the distance moved by the laser emitting device.
  • the guidance of the line laser beam signal L emitted by the line laser beam generator 20' is followed in real time to keep the self-moving robot 10 always Does not deviate from the direction of the line.
  • the control mechanism 12 controls the determination
  • the mobile robot 10 is located in the linear path; otherwise, when the central laser receiver 151 does not receive the laser beam signal L, and only the direction from the direction in which the mobile robot 10 travels, only the left or right offset laser receiver 152 receives the laser light.
  • the beam signal L; or the central laser receiver 151 and the different number of off-beam receivers 152 on both sides receive the laser beam signal L, and the number of off-laser receivers that receive the laser beam signal on the left side is greater than the number of laser receivers received on the right or right side. If the number of deviation laser receivers is greater than the left side, the control mechanism 12 determines that the mobile robot 10 is offset to the right or left. In particular, when the central laser receiver 151 does not receive the laser beam signal L, and the left or right offset laser receiver 152 does not receive the laser beam signal L at the same time, the robot cannot temporarily determine whether it is left or right. After the robot continues to travel for a distance, only the left or right offset laser receiver 152 receives the laser beam signal L, and the control mechanism 12 determines that the mobile robot 10 is deflected to the right or left.
  • the control mechanism 12 of the mobile robot 10 controls the traveling mechanism 13 to adjust the traveling direction of the mobile robot 10 based on the laser beam signal L received from the center laser receiver 151 and the off-laser receiver 152 to ensure that it moves in a straight line.
  • control method of the self-mobile robot laser guided walking operation system comprises the following steps: Step 100: The laser beam emitter disposed at the edge of the working area of the mobile robot emits a laser signal at a fixed position on the bracket;
  • Step 200 A laser receiver is disposed on the body of the mobile robot, and the laser receiver receives the laser signal. According to the guidance of the laser signal, the control mechanism of the mobile robot controls the running mechanism of the mobile robot in the inner edge of the working area Y. Straight path walking operation.
  • the step 200 specifically includes:
  • Step 210 The mobile robot takes the first edge M of the working area as a starting position, according to the guidance of the laser signal emitted by the laser beam emitter, along the second edge N of the working area, in the longitudinal direction Three-edge P straight line walking;
  • Step 220 After the mobile robot moves to the third edge P of the working area, after the edge sensor detects the edge signal, the control mechanism controls the signal generator on the body to emit a corresponding signal; the signal on the laser beam transmitter After the receiver receives the corresponding signal, the control unit controls the driving device to drive the laser beam emitter to move along the bracket, and then stops in a lateral direction and stops;
  • Step 230 The mobile robot stops and turns to 90° in situ, and translates a distance correspondingly in the lateral direction along the third edge P, and determines whether an obstacle is encountered. If the obstacle is encountered, the process proceeds to step 270, otherwise the mobile robot continues. Panning, until the laser receiver on the mobile robot receives the laser signal again, stops and turns to 90° in place;
  • Step 240 The mobile robot moves in a straight line toward the first edge M along the fourth edge Q of the working area according to the guidance of the laser signal.
  • Step 250 After the mobile robot moves to the first edge M of the working area, after the edge sensor detects the edge signal, the control mechanism controls the signal generator on the body to emit a corresponding signal; the signal on the laser beam emitter After the receiver receives the corresponding signal, the control unit controls the driving device to drive the laser beam emitter to move along the bracket, and then stops in a lateral direction and stops;
  • Step 260 The mobile robot stops and turns to 90° in situ, and shifts a distance correspondingly in the lateral direction along the first edge M, and determines whether an obstacle is encountered. If the obstacle is encountered, the process proceeds to step 270, otherwise the mobile robot continues. Panning, until the laser receiver on the mobile robot receives the laser signal again, stops and turns to 90° in place, returning to step 210;
  • Step 270 the robot completes the laser guided walking operation.
  • the straight line walking in the step 210 and the step 240 specifically includes:
  • control mechanism controls to determine that the self-moving robot is located in the straight path;
  • the central laser receiver does not receive the laser beam signal, and the direction from the walking direction of the mobile robot is used as the reference, only the left or right deviation laser receiver receives the laser beam signal;
  • the central laser receiver and the different number of off-laser receivers on both sides receive the laser beam signal, and the number of deviation laser receivers that receive the laser beam signal on the left side is greater than the number of deviation laser receivers that receive the laser beam signal on the right or the right side is larger than the left side. Then, the control mechanism determines that the mobile robot is deviated to the right or left.
  • the line laser beam generator can be installed on one side of the glass or the wall to be cleaned through the mounting bracket, and the mounting bracket is further mounted.
  • a driving device for driving the movement of the mounting bracket, the cleaning robot is provided with a corresponding laser receiving device, an edge sensor, and a signal transmitting device, and the mounting bracket is also equipped with a corresponding signal receiving device, and the working principle of the laser guiding linear motion is referred to the laser guiding mechanism. This will not be repeated here.
  • the line laser beam generator is mounted on the left or right side of the glass or wall through the mounting bracket.
  • the line laser beam generator can move up and down with the mounting bracket. Initially, the robot moves along the laser-guided lateral motion.
  • the edge sensor on the robot detects the edge signal and detects the detected signal.
  • the signal transmitting unit sends the signal receiving unit to the signal receiving unit, and after receiving the signal that the robot moves to the edge, the signal receiving unit drives the laser beam generator to move up or down along the mounting bracket by a certain distance, and then the robot It also moves up or down, and when the laser receiving device on the robot detects the laser, it starts to move linearly along the laser path.
  • the line laser beam generator is mounted on the upper or lower side of the glass or wall by the mounting bracket, and the line laser beam generator can be moved to the left and right with the mounting bracket. Initially, the robot moves along the laser guided longitudinal direction.
  • the edge sensor on the robot detects the edge signal and sends the detected signal to the signal receiving unit on the mounting bracket through the signal transmitting unit, and the signal receiving unit receives the robot moving to the edge
  • the laser beam generator is driven by the driving unit to move leftward or rightward with the mounting bracket by a certain distance, and then the robot also moves to the left or right.
  • the laser receiving device on the robot detects the laser, it starts again. The laser path moves linearly to complete the cleaning of the entire glass or wall.
  • the self-mobile robot may have various work functions, and may include a ground cleaning robot, a monitoring robot, and the like in addition to the above-described glass-cleaning robot.
  • the setting structure and control method of the laser guided walking system provided by the present invention are basically the same.
  • the technical features of the details are also adaptively changed with respect to different types of self-mobile robots. .
  • Embodiment 2
  • FIG. 9 is a schematic structural view of Embodiment 2 of the present invention.
  • this embodiment differs from the first embodiment only in the position where the laser receiver 15 is placed on the top of the body 11 of the mobile robot 10.
  • the number of laser receivers is set to three in the first embodiment, and is substantially equidistantly spaced from the diagonal of the top surface of the body 11 of the mobile robot 10, and the setting direction is upper right-center-lower left.
  • the number of laser receivers in this embodiment is also three, which is also substantially equidistantly spaced along the diagonal of the top surface of the body 11 of the mobile robot 10, and the setting direction is upper left-center-right.
  • the laser receiver in this embodiment is the same as the first embodiment, and is also an omnidirectional laser receiver 15'.
  • FIG. 10 is a schematic structural diagram of Embodiment 3 of the present invention. As shown in Fig. 10, the number of the laser receivers 15 in this embodiment is still set to three, but is arranged equidistantly along the middle of the top surface of the body 11 of the mobile robot 10.
