WO2014133291A1 - (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법 - Google Patents

(2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법 Download PDF

Info

Publication number
WO2014133291A1
WO2014133291A1 PCT/KR2014/001478 KR2014001478W WO2014133291A1 WO 2014133291 A1 WO2014133291 A1 WO 2014133291A1 KR 2014001478 W KR2014001478 W KR 2014001478W WO 2014133291 A1 WO2014133291 A1 WO 2014133291A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
butyric acid
hydroxy
group
amino
Prior art date
Application number
PCT/KR2014/001478
Other languages
English (en)
French (fr)
Other versions
WO2014133291A9 (ko
Inventor
강민석
이현일
엄기남
김진향
Original Assignee
주식회사 아미노로직스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아미노로직스 filed Critical 주식회사 아미노로직스
Priority to US14/770,445 priority Critical patent/US9862978B2/en
Publication of WO2014133291A1 publication Critical patent/WO2014133291A1/ko
Publication of WO2014133291A9 publication Critical patent/WO2014133291A9/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/12Formation of amino and carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • C07C227/20Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters by hydrolysis of N-acylated amino-acids or derivatives thereof, e.g. hydrolysis of carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds

Definitions

  • the present invention relates to a process for the preparation of (2RS) -amino- (3S) -hydroxy-butyric acid or derivatives thereof and to intermediates for the preparation thereof. More specifically, the present invention provides a mixture of non-natural amino acids D- (2R, 3S) -threonine and L-allo- (2S, 3S) -threonine, ie, (2RS) -amino, using chemical and enzymatic synthesis. A method for preparing-(3S) -hydroxy-butyric acid or a derivative thereof in high yield and high purity, and an intermediate for preparing the same.
  • L-threonine one of natural amino acids, is not only widely used as a feed and food additive, but also used as a synthesis and production source of sap or other medicines.
  • Unnatural amino acids D-threonine and D- or L-allo-threonine are also highly demanded as useful chiral blocks.
  • threonine which has the common name 2-amino-3-hydroxy-butyric acid, has two stereocenters at positions 2 and 3 in the molecule, there are four stereoisomers, specifically, L- ( 2S, 3R) -Threonine (Formula 1), D- (2R, 3S) -Threonine (Formula 2), D-allo- (2R, 3R) -Threonine (Formula 3) and L-Allo- (2S, 3S) -Has a structure of threonine (Formula 4).
  • Korean Patent Publication No. 2003-0036199 discloses a method of fermentatively preparing a natural amino acid L-threonine using enterobacteria.
  • methods for producing L-threonine by fermentation through genetic recombination have been disclosed in numerous patents and literature.
  • U.S. Patent No. 4,211,840 discloses a method for producing D-threonine using microorganisms or enzymes, wherein the microorganism is cultured using a hydantoin derivative as a nitrogen source, and the cultured microorganism is contacted with various types of hydantoin derivatives.
  • the production of several types of D-amino acids, including D-threonine, is disclosed.
  • the embodiment of the patent shows a problem that most of the yield does not exceed 50%.
  • WO 01 / 40450A1 discloses a method for producing a chiral alcohol compound, which is a raw material for treating hyperlipidemia, by reducing a ketone compound using a reductase.
  • a reductase gene is isolated from a new microorganism isolated from nature or a microorganism known in the paper or patent, the isolated gene is transplanted into plasmid, transformed in E. coli, the resulting E. coli is cultured, and then The cells obtained by crushing and centrifugation may be used for the reaction as it is, or the supernatant recovered by crushing and centrifuging the E. coli may be used for the reaction.
  • Patent Document 1 Korean Patent Publication No. 2003-0036199
  • Patent Document 2 U.S. Patent 4,211,840
  • Patent Document 3 International Patent Publication WO01 / 40450A1
  • Non-Patent Document 1 Organic Syntheses, Coll. Vol. 3, p.813 (1955)
  • Non-Patent Document 2 Organic Syntheses, Coll. Vol. 20, p. 101 (1940)
  • Non-Patent Document 3 Tetrahedron: Asymmetry Vol. 2, No. 1, pp. 555-56 l. 1991
  • Non-Patent Document 4 Helv. Chim. Acta vol 70; 232-236, 1987
  • the inventors have used (2RS) -amino- (3S) -hydroxy-butyric acid or derivatives thereof in which the alcohol group at position 3 of threonine is regulated to have an S-stereotropic orientation, using chemical and enzymatic reduction methods from an achiral starting material.
  • (2RS) -amino- (3S) -hydroxy-butyric acid or derivatives thereof in which the alcohol group at position 3 of threonine is regulated to have an S-stereotropic orientation, using chemical and enzymatic reduction methods from an achiral starting material.
  • D-threonine and L-alloline in which the alcohol group at position 3 of threonine is fixed to S-form using chemical and enzymatic reduction methods
  • An effective method for producing threonine in high yield and high purity has been developed.
  • the present inventors have mixed the D-threonine (2R, 3S) of formula (2) and L- allo-threonine (2S, 3S) of formula (3) by the enzymatic reduction reaction, that is represented by the formula (2RS Amino- (3S) -hydroxy-butyric acid or derivatives thereof have been produced with high yield and high purity.
  • (2RS) -amino- (3S) -hydroxy-butyric acid or a derivative thereof, which is a diastereomeric mixture of threonine can be prepared in high yield and high purity.
  • the first object of the present invention is (2RS) -alkylcarbonylamino- (3S) -hydroxy-butyric acid alkylester by enzymatic reduction from (2RS) -alkanamido-3-oxo-butyric acid alkylester or derivatives thereof It provides a method for preparing (2RS) -amino- (3S) -hydroxy-butyric acid or a derivative thereof of Formula 5, comprising the step of obtaining a derivative thereof.
  • the first object as shown as an example in Scheme 1 below, by the enzymatic reduction reaction, the third position (beta position) of the threonine is fixed to S and the second position (alpha position) is R-form and S It can be achieved by obtaining threonine with -form, and can be conceptualized by the following scheme.
  • R 1 represents a hydrogen atom, a straight or branched alkyl group, preferably a C 1 ⁇ C 4 alkyl group, alkylcarbonyl, alkoxycarbonyl, phenyl group, benzyl group or phenethyl group
  • R 2 is a straight chain Or a branched alkyl group, preferably a C 1 to C 4 alkyl group, a phenyl group, a benzyl group or a phenethyl group, wherein the above alkyl is preferably a C 1 to C 4 alkyl group, which is further substituted or unsubstituted with hydroxy or halogen.
  • R 2 is a straight chain Or a branched alkyl group, preferably a C 1 to C 4 alkyl group, a phenyl group, a benzyl group or a phenethyl group, wherein the above alkyl is preferably a C 1 to C 4 alkyl group, which
  • the process for preparing (2RS) -amino- (3S) -hydroxy-butyric acid or derivatives thereof may comprise the following steps (i), (ii), (iii) and (iv) Can:
  • R 1 and R 2 are as defined above.
  • a second object of the present invention is to provide compounds of formula (7) and compounds of formula (8), respectively, as intermediates that can be used in the preparation of (2RS) -amino- (3S) -hydroxy-butyric acid or derivatives thereof.
  • the compound of formula 7 may be obtained by a process comprising the step (i), and the compound of formula 8 may be obtained by a process comprising the step (ii). Can be.
  • the hydrogenation of step (iii) can be carried out by hydrogenating palladium / carbon with hydrogen gas, wherein the reagents used are organic acid anhydrides, such as acetic anhydride or di-tert, -Butyl-dicarbonate can be used, and a chloroformate compound of formula 11, for example benzyl chloroformate, can be used.
  • the reagents used are organic acid anhydrides, such as acetic anhydride or di-tert, -Butyl-dicarbonate can be used, and a chloroformate compound of formula 11, for example benzyl chloroformate, can be used.
  • Enzymatic reduction of step (iv) consists of Saccharomyces, Lactobacillus, Candida, Rhodococcus, Pseudomonas or Pichia It may be carried out using a reductase derived from one or more microorganisms selected from the group or a fraction containing the same.
  • the enzymatic reduction described above consists of Candida magnolia , Candida parapsilosis , Rhodococcus erythropolis or Devosia riboflavina .
  • a reductase derived from one or more microorganisms selected from the group or fractions containing the same, more specifically Candida magnolia reductase, Candida parapsilosis reductase, Rhodococcus erythropolis reductase and Devosia riboflavina reductase Can be carried out using a reductase.
  • microorganism-bearing reductase is microbiologically cultured, isolated and / or purified by a method commonly used in the art or a method described in the literature described herein. And / or those which have been genetically transformed, cultured, isolated and / or purified, and commercially available ones may be used.
