WO2014133170A1 - 多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物 - Google Patents

多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物 Download PDF

Info

Publication number
WO2014133170A1
WO2014133170A1 PCT/JP2014/055181 JP2014055181W WO2014133170A1 WO 2014133170 A1 WO2014133170 A1 WO 2014133170A1 JP 2014055181 W JP2014055181 W JP 2014055181W WO 2014133170 A1 WO2014133170 A1 WO 2014133170A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative
cells
pharmaceutical composition
composition according
pluripotent stem
Prior art date
Application number
PCT/JP2014/055181
Other languages
English (en)
French (fr)
Inventor
真理 出澤
藤吉 好則
正順 吉田
Original Assignee
株式会社Clio
国立大学法人東北大学
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2014221659A priority Critical patent/AU2014221659B2/en
Priority to JP2015503070A priority patent/JP6511606B2/ja
Priority to CA2903415A priority patent/CA2903415C/en
Priority to US14/771,588 priority patent/US9446033B2/en
Priority to ES14756298T priority patent/ES2877555T3/es
Priority to KR1020157025190A priority patent/KR102180319B1/ko
Application filed by 株式会社Clio, 国立大学法人東北大学, 国立大学法人名古屋大学 filed Critical 株式会社Clio
Priority to CN201480011901.9A priority patent/CN105188754B/zh
Priority to EP14756298.7A priority patent/EP2962698B1/en
Priority to SG11201506845XA priority patent/SG11201506845XA/en
Publication of WO2014133170A1 publication Critical patent/WO2014133170A1/ja
Priority to US15/238,020 priority patent/US10034889B2/en
Priority to US15/642,534 priority patent/US10369162B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/417Imidazole-alkylamines, e.g. histamine, phentolamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a migration factor that induces pluripotent stem cells to a damaged site.
  • Non-patent Document 1 a cell having differentiation potential obtained from an adult, for example, a bone marrow mesenchymal cell fraction (MSC) having differentiation potential into bone, cartilage, adipocyte, nerve cell, skeletal muscle and the like (Non-patent Documents 1 and 2)
  • MSC bone marrow mesenchymal cell fraction
  • iPS cells Patent Document 1 have been reported as adult-derived pluripotent stem cells. For the establishment of iPS cells, a specific gene or a specific gene is identified in a fraction of mesenchymal dermal fibroblasts. In addition to requiring a very complicated operation of introducing the above compound into somatic cells, iPS cells have a high tumorigenic ability, and therefore there is an extremely high hurdle for clinical application.
  • SSEA-3 Stage-Specific Embryonic Antigen-3
  • Muse cells Pluripotent stem cells (Multilineage-differentiating Stress Enduring cells; Muse cells) are responsible for the pluripotency of the mesenchymal cell fraction and can be applied to disease treatments aimed at tissue regeneration (Patent Document 2; Non-Patent Document 3; Non-Patent Document 4).
  • Non-patent Document 2 pluripotent stem cells
  • Non-patent Document 3 the mechanism by which Muse cells are induced in damaged tissues is not elucidated, and migratory factors that induce Muse cells to the site of injury have not been identified.
  • An object of the present invention is to provide a medical use using pluripotent stem cells (Muse cells) in regenerative medicine, to enhance the migratory activity of Muse cells, and to efficiently accumulate Muse cells at the damaged site. It is an object of the present invention to identify a migratory factor for providing a pharmaceutical composition containing the migratory factor.
  • Muse cells pluripotent stem cells
  • the present inventors have succeeded in identifying a migratory factor that induces Muse cells to the damaged site by making full use of proteome analysis, and sphingosine-1-phosphate (S1P) is one of the migratory factors.
  • S1P sphingosine-1-phosphate
  • Enhancing the activity of migrating includes initiating the migration of Muse cells present in mesenchymal tissue to the damaged site.
  • a pharmaceutical composition for activating pluripotent stem cell migration comprising a compound that activates sphingosine-1-phosphate receptor 2 as an active ingredient.
  • the compound that activates sphingosine-1-phosphate receptor 2 is an agonist of sphingosine-1-phosphate receptor 2.
  • the sphingosine-1-phosphate receptor 2 agonist is sphingosine-1-phosphate or a derivative thereof.
  • An agonist of sphingosine-1-phosphate receptor 2 is 1- (2- (1-benzyl-2,5-dimethyl-1H-pyrrol-3-yl) -2-oxoethyl) -5- (tri Fluoromethyl) pyridin-2 (1H) -one, 1- (2- (1-benzyl-2,5-dimethyl-1H-pyrrol-3-yl) -2-oxoethyl) pyrrolidine-2,5-dione, -(2- (1-benzyl-2,5-dimethyl-1H-pyrrol-3-yl) -2-oxoethyl) -3-methylimidazolidine-2,4,5-trione, 1- (1-benzyl- 2,5-dimethyl-1H-pyrrol-3-yl) -2-((1-methyl-1H-tetrazol-5-yl) thio) ethanone and (S) -1- (2- (1-benzyl- 2,5-dimethyl-1H-pyrrol-3
  • the sphingosine-1-phosphate lyase inhibitor is (E) -1- (4-((1R, 2S, 3R) -1,2,3,4-tetrahydroxybutyl) -1H-imidazole-2 -Yl) ethanone oxime, (1R, 2S, 3R) -1- (2- (isoxazol-3-yl) -1H-imidazol-4-yl) butane-1,2,3,4-tetraol, and [5] above, selected from the group consisting of 1- (5-((1R, 2S, 3R) -1,2,3,4-tetrahydroxybutyl) -1H-imidazol-2-yl) ethanone Pharmaceutical composition.
  • the pluripotent stem cell is a pluripotent stem cell having all of the following properties: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; (Iii) no neoplastic growth; and (iv) self-renewal ability.
  • a pharmaceutical composition comprising a migration factor that enhances the migration activity activity of Muse cells and induces Muse cells at the damaged site in tissue regeneration by Muse cells.
  • sphingosine-1-phosphate receptors S1PR
  • NHDF normal human skin fibroblasts
  • the Boyden chamber has an insert with a micropore diameter of 8 ⁇ m inside. A culture solution containing Muse cells or non-Muse cells is added to the top of the insert, a culture solution containing a migration factor is added to the bottom of the insert, and the number of cells that have passed through the insert after 18 hours is counted.
  • FIG. 2 is a conceptual diagram of a simple cell kinetic analyzer (EZ-TAXIScan) used for measuring migration of Muse cells. There are two slits in the apparatus, and cells and migration factors are added to each, and the state in which the cells are directed to the migration factors on the plate is indicated by arrows. It is a photograph which shows the cell migration measured using the simple type cell dynamics analyzer.
  • EZ-TAXIScan simple cell kinetic analyzer
  • Muse cells move according to the concentration gradient of the migration factor so as to dive in a structure called a terrace having a length of 250 ⁇ m and a depth of 8 ⁇ m.
  • the photo on the left shows the case where 2 ⁇ M sphingosine-1-phosphate (S1P) was added, and the photo on the right shows the cell migration when S1P was not added.
  • S1P 2 ⁇ M sphingosine-1-phosphate
  • the result of having analyzed the migration of the Muse cell by S1P with the simple cell dynamics analyzer is shown.
  • the left figure shows the result of measuring in real time how Muse cells migrate linearly toward S1P.
  • the right figure shows the result of measuring in real time how Muse cells spread randomly when S1P is not included.
  • mice used are immunodeficient SCID mice (7 weeks old) that do not reject human cells.
  • a biodegradable hydrogel impregnated with S1P solution is transplanted on the back of the mouse, GFP-positive human Muse cells are administered via the tail vein, and the tissue around the hydrogel transplantation site is collected, and Muse cells are accumulated at the site.
  • An anti-GFP antibody (Alexa568) was used for GFP staining.