  • the laser receiver in this embodiment is the same as the first embodiment, and is also an omnidirectional laser receiver 15'.
  • the laser receiver in this embodiment is different from the foregoing three embodiments in that a central laser receiver is installed only at the center of the top of the body, and the central laser receiver is an omnidirectional laser receiver, and its structure and working principle are The same is true in the first embodiment. Since the mounting method and the number of the laser receivers have changed, the control method for controlling the body to travel along the laser guided straight path has also changed.
  • the control mechanism controls the movement of the body along the laser guided linear path is: when the central laser receiver receives the laser beam signal, the control mechanism determines that the self-moving robot is located in the straight path; otherwise, the control The mechanism determines that the mobile robot deviates from the linear path, and the control mechanism performs a leftward or rightward steering adjustment based on the traveling direction of the mobile robot until the central laser receiver receives the laser beam signal again.
  • Embodiment 5 Figure 11 is a schematic structural view of Embodiment 5 of the present invention.
  • the laser receiver in this embodiment is different from the above-described four embodiments in the type of a conventional one-way laser receiver 15a. Since the operation of the laser receiver has changed due to the use of different types of laser receivers, the arrangement of the laser receiver on the body 11 of the mobile robot 10 has also changed accordingly.
  • the unidirectional laser receiver is simultaneously disposed at the front, the rear, and the left and right sides of the body 11, wherein the front and rear portions of the body 11 include at least a central laser receiver 151 disposed at the center and symmetrical with the center The two are offset from the laser receiver 152.
  • the process of maintaining the straight walking from the mobile robot 10 is realized as follows: In the present embodiment, as shown in Fig. 11, in the front, the rear, the left side, and the right side of the mobile robot 10, respectively, One or more unidirectional laser signal receiving devices 15a, when the line laser beam generator 20 mounted on one side edge of the work area Y emits the laser beam L in a direction perpendicular to the work area Y, if only The front and rear center laser receivers 151 receive signals, or the center laser receiver 151 and both sides of the laser receiver 152 receive laser signals, and it is considered that the self-moving robot 10 is traveling in a straight line direction; if the center laser receives The 151 does not receive the signal, and based on the direction of travel of the robot, only the left or right offset laser receiver 152 receives the signal, or the central laser receiver 151 and the left offset laser receiver 152 receive the signal or center laser.
  • the receiver 151 and the off-axis laser receiver 152 receive the signal, and then consider Robot 10 moves to the right or left velocity signal deviates from the laser light L guided longitudinally adjusted automatically after several longitudinal direction before walking state back again.
  • the self-moving robot's body needs to ensure that the line laser signal can be received all around if the laser-guided walking operation system of the mobile robot is to complete the entire working process.
  • the present invention achieves this control in two ways. One is to install an omnidirectional laser receiver from the top of the body of the mobile robot. Since the omnidirectional laser receiver can receive the laser signal around, and because the installation position is at the top of the body, it will not be in any orientation.
  • the laser receiver receives the signal to block; the second is to install a common one-way laser receiver on the body of the mobile robot as needed. Since the laser receiver is installed around the body, the laser signal can be fully received.