  • the deprotection of step (v) can be carried out using most of the methods and reagents conventionally used for the deprotection of ester protecting groups or alkanamido protecting groups, for example ethanol. It can be carried out using an acid catalyst such as hydrochloric acid in an alcohol solvent such as.
  • Step (i) is a hydroxyimidation reaction, in which a 3-oxo-butyric acid alkylester of formula 6 is reacted with sodium nitrite (NaNO 2 ) to obtain an oxime compound of formula 7.
  • the reaction temperature may be selected from 20 ⁇ 0 °C, the reaction solvent may be used acetic acid, water or a mixed solvent thereof, sodium nitrite may be preferably used 1 to 2 equivalents.
  • Step (ii) of Scheme 2 is a reduction or hydrogenation reaction of a hydroxyimino group, wherein the 2- (hydroxyimino) -3-oxo-butyric acid alkylester of the formula (7) is reduced or hydrogenated to give (2RS)- Alkylcarbonylamino-3-oxo-butyric acid alkylester.
  • Step (ii) is for example 0.2-0.5 equivalents of 10% palladium / carbon and 2-3 equivalents of an organic acid anhydride of formula 8 (e.g. acetic acid) in an alcoholic solvent such as ethanol under 1-5 atmospheres of hydrogen gas.
  • Anhydride) or di-tert-butyl-dicarbonate and may be achieved by hydrogenation in the presence of a chloroformate compound of formula 9 (eg benzyl chloroformate).
  • Step (iii) of Scheme 3 is an enzymatic reduction of the beta-keto group, wherein the 2RS-alkylcarbonylamino-3-oxo-butyric acid alkylester of formula 8 is enzymatically or microbially reduced to reduce the 2RS) -alkanamido- (3S) -hydroxybutyric acid ester.
  • the enzymatic reduction reaction is usually carried out in water, the reaction temperature can be chosen at a temperature, specifically at a temperature of 10-40 ° C., especially near room temperature, and the pH of the reaction solution can be maintained at approximately 6.5. have.
  • Reductases that can be used in the present invention are, as mentioned above, Saccharomyces, Lactobacillus, Candida, Rhodococcus, Pseudomonas or Peach. It may be derived from one or more microorganisms selected from the group consisting of the subfamily (Pichia), specifically from the group consisting of Candida magnolia reductase, Candida parapsilosis reductase, Rhodococcus erythropolis reductase and Devosia riboflavina reductase One or more reductases may be used.
  • Step (iv) is a deprotection reaction, by deprotecting the (2RS) -alkylcarbonylamino- (3S) -hydroxybutyric acid alkyl ester of formula (9) to (2RS) -amino- (3S) -hydride of formula (5).
  • This is a step of obtaining oxy-butyric acid.
  • Step (iv) is, for example, adding 3N hydrochloric acid to the reaction and refluxing for 3 hours to acetyl group, tert-butoxycarbonyl (Boc) or benzyloxycarbonyl (Cbz) and carboxylic acid group attached to the amine group. This can be achieved by simultaneously removing the ester groups attached to it.
  • ethanol Water, ethanol, methanol, isopropanol, ethyl acetate and the like can be used as the reaction solvent, and ethanol may be particularly preferable.
  • the method for deprotection of acetamido group, tert-butoxycarbonyl (Boc) or benzyloxycarbonyl (Cbz) and / or ester group is not particularly limited, and if necessary, only one of them may be selectively removed. You can also protect it.
  • the derivative of (2RS) -amino- (3S) -hydroxy-butyric acid or the derivative of other compounds of the formula (5) is an amino group, a hydroxyl group and / or a carboxylic acid group which is a reactive group included in the compound as a substituent or protecting group. It means a compound that is substituted or protected.
  • the kind of protecting group of the amino group, hydroxy group and / or carboxylic acid group is not particularly limited, and a protecting group generally used may be used for the compounds of the present invention.
  • the amino group may be protected in the form of mono- or dialkylamino, alkylamido, alkylimido, alkylcarbonylamino, alkoxycarbonylamino, and the protecting group of the hydroxy group is alkylether or alkylcarbonyloxy
  • carboxylic acid groups may be protected in the form of alkyl esters, alkylamides and the like.
  • the enzymatic reduction reaction refers to a reaction of forming a hydroxyl group by reducing a ketone group or an aldehyde group of an organic compound using a microorganism itself or a reductase derived from a microorganism.
  • Reductase derived from a microorganism means a reductase extracted from a naturally or genetically modified microorganism or a mixture or fraction containing the same.
  • Reductases used in the enzymatic reduction reaction according to the present invention are oxidoreductases (EC 1.1 series, alcohol oxidoreductases) that act as donors of the CH-OH group or oxidoreductases that act as donors of the aldehyde or oxo group ( EC 1.2), but is not limited to these.
  • Reductases derived from microorganisms referred to in the present invention or fractions containing them are described, for example, in Manatis, T. (1989) Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York Prepared by those skilled in the art. Specifically, the reductase gene is cloned from the target microorganism by PCR, followed by cleavage of a specific position using a restriction enzyme, binding to a specific region of the plasmid using a ligase, and then a recombinant DNA plasmid. To prepare.
  • the recombinant DNA plasmid thus prepared was transformed in Escherichia coli, cultured Escherichia coli, centrifuged to recover the culture, crushed culture obtained by ultrasound, centrifuged to remove the mycelium to obtain a reductase fraction. can do.
  • the type of microorganism from which the reductase which can be used in the present invention can be derived is not particularly limited, but specifically, Saccharomyces, Lactobacillus, Candida, and Rhodococcus (Saccharomyces) Microorganisms belonging to the genus Rhodococcus, Pseudomonas or Pichia may be mentioned.
  • Candida magnolia reductase, Candida parapsilosis reductase, Rhodococcus erythropolis reductase and Devosia riboflavina reductase which can be preferably used according to the present invention, are described in Maniatis, T. (1989) Molecular cloning: a laboratory manual. , 2nd ed., Cold Spring Harbor Laboratory Press, New York, can be easily prepared by those skilled in the art, but is not limited to those prepared by the method described in the document.
  • One of the advantages of the present invention is that starting materials are readily available compounds from which expensive (2RS) -amino- (3S) -hydroxy-butyric acid (Formula 5) can be prepared in high yield and high purity. .
  • chromosomes were extracted and purified, and then a reductase was amplified using a designed PCR primer.
  • the band of the desired size was confirmed by electrophoresis, extracted, purified, and then digested with restriction enzymes, which were then cleaved with the same restriction enzyme and combined with the purified expression vector, and then linked using ligase.
  • the prepared recombinant DNA was transformed into Escherichia coli, and the active strains were selected and cultured in the medium. After the cells were recovered by centrifugation, the cells were crushed by ultrasound and centrifuged to prepare a reductase-containing supernatant.
  • Enzyme selection experiments were carried out using ethyl 2-acetamido-3-oxobutanoate prepared in Example 2 as a reductase and a substrate shown in Table 1 below as enzymes.
  • the stereospecificity of the reductase is different depending on the type of microorganism, so that various microorganisms were tested in order to select excellent reductase.
  • Candida magnolia reductase, Candida parapsilosis reductase, Rhodococcus erythropolis reductase and Devosia riboflavina with reductase were determined to be excellent in the desired stereospecificity in the present invention.
  • Ethyl 2-acetamido-3-oxobutanoate prepared in Example 2 was used as the Rhodococcus erythropolis retaining reductase and substrate prepared in Preparation Example.
  • Example 5 The compound obtained in Example 5 is a mixture of two isomers among the four optical isomers of threonine, whereas the compound obtained in Comparative Example 6 is a mixture containing all four optical isomers of threonine, and it has the same structural formula. Made for comparison.
  • NMR shows that the compound obtained in Comparative Example 6 and the compound obtained in Example 4 have the same structural formula.
  • the present invention is useful for the preparation of the non-natural isomers of threonine or mixtures thereof, and can be used in the field of synthesis of pharmaceuticals using them as chiral building blocks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 화학적 합성법과 효소 환원반응을 이용하여 키랄 아미노산인 (2RS)-아미노-(3S)-히드록시-부티르산을 용이하게 고수율 및 고순도로 제조하는 방법, 이를 위한 중간체 및 상기 중간체의 제조방법에 관한 것이다.