  • Muse cells are accumulated depending on the concentration of the S1P solution. Muse cells accumulated in the hydrogel were evaluated as the number of cells per 1 mm 2 . Similar to the results in FIG. 8, Muse cells were accumulated depending on the S1P concentration.
  • the present invention relates to a composition containing a migration factor that induces pluripotent stem cells to a damaged site and use thereof.
  • the present invention is described in detail below.
  • Pluripotent stem cells The pluripotent stem cell induced by the migratory factor of the present invention at the injured site was found by Dezawa, one of the present inventors, in the human body, and "Muse (Multilineage-differentiating Stress Ending) cell" Named cell. Muse cells can be obtained from skin tissues such as bone marrow fluid and dermal connective tissue, and are also scattered in connective tissues of each organ. In addition, this cell is a cell having the properties of both pluripotent stem cells and mesenchymal stem cells. For example, the cell surface markers “SSEA-3 (Stage-specific embryonic antigen-3)” and “ Identified as "CD105" double positive.
  • SSEA-3 Serial-specific embryonic antigen-3)
  • Muse cells or cell populations containing Muse cells can be separated from living tissues using, for example, these antigen markers as indicators. Details such as a method for separating Muse cells, an identification method, and characteristics are disclosed in International Publication No. WO2011 / 007900. Also, as reported by Wakao et al. (2011, supra), when mesenchymal cells are cultured from bone marrow, skin, etc. and used as the population of Muse cells, all SSEA-3 positive cells are CD105 It is known to be a positive cell.
  • the Muse cells when separating Muse cells from living mesenchymal tissue or cultured mesenchymal stem cells, the Muse cells can be simply purified using SSEA-3 as an antigen marker and used. it can.
  • a cell population containing pluripotent stem cells (Muse cells) or Muse cells isolated from living mesenchymal tissue or cultured mesenchymal tissue using SSEA-3 as an antigen marker is simply “ May be described as "SSEA-3 positive cells”.
  • “non-Muse cells” refer to cells other than “SSEA-3-positive cells”, which are cells contained in a mesenchymal tissue or cultured mesenchymal tissue in a living body.
  • Muse cells or cell populations containing Muse cells can be obtained from living tissue (eg, using antibodies against the cell surface marker SSEA-3 alone, or both antibodies against SSEA-3 and CD105, respectively) , Mesenchymal tissue).
  • living tissue eg, using antibodies against the cell surface marker SSEA-3 alone, or both antibodies against SSEA-3 and CD105, respectively
  • Mesenchymal tissue e.g., Mesenchymal tissue.
  • “living body” means a living body of a mammal. In the present invention, the living body does not include embryos whose developmental stage is earlier than the fertilized egg or blastocyst stage, but includes embryos in the developmental stage after the blastocyst stage including the fetus and blastocyst.
  • Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits, guinea pigs, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets, etc. It is done.
  • Muse cells targeted in the present invention are clearly distinguished from embryonic stem cells (ES cells) and embryonic germ stem cells (EG cells) in that they are derived from living tissue.
  • the “mesenchymal tissue” refers to tissues such as bone, synovium, fat, blood, bone marrow, skeletal muscle, dermis, ligament, tendon, dental pulp, umbilical cord, and connective tissues present in various organs.
  • Muse cells can be obtained from bone marrow or skin.
  • a mesenchymal tissue of a living body it is preferable to collect a mesenchymal tissue of a living body and separate and use Muse cells from this tissue. Moreover, you may isolate
  • a Muse cell or a cell population containing a Muse cell can be separated from a living tissue using, for example, SSEA-3 positive or SSEA-3 positive and CD105 positive double positive as an index.
  • the skin contains various types of stem cells and progenitor cells.
  • Muse cells are not the same as these cells.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural crest stem cells (NCSC), melanoblast (MB), perivascular cells (PC), endothelial progenitor cells (EP), adipose-derived stem cells (ADSC). ).
  • Muse cells can be isolated using “non-expression” of a marker unique to these cells as an index.
  • Muse cells are CD34 (EP and ADSC markers), CD117 (c-kit) (MB markers), CD146 (PC and ADSC markers), CD271 (NGFR) (NCSC markers), NG2 (PC marker), vWF factor (von Willebrand factor) (EP marker), Sox10 (NCSC marker), Snai1 (SKP marker), Slug (SKP marker), Tyrp1 (MB marker), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example 2, 3, 4, 5, 6, 7, 8, 9, 10 The non-expression of individual or eleven markers can be separated into indicators.
  • non-expression of CD117 and CD146 can be separated as an index
  • non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be separated as an index
  • the non-expression of 11 markers can be separated as an index.
  • the Muse cell having the above-described characteristics targeted in the present invention is as follows: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; It may have at least one property selected from the group consisting of (iii) showing no neoplastic growth; and (iv) having a self-renewal capability.
  • the Muse cell targeted in the present invention has all the above properties.
  • telomerase activity is low or absent means that, for example, when telomerase activity is detected using TRAPEZE XL telomerase detection kit (Millipore), it is low or cannot be detected.
  • “Low” telomerase activity means, for example, telomerase having a telomerase activity comparable to that of somatic human fibroblasts, or 1/5 or less, preferably 1/10 or less compared to Hela cells. It means having activity.
  • the Muse cell has the ability to differentiate into three germ layers (endoderm, mesodermal, and ectoderm) in vitro and in vivo, for example, induction culture in vitro Can be differentiated into hepatocytes, nerve cells, skeletal muscle cells, smooth muscle cells, bone cells, fat cells and the like. In addition, when transplanted to the testis in vivo, it may show the ability to differentiate into three germ layers.
  • Muse cells have the property of proliferating at a growth rate of about 1.3 days in suspension culture, but stop growing in about 10 days. Further, when transplanted to the testis, Muse cells have cancer for at least half a year. It has the property of not becoming Moreover, about said (iv), a Muse cell has self-renewal (self-replication) ability.
  • self-renewal refers to culturing cells contained in an embryoid body-like cell mass obtained by suspension culture of one Muse cell, and forming an embryoid body-like cell mass again. .
  • the self-renewal may be repeated once or multiple times.
  • Muse cells are known to home to the site of injury when administered to adults, whereas non-Muse cells do not home to the site of injury, There is no known migratory factor that induces Muse cells to the site of injury. Therefore, assuming that there is a migration factor that induces Muse cells at the site of injury, first, a protein that is specifically expressed in Muse cells but not in non-Muse cells (in particular, a receptor). It is considered that there is a high possibility that a ligand or the like is a migration factor.
  • proteome analysis is useful as a method for identifying unknown factors.
  • This analysis analyzes the biochemical and physicochemical properties of proteins extracted from cells or tissues, and uses the genetic information revealed by genomic analysis to determine the correspondence between the protein and the gene that encodes it. It is an analytical method for research aimed at clarifying the functions of translation products of all genes using genomic sequence information.
  • a peptide mass-finger printing (PMF) method is currently used as a commonly used technique.
  • PMF peptide mass-finger printing
  • a protein is separated by two-dimensional electrophoresis or the like, the protein is digested into a peptide with a digestive enzyme such as trypsin, and a mass spectrum (peptide mass fingerprint) of the peptide mixture is obtained using a mass spectrometer.
  • a mass spectrum peptide mass fingerprint
  • a proteome analysis developed by a group of Professor Toshiaki Isobe and others at Tokyo Metropolitan University can be used for the purpose of identifying receptors for migration factors of Muse cells. More specifically, proteins (mixtures) are extracted from two cell groups to be compared (a Muse cell group and a non-Muse cell group), and these mixtures are separated by electrophoresis based on a difference in molecular weight. Separated proteins are identified as each band on the gel. Next, the mass of each of the bands cut out from the gel is measured by LC-MS analysis.
  • proteins can be automatically searched and selected from the database, and different proteins can be identified between the two cell groups (for example, Mango Taoka et al., “Definitive Edition! Proteome Analysis Manual”) (Refer to Toshiaki Isobe and Nobuhiro Takahashi) pp. 92-100, Yodosha, 2004).