  • the invention utilizes the characteristic that the concentrating performance of the laser is relatively good, and the laser beam signal of the line laser is used to meet the requirements of the long-distance guiding and the laser signal by the reasonable setting of the line laser beam transmitter and the receiver.
  • the receiving is very convenient, the system is compact in structure, the control method is simple and easy, and the self-moving robot can be controlled to move linearly with a small linear error at a long distance, and the working efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种自移动机器人激光引导行走作业系统,包含自移动机器人(10)和激光束发射器(20),自移动机器人机体(11)上设有控制机构(12)和行走机构(13),激光束发射器(20)设置在自移动机器人作业区域的边缘,机体(11)上对应设有激光接收器(15),控制机构控制行走机构使自移动机器人(10)在作业区域内按照激光束发射器(20)发射的激光束信号所引导的直线路径行走作业。该系统的控制方法为:设置在自移动机器人作业区域边缘的激光束发射器(20)发射激光信号;自移动机器人的机体(11)上的激光接收器(15)接收到激光信号,按照激光信号的引导,自移动机器人(10)在作业区域内沿直线路径行走作业。该自移动机器人激光引导行走作业系统及其控制方法可远距离控制机器人,工作效率高。

Description

自移动机器人激光引导行走作业系统及其控制方法 技术领域
本发明涉及一种自移动机器人激光引导行走作业系统及其控制方法, 属于小家电 制造技术领域。 背景技术
现有的擦玻璃机器人都是依靠履带或轮子来完成机身在垂直玻璃表面上移动动作 的。 目前控制擦玻璃机器人运动的方法主要包括两种: 方法一: 绳索牵引擦玻璃机器 人竖直运动。 如: 授权公告号为 CN 201482774 U的实用新型专利所公开的内容, 将 卷扬机设置在待清洁玻璃或墙体顶端, 绳索的一端与卷扬机相连, 另一端则与擦玻璃 机器人的顶端相连, 通过卷扬机旋转实现绳索的收放, 从而带动擦玻璃机器人上、 下 竖直运动。 在上述的方法一中, 卷扬机通过绳索控制机器人运动, 需要各种机构的配 合, 导致卷扬机结构复杂, 给安装和移动带来不便。 另外, 该机构只能实现机器人的 竖直运动, 对机器人的水平运动控制有一定的约束性。 方法二: 通过加速度传感器控 制擦玻璃机器人的水平或竖直运动。 为了提高现有擦玻璃机器人的清洁效率, 现有的 另一种方法是将机器人的运动轨迹规划为水平和垂直两种运动方式的组合。具体来说, 将加速度传感器安装在擦玻璃机器人上, 并与控制单元相连, 通过加速度传感器检测 机器人的运动状态, 同时将检测结果反馈给控制单元, 如果出现倾斜或偏离预定路线 由控制单元发出指令进行相应的调整。 在方法二中, 擦玻璃机器人的水平和垂直状态 都是通过加速度传感器等电子元器件检测确定的。 然而, 电子元器件长时间工作存在 一定的累积误差, 有可能当机器人已经偏离原规划路径方向的时候, 加速度传感器检 测出来的结果仍然认为机器人还处于水平或竖直状态, 从而使机器人不能完全按照规 划好的路线行走, 对机器人在玻璃面上的清洁率有较大影响。 发明内容
本发明所要解决的技术问题在于针对现有技术的不足, 提供一种自移动机器人激 光引导行走作业系统及其控制方法, 利用了激光的聚光性能比较好的特性, 通过对线 激光束发射器和接收器的合理设置, 采用线激光的激光束信号, 既满足远距离导向的 要求, 又能使激光信号的接收非常方便, 该系统结构紧凑, 控制方法简单易行, 能够 在较远的距离控制自移动机器人以较小的直线误差直线运动, 工作效率高。
本发明的所要解决的技术问题是通过如下技术方案实现的:
一种自移动机器人激光引导行走作业系统, 包含自移动机器人和激光束发射器, 所述自移动机器人包括机体, 机体上设有控制机构和行走机构, 所述激光束发射器设 置在自移动机器人作业区域的边缘, 所述的机体上对应设有激光接收器; 所述控制机 构通过控制所述行走机构使自移动机器人在所述作业区域内按照激光束发射器发射的 激光束信号所引导的直线路径行走作业。
所述激光束发射器设置在所述作业区域横向的边缘或纵向的边缘。
为了便于移动,所述的激光束发射器通过支架可移动设置在所述作业区域的边缘。 为了提高信号发送和接收的有效性, 所述激光束发射器为线激光束发射器, 其发 射的激光信号为线激光束信号。
所述线激光束信号在垂直于所述作业区域的平面内覆盖。
为了便于控制, 所述机体上设有边缘传感器和信号发生器, 所述激光束发射器上 对应设有信号接收器、 控制单元和驱动装置;
自移动机器人运动到所述作业区域的边缘, 所述边缘传感器检测到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器上的信号接收器 接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束发射器平移。
为了便于自移动机器人高效的完成作业, 所述激光束发射器的平移距离为自移动 机器人机体的一个身位宽度。
根据需要, 所述激光接收器设置在机体的顶部, 仅包含设置在所述机体的中心位 置的中心激光接收器; 或者所述激光接收器设置在机体的顶部, 包含设置在沿自移动 机器人行走方向机体中心线上的中心激光接收器以及以该中心激光接收器对称设置的 偏离激光接收器。 所述中心激光接收器和偏离激光接收器在机体的顶部均布设置。
所述中心激光接收器和偏离激光接收器均为全向接收器, 包括激光全向接收器盖 和激光全向接收器座, 所述激光全向接收器座的内表面为抛物线曲面, 将各个不同方 向射入的光线汇聚到设置在所述激光全向接收器座上的激光接收装置上。
另外, 所述激光接收器还可以同时设置在机体的前部、 后部和左右两侧, 机体的 前部和后部仅包括中心激光接收器, 或者机体的前部和后部包括设置在中心的中心激 光接收器和以该中心对称的偏离激光接收器。 所述的机体前部、 后部和左右两侧的激 光接收器为单向激光接收器。
所述激光接收器为全向接收器, 设置在机体顶部的中心。 所述的自移动机器人为擦玻璃机器人、 地面清洁机器人或监控机器人。
一种自移动机器人激光引导行走作业系统的控制方法, 该方法包括如下步骤: 步骤 100: 设置在自移动机器人作业区域边缘的激光束发射器在支架上的固定位 置发射激光信号;
步骤 200: 自移动机器人的机体上对应设有激光接收器, 激光接收器接收到激光 信号, 按照激光信号的引导, 自移动机器人的控制机构通过控制其行走机构, 在所述 作业区域内沿直线路径行走作业。
所述步骤 200具体包括:
步骤 210: 自移动机器人以所述作业区域的第一边缘为起始位置, 按照激光束发 射器所发出的激光信号的引导, 沿所述作业区域的第二边缘, 在纵向上朝第三边缘直 线行走;
步骤 220: 自移动机器人运动到所述作业区域的第三边缘, 所述边缘传感器检测 到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束 发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 230 : 自移动机器人停止并原地转向 90° , 沿第三边缘在横向上对应平移一 段距离, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器人 继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地转 向 90 ° ;
步骤 240: 自移动机器人重新按照激光信号的引导, 沿所述作业区域的第四边缘, 在纵向上朝第一边缘直线行走;
步骤 250: 自移动机器人运动到所述作业区域的第一边缘, 所述边缘传感器检测 到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束 发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 260 : 自移动机器人停止并原地转向 90° , 沿第一边缘在横向上对应平移一 段距离, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器人 继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地转 向 90 ° , 返回至步骤 210 ;
步骤 270, 机器人完成激光引导行走作业。