Description

(2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법
본 발명은 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법 및 이의 제조용 중간체에 관한 것이다. 보다 구체적으로, 본 발명은 화학적 합성법과 효소적 합성법을 이용하여 비천연 아미노산인 D-(2R,3S)-트레오닌 및 L-알로-(2S,3S)-트레오닌의 혼합물, 즉 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체를 고수율 및 고순도로 제조하는 방법 및 이의 제조용 중간체에 관한 것이다.
천연 아미노산의 하나인 L-트레오닌은 사료 및 식품첨가물로서 널리 사용되고 있을 뿐만 아니라, 수액제 또는 다른 의약품의 합성 및 생산원료로 이용되고 있다. 비천연 아미노산 D-트레오닌 및 D- 또는 L-allo-트레오닌도 유용한 키랄 블록으로서 많이 요구되고 있다.
2-아미노-3-히드록시-부티르산의 일반명을 갖는 트레오닌은 분자 내의 2위치 및 3위치에 2개의 입체중심을 가지므로 4가지의 입체이성질체(stereoisomer)가 존재하는데, 구체적으로는 L-(2S,3R)-트레오닌 (화학식 1), D-(2R,3S)-트레오닌 (화학식 2), D-allo-(2R,3R)-트레오닌 (화학식 3) 및 L-알로-(2S,3S)-트레오닌 (화학식 4)의 구조를 갖는다.
[화학식 1] L-(2S,3R)-트레오닌
Figure PCTKR2014001478-appb-I000001
[화학식 2] D-(2R,3S)-트레오닌
Figure PCTKR2014001478-appb-I000002
[화학식 3] D-allo-(2R,3R)-트레오닌
Figure PCTKR2014001478-appb-I000003
[화학식 4] L-알로-(2S,3S)-트레오닌
Figure PCTKR2014001478-appb-I000004
참고문헌 [Organic Syntheses, Coll. Vol. 3, p.813 (1955); Vol. 20, p.101 (1940)]에는, 크로톤산을 출발물질로 사용하여 총 8단계를 걸처서 4가지 이성질체가 모두 포함된 라세믹 형태의 D,L-트레오닌을 제조하는 방법이 개시되어 있다.
대한민국 특허공개 2003-0036199호에는, 천연 아미노산인 L-트레오닌을 엔테로박테리아를 사용하여 발효적으로 제조하는 방법이 개시되어 있다. 그 외에도, 유전자 재조합을 통한 발효법에 의해 L-트레오닌을 제조하는 방법들이 다수의 특허 및 문헌에 개시되어 있다.
참고문헌 [Tetrahedron : Asymmetry Vol. 2, No. 1, pp. 555-56l. 1991]에는, 루테늄 촉매를 사용하여 D-트레오닌과 L-트레오닌을 입체 선택적으로 제조하는 방법이 개시되어 있다.
미국특허 제4,211,840호에는 미생물이나 효소를 이용해 D-트레오닌을 제조하는 방법이 개시되어 있는데, 여기서, 히단토인 유도체를 질소원으로 하는 미생물을 배양하고, 배양된 미생물을 여러 종류의 히단토인 유도체와 접촉시켜 D-트레오닌을 포함한 여러 종류의 D-아미노산을 제조하는 것이 개시되어 있다. 하지만, 상기 특허의 실시예에는 대부분의 수율이 50%를 넘지 못한다는 문제점을 보여주고 있다.
국제특허공개 WO 01/40450A1에서는 환원효소를 이용해 케톤 화합물을 환원시켜 고지혈증 치료제 원료물질인 키랄 알콜 화합물을 제조하는 방법이 개시되어 있다.
공지된 문헌 [Helv. Chim. Acta vol 70; 232-236, 1987]에는 미생물을 이용하여 케톤을 환원시켜 L-트레오닌을 제조하는 것이 개시되어 있지만, 케톤으로부터의 수율이 16% 정도로 매우 낮아 상업성이 낮으며, 분리가 어려운 부산물이 동시에 생기는 문제점이 있다.
이처럼, 신약개발 및 유기합성에 중요하게 사용되는 고가의 아미노산인 D-트레오닌 및 L-알로-트레오닌을 경제적이고 수율 높게 제조하는 방법에 대한 필요성이 있어 왔다.
한편, 미생물 유래의 환원효소를 이용하는 효소적 환원법에 의해 신약개발 및 유기합성에 중요하게 사용되는 고가의 아미노산을 제조하는 방법이 많이 연구되어 왔다. 환원법으로 키랄 알코올 제조에 대한 연구가 많고, 키랄 아미노산 제조 연구는 거의 없었음
효소적 환원법에서는 자연계로부터 분리된 신규 미생물 또는 논문 또는 특허에 공지된 미생물로부터 환원효소 유전자를 분리하고, 분리된 유전자를 플라즈미드에 이식하여 대장균 내에서 형질전환시키고, 결과된 대장균을 배양시킨 다음, 세포를 파쇄 및 원심분리하여 수득된 균체를 그대로 반응에 사용할 수 있으며, 혹은 상기 대장균을 파쇄 및 원심분리하여 회수된 상등액을 반응에 사용할 수도 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 1. 대한민국 특허공개 2003-0036199호
(특허문헌 2) 2. 미국 특허 4,211,840호
(특허문헌 3) 3. 국제특허공개 WO01/40450A1
[비특허문헌]
(비특허문헌 1)1. Organic Syntheses, Coll. Vol. 3, p.813 (1955)
(비특허문헌 2)2. Organic Syntheses, Coll. Vol. 20, p.101 (1940)
(비특허문헌 3)3. Tetrahedron : Asymmetry Vol. 2, No. 1, pp. 555-56l. 1991
(비특허문헌 4)4. Helv. Chim. Acta vol 70; 232-236, 1987
본 발명은 트레오닌의 4가지 광학이성질체 중에서 천연에서 입수할 수 없는 일부 이성질체 또는 이성질체 혼합물을 효율적으로 제조하고 용이하게 분리할 수 있는, 상업적으로 유리한 제조방법을 개발하는 것을 목적으로 한다.
본 발명자들은 비키랄성 출발물질로부터 화학적 방법과 효소적 환원법을 사용하여 트레오닌의 3번 위치의 알콜기가 S-입체배향을 갖도록 조절된 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체를 효율적으로 제조할 수 있는 방법을 개발하기 위하여 연구하였으며, 그 결과, 화학적 방법과 효소적 환원방법을 사용하여 트레오닌의 3번 위치의 알콜그룹이 S-form 으로 고정된 D-트레오닌, L-알로-트레오닌을 고수율, 고순도로 제조하는 효과적인 방법을 개발하였다.
즉, 본 발명자들은 효소적 환원반응에 의하여 화학식 2의 D-트레오닌(2R, 3S)과 화학식 3의 L-알로-트레오닌(2S, 3S)이 혼재된, 즉 화학식 5로 표현될 수 있는 (2RS-아미노-(3S)-히드록시-부티르산 또는 이의 유도체를 고수율 고순도로 제조하는데 성공하였다.
[화학식 5]
Figure PCTKR2014001478-appb-I000005
본 발명에 따르면, 트레오닌의 부분이성질체 혼합물인 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체를 고수율 및 고순도로 제조할 수 있다.
본 발명의 첫 번째 목적은 (2RS)-알칸아미도-3-옥소-부티르산 알킬에스테르 또는 이의 유도체로부터 효소 환원법에 의해 (2RS)-알킬카르보닐아미노-(3S)-히드록시-부티르산 알킬에스테르 또는 이의 유도체를 수득하는 단계를 포함하는, 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법을 제공하는 것이다.
[화학식 5]
Figure PCTKR2014001478-appb-I000006
상기 첫 번째 목적은, 하기 반응식 1에 예로서 도시된 바처럼, 효소적 환원반응에 의하여 트레오닌의 3번 위치(베타 위치)는 S로 고정되고 2번 위치(알파 위치)는 R-form 과 S-form을 갖는 트레오닌을 수득하는 것에 의해 달성될 수 있으며, 하기 반응식1에 의해 개념화될 수 있다.