  • the said database is not limited, "SwissProt” which is a protein database already published can be used.
  • the present inventors have identified proteins specifically expressed in Muse cells as compared to non-Muse cells by using the above proteomic analysis (data not shown).
  • sphingosine-1-phosphate receptor 2 (sometimes simply referred to as “S1PR2”) is specifically expressed in Muse cells. However, it was found that the protein was not expressed in non-Muse cells (Example 2).
  • a method for measuring cell migration is not limited, but in an in vitro experimental system, a Boyden chamber method, a cell dynamic analysis technique, or the like can be used.
  • the Boyden chamber method is an effective method for quantifying cell chemotaxis, with an insert as a separate compartment within the Boyden chamber, the bottom surface of this insert being a uniform size (eg, about 8 ⁇ m) A filter having a large number of fine holes is attached.
  • the cells pass through the filter along the concentration gradient of the migration factor generated in the micropores of the filter. 2 (see, for example, Boyden, S., J. Exp. Med., Vol. 115, p. 453-466 (1962)).
  • the degree of chemotaxis can be quantitatively measured by counting the number of cells that have passed through the filter.
  • the candidate substance of the migration factor is added to the lower side of the insert, the Muse cell is added to the upper side, and then the number of migration of the Muse cell is counted to determine whether the added candidate substance can act as a migration factor. Can be evaluated.
  • the cell kinetic analysis technique is a cell migration ability analysis method developed by ECI (see Nita, et al., Journalnof Immunological method; 320, 155-163 (2007)).
  • ECI a cell migration ability analysis method developed by ECI (see Nita, et al., Journalnof Immunological method; 320, 155-163 (2007)).
  • a concentration gradient of a certain chemotaxis factor is formed on a glass substrate, and the horizontal migration of cells depending on the gradient can be measured. It is a system that can.
  • the directionality for example, how much the Muse cell has advanced with respect to the high concentration side of the migration factor
  • S1P sphingosine-1-phosphate
  • the migration of Muse cells is remarkable in any experimental system using the Boyden chamber method and the cell dynamic analysis technique. (Example 2).
  • a migration factor can be identified using a system using a mouse as an experimental model. More specifically, a gel (eg, hydrogel) impregnated with a migration factor is transplanted into the tissue of an immunodeficient mouse that does not reject human cells, and then GFP-labeled human Muse cells are administered from the tail vein.
  • the migration factor can be identified by observing histochemically whether or not the Muse cells can accumulate in the gel containing the transplanted migration factor. As shown in Example 2 described later, it was found that GFP positive Muse cells were accumulated depending on the S1P concentration.
  • the present invention provides a pharmaceutical composition comprising as an active ingredient a migration factor that enhances the migration activity of Muse cells and induces Muse cells to the damaged site.
  • the “migration factor” used in the pharmaceutical composition of the present invention is, for example, a signal transduction involved in cell migration through binding to a receptor expressed on the cell surface of Muse cells. As a result of the activation of the system, it means a substance that causes cells to migrate by being directed to the migration factor.
  • the term “damaged site” refers to trauma, inflammation, disease, ischemia, necrosis, tumor formation, aging, etc. in various organs, organs and tissues in the living body.
  • the migration factor in order to accumulate Muse cells at the site of injury, may be used as a pharmaceutical composition containing a pharmaceutically acceptable carrier and / or diluent, or the migration factor may be It may be used alone.
  • the migration factor contained in the pharmaceutical composition of the present invention is not particularly limited as long as it is a substance (for example, protein, peptide, lipid, compound, etc.) having the ability to induce Muse cells to the damaged site.
  • the migratory factor is an agonist of sphingosine-1-phosphate (S1P), a sphingosine-1-phosphate derivative, and a sphingosine-1-phosphate receptor.
  • S1P sphingosine-1-phosphate
  • S1P sphingosine-1-phosphate
  • S1P is also known as a physiologically active substance that causes cell migration by binding to a G protein-coupled receptor expressed on the cell membrane after being cut out from the cell membrane by a certain enzyme and released.
  • S1P receptors which are G protein-coupled receptors, are known, and five types of S1PR1 to S1PR5 have been known so far.
  • S1PR1 is expressed in both cells, but S1PR2 is expressed in Muse cells. (Data not shown).
  • the migration factor used in the pharmaceutical composition of the present invention is not limited to S1P as long as it is a substance that enhances the migration of Muse cells, and S1P derivatives thereof can also be used.
  • the S1P derivative is not particularly limited, but sphingosylcholine, galactosylsphingosine (psychosin), glucosylsphingosine (glucosicosin), sulfogalactosylsphingosine (lysosulfatide), N, N-dimethylsphingosine 1-phosphate, N, N, Mention may be made of N-trimethylsphingosine 1-phosphate, ceramide 1-phosphate, dihydrosphingosine 1-phosphate, phytosphingosine 1-phosphate, and dehydrophytosphingosine 1-phosphate, and salts thereof.
  • the agonist with respect to S1PR2 can be used as a migration factor used for the pharmaceutical composition of this
  • S1P is dephosphorylated in the living body by sphingosine-1-phosphate lyase present in the endoplasmic reticulum and decomposed into trans-2-hexadecenal and ethanolamine phosphate. It is known that the reaction of adding phosphoric acid to trans-2-hexadecenal is in an equilibrium state. Therefore, in order to increase the concentration of S1P, a substance that inhibits S1P lyase responsible for dephosphorylation can also be used in the pharmaceutical composition of the present invention. Examples of substances that inhibit such S1P lyase include the following structures:
  • the administration route is not particularly limited, but can be appropriately selected depending on the purpose of treatment.
  • any of injections, oral preparations, suppositories, inhalants and the like may be used, but when the purpose is to accumulate Muse cells at the damaged site, the migratory factor or pharmaceutical composition of the present invention is directly administered to the damaged site. More preferably.
  • the pharmaceutical composition of the present invention is modified so as to be delivered to the damaged site, it is not limited to direct injection to the damaged site, and the pharmaceutical composition can also be administered intravenously.
  • systemic administration such as intravenous administration can be performed for the purpose of initiating migration of Muse cells present in mesenchymal tissue in vivo.
  • pharmaceutical composition suitable for these administration forms can be manufactured by utilizing a well-known formulation method.
  • a pH regulator When preparing an injection, it is possible to add a pH regulator, a buffer, a stabilizer, an isotonic agent, a local anesthetic, etc. to the migratory factor and produce a local injection using a conventional method.
  • the pH adjusting agent and buffer include sodium citrate, sodium acetate, sodium phosphate and the like.
  • the stabilizer include sodium pyrosulfite, EDTA (sodium edetate), thioglycolic acid, and thiolactic acid.
  • the local anesthetic include procaine hydrochloride and lidocaine hydrochloride.
  • the isotonic agent include sodium chloride and glucose.
  • a sheet containing the pharmaceutical composition or migration factor of the present invention on a carrier such as a biodegradable hydrogel containing the components of the injection is used. It may be used. Biodegradable hydrogels that can be used include, but are not limited to, gels based on collagen, fibronectin, gelatin, agarose, and the like.
  • the pharmaceutical composition or migration factor of the present invention can be applied to the inner diameter of a stent for vasodilation when infarction or the like occurs.
  • components that enhance the viability of the accumulated Muse cells for example, growth factors, cytokines may be mixed.
  • the concentration of the migration factor included in the pharmaceutical composition of the present invention can be appropriately changed depending on the degree of damage at the damaged site and the type of migration factor.
  • the concentration of the migration factor effective for inducing Muse cells is not limited, and is, for example, 1 nM to 100 ⁇ M.
  • the injection amount or dosage of the pharmaceutical composition, the dosage form, the number of times, and the period in consideration of the concentration of the above-mentioned migration factor or the degree of damage Etc. can be determined as appropriate.