若所述激光接收器包括中心激光接收器和偏离激光接收器, 所述步骤 210和步骤 240中的直线行走, 具体包括:
当仅所述中心激光接收器接收到激光束信号;
或者中心激光接收器以及其两边数量相同的偏离激光接收器接收到激光束信号, 则控制机构控制判定自移动机器人位于所述直线路径;
否则, 当中心激光接收器接收不到激光束信号, 且以自移动机器人行走的方向为 基准, 只有左边或右边的偏离激光接收器接收到激光束信号;
或者中心激光接收器和两边不同数量的偏离激光接收器接收到激光束信号, 且左 边接收到激光束信号的偏离激光接收器数量大于右边或右边接收到激光束信号的偏离 激光接收器数量大于左边, 则控制机构判定自移动机器人向右或向左偏离。
若所述激光接收器仅包括中心激光接收器, 所述步骤 210和步骤 240中的直线行 走, 具体包括:
当所述中心激光接收器接收到激光束信号, 则控制机构判定自移动机器人位于所 述直线路径;
否则, 控制机构判定自移动机器人偏离所述直线路径, 控制机构以自移动机器人 的行走方向为基准进行向左或向右的转向行走调整, 直到中心激光接收器重新接收到 激光束信号。
综上所述,本发明提供了一种自移动机器人激光引导行走作业系统及其控制方法, 通过对线激光束发射器和接收器的合理设置, 采用线激光的激光束信号, 既满足远距 离导向的要求, 又能使激光信号的接收非常方便, 该系统结构紧凑, 控制方法简单易 行, 能够在较远的距离控制自移动机器人以较小的直线误差直线运动, 工作效率高。
下面结合附图和具体实施例, 对本发明的技术方案进行详细地说明。 附图说明
图 1为本发明实施例一整体结构示意图;
图 2为图 1的 A向视图;
图 3为本发明激光全向接收器的内部结构示意图;
图 4为本发明实施例一的运动状态一示意图;
图 5为本发明实施例一的运动状态二示意图;
图 6为本发明实施例一的运动状态三示意图;
图 7为本发明实施例一的运动路径示意图;
图 8为本发明实施例一的运动过程示意图; 图 9为本发明实施例二的结构示意图;
图 10为本发明实施例三的结构示意图;
图 11为本发明实施例四的结构示意图。 具体实施方式
实施例一
图 1为本发明实施例一整体结构示意图; 图 2为图 1的 A向视图。 如图 1并结合 图 2所示, 本发明实施例一提供了一种自移动机器人激光引导行走作业系统, 包含自 移动机器人 10和激光束发射器 20, 所述自移动机器人 10包括机体 11, 机体 11上设 有控制机构 12和行走机构 13, 所述激光束发射器 20设置在自移动机器人 10作业区 域 Y的边缘, 所述的机体 11上对应设有激光接收器 15; 所述控制机构 12通过控制所 述行走机构 13使自移动机器人 10在所述作业区域 Y内按照激光束发射器 20发射的 激光束信号所引导的直线路径行走作业。根据预先规划的自移动机器人 10行走路径的 不同方向, 激光束发射器 20可以设置在作业区域 Y横向的边缘或纵向的边缘。 在自 移动机器人 10直线运动过程中, 为了便于激光束发射器 20的固定, 以及在自移动机 器人 10转弯时重新确定直线路径过程中, 便于激光束发射器 20的移动, 该激光束发 射器 20通过支架可移动设置在所述作业区域 Y的边缘。
为了提高信号发送和接收的有效性,所述激光束发射器 20为线激光束发射器 20', 其发射的激光信号为线激光束信号。 由于激光有聚光性较好的特性, 因此能够使得光 线在远距离传输时有很好的聚光性。 但如果利用点激光, 会对激光发射和接收的方向 要求很高, 激光信号的接收会非常不方便; 而如果利用线激光, 则既能满足远距离导 向的要求, 又能使激光信号的接收变得更加方便。 结合图 2所示, 本实施例中的线激 光束信号 L在垂直于所述作业区域 Y的平面内呈一定角度覆盖, 使仅由自移动机器人 10上的激光接收器被笼罩在信号覆盖范围之内。
激光发射装置设置在作业区域 Y的边缘上, 自移动机器人 10的运动轨迹除了直 线方式之外, 还需要转向或转弯, 为了便于控制, 所述自移动机器人 10的机体 11上 设有边缘传感器和信号发生器, 所述激光束发射器 20上对应设有信号接收器、控制单 元和驱动装置。 这样, 当自移动机器人 10运动到所述作业区域 Y的边缘时, 所述边 缘传感器检测到边缘信号后, 所述控制机构 12控制机体 11上的信号发生器发出相应 信号; 激光束发射器 20上的信号接收器接收到所述相应信号后, 所述控制单元控制驱 动装置驱动所述激光束发射器 20平移。 为了便于自移动机器人 10的作业覆盖整个作 业区域 Y,所述激光束发射器 20的平移距离最好为自移动机器人 10机体 11的一个身 位宽度, 这样就能够保证自移动机器人 10在作业区域 Υ工作的完整。
如图 1所示, 在本实施例中, 激光接收器 15设置在机体 11的顶部, 设置数量为 3个, 其中包括了设置在沿自移动机器人行走方向机体 11中心线上的 1个中心激光接 收器 151和以该中心激光接收器对称设置的 2个偏离激光接收器 152。 为了保证接收 到准确的激光束信号, 激光接收器需要在机体 11的顶部均布设置。
图 3为本发明激光全向接收器的内部结构示意图。 如图 3所示, 本实施例中的中 心激光接收器 151和偏离激光接收器 152均为全向接收器 15'。 每个全向接收器 15'包 括激光全向接收器盖 15Γ和激光全向接收器座 152', 激光全向接收器座 152'的内表面 为抛物线曲面。 激光全向接收器采用上述结构, 其主要工作原理是这样的: 激光全向 接收器盖 151 '的作用是将各个方向射入的光线反射成向下的竖直光线。 激光全向接收 器座 152'的内表面是抛物线曲面, 作用是能够将垂直于激光全向接收器座底面射入的 平行光聚焦到一点, 即: 该抛物面的焦点。 激光接收装置 153'安装在激光全向接收器 座的焦点位置, 以便接收激光全向接收器座 152'聚焦后的激光信号。 激光全向接收器 盖 15Γ和激光全向接收器座 152'装配完成后, 激光全向接收器能够将各个不同方向射 入到激光全向接收器的光线汇聚到激光全向接收器座上的激光接收装置 153'上, 以获 取激光信号。也正是因为激光全向接收器的上述特性, 使其在机体 11顶部设置很少的 数量, 也能够获得准确的信号, 正确引导自移动机器人 10沿预定轨迹运动。
图 4至图 6分别为本发明实施例一的运动状态一至运动状态三示意图。 如图 4至 图 6所示, 在本实施例中, 在自移动机器人 10的作业区域的上端边缘, 沿横向安装有 线激光束发生器 20', 且该线激光束发生器 20'固定在支架上, 沿垂直于作业区域 Υ的 方向发射。 自移动机器人 10的顶部设有 3个激光全向接收器用于接收线激光信号, 中 间安装一个中心激光接收器 151, 两边对称安装两个偏离激光接收器 152。 当自移动机 器人 10在作业区域 Υ上、 下运动时, 若仅中心激光接收器 151接收到信号 (当自移 动机器人距离激光束发生器 20'较近时), 或者中心激光接收器 151以及两边偏离激光 接收器 152均接收到信号(当自移动机器人距离激光束发生器 20'较远时,线激光束信 号 L 有一定角度的发散), 则认为机器人处在纵向行走状态; 若中心激光接收器 151 接收不到信号, 或者以自移动机器人行走的方向为基准, 只有左边或右边的偏离激光 接收器 152接收到信号, 或者中心激光接收器 151和左边偏离激光接收器 152接收到 激光信号; 或者中心激光接收器 151和右边偏离激光接收器 152接收到激光信号, 则 认为机器偏离了纵向, 经多次自动调节方向和判断之后方可再次回到纵向行走状态。 特殊情况下, 如图 4所示, 机器人机体刚刚偏离纵向一定角度, 此时只有中心激光接 收器接收到激光信号, 控制机构仍认为机体为纵向状态。 但机体对自身方位不做调整 沿着倾斜方向继续行走一段距离之后, 中心激光接收器接收不到信号, 或仅偏离激光 接收器接收到信号, 则控制机构判定机体偏离纵向, 对机体行走方向进行相应调整。
图 7为本发明实施例一的运动路径示意图; 图 8为本发明实施例一的运动过程示 意图。 如图 7所示, 自移动机器人 10 的运动路径为类 "弓"字形状。 自移动机器人 10的具体运动过程结合图 8所示, 整体来说, 设置在自移动机器人 10作业区域 Y边 缘的激光束发射器 20在支架上的固定位置发射激光信号, 自移动机器人 10的机体 11 上对应设有激光接收器 15, 激光接收器 15接收到激光信号, 按照激光信号的引导, 自移动机器人 10的控制机构 12通过控制其行走机构 13,在所述作业区域 Y内沿直线 路径行走作业。
具体来说, 自移动机器人 10以所述作业区域 Y的一个顶角的第一边缘 M为起始 位置 B l, 按照激光束发射器 20所发出的激光信号的引导, 沿所述作业区域 Y的第二 边缘 N, 在纵向上朝第三边缘 P直线行走。 自移动机器人 10位于作业区域 Y的 B 1位 置, 此时, 激光束发射器 20位于支架一端的 A1位置。 自移动机器人 10运动到所述 作业区域 Y的第三边缘 P, 此时位于自移动机器人 10位于 B2位置, 所述边缘传感器 检测到边缘信号后, 所述控制机构 12控制机体 11上的信号发生器发出相应信号; 激 光束发射器 20上的信号接收器接收到所述相应信号后,所述控制单元控制驱动装置驱 动所述激光束发射器 20沿所述支架, 在横向上平移一段距离 X后停止在 A2位置。