[반응식 1]
Figure PCTKR2014001478-appb-I000007
상기 반응식 1에서, R1은 수소원자, 직쇄 또는 분지쇄 알킬기, 바람직하게는 C1~C4 알킬기, 알킬카르보닐, 알콕시카르보닐, 페닐기, 벤질기 또는 펜에틸기를 나타내며, 및 R2는 직쇄 또는 분지쇄 알킬기, 바람직하게는 C1~C4 알킬기, 페닐기, 벤질기 또는 펜에틸기를 나타내며, 전술한 알킬은 바람직하게는 C1~C4 알킬기로서, 히드록시 또는 할로겐으로 더욱 치환 또는 비치환될 수 있다.)
본 발명의 바람직한 구현예에 따르면, (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법은 하기 단계 (i), (ii), (iii) 및 (iv)을 포함할 수 있다:
(i) 화학식 6의 3-옥소-부티르산 알킬에스테르를 아질산나트륨과 반응시켜 화학식 7의 2-히드록시이미노-3-옥소-부티르산 알킬에스테르를 수득하는 단계;
(ii) 화학식 7의 화합물을 환원 또는 수소화시켜 화학식 8의 (2RS)-알킬카르보닐아미노-3-옥소-부티르산 알킬에스테르를 수득하는 단계;
(iii) 화학식 8의 화합물로부터 효소 환원법에 의해 화학식 9의 (2RS)-알킬카르보닐아미노-(3S)-히드록시-부티르산 알킬에스테르를 수득하는 단계;
(iv) 화학식 9의 화합물을 탈보호시켜 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산을 제조하는 단계;
[화학식 6]
Figure PCTKR2014001478-appb-I000008
[화학식 7]
Figure PCTKR2014001478-appb-I000009
[화학식 8]
Figure PCTKR2014001478-appb-I000010
[화학식 9]
Figure PCTKR2014001478-appb-I000011
(상기식에서, R1 및 R2는 상기 정의된 바와 같다.)
본 발명의 두 번째 목적은 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조에 이용될 수 있는 중간체로서 화학식 7의 화합물 및 화학식 8의 화합물을 각각 제공하는 것이다.
본 발명의 세 번째 목적은 상기 중간체인 화학식 7의 화합물 및 화학식 8의 화합물의 제조방법을 각각 제공하는 것이다.
본 발명의 구현예에 있어서, 화학식 7의 화합물은 상기 단계 (i)을 포함하는 제조방법에 의해 수득될 수 있으며, 및 화학식 8의 화합물은 상기 단계 (ii)을 포함하는 제조방법에 의해 수득될 수 있다.
본 발명의 구체적인 구현예에 따르면, 단계 (iii)의 수소화는 팔라듐/카본을 수소 기체로써 수소화시킴으로써 수행될 수 있으며 이때 사용되는 시약은 화학식 10과 같은 유기산 무수물, 예를들면 아세트산 무수물 또는 디-tert-부틸-디카보네이트가 사용되어 질 수 있으며, 화학식 11의 클로로포르메이트 화합물, 예를들면 벤질 클로로포메이트를 사용할 수 있다.
단계 (iv)의 효소적 환원은 사카로마이세스속(Saccharomyces), 락토바실러스속(Lactobacillus), 칸디다속(Candida), 로도코커스(Rhodococcus), 슈도모나스속(Pseudomonas) 또는 피치아속(Pichia)으로 구성된 군에서 선택되는 하나 이상의 미생물에서 유래하는 환원효소 또는 이를 함유하는 분획을 사용하여 수행될 수 있다.
바람직한 구현예에 있어서, 전술한 효소적 환원은 칸디다 마그놀리아 ( Candida magnolia ), 칸디다 파라프릴로시스 ( Candida parapsilosis ), 로도코커스 에리트로폴리스 ( Rhodococcus erythropolis ) 또는 데보시아 리보플라비나 ( Devosia riboflavina )로 구성된 군에서 선택되는 하나 이상의 미생물에서 유래하는 환원효소 또는 이를 함유하는 분획, 더욱 구체적으로는 Candida magnolia 보유 환원효소, Candida parapsilosis 보유 환원효소, Rhodococcus erythropolis 보유 환원효소 및 Devosia riboflavina 보유 환원효소로 구성된 군에서 선택되는 환원효소를 사용하여 수행될 수 있다.
본 발명의 명세서에 있어서, 미생물 보유 환원효소는 해당 미생물이 보유하는 환원효소를 당업계에서 통상적으로 사용되는 방법 또는 본 명세서에 기재된 문헌에 기재된 방법에 의해 미생물학적으로 배양, 분리 및/또는 정제된 것들 및/또는 유전공학적으로 형질변환, 배양, 분리 및/또는 정제된 것들을 의미하며, 시판되는 것들을 사용할 수도 있다.
본 발명의 구체적인 구현예에 따르면, 단계 (v)의 탈보호는 에스테르 보호기 또는 알칸아미도 보호기의 탈보호반응에 통상적으로 사용되는 모든 방법 및 시약을 대부분 사용하여 수행할 수 있으며, 예를들면 에탄올과 같은 알콜 용매에서 염산과 같은 산촉매를 사용하여 수행될 수 있다.
이하에, 하기 반응식 2를 참조로, 본 발명의 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법을 더욱 상세히 설명하고자 한다. 하기 반응식 2에 기재된 방법은 본 발명에서 대표적으로 사용된 방법을 예시한 것일 뿐 단위조작의 순서, 반응시약, 반응조건 등은 경우에 따라 얼마든지 변경될 수 있다.
[반응식 2]
Figure PCTKR2014001478-appb-I000012
상기 단계 (i)은 히드록시이미노화 반응으로서, 화학식 6의 3-옥소-부티르산 알킬에스테르를 아질산나트륨 (NaNO2)과 반응시켜 화학식 7의 옥심 화합물을 수득할 수 있는 단계이다. 반응 온도는 20~0 ℃에서 선택될 수 있으며, 반응 용매로는 아세트산, 물 또는 이들의 혼합용매를 사용할 수 있으며, 아질산나트륨은 1~2 당량을 사용하는 것이 바람직할 수 있다.
반응식 2의 단계 (ii)는 히드록시이미노기의 환원반응 또는 수소화반응으로서, 화학식 7의 2-(히드록시이미노)-3-옥소-부티르산 알킬에스테르를 환원 또는 수소화시켜 화학식 8의 (2RS)-알킬카르보닐아미노-3-옥소-부티르산 알킬에스테르를 수득할 수 있는 단계이다. 단계 (ii)는, 예를들면, 에탄올과 같은 알콜 용매에서, 1~5 기압의 수소 기체 하에 0.2~0.5 당량의 10% 팔라듐/카본 및 2~3 당량의 화학식 8의 유기산 무수물 (예. 아세트산 무수물) 또는 디-tert-부틸-디카보네이트를 사용하여 수행될 수 있으며, 화학식 9의 클로로포르메이트 화합물 (예. 벤질 클로로포메이트)의 존재 하에 수소화시킴으로써 달성될 수도 있다.
반응식 3의 단계 (iii)은 베타-케토기의 효소적 환원반응으로서, 화학식 8의 2RS-알킬카르보닐아미노-3-옥소-부티르산 알킬에스테르를 효소적 또는 미생물적으로 비대칭 환원시켜 화학식 9의 (2RS)-알칸아미도-(3S)-히드록시부티르산 에스테르를 수득할 수 있는 단계이다. 효소적 환원반응은 대개 물에서 수행되며, 반응온도는온도, 구체적으로는 10~40℃의 온도, 특별하게는 실온 근처의 온도에서 선택될 수 있고, 반응 용액의 pH는 대략 6.5로 유지될 수 있다.
본 발명에서 사용할 수 있는 환원효소는 상기 언급된 바와 같이, 사카로마이세스속(Saccharomyces), 락토바실러스속(Lactobacillus), 칸디다속 (Candida), 로도코커스(Rhodococcus), 슈도모나스속(Pseudomonas) 또는 피치아속(Pichia)으로 구성된 군에서 선택되는 하나 이상의 미생물에서 유래할 수 있는데, 구체적으로는 Candida magnolia 보유 환원효소, Candida parapsilosis 보유 환원효소, Rhodococcus erythropolis 보유 환원효소 및 Devosia riboflavina 보유 환원효소로 구성된 군에서 선택되는 하나 이상의 환원효소를 사용할 수 있다.