  • Example 1 Selection of migratory factor candidate substance by proteome analysis
  • a proteome analysis method developed by a group of Prof. Isobe of Tokyo Metropolitan University Used (Taoka et al. (2004), see above). This method is a method for identifying a large amount of proteins contained in an original sample by analyzing a complex peptide mixture generated by protease digestion of a protein mixture, and is also referred to as a “shot gun method”.
  • An automated system for carrying out this method includes a complex LC system in which an ion exchange LC, a reverse phase LC for separation, and a desalting system are connected, a hybrid mass spectrometer, and a data analysis system.
  • the combined LC system is particularly characterized by combining two types of LC (ion exchange system and reverse phase system) with different separation modes, and the overall resolution of the system is the product of the separation capabilities of each separation method. As a result, a very large number of proteins or peptides can be separated.
  • a protein or peptide can be identified by database search of subsequent sequence information by separating a biological sample with high resolution depending on mass and further using MS that provides mass information.
  • an MS / MS spectrum of 10,000 to 15,000 translations can be obtained in one analysis. From 2,000 to 3,000 peptides derived from 000 proteins can be identified. In this example, by using the automated system of Sobe et al., A protein specifically expressed in Muse cells was identified as compared with non-Muse cells.
  • Example 2 Identification of migration factor (1) Preparation of human Muse cells
  • Human Muse cells were prepared according to the method described in International Publication No. WO2011 / 007900. More specifically, mesenchymal cells having adhesiveness were cultured from human bone marrow fluid, and after proliferating, lentivirus-GFP was introduced into the cells.
  • GFP-labeled Muse cells or cell populations containing Muse cells were separated by FACS as double positive cells of GFP and SSEA-3.
  • Non-Muse cells are a group of SSEA-3 negative GFP positive cells among the above mesenchymal cells, and were used as controls.
  • S1PR2 sphingosine-1-phosphate receptor 2
  • the Boyden chamber method was used to quantitatively measure the migration of Muse cells by migration factors.
  • the Boyden chamber used was a QCM Chemotaxis Cell Migration Assay Kit (QCM 24 Well Colorimetric Cell Migration Assay) commercially available from Millipore.
  • the Boyden chamber includes an insert having a filter having uniform fine pores of 8 ⁇ m at the bottom inside the chamber. A culture solution containing Muse cells or non-Muse cells is added to the upper part of the filter of the insert, a culture solution containing a migration factor is added to the lower part of the insert, and after 18 hours of incubation, the number of cells that have passed through the micropores of the filter is counted. (See FIG. 2). If this method is used, the migration factor for Muse cells can be identified by testing each of the migration factor candidates obtained in Example 1.
  • Muse cells or non-Muse cells are seeded on the filter at a concentration of 1 ⁇ 10 5 cells / well, and S1P is contained at a predetermined concentration (0, 100, 500, 1000, 5000 nM) at the bottom of the insert. Culture medium was added. After incubating the cells for 18 hours, the cells that passed through the micropores of the filter were counted. The results are shown in FIG. In the figure, the horizontal axis indicates different concentrations of S1P, and the vertical axis indicates the relative value of the number of cells with respect to each concentration when the number of Muse cells migrated by S1P (0 nM) is 1. As is clear from FIG.
  • the cell kinetic analysis technique is a method of analyzing cell migration ability developed by ECI (see Nita, et al., Journal of Immunological method; 320, 155-163 (2007)).
  • a concentration gradient of a certain chemotaxis factor is formed using a silicon wafer chip created by utilizing the latest microfabrication technology, and the horizontal direction of the cell depending on the gradient.
  • a system capable of measuring the migration activity is used (FIG. 4). By analyzing the resulting images from this system, the directionality (eg, how much the Muse cells have advanced relative to the high migration factor concentration side) can be quantified (FIG. 5).
  • Muse cells were added at an arbitrary cell density to one of the approximately 1 mm ⁇ holes provided in the chamber above the chip, and S1P (2 ⁇ M) was added as a migration factor from the other slit. After the addition of cells and S1P, time-lapse photography was started and observed for about 14 hours. Cell migration was evaluated by measuring the distance that each cell moved in the length direction of a terrace having a structure having a width of 1200 ⁇ m, a terrace length of 250 ⁇ m, and a depth of 8 ⁇ m provided on a silicon wafer chip. A control system to which S1P was not added was used as a control. The left side of FIG.
  • FIG. 6 shows the results of real-time observation of the migration of Muse cells (A to N) when S1P was added at 2 ⁇ M.
  • the right side of FIG. 6 shows the result of observing the movement of Muse cells when S1P was not added.
  • Muse cells (A to N) linearly pass through the terrace according to the concentration gradient of S1P.
  • some of the cells could not pass through the terrace, but it is considered that these cells are mainly inhibited from migration by columns provided on the terrace (right side of FIG. 6).
  • the Muse cells (a to j) only spread randomly (left side of FIG. 6). From the above results, it was strongly suggested that S1P is a migration factor specific to Muse cells, as in the case of evaluation using the Boyden chamber method.
  • Example 1 Thereafter, the GFP-labeled human Muse cells prepared in Example 1 were injected from the tail vein of the mouse. Two days later, tissue around the hydrogel was removed from the transplanted site, GFP labeling was detected using a GFP antibody, and GFP-positive Muse cells were counted with a laser microscope.
  • the extracted hydrogel was stained by a generally used histochemical method using an anti-GFP antibody against GFP (Alexa568, purchased from Invitrogen).
  • a staining diagram is shown as FIG. The part indicated by the arrow indicates a GFP positive Muse cell. Comparing the case where the S1P concentration is 500 nM (FIG. 8 left) and the case where it is 1,000 nM (FIG. 8 right), it can be seen that the number of Muse cells increases depending on the S1P concentration.
  • the upper right image is an enlarged view of a portion surrounded by a central square.
  • the result of counting the number of cells based on each obtained image is shown in FIG. This result also showed that Muse cells were accumulated depending on the concentration of S1P.