自移动机器人 10停止并在 B2位置原地转向 90 ° ,沿第三边缘 P在横向上对应平 移一段距离, 并判断是否碰到障碍物, 若碰到障碍物机器人停止行走, 否则自移动机 器人继续平移, 直到自移动机器人 10上的激光接收器再次接收到激光信号后, 停止在 B3位置并原地转向 90 ° 。 此时自移动机器人 10平移的距离与激光束发射器 20平移 的距离相同, 其长度均为 X。
自移动机器人 10重新按照激光信号的引导,从 B3位置沿所述作业区域 Y的第四 边缘 Q, 在纵向上朝第一边缘 M直线行走。
自移动机器人 10运动到所述作业区域 Y的第一边缘 M的 B4位置, 所述边缘传 感器检测到边缘信号后,所述控制机构 12控制机体 11上的信号发生器发出相应信号; 激光束发射器 20上的信号接收器接收到所述相应信号后,所述控制单元控制驱动装置 驱动所述激光束发射器 20沿所述支架, 在横向上平移一段距离 X后停止在 A3位置。
自移动机器人 10在 B4位置停止, 并原地转向 90 ° , 沿第一边缘 M在横向上对 应平移一段距离, 并判断是否碰到障碍物, 若碰到障碍物机器人停止行走, 否则自移 动机器人继续平移, 直到自移动机器人 10上的激光接收器再次接收到激光信号后, 停 止在 B5位置并原地转向 90° 。 此时自移动机器人 10平移的距离与激光束发射器 20 平移的距离相同, 其长度均为 X。
以上自移动机器人 10完成了如图 7所示的整体 "弓 "字形运动路径其中的一个完 整的路径单元, 重复上述步骤, 使自移动机器人 10多次折返, 直至完成对所述作业区 域 Y的作业。 为了保证自移动机器人 10能够对作业区域 Y执行全面彻底的作业而无 任何遗漏, 当自移动机器人 10完成一个机身宽度的作业之后, 激光发射装置横向移动 一个机身的距离, 当安装在自移动机器人 10机体 11顶部中心的激光全向接收器接收 到线激光信号时, 则认为自移动机器人 10移动到了准确的位置, 从而继续进行纵向的 直线作业。 因此, 自移动机器人 10所移动的距离与激光发射装置所移动的距离是一样 的。
在自移动机器人 10沿第二边缘 N或第四边缘 Q做直线运动的过程中, 实时遵循 着线激光束发生器 20'所发出的线激光束信号 L的引导, 以保持自移动机器人 10始终 不会偏离直线方向。 具体来说, 当仅所述中心激光接收器 151接收到激光束信号 L; 或者中心激光接收器 151 以及其两边数量相同的偏离激光接收器 152接收到激光束信 号, 则控制机构 12控制判定自移动机器人 10位于所述直线路径; 否则, 当中心激光 接收器 151接收不到激光束信号 L, 且以自移动机器人 10行走的方向为基准, 只有左 边或右边的偏离激光接收器 152接收到激光束信号 L; 或者中心激光接收器 151和两 边不同数量的偏离激光接收器 152接收到激光束信号 L, 且左边接收到激光束信号的 偏离激光接收器数量大于右边或右边接收到激光束信号的偏离激光接收器数量大于左 边, 则控制机构 12判定自移动机器人 10向右或向左偏离。 特别情况下, 当中心激光 接收器 151接收不到激光束信号 L, 且左边或右边的偏离激光接收器 152同时也接收 不到激光束信号 L, 机器人暂时无法判断是左偏还是右偏, 在机器人继续行走一段距 离后, 只有左边或右边的偏离激光接收器 152接收到激光束信号 L, 控制机构 12判定 自移动机器人 10向右或向左偏离。
自移动机器人 10的控制机构 12会根据上述中心激光接收器 151和偏离激光接收 器 152所接收到的激光束信号 L,控制行走机构 13调整自移动机器人 10的行走方向, 保证其沿直线运动。
综上所述, 本发明所提供的自移动机器人激光引导行走作业系统的控制方法包括 如下步骤: 步骤 100: 设置在自移动机器人作业区域边缘的激光束发射器在支架上的固定位 置发射激光信号;
步骤 200: 自移动机器人的机体上对应设有激光接收器, 激光接收器接收到激光 信号, 按照激光信号的引导, 自移动机器人的控制机构通过控制其行走机构, 在所述 作业区域 Y内沿直线路径行走作业。
所述步骤 200具体包括:
步骤 210: 自移动机器人以所述作业区域的第一边缘 M为起始位置, 按照激光束 发射器所发出的激光信号的引导, 沿所述作业区域的第二边缘 N, 在纵向上朝第三边 缘 P直线行走;
步骤 220: 自移动机器人运动到所述作业区域的第三边缘 P, 所述边缘传感器检测 到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束 发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 230: 自移动机器人停止并原地转向 90° , 沿第三边缘 P在横向上对应平移 一段距离, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器 人继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地 转向 90° ;
步骤 240:自移动机器人重新按照激光信号的引导,沿所述作业区域的第四边缘 Q, 在纵向上朝第一边缘 M直线行走;
步骤 250: 自移动机器人运动到所述作业区域的第一边缘 M, 所述边缘传感器检 测到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射 器上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光 束发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 260: 自移动机器人停止并原地转向 90° , 沿第一边缘 M在横向上对应平移 一段距离, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器 人继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地 转向 90° , 返回至步骤 210;
步骤 270, 机器人完成激光引导行走作业。
所述步骤 210和步骤 240中的直线行走, 具体包括:
当仅所述中心激光接收器接收到激光束信号;
或者中心激光接收器以及其两边数量相同的偏离激光接收器接收到激光束信号, 则控制机构控制判定自移动机器人位于所述直线路径;
否则, 当中心激光接收器接收不到激光束信号, 且以自移动机器人行走的方向为 基准, 只有左边或右边的偏离激光接收器接收到激光束信号;
或者中心激光接收器和两边不同数量的偏离激光接收器接收到激光束信号, 且左 边接收到激光束信号的偏离激光接收器数量大于右边或右边接收到激光束信号的偏离 激光接收器数量大于左边, 则控制机构判定自移动机器人向右或向左偏离。
如果将上述的自移动机器人激光引导行走作业系统及其控制方法应用到擦玻璃机 器人上, 可以将线激光束发生器通过安装支架安装在待清洁玻璃或墙体的一边, 安装 支架上还装有驱动安装支架运动的驱动装置,清洁机器人上装有相应的激光接收装置, 边缘传感器, 以及信号发射装置, 安装支架上还装有相应的信号接收装置, 激光引导 直线运动的工作原理参考激光引导机构在此不再熬述。
对于擦玻璃机器人来说, 可以包括水平路径清洁和竖直路径清洁两种清洁模式, 当执行水平清洁模式时, 线激光束发生器通过安装支架安装在玻璃或墙体的左侧或右 侧, 线激光束发生器可随安装支架上下移动, 初始时, 机器人沿着激光引导的横向运 动, 当运动到玻璃或墙体的边缘时, 机器人上的边缘传感器检测到边缘信号并将检测 到的信号通过信号发射单元发送给安装支架上的信号接收单元, 信号接收单元接收到 机器人运动到边缘的信号后, 通过驱动单元驱动激光束发生器随安装支架一起向上或 向下移动一定的距离, 随后机器人也向上或向下移动, 当机器人上的激光接收装置检 测到激光时又开始沿着激光路径直线运动。 当执行竖直清洁模式时, 线激光束发生器 通过安装支架安装在玻璃或墙体的上边或者下边, 线激光束发生器可随安装支架左右 移动, 初始时, 机器人沿着激光引导的纵向运动, 当运动到玻璃或墙体的边缘时, 机 器人上的边缘传感器检测到边缘信号并将检测到的信号通过信号发射单元发送给安装 支架上的信号接收单元, 信号接收单元接收到机器人运动到边缘的信号后, 通过驱动 单元驱动激光束发生器随安装支架一起向左或向右移动一定的距离, 随后机器人也向 左或向右移动, 当机器人上的激光接收装置检测到激光时又开始沿着激光路径直线运 动, 从而完成整个玻璃或墙面的清洁。
当然, 需要说明的是, 所述自移动机器人可以具备各种作业功能, 除了上述的擦 玻璃机器人, 还可以包括地面清洁机器人、 监控机器人等。 无论应用在哪种自移动机 器人上, 本发明所提供的激光引导行走系统的设置结构与控制方法基本相同, 当然, 也会有细节的技术特征相对于不同类型的自移动机器人, 进行适应性改变。 实施例二
图 9为本发明实施例二的结构示意图。 如图 9所示, 本实施例与实施例一的不同 之处仅仅在于激光接收器 15在自移动机器人 10的机体 11顶部上的设置位置。 与图 1 对比可知, 在实施例一中激光接收器的设置数量为 3个, 基本沿自移动机器人 10机体 11顶部表面的对角线等距离间隔设置, 设置方向为右上方-中心-左下方。 如图 9所示, 本实施例中激光接收器的设置数量也是 3个, 也是基本沿自移动机器人 10机体 11顶 部表面的对角线等距离间隔设置, 设置方向则为左上方-中心-右下方。 本实施例中的 激光接收器与实施例一相同, 也为全向激光接收器 15'。