단계 (iv)은 탈보호반응으로서, 화학식 9의 (2RS)-알킬카르보닐아미노-(3S)-히드록시부티르산 알킬에스테르를 탈보호반응시켜 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산을 수득하는 단계이다. 단계 (iv)는, 예를들면, 반응물에 3N 염산을 첨가하고 3시간 동안 환류시켜 아민기에 부착된 아세틸기, tert-부톡시카보닐(Boc) 또는 벤질록시카보닐(Cbz)와 카르복실산기에 부착된 에스테르기를 동시에 제거하는 방식으로 달성될 수 있다. 반응 용매로는 물, 에탄올, 메탄올, 이소프로판올, 에틸아세테이트 등을 사용할 수 있으며, 특히 에탄올이 바람직할 수 있다. 그러나 아세트아미도기, tert-부톡시카보닐(Boc) 또는 벤질록시카보닐(Cbz) 및/또는 에스테르기의 탈보호반응을 위한 방법은 특별히 제한되지 않으며, 필요에 따라 둘 중 하나만을 선택적으로 탈보호시킬 수도 있다.
본 발명에 있어서, 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산의 유도체 또는 다른 화합물들의 유도체는 화합물에 포함된 반응성기인 아미노기, 히드록시기 및/또는 카르복실산기가 치환기 또는 보호기로 치환 또는 보호되어 있는 화합물들을 의미한다. 상기 아미노기, 히드록시기 및/또는 카르복실산기의 보호기의 종류는 특별히 한정되지 않으며, 일반적으로 사용되는 보호기를 본 발명의 화합물들에 대해 사용할 수 있다. 예를들면, 아미노기는 모노- 또는 디알킬아미노, 알킬아미도, 알킬이미도, 알킬카르보닐아미노, 알콕시카르보닐아미노 등의 형태로 보호될 수 있으며, 히드록시기의 보호기는 알킬에테르 또는 알킬카르보닐옥시 등의 형태로 보호될 수 있으며, 카르복실산기는 알킬에스테르, 알킬아미드 등의 형태로 보호될 수 있다.
본 발명에 있어서, 효소적 환원반응이란 미생물 자체 또는 미생물에서 유래하는 환원효소를 사용하여 유기 화합물의 케톤기 또는 알데히드기를 환원시켜 히드록실기를 형성하는 반응을 의미한다. 미생물에서 유래하는 환원효소는 천연 또는 유전적으로 변형된 미생물로부터 추출된 환원효소 또는 이를 포함하는 혼합물 또는 분획을 의미한다. 본 발명에 따른 효소적 환원반응에서 사용되는 환원효소는 CH-OH 그룹의 공여자의 역할을 하는 산화환원효소(EC 1.1 계열, alcohol oxidoreductases) 또는 알데히드 또는 oxo그룹의 공여자의 역할을 하는 산화환원효소 (EC 1.2)를 포함할 수 있지만, 이들로 한정되는 것은 아니다.
본 발명에서 언급되는 미생물에서 유래하는 환원효소 또는 이를 함유하는 분획은, 예를들면, 문헌 [Maniatis, T.(1989)Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York]에 기재된 방법으로 당업자에 의해 준비될 수 있다. 구체적으로는, 대상 미생물로부터 환원효소 유전자를 PCR법을 이용해 복제한 뒤에, 제한효소를 사용하여 특정 위치를 절단하고, 리가제(ligase)를 이용해 플라스미드의 특정부위에 결합시켜 재조합 디엔에이(DNA) 플라스미드를 제조한다. 이렇게 제조된 재조합 DNA 플라스미드를 대장균내에서 형질전환시키고, 대장균을 배양하고, 원심분리하여 배양균을 회수하고, 초음파로 수득된 배양균체를 파쇄하고, 원심분리하여 균사체를 제거하여 환원효소 분획을 수득할 수 있다.
본 발명에서 사용할 수 있는 환원효소가 유래될 수 있는 미생물의 종류는 크게 한정되지 않지만, 구체적으로는 사카로마이세스속(Saccharomyces), 락토바실러스속(Lactobacillus), 칸디다속(Candida), 로도코커스(Rhodococcus), 슈도모나스속(Pseudomonas) 또는 피치아속(Pichia)에 속하는 미생물을 언급할 수 있다.
한편, 본 발명에 따라 바람직하게 사용될 수 있는 Candida magnolia 보유 환원효소, Candida parapsilosis 보유 환원효소, Rhodococcus erythropolis 보유 환원효소 및 Devosia riboflavina 보유 환원효소는 문헌 [Maniatis, T.(1989)Molecular cloning: a laboratory manual , 2nd ed., Cold Spring Harbor Laboratory Press, New York]에 기재된 공지의 방법으로 당업자에 의해 용이하게 제조될 수 있으나, 상기 문헌 기재의 방법으로 제조된 것들로 한정되는 것은 아니다.
본 발명의 이점 중의 하나는 출발물질이 용이하게 입수 가능한 화합물들이며, 이로부터 고가의 (2RS)-아미노-(3S)-히드록시-부티르산 (화학식 5)를 고수율 및 고순도로 제조할 수 있다는 것이다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
실시예 1: 에틸 2-(히드록시이미노)-3-옥소부타노에이트의 제조
Figure PCTKR2014001478-appb-I000013
반응기에 에틸 아세토아세테이트 30.0 g 및 아세트산 35 ml를 넣고 -10℃에서 교반하였다. 그런 다음, 아질산나트륨 18.0 g을 정제수 40 ml에 녹인 용액을 상기 교반액에 온도를 -10℃로 유지하면서 천천히 적가한 후, 차가운 얼음물 120ml를 추가로 적가하였다. 적가가 완료되면, 결과된 반응액을 상온으로 천천히 승온시키고, 3시간 동안 상온에서 더욱 교반하였다. 결과된 반응액에서 출발물질이 모두 소진된 것을 TLC (전개용액=헵탄:에틸아세테이트=2:1)로 확인한 다음, 에틸아세테이트:테트라하이드로퓨란 4:1 용액 300ml으로써 3회 추출하였다. 추출한 유기층을 소듐 바이카보네이트 포화 수용액 50ml로써 2회 세척하고, 소듐티오설페이트 5수화물 5% 수용액 50ml로써 2회 세척하였다. 유기층을 무수 마그네슘설페이트 하에 건조하고, 여과하고, 감압 농축하였다. 수득된 농축액을 진공 건조하여 목적화합물 에틸 2-(히드록시이미노)-3-옥소부타노에이트 33.7g (수율 92%)을 수득하였다.
1H-NMR(400MHz, DMSO-d6): δ 13.20(s, 1H), 4.21(q, J=7.2Hz, 2H), 2.32(s, 3H), 1.92(t, J=6.8Hz, 3H).
실시예 2: 에틸 (2RS)-아세트아미도-3-옥소부타노에트의 제조
Figure PCTKR2014001478-appb-I000014
고압 반응기에 실시예 1에서 수득한 에틸 2-(히드록시이미노)-3-옥소부타노에이트 10.0g, 에탄올 40ml, 아세트산무수물 11ml 및 10% 팔라듐/ 카본 0.1 g을 넣고, 수소 가스를 도입하여 압력을 42 psi로 맞추고, 상온에서 12시간 동안 교반하였다. 반응이 종결되면 팔라듐/카본을 여과로 제거하고, 여액을 농축하였다. 결과된 농축액을 실리카겔 컬럼 (에틸 아세테이트:헵탄=1:1)으로 정제하여, 목적 화합물 에틸 2-아세트아미도-3-옥소부타노에이트 10.5g (수율 90%)을 수득하였다.
1H-NMR(400MHz, CDCl3): δ 6.62(br s, 1H), 5.25(d, J=6.4Hz, 1H), 4.28(q, J=7.2Hz, 2H), 2.39(s, 3H), 2.07(s, 3H), 1.32(t, J=7.2Hz, 3H).
실시예 3: (2RS)-tert-부톡시카보닐아미노-3-옥소-부티르산 에틸 에스테르의 제조
Figure PCTKR2014001478-appb-I000015
고압 반응기에 실시예 1에서 수득한 에틸 2-(히드록시이미노)-3-옥소부타노에이트 16.0g, 에탄올 40ml, 디-trer-부틸 디카보네이트 23.0g 및 10% 팔라듐/카본 0.4 g을 넣고, 수소 가스를 도입하여 압력을 100 psi로 맞추고, 상온에서 12시간 동안 교반하였다. 반응이 종결되면 팔라듐/카본을 여과로 제거하고, 여액을 농축하였다. 결과된 농축액을 실리카겔 컬럼 (에틸 아세테이트:헵탄=1:2)으로 정제하여, 목적 화합물 2-tert-부톡시카보닐아미노-3-옥소-부티르산 에틸 에스테르 14.0g (수율 61%)을 수득하였다.