  • the pharmaceutical composition of the present invention can accumulate Muse cells at a damaged site, and can provide a new medical use aiming at efficient tissue regeneration in regenerative medicine using Muse cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reproductive Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、新たな医療用途して有用な多能性幹細胞(Muse細胞)を損傷部位に誘導する遊走因子を同定するとともに、Muse細胞を用いた再生医療において、組織再生を促進するための遊走因子を含む医薬組成物を提供することを目的とする。本発明は、非Muse細胞と比較してMuse細胞に特異的に発現している受容体を特定し、その受容体に対するリガンドが遊走因子として作用し得ることを確認した。本発明では、スフィンゴシン-1-リン酸(S1P)が遊走因子であることを同定し、したがって、本発明は、S1Pを有効成分として含む、多能性幹細胞を損傷部位に誘導するための医薬組成物に関する。

Description

多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物
 本発明は、多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物に関する。
 近年、組織再生に貢献し得る生体由来の細胞が注目されつつある。成体から得られる分化能を有する細胞として、例えば、骨、軟骨、脂肪細胞、神経細胞、骨格筋等への分化能を有する骨髄間葉系細胞画分(MSC)(非特許文献1及び2)が知られているが、これは様々な細胞を含む細胞群であり、その分化能を担う細胞の実体が分かっておらず、治療効果にバラつきが大きかった。また、成体由来の多能性幹細胞としてiPS細胞(特許文献1)が報告されているが、iPS細胞の樹立には、間葉系細胞である皮膚線維芽細胞画分等に特定の遺伝子や特定の化合物を体細胞に導入するという極めて複雑な操作を必要とすることに加え、iPS細胞が高い腫瘍形成能力を有することから、臨床応用への極めて高いハードルが存在している。
 本発明者らの一人である出澤氏の研究により、間葉系細胞画分に存在し、誘導操作なしに得られる、SSEA-3(Stage-Specific Embryonic Antigen-3)を表面抗原として発現している多能性幹細胞(Multilineage-differentiating Stress Enduring cells;Muse細胞)が間葉系細胞画分の有する多能性を担っており、組織再生を目指した疾患治療に応用できる可能性があることが分かってきた(特許文献2;非特許文献3;非特許文献4)。また、多能性幹細胞(Muse細胞)は、生体内の間葉系組織に存在し、生体組織に損傷が起こると、その部位に集積し、組織再生を担うことが分かってきた(特許文献2;非特許文献3)。しかしながら、Muse細胞が、損傷した組織に誘導されるメカニズムは解明されていないだけでなく、Muse細胞を損傷部位に誘導する遊走因子も同定されていない。
特許第4183742号公報 国際公開第WO2011/007900号
Dezawa,M.,et al.,J.Clin.Invest.,Vol.113,p.1701-1710(2004) Dezawa,M.,et al.,Science,Vol.309,p.314-317(2005) Kuroda, Y. , et al.,Proc.Natl.Acad.Sci.USA,Vol.107,p.8639-8643(2010) Wakao,S,et al.,Proc.Natl.Acad.Sci.USA,Vol.108,p.9875-9880(2011)
 本発明は、再生医療において、多能性幹細胞(Muse細胞)を用いた医療用途を提供することを目的とし、Muse細胞の遊走能活性を亢進し、損傷部位にMuse細胞を効率的に集積させるための遊走因子を同定するとともに、遊走因子を含む医薬組成物を提供することを課題とする。
 本発明者らは、プロテオーム解析を駆使することによって、Muse細胞を損傷部位に誘導する遊走因子を同定することに成功し、遊走因子の1つとしてスフィンゴシン-1-リン酸(S1P)がMuse細胞の遊走能活性を亢進し、損傷部位への集積に関与することを見出し、本発明を完成するに至った。遊走能活性を亢進するとは、間葉系組織内に存在するMuse細胞の損傷部位への遊走を開始させることを含む。
 すなわち、本発明は、以下の通りである。
[1]スフィンゴシン-1-リン酸受容体2を活性化する化合物を有効成分として含む、多能性幹細胞の遊走を活性化するための医薬組成物。
[2]スフィンゴシン-1-リン酸受容体2を活性化する化合物が、スフィンゴシン-1-リン酸受容体2のアゴニストである、上記[1]に記載の医薬組成物。
[3]スフィンゴシン-1-リン酸受容体2のアゴニストが、スフィンゴシン-1-リン酸又はその誘導体である、上記[2]に記載の医薬組成物。
[4]スフィンゴシン-1-リン酸受容体2のアゴニストが、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-5-(トリフルオロメチル)ピリジン-2(1H)-オン、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)ピロリジン-2,5-ジオン、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-3-メチルイミダゾリジン-2,4,5-トリオン、1-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-((1-メチル-1H-テトラゾール-5-イル)チオ)エタノン、及び(S)-1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-2’,3’-ジヒドロスピロ[イミダゾリジン-4,1’-インデン]-2,5-ジオンからなる群から選択される、上記[2]に記載の医薬組成物。
[5]スフィンゴシン-1-リン酸受容体2を活性化する化合物が、スフィンゴシン-1-リン酸リアーゼ阻害剤である、上記[1]に記載の医薬組成物。
[6]スフィンゴシン-1-リン酸リアーゼ阻害剤が、(E)-1-(4-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノンオキシム、(1R,2S,3R)-1-(2-(イソキサゾール-3-イル)-1H-イミダゾール-4-イル)ブタン-1,2,3,4-テトラオール、及び1-(5-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノンからなる群から選択される、上記[5]に記載の医薬組成物。
[7]遊走の活性化が生体の損傷部位への誘導である、上記[1]~[6]に記載の医薬組成物。
[8]前記多能性幹細胞が、SSEA3陽性である、上記[1]~[7]に記載の医薬組成物。
[9]前記多能性幹細胞が、CD105陽性である、上記[1]~[8]に記載の医薬組成物。
[10]前記多能性幹細胞が、CD117陰性及びCD146陰性である、上記[1]~[9]に記載の医薬組成物。
[11]前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、上記[1]~[10]のいずれか1項に記載の医薬組成物。
[12]前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、上記[1]~[11]に記載の医薬組成物。
[13]前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、上記[1]~[12]に記載の医薬組成物:
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ。
 本発明によれば、Muse細胞による組織再生において、Muse細胞の遊走能活性を亢進し、損傷部位にMuse細胞を誘導する遊走因子を含む医薬組成物が提供される。