本实施例中的其他技术特征与实施例一相同, 具体内容参见实施例一, 在此不再 赘述。 实施例三
图 10为本发明实施例三的结构示意图。 如图 10所示, 本实施例中激光接收器 15 的设置数量仍为 3个, 但是沿着自移动机器人 10机体 11顶部表面的中部水平等距离 间隔设置的。 本实施例中的激光接收器与实施例一相同, 也为全向激光接收器 15'。
本实施例中的其他技术特征与实施例一相同, 具体内容参见实施例一, 在此不再 赘述。 实施例四
本实施例中的激光接收器与前述三个实施例安装方式不同, 仅在机体顶部中心安 装 1个中心激光接收器, 且该中心激光接收器为全向激光接收器, 其结构和工作原理 与实施例一中相同。 由于激光接收器的安装方式及数量发生了变化, 则控制机构控制 机体沿激光引导直线路径行走的控制方法也发生了变化。 在本实施例中, 控制机构控 制机体沿激光引导直线路径行走的过程是这样实现的: 当中心激光接收器接收到激光 束信号, 则控制机构判定自移动机器人位于所述直线路径; 否则, 控制机构判定自移 动机器人偏离所述直线路径, 控制机构以自移动机器人的行走方向为基准进行向左或 向右的转向行走调整, 直到中心激光接收器重新接收到激光束信号。
本实施例中的其他技术特征与实施例一相同, 具体内容参见实施例一, 在此不再 赘述。 实施例五 图 11为本发明实施例五的结构示意图。 如图 11所示, 本实施例中的激光接收器 与前述四个实施例的类型不同, 为普通的单向激光接收器 15a。 由于采用了不同类型 的激光接收器, 其工作方式发生了变化, 因此激光接收器在自移动机器人 10机体 11 上的设置方式也相应发生了变化。单向激光接收器同时设置在机体 11的前部、后部和 左、 右两侧, 其中, 机体 11的前部和后部至少包括设置在中心的中心激光接收器 151 和以该中心对称的两个偏离激光接收器 152。
在本实施例中, 自移动机器人 10保持直线行走的过程是这样实现的: 结合图 11 所示, 本实施例中, 由于在自移动机器人 10的前方、 后方、 左侧和右侧都分别安装了 1个或多个单向激光信号接收装置 15a, 当在作业区域 Y的一侧边缘上安装的线激光 束发生器 20沿与作业区域 Y垂直的方向发射激光束 L的时候, 如果仅位于前方和后 方的中心激光接收器 151接收到信号, 或者中心激光接收器 151 以及两边偏离激光接 收器 152均接收到激光信号, 则认为自移动机器人 10是沿着直线方向行走的; 如果中 心激光接收器 151接收不到信号, 且以机器人的行走方向为基准, 只有左边或右边的 偏离激光接收器 152接收到信号, 或者中心激光接收器 151 以及左边的偏离激光接收 器 152接收到信号或中心激光接收器 151以及右边的偏离激光接收器 152接收到信号, 则认为自移动机器人 10 向右或向左偏离了激光速信号 L所引导的纵向, 经多次自动 调节方向后方可再次回到纵向行走状态。 综上所述, 从上述的五个实施例中可以看出, 本发明自移动机器人激光引导行走 作业系统如果要完成整个工作过程, 自移动机器人的机体需要保证在四周都可以接收 到线激光信号, 本发明则通过了两种方式实现这种控制。 其一是在自移动机器人的机 体顶端安装全向激光接收器, 由于全向激光接收器在四周都可以接收到激光信号, 又 因其安装位置处于机体顶端, 所以无论在哪个方位都不会对激光接收器接收信号造成 阻挡; 其二是在自移动机器人的机体周身根据需要安装普通的单向激光接收器, 由于 在机体四周都安装激光接收器, 因此同样可以达到全面接收激光信号的目的。 本发明 利用了激光的聚光性能比较好的特性, 通过对线激光束发射器和接收器的合理设置, 采用线激光的激光束信号, 既满足远距离导向的要求, 又能使激光信号的接收非常方 便, 该系统结构紧凑, 控制方法简单易行, 能够在较远的距离控制自移动机器人以较 小的直线误差直线运动, 工作效率高。

Claims

权利要求书
1、 一种自移动机器人激光引导行走作业系统, 包含自移动机器人(10)和激光束 发射器 (20), 所述自移动机器人 (10) 包括机体 (11 ), 机体 (11 ) 上设有控制机构
( 12) 和行走机构 (13 ), 其特征在于, 所述激光束发射器 (20) 设置在自移动机器人 作业区域的边缘, 所述的机体 (11 ) 上对应设有激光接收器 (15 ); 所述控制机构通过 控制所述行走机构 (13 ) 使自移动机器人 (10) 在所述作业区域内按照激光束发射器 ( 20 ) 发射的激光束信号所引导的直线路径行走作业。
2、 如权利要求 1所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 激光束发射器 (20 ) 设置在所述作业区域横向的边缘或纵向的边缘。
3、 如权利要求 2所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 的激光束发射器 (20) 通过支架可移动设置在所述作业区域的边缘。
4、 如权利要求 1所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 激光束发射器(20)为线激光束发射器(20' ),其发射的激光信号为线激光束信号(L)。
5、 如权利要求 4所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 线激光束信号 (L) 在垂直于所述作业区域的平面内覆盖。
6、 如权利要求 5所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 机体 (11 ) 上设有边缘传感器和信号发生器, 所述激光束发射器 (20 ) 上对应设有信 号接收器、 控制单元和驱动装置;
自移动机器人 (10 ) 运动到所述作业区域的边缘, 所述边缘传感器检测到边缘信 号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 (20 ) 上 的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束发 射器 (20 ) 平移。
7、 如权利要求 6所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 激光束发射器 (20 ) 平移的距离为自移动机器人机体 (11 ) 的一个身位宽度。
8、 如权利要求 1所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 激光接收器 (15) 设置在机体 (11) 的顶部, 包含设置在沿自移动机器人行走方向机 体 (11) 中心线上的中心激光接收器 (151) 以及以该中心激光接收器 (151) 对称设 置的偏离激光接收器 (152)。
9、 如权利要求 8所述的自移动机器人激光引导行走作业系统, 其特征在于, 所述 中心激光接收器 (151) 和偏离激光接收器 (152) 在机体 (11) 的顶部均布设置。
10、 如权利要求 9所述的自移动机器人激光引导行走作业系统, 其特征在于, 所 述中心激光接收器 (151) 和偏离激光接收器 (152) 均为全向接收器, 包括激光全向 接收器盖 (15Γ) 和激光全向接收器座 (152'), 所述激光全向接收器座 (152') 的内 表面为抛物线曲面, 将各个不同方向射入的光线汇聚到设置在所述激光全向接收器座 (152') 上的激光接收装置 (153,) 上。
11、 如权利要求 1所述的自移动机器人激光引导行走作业系统, 其特征在于, 所 述激光接收器 (15) 同时设置在机体 (11) 的前部、 后部和左右两侧, 机体 (11) 的 前部和后部分别包括设置在中心的中心激光接收器(151)以及以该中心对称的偏离激 光接收器 (152);
或者机体 (11) 的前部和后部仅包括设置在中心的中心激光接收器 (151)。
12、 如权利要求 11所述的自移动机器人激光引导行走作业系统, 其特征在于, 所 述的激光接收器为单向激光接收器 (15a)。
13、 如权利要求 1所述的自移动机器人激光引导行走作业系统, 其特征在于, 所 述激光接收器 (15) 为全向接收器, 设置在机体 (11) 顶部的中心。
14、 如权利要求 1-13任一项所述的自移动机器人激光引导行走作业系统, 其特征 在于, 所述的自移动机器人为擦玻璃机器人、 地面清洁机器人或监控机器人。
15、 一种自移动机器人激光引导行走作业系统的控制方法, 其特征在于, 该方法 包括如下步骤: 步骤 100: 设置在自移动机器人作业区域边缘的激光束发射器在支架上的固定位 置发射激光信号;
步骤 200: 自移动机器人的机体上对应设有激光接收器, 激光接收器接收到激光 信号, 按照激光信号的引导, 自移动机器人的控制机构通过控制其行走机构, 在所述 作业区域内沿直线路径行走作业。
16、 如权利要求 15所述的控制方法, 其特征在于, 所述步骤 200具体包括: 步骤 210: 自移动机器人以所述作业区域的第一边缘为起始位置, 按照激光束发 射器所发出的激光信号的引导, 沿所述作业区域的第二边缘, 在纵向上朝第三边缘直 线行走;