1H-NMR(400MHz, CDCl3): δ 5.75(br s, 1H), 5.03(d, J=6.8Hz, 1H), 4.26(m, 2H), 2.36(s, 3H), 1.44(s, 3H), 1.21(t, J=7.2Hz, 3H).
제조예 1: 미생물 보유 환원효소의 분리 및 추출
하기 표 1에 기재된 환원효소는 문헌 [Appl Microbiol Biotechnol. vol64, p. 359 (2004)] 기재된 방법으로 제조해 사용하였다.
각각의 미생물을 배지에서 배양후 염색체를 추출해 정제한 뒤에, 설계한 PCR 프라이머(primer)를 이용해 환원효소를 증폭해 내었다. 원하는 크기의 밴드를 전기영동에서 확인후 이를 추출해 내어 정제한 뒤에, 제한효소로 절단하고, 이를 동일한 제한효소로 절단후 정제한 발현벡터와 합친 다음, 리가제를 이용해 연결하였다. 제조된 재조합 DNA를 대장균내에 형질전환시키고, 활성보유 균주를 골라내어 이를 배지에서 배양하였다. 원심분리하여 균체를 회수한 뒤에, 초음파로 균체를 파쇄하고, 원심분리하여 환원효소 보유 상등액을 제조하였다.
시험예 1: 에틸 (2RS)-아세트아미도-(3S)-히드록시부타노에트의 제조용 효소선별 시험
Figure PCTKR2014001478-appb-I000016
효소로서 하기 표 1에 기재된 환원효소 및 기질로서 실시예 2에서 제조된 에틸 2-아세트아미도-3-옥소부타노에이트를 사용하여 아래와 같이 효소선별 실험을 수행하였다.
일반적인 효소선별시험에 있어서, 미생물의 종류에 따라 효소의 기질 및/또는 반응에 대한 특이성에 차이가 많이 있을 수 있기 때문에, 원하는 목적에 맞는 효소를 선별하기 위해서는 다양한 미생물을 대상으로 수많은 실험이 필요하다. 본 발명의 효소선별시험에 있어서도, 미생물 종류에 따라 환원효소의 입체특이성이 차이가 있으므로, 우수한 환원효소를 선별하기 위해서 다양한 미생물을 대상으로 시험하였다.
50mM 인산용액 (pH=7) 0.6ml에 NAD 2mM, NADP 2mM, 포도당 2%, 기질 6mg 및 환원효소 1mg 을 넣고, 30℃에서 교반시키면서 16시간 동안 반응시켰다. 결과된 반응생성물에서 시료를 채취하여 키랄칼럼 [Chirasil-DEX CB 25m x 0.25mm, Chrompak사 제조] 을 장착한 가스크로마토그래피로 분석하였으며, 그 결과는 표 1 (미생물 환원효소 선별 결과)에 기재하였다.
표 1
Figure PCTKR2014001478-appb-T000001
표 1의 실험결과에서 보는 바와 같이, Candida magnolia 보유 환원효소, Candida parapsilosis 보유 환원효소, Rhodococcus erythropolis 보유 환원효소 및 Devosia riboflavina 보유 환원효소가 본 발명에서 원하는 입체특이성이 우수한 것으로 판별되었다.
실시예 4: 에틸 (2RS)-아세트아미도-(3S)-히드록시부타노에트의 제조
상기 제조예에서 제조한 Rhodococcus erythropolis 보유 환원효소 및 기질로서 실시예 2에서 제조된 에틸 2-아세트아미도-3-옥소부타노에이트를 사용하였다.
50mM 인산용액( pH 7) 100ml에, 기질 4g, 포도당 60 mmol, NAD 64 umol, 환원효소 5ml (250mg)을 넣고 30℃에서 반응시켰다. 일정시간별로 시료를 취해 가스크로마토그래피로 분석하였으며, 기질이 모두 소진하여 검출되지 않으면 반응을 종료하였다. 결과된 반응액을 에틸아세테이트로써 3회 추출하고, 마그네슘설페이트로 건조시키고, 감압증류로 유기용매를 제거하여, 목적화합물 에틸 (2RS)-아세트아미도-(3S)-히드록시부타노에이트 3.7g (수율 92%)을 수득하였다.
실시예 5: (2RS)-아미노-(3S)-히드록시-부티르산의 제조
반응기에 실시예 4에서 수득한 에틸 (2RS)-아세트아미도-(3S)-히드록시부타노에트 2.0 g과 3N HCl 수용액 20ml를 넣고, 100℃에서 3시간 동안 환류 교반하였다. 결과된 반응용액을 상온으로 냉각하고, 여과하고, 여액을 감압 농축하였다. 결과된 농축액에 에탄올 15mL를 넣고, 30분 동안 환류 교반한 후, 상온으로 냉각하였다. 생성된 고체를 여과로 분리하고 건조시켜, 목적 화합물 2-아미노-(3S)-히드록시-부티르산 1.26g(수율 70%)을 백색 고체로서 수득하였다.
녹는점(mp) : 255℃(dec)
[α]26/D -28.3˚ (c=1.1)
1H-NMR(400MHz, CDCl3): δ 4.24(m, 1H), 4.14(d, 0.25H), 3.74(d, J=4.0Hz, 1H), 3.48(d, J=4.8Hz, 0.25H), 1.23(d, J=6.8Hz, 0.75H), 1.11(d, J=7.6Hz, 3H).
비교예 5: 에틸 (2RS)-아세트아미도-(3RS)-히드록시부타노에이트의 제조
이소프로필 알콜 15ml 및 에탄올 15ml에, 실시예 2에서 제조된 에틸 (2RS)-아세트아미도-3-옥소부타노에트 1.8g을 용해시킨 반응액을 -10℃로 냉각하였다. 반응액에, 발열에 주의하면서, 소듐 보로하이드라이드(NaBH4) 1.0g을 조금씩 첨가하였다. 첨가가 완료되면, 상온에서 5시간 동안 교반하고, 1N HCl 수용액으로 중화하여 pH를 7로 맞춘 후, 결과된 반응액을 여과 및 농축하였다. 농축액에 정제수 20ml를 넣고, 에틸아세테이트 50ml로써 3회 추출하였다. 추출액을 포화 소듐바이카보네이트 수용액 20ml로써 세척하고, 무수 마그네슘 설페이트로 건조시키고 여과하여 목적화합물 에틸 (2RS)-아세트아미도-(3RS)-히드록시부타노에이트 1.36g (수율 72%)을 수득하였다.
1H-NMR(400MHz, CDCl3): δ 6.67(br s, 1H), 4.65(q, J=3.2Hz, 1H), 4.23(m, 3H), 3.48(d, J=4.8Hz, 0.25H), 2.07(s, 3H), 1.30(t, J=7.2Hz, 3H), 1.19(d, J=6.4Hz, 3H).
비교예 6: (2RS)-아미노-(3RS)-히드록시-부티르산의 제조
반응기에 비교예 5에서 수득한 에틸 (2RS)-아세트아미도-(3RS)-히드록시부타노에이트 3.78g 및 3N HCl 수용액 40ml를 넣고, 100℃에서 3시간 동안 환류 교반하였다. 반응용액을 상온으로 냉각하고, 여과한 후 여액을 감압 농축하였다. 결과된 농축액에 에탄올 30ml을 첨가하고, 30분 동안 환류 교반시킨 후, 상온으로 냉각하였다. 생성된 고체를 여과로 분리 및 건조하여 목적 화합물 (2RS)-아미노-(3RS)-히드록시-부티르산 1.83g (수율 77%)을 백색 고체로 수득하였다.
녹는점(mp): 255℃(dec) (실시예 5에서와 동일)
1H-NMR(400MHz, CDCl3): δ 4.24(m, 1H), 4.14(d, 0.25H), 3.74(d, J=4.0Hz, 1H), 3.48(d, J=4.8Hz, 0.25H), 1.23(d, J=6.8Hz, 0.75H), 1.11(d, J=7.6Hz, 3H).
실시예 5에서 수득된 화합물은 트레오닌의 4가지 광학이성질체 중에서 2가지 이성질체의 혼합물인 반면, 비교예 6에서 수득된 화합물은 트레오닌의 4가지 광학이성질체를 모두 함유하는 혼합물로서, 동일한 구조식을 갖고 있는지를 비교하기 위해 제조되었다.
NMR은 비교예 6에서 수득된 화합물과 실시예 4에서 수득된 화합물이 동일한 구조식을 가지고 있음을 보여준다.
본 발명은 트레오닌의 비천연 이성질체 또는 이들의 혼합물의 제조에 유용하며, 이들을 키랄빌딩블록으로 사용하는 의약품의 합성분야에 사용될 수 있다.