Muse細胞における各種スフィンゴシン-1-リン酸受容体(S1PR)の発現量をリアルタイムPCR(定量的PCR)を用いてNHDF(正常ヒト皮膚線維芽細胞)での発現量を基準とした相対値として測定した結果を示す図である。 Muse細胞の遊走を測定するために使用したボイデンチャンバーと遊走因子による細胞遊走を模式的に示す図である。ボイデンチャンバーは、その内部に微孔径が8μmであるインサートを有する。インサートの上部にMuse細胞又は非Muse細胞を含む培養液を添加し、インサートの下部に遊走因子を含む培養液を添加し、18時間後にインサートを通過した細胞数をカウントする。 ボイデンチャンバーを用いて測定した遊走細胞のカウントを相対的に評価した図である。図中、横軸は、遊走因子の異なる濃度を示し、縦軸は、遊走因子(0nM)により遊走されるMuse細胞を1とした場合の相対値を示す。 Muse細胞の遊走を測定するために使用した簡易型細胞動態解析装置(EZ-TAXIScan)の概念図である。装置には2つのスリットがあり、それぞれに細胞及び遊走因子を添加し、プレート上を細胞が遊走因子に指向される様子を矢印で示す。 簡易型細胞動態解析装置を用いて測定した細胞遊走を示す写真である。Muse細胞は、テラスと呼ばれる長さ250μm、深さ8μmの構造を潜るようにして、遊走因子の濃度勾配に従って移動する。写真左は、スフィンゴシン-1-リン酸(S1P)を2μM添加した場合であり、写真右はS1Pを添加していない場合の細胞移動を示す。 S1PによるMuse細胞の遊走を簡易型細胞動態解析装置によって解析した結果を示す。左図は、Muse細胞がS1Pに向かって直線的に遊走する様子をリアルタイムで測定した結果を示す。右図は、S1Pを含まない場合には、Muse細胞がランダムに広がる様子をリアルタイムで測定した結果を示す。 マウスを用いた遊走因子によるMuse細胞の遊走試験手順を説明する図である。使用したマウスは、ヒト細胞を拒絶しない免疫不全のSCIDマウス(7週齢)である。S1P溶液を染み込ませた生分解性ハイドロゲルをマウスの背中に移植し、GFP陽性ヒトMuse細胞を尾静脈投与後、ハイドロゲルの移植部位周辺の組織を採取し、該部位にMuse細胞が集積されたかを検証する。 ハイドロゲルに染み込ませるS1P溶液の濃度を500nM及び1,000nMとした場合のハイドロゲルに集積したGFP陽性ヒトMuse細胞の集積を示す図である。GFPの染色には、抗GFP抗体(Alexa568)を用いた。これらの結果は、Muse細胞がS1P溶液の濃度に依存して集積されることを示す。 ハイドロゲルに集積されたMuse細胞を1mmあたりの細胞数として評価した。図8の結果と同様に、Muse細胞はS1P濃度に依存して集積された。
 本発明は、多能性幹細胞を損傷部位に誘導する遊走因子を含む組成物及びその利用に関する。本発明を以下に詳細に説明する。
1.多能性幹細胞(Muse細胞)
 本発明の遊走因子によって損傷部位に誘導される多能性幹細胞は、本発明者らの一人である出澤が、ヒト生体内にその存在を見出し、「Muse(Multilineage-differentiating Stress Enduring)細胞」と命名した細胞である。Muse細胞は、骨髄液や真皮結合組織等の皮膚組織から得ることができ、各臓器の結合組織にも散在する。また、この細胞は、多能性幹細胞と間葉系幹細胞の両方の性質を有する細胞であり、例えば、それぞれの細胞表面マーカーである「SSEA-3(Stage-specific embryonic antigen-3)」と「CD105」のダブル陽性として同定される。したがって、Muse細胞又はMuse細胞を含む細胞集団は、例えば、これらの抗原マーカーを指標として生体組織から分離することができる。Muse細胞の分離法、同定法、及び特徴などの詳細は、国際公開第WO2011/007900号に開示されている。また、Wakaoら(2011、上述)によって報告されているように、骨髄、皮膚などから間葉系細胞を培養し、それをMuse細胞の母集団として用いる場合、SSEA-3陽性細胞の全てがCD105陽性細胞であることが分かっている。したがって、本発明における医薬組成物においては、生体の間葉系組織又は培養間葉系幹細胞からMuse細胞を分離する場合は、単にSSEA-3を抗原マーカーとしてMuse細胞を精製し、使用することができる。なお、本明細書においては、SSEA-3を抗原マーカーとして、生体の間葉系組織又は培養間葉系組織から分離された多能性幹細胞(Muse細胞)又はMuse細胞を含む細胞集団を単に「SSEA-3陽性細胞」と記載することがある。また、本明細書においては、「非Muse細胞」とは、生体の間葉系組織又は培養間葉系組織に含まれる細胞であって、「SSEA-3陽性細胞」以外の細胞を指す。
 簡単には、Muse細胞又はMuse細胞を含む細胞集団は、細胞表面マーカーであるSSEA-3に対する抗体を単独で用いて、又はSSEA-3及びCD105に対するそれぞれの抗体を両方用いて、生体組織(例えば、間葉系組織)から分離することができる。ここで、「生体」とは、哺乳動物の生体をいう。本発明において、生体には、受精卵や胞胚期より発生段階が前の胚は含まれないが、胎児や胞胚を含む胞胚期以降の発生段階の胚は含まれる。哺乳動物には、限定されないが、ヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。本発明において対象とされるMuse細胞は、生体の組織由来である点で、胚性幹細胞(ES細胞)や胚性生殖幹細胞(EG細胞)と明確に区別される。また、「間葉系組織」とは、骨、滑膜、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、歯髄、臍帯などの組織及び各種臓器に存在する結合組織をいう。例えば、Muse細胞は、骨髄や皮膚から得ることができる。例えば、生体の間葉系組織を採取し、この組織からMuse細胞を分離し、利用することが好ましい。また、上記分離手段を用いて、培養間葉系細胞からMuse細胞を分離してもよい。
 上記のように、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3陽性又はSSEA-3陽性とCD105陽性の二重陽性を指標にして生体組織から分離することができるが、ヒト成人皮膚には、種々のタイプの幹細胞及び前駆細胞を含むことが知られている。しかしながら、Muse細胞は、これらの細胞と同じではない。このような幹細胞及び前駆細胞には、皮膚由来前駆細胞(SKP)、神経堤幹細胞(NCSC)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)が挙げられる。これらの細胞に固有のマーカーの「非発現」を指標として、Muse細胞を分離することができる。より具体的には、Muse細胞は、CD34(EP及びADSCのマーカー)、CD117(c-kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、CD271(NGFR)(NCSCのマーカー)、NG2(PCのマーカー)、vWF因子(フォンビルブランド因子)(EPのマーカー)、Sox10(NCSCのマーカー)、Snai1(SKPのマーカー)、Slug(SKPのマーカー)、Tyrp1(MBのマーカー)、及びDct(MBのマーカー)からなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に分離することができる。例えば、限定されないが、CD117及びCD146の非発現を指標に分離することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に分離することができ、さらに、上記の11個のマーカーの非発現を指標に分離することができる。
 また、本発明において対象とされる上記特徴を有するMuse細胞は、以下: 
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ
からなる群から選択される少なくとも1つの性質を有してもよい。本発明の一局面では、本発明において対象とされるMuse細胞は、上記性質を全て有する。ここで、上記(i)について、「テロメラーゼ活性が低いか又は無い」とは、例えば、TRAPEZE XL telomerase detection kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に、低いか又は検出できないことをいう。テロメラーゼ活性が「低い」とは、例えば、体細胞であるヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、又はHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。上記(ii)について、Muse細胞は、in vitro及びin vivoにおいて、三胚葉(内胚葉系、中胚葉系、及び外胚葉系)に分化する能力を有し、例えば、in vitroで誘導培養することにより、肝細胞、神経細胞、骨格筋細胞、平滑筋細胞、骨細胞、脂肪細胞等に分化し得る。また、in vivoで精巣に移植した場合にも三胚葉に分化する能力を示す場合がある。さらに、静注により生体に移植することで損傷を受けた臓器(心臓、皮膚、脊髄、肝、筋肉等)に遊走及び生着し、分化する能力を有する。上記(iii)について、Muse細胞は、浮遊培養では増殖速度約1.3日で増殖するが、10日間程度で増殖が止まるという性質を有し、さらに精巣に移植した場合、少なくとも半年間は癌化しないという性質を有する。また、上記(iv)について、Muse細胞は、セルフリニューアル(自己複製)能を有する。ここで、「セルフリニューアル」とは、1個のMuse細胞を浮遊培養することにより得られる胚様体様細胞塊に含まれる細胞を培養し、再度胚様体様細胞塊を形成させることをいう。セルフリニューアルは1回又は複数回のサイクルを繰り返せばよい。
2.Muse細胞に特異的に発現しているタンパク質の同定
 これまで、Muse細胞は成体に投与されると損傷部位にホーミングし、一方、非Muse細胞は損傷部位にホーミングしないことが知られているが、Muse細胞を損傷部位に誘導する遊走因子は知られていない。そこで、損傷部位にMuse細胞を誘導する遊走因子が存在すると仮定した場合、最初に、Muse細胞に特異的に発現しているが、非Muse細胞には発現していないタンパク質(特に、受容体)を特定することにより、それに対するリガンドなどが遊走因子である可能性が高いと考えられる。