步骤 220: 自移动机器人运动到所述作业区域的第三边缘, 所述边缘传感器检测 到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束 发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 230 : 自移动机器人停止并原地转向 90° , 沿第三边缘在横向上对应平移, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器人继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地转向 90 ° ; 步骤 240: 自移动机器人重新按照激光信号的引导, 沿所述作业区域的第四边缘, 在纵向上朝第一边缘直线行走;
步骤 250: 自移动机器人运动到所述作业区域的第一边缘, 所述边缘传感器检测 到边缘信号后, 所述控制机构控制机体上的信号发生器发出相应信号; 激光束发射器 上的信号接收器接收到所述相应信号后, 所述控制单元控制驱动装置驱动所述激光束 发射器沿所述支架, 在横向上平移一段距离后停止;
步骤 260 : 自移动机器人停止并原地转向 90° , 沿第一边缘在横向上对应平移, 并判断是否碰到障碍物, 若碰到障碍物则进入步骤 270, 否则自移动机器人继续平移, 直到自移动机器人上的激光接收器再次接收到激光信号后, 停止并原地转向 90° , 返 回至步骤 210;
步骤 270: 机器人完成激光引导行走作业。
17、 如权利要求 16所述的控制方法, 其特征在于, 所述激光接收器包括中心激光 接收器和偏离激光接收器, 所述步骤 210和步骤 240中的直线行走, 具体包括: 当仅所述中心激光接收器接收到激光束信号;
或者中心激光接收器以及其两边数量相同的偏离激光接收器接收到激光束信号, 则控制机构控制判定自移动机器人位于所述直线路径;
否则, 当中心激光接收器接收不到激光束信号, 且以自移动机器人行走的方向为 基准, 只有左边或右边的偏离激光接收器接收到激光束信号;
或者中心激光接收器和两边不同数量的偏离激光接收器接收到激光束信号, 且左 边接收到激光束信号的偏离激光接收器数量大于右边或右边接收到激光束信号的偏离 激光接收器数量大于左边, 则控制机构判定自移动机器人向右或向左偏离。
18、 如权利要求 16所述的控制方法, 其特征在于, 所述激光接收器仅包括中心激 光接收器, 所述步骤 210和步骤 240中的直线行走, 具体包括:
当所述中心激光接收器接收到激光束信号, 则控制机构判定自移动机器人位于所 述直线路径;
否则, 控制机构判定自移动机器人偏离所述直线路径, 控制机构以自移动机器人 的行走方向为基准进行向左或向右的转向行走调整, 直到中心激光接收器重新接收到 激光束信号。
PCT/CN2014/073035 2013-03-08 2014-03-07 自移动机器人激光引导行走作业系统及其控制方法 WO2014135113A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14760485.4A EP2966528A1 (en) 2013-03-08 2014-03-07 Self-mobile robot laser-guided travel operating system and control method therefor
US14/773,653 US20160082595A1 (en) 2013-03-08 2014-03-07 Self-Mobile Robot Laser-Guided Travel Operating System and Control Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310074720.8A CN104029207B (zh) 2013-03-08 2013-03-08 自移动机器人激光引导行走作业系统及其控制方法
CN201310074720.8 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014135113A1 true WO2014135113A1 (zh) 2014-09-12

Family

ID=51460317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073035 WO2014135113A1 (zh) 2013-03-08 2014-03-07 自移动机器人激光引导行走作业系统及其控制方法

Country Status (4)

Country Link
US (1) US20160082595A1 (zh)
EP (1) EP2966528A1 (zh)
CN (1) CN104029207B (zh)
WO (1) WO2014135113A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402574A (zh) * 2017-08-22 2017-11-28 上海合时智能科技有限公司 机器人自主充电系统和方法
CN109425352A (zh) * 2017-08-25 2019-03-05 科沃斯机器人股份有限公司 自移动机器人路径规划方法
CN114260813A (zh) * 2021-12-29 2022-04-01 西安奕斯伟材料科技有限公司 水平度调整装置、抛光设备及水平度调整方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218119B4 (de) * 2014-09-10 2021-03-04 Siemens Healthcare Gmbh Patiententransportsystem
CN104850126B (zh) * 2015-05-28 2018-04-06 山东省科学院自动化研究所 一种墙面施工机器人行走中定位检测装置及方法
CN105388894A (zh) * 2015-06-23 2016-03-09 现代富博(天津)智能装备科技有限公司 一种自主行走轨迹线的划定方法及装置
CN105157697B (zh) * 2015-07-31 2017-05-17 天津大学 基于光电扫描的室内移动机器人位姿测量系统及测量方法
CN107030686B (zh) * 2016-02-04 2023-08-29 科沃斯机器人股份有限公司 自移动机器人系统及其方向校准方法
CN107305386A (zh) * 2016-04-22 2017-10-31 王锦海 一种智能光学导引系统
CN106406312B (zh) * 2016-10-14 2017-12-26 平安科技(深圳)有限公司 导览机器人及其移动区域标定方法
CN107976995B (zh) * 2016-10-24 2021-06-11 苏州宝时得电动工具有限公司 智能移动系统、智能移动装置及其移动方法
CN108121359A (zh) * 2016-11-29 2018-06-05 沈阳新松机器人自动化股份有限公司 一种购物机器人
DE102016224693B4 (de) * 2016-12-12 2018-11-08 Kuka Roboter Gmbh Vorrichtungen und Verfahren zum Koppeln eines tragbaren Handbediengeräts mit einem Manipulator
KR20180096059A (ko) * 2017-02-20 2018-08-29 엘지전자 주식회사 객체의 특성이 적용된 맵을 작성하는 방법 및 이를 구현하는 로봇
CN108536135B (zh) * 2017-03-06 2023-10-27 苏州宝时得电动工具有限公司 路径控制方法、装置及清洁机器人
CN106975874A (zh) * 2017-06-02 2017-07-25 成都福莫斯智能系统集成服务有限公司 激光引导的切割机器人控制系统
CN108036719B (zh) * 2017-11-07 2020-10-20 扬州莱达光电技术有限公司 一种基于光电测量的焊接辅助定位仪
CN109991968B (zh) * 2017-12-29 2022-05-10 深圳市优必选科技有限公司 控制机器人绕圆的方法、机器人及计算机可读存储介质
CN110063142B (zh) * 2018-01-24 2022-02-11 苏州宝时得电动工具有限公司 割草机的回归方法和装置
CN108319269A (zh) * 2018-03-09 2018-07-24 沈阳市中兴防爆电器总厂有限公司 防爆智能控制配电箱
CN109032169B (zh) * 2018-06-15 2024-03-26 岭南师范学院 一种基于激光传导的无人机降落装置
CN108748989A (zh) * 2018-07-23 2018-11-06 南京铁道职业技术学院 激光定位热熔装置
CN109375628A (zh) * 2018-11-28 2019-02-22 南京工程学院 一种采用激光定向和射频定位的变电站巡检机器人导航方法
CN109343543A (zh) * 2018-12-13 2019-02-15 合肥泰禾光电科技股份有限公司 一种车辆直行导航方法以及车辆直行导航装置