Claims (9)

  1. 화학식 8의 화합물로부터 효소 환원법에 의해 화학식 9의 화합물을 수득하는 것을 포함하는, 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법.
    [화학식 5]
    Figure PCTKR2014001478-appb-I000017
    [화학식 8]
    Figure PCTKR2014001478-appb-I000018
    [화학식 9]
    Figure PCTKR2014001478-appb-I000019
    (상기식에서, R1은 수소원자, 직쇄 또는 분지쇄 C1~C4 알킬기, 알킬카르보닐, 알콕시카르보닐, 페닐기, 벤질기 또는 펜에틸기를 나타내며, 및 R2는 직쇄 또는 분지쇄 C1~C4 알킬기, 알킬카르보닐, 알콕시카르보닐, 페닐기, 벤질기 또는 펜에틸기를 나타내며, 전술한 알킬은 히드록시 또는 할로겐으로 더욱 치환 또는 비치환될 수 있다.)
  2. 제 1 항에 있어서, 하기 단계 (i), (ii), (iii) 및 (iv)을 포함하는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법:
    (i) 화학식 6의 3-옥소-부티르산 알킬에스테르를 아질산나트륨과 반응시켜 화학식 7의 2-히드록시이미노-3-옥소-부티르산 알킬에스테르를 수득하는 단계;
    (ii) 화학식 7의 화합물을 환원 또는 수소화시켜 화학식 8의 (2RS)-알킬카르보닐아미노-3-옥소-부티르산 알킬에스테르를 수득하는 단계;
    (iii) 화학식 8의 화합물로부터 효소 환원법에 의해 화학식 9의 (2RS)-알킬카르보닐아미노-(3S)-히드록시-부티르산 알킬에스테르을 수득하는 단계;
    (iv) 화학식 9의 화합물을 탈보호시켜 화학식 5의 (2RS)-아미노-(3S)-히드록시-부티르산을 제조하는 단계;
    [화학식 6]
    Figure PCTKR2014001478-appb-I000020
    [화학식 7]
    Figure PCTKR2014001478-appb-I000021
    [화학식 8]
    Figure PCTKR2014001478-appb-I000022
    [화학식 9]
    Figure PCTKR2014001478-appb-I000023
    [화학식 5]
    Figure PCTKR2014001478-appb-I000024
    (상기식에서, R1 및 R2는 상기 정의된 바와 같다.)
  3. 제 1 또는 2 항에 있어서, 전술한 효소적 환원법은 사카로마이세스속(Saccharomyces), 락토바실러스속(Lactobacillus), 칸디다속(Candida), 로도코커스(Rhodococcus), 슈도모나스속(Pseudomonas) 또는 피치아속(Pichia)으로 구성된 군에서 선택되는 하나 이상의 미생물에서 유래하는 환원효소 또는 이를 함유하는 분획을 사용하는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법.
  4. 제 3 항에 있어서, 전술한 효소적 환원법은 칸디다 마그놀리아 (Candida magnolia), 칸디다 파라프실로시스 (Candida parapsilosis), 로도코커스 에리트로폴리스 (Rhodococcus erythropolis) 또는 데보시아 리보플라비나 (Devosia riboflavina)로 구성된 군에서 선택되는 하나 이상의 미생물에서 유래하는 환원효소 또는 이를 함유하는 분획을 사용하는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법.
  5. 제 4 항에 있어서, 전술한 효소적 환원법은 Candida magnolia 보유 환원효소, Candida parapsilosis 보유 환원효소, Rhodococcus erythropolis 보유 환원효소 또는 Devosia riboflavina 보유 환원효소로 구성된 군에서 선택되는 하나 이상의 환원효소를 사용하는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산 또는 이의 유도체의 제조방법.
  6. 제 2 항에 있어서, 전술한 단계 (ii)의 수소화는 아세트산 무수물, 디-tert-부틸-디카보네이트 또는 벤질 클로로포메트로 구성된 군에서 선택되는 하나 이상을 사용하여 팔라듐/카본의 존재 하에 수소 기체로써 환원시킴으로써 수행되는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산의 제조방법.
  7. 제 2 항에 있어서, 전술한 단계 (iv)의 탈보호는 에탄올과 같은 알콜 용매에서 염산을 사용하여 수행되는 것을 특징으로 하는, (2RS)-아미노-(3S)-히드록시-부티르산의 제조방법.
  8. 화학식 8의 (2RS)-알킬카르보닐아미노-(3S)-옥소-부티르산 알킬에스테르 또는 이의 유도체:
    [화학식 8]
    Figure PCTKR2014001478-appb-I000025
  9. 화학식 9의 (2RS)-알킬카르보닐아미노-(3S)-히드록시-부티르산 알킬에스테르 또는 이의 유도체:
    [화학식 9]
    Figure PCTKR2014001478-appb-I000026
PCT/KR2014/001478 2013-02-26 2014-02-24 (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법 WO2014133291A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/770,445 US9862978B2 (en) 2013-02-26 2014-02-24 Method for preparing (2RS)-amino-(3S)-hydroxy-butyric acid and its derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0020365 2013-02-26
KR1020130020365A KR101446551B1 (ko) 2013-02-26 2013-02-26 (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법

Publications (2)

Publication Number Publication Date
WO2014133291A1 true WO2014133291A1 (ko) 2014-09-04
WO2014133291A9 WO2014133291A9 (ko) 2016-04-14

Family

ID=51428502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001478 WO2014133291A1 (ko) 2013-02-26 2014-02-24 (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법

Country Status (3)

Country Link
US (1) US9862978B2 (ko)
KR (1) KR101446551B1 (ko)
WO (1) WO2014133291A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742477B1 (ko) 2015-02-06 2017-06-01 연세대학교 산학협력단 라세믹 트레오닌으로부터 d-트레오닌 및 호모알라닌을 순차적으로 생산하는 방법
CN113354554B (zh) * 2021-07-07 2022-10-11 浙江工业大学 一种(2R,3S)-β′-羟基-β-氨基酸酯类衍生物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014655A (ko) * 2001-07-02 2004-02-14 가네가후치 가가쿠 고교 가부시키가이샤 효소 개변 방법 및 산화 환원 효소 변이체
WO2011005052A2 (en) * 2009-07-10 2011-01-13 Green Gross Corporation Novel arylpiperazine-containing imidazole 4-carboxamide derivatives and pharmaceutical composition comprising same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211840A (en) 1977-06-08 1980-07-08 Ajinomoto Company, Incorporated Method for producing D-α-amino acid
DE3122450A1 (de) * 1981-06-05 1982-12-30 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Verfahren zur herstellung von polyfunktionalen organischen verbindungen mit wenigstens einer tert. butylaether- oder -estergruppe
CA2360376C (en) 1999-12-03 2005-04-26 Noriyuki Kizaki Novel carbonyl reductase, gene thereof and method of using the same
DE10102823A1 (de) 2000-05-27 2001-11-29 Degussa Verfahren zur fermentativen Herstellung von L-Threonin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014655A (ko) * 2001-07-02 2004-02-14 가네가후치 가가쿠 고교 가부시키가이샤 효소 개변 방법 및 산화 환원 효소 변이체
WO2011005052A2 (en) * 2009-07-10 2011-01-13 Green Gross Corporation Novel arylpiperazine-containing imidazole 4-carboxamide derivatives and pharmaceutical composition comprising same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Online posting about (2S,3R)2-acetamido-3-hydroxybutanoate. [online]Pubchem. 29 July 2006", Retrieved from the Internet <URL:http://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds> [retrieved on 20060729] *

Also Published As

Publication number Publication date
KR101446551B1 (ko) 2014-10-06
WO2014133291A9 (ko) 2016-04-14
KR20140106168A (ko) 2014-09-03
US9862978B2 (en) 2018-01-09
US20160017389A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
EP2123769B1 (en) Method for producing optically active 3-aminopiperidine or salt thereof
WO2010150946A1 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
US7189847B2 (en) Process for producing benzoxazine derivative and production intermediate thereof
US8076107B2 (en) Production of monatin stereoisomers
EP2488505A2 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
WO2013060292A1 (zh) 制备左旋吡喹酮的方法
WO2018159957A1 (ko) 에쿠올 유도체를 생산하는 재조합 대장균 및 이를 이용한 에쿠올 유도체 합성 방법
US20070197788A1 (en) Method for the preparation of enantiomer forms of cis-configured 3-hydroxycyclohexane carboxylic acid derivatives using hydrolases
WO2014133291A1 (ko) (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법
US5914263A (en) Enzymatic process for the stereoselective preparation of a hetero-bicyclic alcohol enantiomer
US20210087592A1 (en) Enzymatic processes for the preparation of (±)-2-(difluoromethyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acid and (±)-2-(vinyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acid
Torre et al. Enzymatic preparation of novel aminoalkylpyridines using lipases in organic solvents
US5858737A (en) Conversion of indene to (1S)-amino-(2R)-indanol free of any stereoisomer, by combination of dioxygenase bioconversion and chemical steps
CA2161849A1 (en) Production of optically active compounds
US20200024621A1 (en) Enzymatic process for the preparation of (1s,2r)-2-(difluoromethyl)-1-(propoxycarbonyl)cyclopropanecarboxylic acid
KR100453301B1 (ko) 1-트리플루오로메틸-4-히드록시-7-피페리디닐-아미노메틸크로만 유도체
WO1998023768A1 (fr) Procede de preparation de n-benzyl-3-pyrrolidinol optiquement actif
KR100868619B1 (ko) 광학활성인 프로폭시아닐린 유도체의 제조방법
Caplan et al. The first stereospecific synthesis of L-tetrahydrodipicolinic acid; a key intermediate of diaminopimelate metabolism
KR100870784B1 (ko) 효모로부터 유래한 콜레스테롤에스터라제에 의한엔안티오퓨어 중간체의 효소적 합성
JP5092466B2 (ja) 光学活性ピペコリン酸またはその誘導体の製造方法。
EP1445324A1 (en) Process for producing optically active chroman derivative and intermediate
Buchalska et al. Synthesis of optically active aminooxy alcohols
KR100650546B1 (ko) 효소적 방법에 의한 광학활성 트랜스-1-알아미노-2-인다놀및 그의 에스테르 제조방법
JPH08283241A (ja) カルバゾール誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14756666

Country of ref document: EP

Kind code of ref document: A1