CN109709959A (zh) * 2018-12-27 2019-05-03 合肥泰禾光电科技股份有限公司 偏移量计算方法、装置、自动行驶控制方法及行走机构
CN112110391A (zh) * 2019-06-20 2020-12-22 杭州孚亚科技有限公司 一种作业系统
CN112859831B (zh) * 2020-07-07 2022-10-04 陈凤阳 一种基于可见激光铺设路径的agv行走引导系统及其方法
CN112754359B (zh) * 2020-12-31 2023-01-17 武汉理工大学 一种应用激光传感及充电技术的智能清扫机器人
CN113741544A (zh) * 2021-10-08 2021-12-03 北京硬石头科技有限公司 基于激光导航的农业室内无人机巡检系统及巡检方法
CN114505842A (zh) * 2022-03-14 2022-05-17 深圳昱拓智能有限公司 一种履带式智能巡检机器人
KR20240047181A (ko) * 2022-10-04 2024-04-12 현대자동차주식회사 모바일 로봇 가이드 장치 및 모바일 로봇 가이드 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731123B2 (ja) * 2002-12-20 2006-01-05 新菱冷熱工業株式会社 物体の位置検出方法及び装置
CN201482774U (zh) 2009-05-29 2010-05-26 宋树建 一种全自动玻璃幕墙清洗机
CN201917661U (zh) * 2010-11-29 2011-08-03 浙江亚特电器有限公司 一种移动机器人定位系统
WO2012005404A1 (ko) * 2010-07-06 2012-01-12 엘지전자 주식회사 자동 청소기
CN202141947U (zh) * 2011-06-17 2012-02-08 泰怡凯电器(苏州)有限公司 擦玻璃机器人的直角区域移动控制系统
CN203125524U (zh) * 2013-03-08 2013-08-14 科沃斯机器人科技(苏州)有限公司 自移动机器人激光引导行走作业系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488716A (en) * 1987-09-30 1989-04-03 Komatsu Mfg Co Ltd Automatic driving device for traveling vehicle
JP2771353B2 (ja) * 1991-08-08 1998-07-02 株式会社クボタ 作業車誘導用のビーム光追尾装置
JPH0816237A (ja) * 1991-10-28 1996-01-19 Shimizu Corp ロボットの自動運転システム
DE202005000270U1 (de) * 2005-01-10 2006-05-24 Marantec Antriebs- Und Steuerungstechnik Gmbh & Co. Kg Lichtschrankenhalterung
KR100863245B1 (ko) * 2006-07-18 2008-10-15 삼성전자주식회사 거리측정 기능을 갖는 비컨, 이를 이용한 위치인식시스템및 그 위치인식방법
TWI330305B (en) * 2006-12-28 2010-09-11 Ind Tech Res Inst Method for routing a robotic apparatus to a service station and robotic apparatus service system using thereof
DE102009059212A1 (de) * 2009-08-12 2011-02-17 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Gerät sowie Verfahren zur Zielführung eines solchen Gerätes
CN101916110B (zh) * 2010-08-11 2012-05-23 方正 一种清扫机器人和清扫机器人的行走控制方法
CN102608998A (zh) * 2011-12-23 2012-07-25 南京航空航天大学 嵌入式系统的视觉导引agv系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731123B2 (ja) * 2002-12-20 2006-01-05 新菱冷熱工業株式会社 物体の位置検出方法及び装置
CN201482774U (zh) 2009-05-29 2010-05-26 宋树建 一种全自动玻璃幕墙清洗机
WO2012005404A1 (ko) * 2010-07-06 2012-01-12 엘지전자 주식회사 자동 청소기
CN201917661U (zh) * 2010-11-29 2011-08-03 浙江亚特电器有限公司 一种移动机器人定位系统
CN202141947U (zh) * 2011-06-17 2012-02-08 泰怡凯电器(苏州)有限公司 擦玻璃机器人的直角区域移动控制系统
CN203125524U (zh) * 2013-03-08 2013-08-14 科沃斯机器人科技(苏州)有限公司 自移动机器人激光引导行走作业系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402574A (zh) * 2017-08-22 2017-11-28 上海合时智能科技有限公司 机器人自主充电系统和方法
CN109425352A (zh) * 2017-08-25 2019-03-05 科沃斯机器人股份有限公司 自移动机器人路径规划方法
CN114260813A (zh) * 2021-12-29 2022-04-01 西安奕斯伟材料科技有限公司 水平度调整装置、抛光设备及水平度调整方法
CN114260813B (zh) * 2021-12-29 2023-06-23 西安奕斯伟材料科技有限公司 水平度调整装置、抛光设备及水平度调整方法

Also Published As

Publication number Publication date
EP2966528A1 (en) 2016-01-13
CN104029207B (zh) 2017-05-10
CN104029207A (zh) 2014-09-10
US20160082595A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
WO2014135113A1 (zh) 自移动机器人激光引导行走作业系统及其控制方法
JP6392269B2 (ja) 自律カバレッジロボットナビゲーションシステム
CN101375781B (zh) 地面处理系统及地面处理装置与充电座的对接方法
CN203125524U (zh) 自移动机器人激光引导行走作业系统
EP2581797B1 (en) Beacon collision avoidance method for a mobile robot system
JP5396577B2 (ja) 動作システム
JP5255448B2 (ja) 自律カバレッジロボットナビゲーションシステム
EP2312411B1 (en) Docking station for a cleaning robot with duration coded guiding signals
CN201469183U (zh) 地面处理系统
CN100999078A (zh) 一种机器人自动充电方法及其自动充电装置
JP2015519965A (ja) 経路に沿ってロボット掃除機を誘導するシステムおよび方法
RU2323465C1 (ru) Система для направления движущегося объекта
CN104181925A (zh) 一种自动校准行驶路线的自动地面清洁机器人
JP2009037378A (ja) 自律走行装置およびプログラム
JP3206660U (ja) 充電ステーション及び充電システム
WO2019100624A1 (zh) 一种自主移动的板上清洗方法及板上清洗机器人
JP3206659U (ja) 自走装置の複合式仮想壁及び灯台システム
TW201335728A (zh) 充電站與充電系統
CN107263509B (zh) 公共清扫机器人路径规划系统及控制方法
KR20100123581A (ko) 이동 로봇 시스템 및 그 제어방법
CN113749566A (zh) 清洁机、基站及清洁机对位系统
CN108634872A (zh) 自移动清洁机器人系统
WO2019206282A1 (zh) 自动返回装置、系统及自动行走设备自动返回方法
CN101670580A (zh) 智能机器人系统及其无障碍导向方法和电子导向镜
CN111399521A (zh) 用于变电站巡视的智能机器人控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760485

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14773653

Country of ref document: US