 一般に、未知の因子を同定するための手法としては、プロテオーム解析が有用であることが知られている。この解析は、細胞又は組織から抽出したタンパク質の生化学的及び物理化学的特性を分析し、ゲノム解析により明らかにされた遺伝子情報を利用して、上記タンパク質とそれをコードする遺伝子との対応を明らかにすること、さらにゲノム配列情報を利用しながら、全ての遺伝子の翻訳産物について機能を解明していくことを目的とする研究のための解析手法である。
 プロテオーム解析において、現在よく使用されている手法としては、ペプチドマスフィンガープリンティング(peptide mass-finger printing:PMF)法が挙げられる。PMF法では、二次元電気泳動等によってタンパク質を分離し、そのタンパク質をトリプシンなどの消化酵素でペプチドに消化後、ペプチド混合物の質量スペクトル(ペプチドマスフィンガープリント)を質量分析装置を用いて取得し、これとゲノムデータベースからのDNAの塩基配列に対応するアミノ酸配列から計算される理論的な質量スペクトルとを検索することにより、タンパク質及び該タンパク質をコードする遺伝子を同定することができる。
 本発明によれば、Muse細胞の遊走因子に対するレセプターを同定することを目的として、首都大学東京の磯辺俊明教授らのグループによって開発されたプロテオーム解析を用いることができる。より具体的には、比較する2つの細胞群(Muse細胞群と非Muse細胞群)からタンパク質(混合物)を抽出し、これらの混合物を分子量の違いに基づいて電気泳動することによって分離する。分離されたタンパク質は、ゲル上では各バンドとして識別される。次に、ゲルから切り出されたバンドの各々をLC-MS分析によって質量を測定する。さらに、これらの質量値を用いて、データベース上からタンパク質を自動検索して選び出し、2つの細胞群間において異なるタンパク質を同定することができる(例えば、田岡万悟ら、「決定版!プロテオーム解析マニュアル」(磯辺俊明、高橋信弘編集)pp.92-100、羊土社、2004を参照されたい)。なお、上記データベースは、限定されないが、既に公開されているタンパク質データベースである「SwissProt」を使用することができる。本発明者らは、上記プロテオーム解析を用いることにより、非Muse細胞と比較して、Muse細胞に特異的に発現しているタンパク質を特定した(データ示さず)。後述するように、これらの特定されたタンパク質のうち、例えば、スフィンゴシン-1-リン酸受容体2(単に、「S1PR2」と記載することがある)は、Muse細胞において特異的に発現しているが、非Muse細胞においては発現していないタンパク質であることが分かった(実施例2)。
3.遊走因子の同定及び確認
 上記で同定されたMuse細胞に特異的に発現しているタンパク質のうち、例えば、遊走因子の受容体となり得るものを選択し、これらの受容体に対するリガンドが遊走因子となり得るかどうかを検討することによって、Muse細胞の遊走因子を特定することができる。一般に、細胞の遊走を測定する方法としては、限定されないが、in vitroの実験系ではボイデンチャンバー法、細胞動態解析技術等を用いることができる。簡単には、ボイデンチャンバー法は、細胞走化性を定量する有効な方法であり、ボイデンチャンバー内に別のコンパートメントとしてインサートがあり、このインサートの底面は均一なサイズ(例えば、約8μm)の微細孔を多数有するフィルターが装着されている。そのフィルター上に細胞を含む細胞培養液を添加し、インサートの下部に遊走因子を含む培養液を添加することによって、フィルターの微細孔に生じる遊走因子の濃度勾配に沿って細胞がフィルターを潜り抜けて下方に移動することを利用したものである(図2)(例えば、Boyden,S.,J.Exp.Med.,Vol.115,p.453-466(1962)を参照されたい)。このように、フィルターを通過した細胞数をカウントすることによって走化性の程度を定量的に測定することができる。本発明では、遊走因子の候補物質をインサートの下側に添加し、上側にMuse細胞を添加後、Muse細胞の移動数をカウントすることによって、添加した候補物質が遊走因子として作用し得るかを評価することができる。
 一方、細胞動態解析技術とは、ECI社が開発した細胞遊走能解析法であり(Nitta, et al., Journal of Immunological method;320,155-163(2007)を参照されたい)、最新の微細加工技術を駆使して作成したシリコンウエハーチップを用いて、ガラス基板上で一定の走化性因子の濃度勾配を形成させ、その勾配依存的な細胞の水平方向への遊走性を測定することができるシステムである。このシステムを用いて得られた画像をリアルタイムで解析することによって、方向性(例えば、Muse細胞が遊走因子の高濃度側に対してどれだけ方向的に進んだか)を定量化することができる。後述するように、候補物質の1つとしてスフィンゴシン-1-リン酸(S1P)を用いた場合、ボイデンチャンバー法及び細胞動態解析技術を用いたいずれの実験系においてもMuse細胞の遊走性が顕著に観察された(実施例2)。
 また、in vivoの実験系では、例えば、マウスを実験モデルとした系を用いて遊走因子を同定することができる。より具体的には、ヒト細胞を拒絶しない免疫不全マウスの組織内に遊走因子を染み込ませたゲル(例えば、ハイドロゲル)を移植し、その後、尾静脈からGFP標識されたヒトMuse細胞を投与することにより、このMuse細胞が移植された遊走因子を含むゲルに集積し得るかどうかを組織化学的に観察することにより遊走因子を特定することができる。後述する実施例2に示したように、GFP陽性Muse細胞がS1P濃度に依存して集積されることが分かった。
4.遊走因子の利用
 本発明は、Muse細胞の遊走能活性を亢進し、Muse細胞を損傷部位に誘導する遊走因子を有効成分として含む医薬組成物を提供する。本発明の医薬組成物に使用される「遊走因子」とは、例えば、Muse細胞の細胞表面上に発現している受容体に結合し、その結合を介して、細胞の遊走に関与するシグナル伝達系が活性した結果、細胞を遊走因子に指向されて遊走させる物質を意味する。また、本発明において使用するとき、用語「損傷部位」とは、生体内における各種の臓器、器官、及び組織において、外傷、炎症、疾患、虚血、壊死、腫瘍形成、又は加齢等を原因とした各種細胞及び組織との変性又は脱落によって失われた特定の部位を意味する。本発明によれば、Muse細胞を損傷部位に集積させるためには、遊走因子を医薬として許容される担体、及び/又は希釈剤を配合した医薬組成物として使用してもよく、又は遊走因子を単独で用いてもよい。ここで、本発明の医薬組成物に含有する遊走因子としては、Muse細胞を損傷部位に誘導する能力を有する物質(例えば、タンパク質、ペプチド、脂質、化合物等)であれば特に限定されない。より好ましくは、遊走因子は、スフィンゴシン-1-リン酸(S1P)、スフィンゴシン-1-リン酸誘導体、並びにスフィンゴシン-1-リン酸受容体のアゴニストである。ここで、「スフィンゴシン-1-リン酸(S1P)」とは、下記式:
Figure JPOXMLDOC01-appb-C000001
を有する、細胞膜を構成するスフィンゴ脂質の代謝産物である。S1Pは、ある種の酵素によって細胞膜から切り出されて遊離した後、細胞膜上に発現しているGタンパク質共役受容体に結合することにより、細胞遊走などを引き起こす生理活性物質としても知られている。また、S1Pに対する受容体としては、Gタンパク質共役受容体であるS1P受容体が知られ、これまでにS1PR1~S1PR5の5種類が存在することが分かっている。ここで、Muse細胞及び非Muse細胞におけるS1P受容体の発現を調べてみると、S1PR1は、両細胞に発現しているが、S1PR2はMuse細胞に発現していることが本発明者らによって明らかにされた(データ示さず)。
 本発明によれば、本発明の医薬組成物に使用される遊走因子としては、Muse細胞の遊走性を高める物質であればS1Pに限定されず、そのS1P誘導体も使用可能である。S1P誘導体としては、特に限定されないが、スフィンゴシルコリン、ガラクトシルスフィンゴシン(サイコシン)、グルコシルスフィンゴシン(グルコサイコシン)、スルホガラクトシルスフィンゴシン(リゾスルファチド)、N,N-ジメチルスフィンゴシン1-リン酸、N,N,N-トリメチルスフィンゴシン1-リン酸、セラミド1-リン酸、ジヒドロスフィンゴシン1-リン酸、フィトスフィンゴシン1-リン酸、及びデハイドロフィトスフィンゴシン1-リン酸、並びにそれらの塩を挙げることができる。また、本発明によれば、本発明の医薬組成物に使用される遊走因子として、S1PR2に対するアゴニストを用いることができる。このようなアゴニストとしては、下記の構造:
Figure JPOXMLDOC01-appb-C000002
を有する1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-5-(トリフルオロメチル)ピリジン-2(1H)-オン(例えば、Park,S.W.,et al.,J.Am.Soc.Nephrol.,23,p.266-80(2012)参照)、下記の構造:
Figure JPOXMLDOC01-appb-C000003
を有する1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)ピロリジン-2,5-ジオン、下記構造:
Figure JPOXMLDOC01-appb-C000004
を有する1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-3-メチルイミダゾリジン-2,4,5-トリオン、下記構造:
Figure JPOXMLDOC01-appb-C000005
を有する1-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-((1-メチル-1H-テトラゾール-5-イル)チオ)エタノン、及び下記の構造:
Figure JPOXMLDOC01-appb-C000006
を有する(S)-1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-2’,3’-ジヒドロスピロ[イミダゾリジン-4,1’-インデン]-2,5-ジオン等が挙げられる。
 また、S1Pは、生体内において、小胞体に存在するスフィンゴシン-1-リン酸リアーゼにより脱リン酸化され、trans-2-ヘキサデセナールとエタノールアミンリン酸に分解されるが、通常、この脱リン酸化反応と、trans-2-ヘキサデセナールにリン酸を付加する反応とは平衡状態にあることが知られている。そこで、S1Pの濃度を高めるために、脱リン酸化反応を担うS1Pリアーゼを阻害する物質もまた本発明の医薬組成物に使用することができる。このようなS1Pリアーゼを阻害する物質としては、下記の構造:
Figure JPOXMLDOC01-appb-C000007
を有する(E)-1-(4-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノンオキシム(例えば、Bagdanoff,J.T.,et al.,J.Med.Chem.,vol.53,p.8650-8662(2010)を参照);
Figure JPOXMLDOC01-appb-C000008
を有する(1R,2S,3R)-1-(2-(イソキサゾール-3-イル)-1H-イミダゾール-4-イル)ブタン-1,2,3,4-テトラオール(Bagdanoffら、上述);及び
Figure JPOXMLDOC01-appb-C000009
を有する1-(5-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノン(例えば、Cayman Chemical Item Number 13222Cayman Chemical Com.,Michigan,USA)等が挙げられる。
 本発明の遊走因子を含む医薬組成物を組織再生を目的とした治療に用いる場合、投与経路は、特に限定されないが、治療目的に応じて適宜選択することができる。例えば、注射剤、経口剤、坐剤、吸入剤等のいずれでもよいが、Muse細胞を損傷部位に集積させることを目的とした場合、本発明の遊走因子又は医薬組成物を損傷部位に直接投与することがより好ましい。他方、本発明の医薬組成物が損傷部位に送達されるように修飾等されている場合には、損傷部位に直接注入することに限定されず、医薬組成物を静脈投与することもできる。また、生体内の間葉系組織に存在するMuse細胞の遊走を開始させる目的で静脈投与など全身性に投与することもできる。なお、これらの投与形態に適した医薬組成物は、公知の製剤方法を利用することによって製造することができる。
 注射剤を調製する場合は、遊走因子にpH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法を利用して局所用注射剤を製造することができる。pH調製剤及び緩衝剤としては、例えば、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等が挙げられる。安定化剤としては、例えば、ピロ亜硫酸ナトリウム、EDTA(エデト酸ナトリウム)、チオグリコール酸、チオ乳酸等が挙げられる。局所麻酔剤としては、例えば、塩酸プロカイン、塩酸リドカイン等が挙げられる。等張化剤としては、例えば、塩化ナトリウム、ブドウ糖等が挙げられる。
 また、本発明の医薬組成物又は遊走因子を損傷部位に直接注入する場合、上記注射剤の成分を含む生分解性ハイドロゲルなどの担体に本発明の医薬組成物又は遊走因子を含めたシートを用いてもよい。使用可能な生分解性ハイドロゲルとしては、限定されないが、コラーゲン、フィブロネクチン、ゼラチン、アガロース等を主成分とするゲルが挙げられる。また、損傷部位への直接注入のみならず、梗塞等が起きた際には血管拡張を行うためのステントの内径に本発明の医薬組成物又は遊走因子を塗布することもできる。また、Muse細胞による組織再生を支援することを目的として、集積されたMuse細胞の生存性を高める成分(例えば、増殖因子、サイトカイン)を混入してもよい。
 本発明の医薬組成物に含める遊走因子の濃度は、損傷部位における損傷の程度、遊走因子の種類によって適宜変更することができる。Muse細胞を誘導させるために有効な遊走因子の濃度は、限定されないが、例えば、1nM~100μMである。また、医薬組成物として遊走因子を注入又は投与する場合には、上記の遊走因子の濃度又は損傷の程度を考慮して、医薬組成物の注入量又は投与量、投与形態、及びその回数、期間等を適宜決定することができる。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1:プロテオーム解析による遊走因子の候補物質の選出
 Muse細胞を損傷部位に誘導する遊走因子の候補物質を選出するために、首都大学東京の磯辺教授らのグループによって開発されたプロテオーム解析法を用いた(田岡ら(2004)、上述参照)。この方法は、タンパク質混合物のプロテアーゼ消化で生じる複雑なペプチド混合物を分析することにより、もとの試料に含まれるタンパク質を多量に同定する方法であり、「ショットガン法」とも呼ばれる。この方法を実施するための自動化システムは、イオン交換LC、分離用の逆相LC、及び脱塩システムを連結した複合型LCシステムと、ハイブリッド型質量分析計、データ解析システムから構成されている。複合型LCシステムでは、特に、分離様式の異なる2種類のLC(イオン交換系及び逆相系)を組み合わせることを特徴とし、システム全体の分離能は、それぞれの分離法がもつ分離能の積として得られるため、非常に多数のタンパク質又はペプチドを分離することができる。次に、生体試料を質量に依存して高解像度で分離し、さらに質量情報を与えるMSを利用することにより、続く配列情報のデータベース検索によりタンパク質又はペプチドを同定することができる。例えば、細胞又は組織の粗抽出液をトリプシン消化して得られた非常に複雑なペプチド混合物から、1回の分析で訳10,000~15,000のMS/MSスペクトルを取得し、ほぼ1,000種類のタンパク質に由来する2,000~3,000種類のペプチドを同定することができる。本実施例においては、上記の磯辺らの自動化システムを用いることにより、非Muse細胞と比較して、Muse細胞に特異的に発現しているタンパク質を特定した。
実施例2:遊走因子の同定
(1)ヒトMuse細胞の調製
 ヒトMuse細胞の調製は、国際公開第WO2011/007900号パンフレットに記載された方法に従って行った。より具体的には、ヒト骨髄液から接着性を有する間葉系細胞を培養し、増殖を経て、レンチウイルス-GFPを細胞に導入した。GFPで標識されたMuse細胞又はMuse細胞を含む細胞集団をGFPとSSEA-3の二重の陽性細胞としてFACSにて分離した。また、非Muse細胞は、上記間葉系細胞のうち、SSEA-3陰性であるGFP陽性の細胞群であり、対照として用いた。その後、リン酸緩衝生理食塩水又は培養液を用いて、所定濃度に調整し、以下のボイデンチャンバー法及び細胞動態解析技術に使用した。なお、骨髄間葉系細胞などの間葉系細胞を培養して得たものをMuse細胞の母集団として用いる場合、Wakaoら(2011、上述)によって報告されているように、SSEA-3陽性細胞は全て、CD105陽性細胞であることが分かっている。
 上記実施例1で得られた遊走因子の候補の1つであるスフィンゴシン-1-リン酸受容体2(S1PR2)は、Muse細胞に特異的に発現されている可能性が示唆された。そこで、Muse細胞及び非Muse細胞におけるS1Pに対する受容体の発現をプロテオーム解析で調べてみると、S1PR2はMuse細胞にのみ発現していることが分かった(データ示さず)。また、S1PR1は、Muse細胞及び非Muse細胞ともに発現していた(データ示さず)。さらに、S1PRは、その発現部位、アミノ酸配列、塩基配列等の相違からS1PR1、S1PR2、S1PR3、S1PR4、及びS1PR5の5種が知られ、Muse細胞において、これらの発現の有無及び発現量の相違をリアルタイムPCR(定量的PCR)によって比較した(図1)。上記の結果を考慮すると、S1PR2がMuse細胞において特異的に発現していることが示唆された。そこで、以下の実験系を用いて、S1PR2に結合するS1PがMuse細胞に特異的な遊走因子の1つであることを確認した。
(2)ボイデンチャンバー法
 遊走因子によるMuse細胞の遊走を定量的に測定するためにボイデンチャンバー法を用いた。使用したボイデンチャンバーは、Milliporeから市販されているQCM Chemotaxis Cell Migration Assay Kit(QCM 24 Well Colorimetric Cell Migration Assay)を使用した。このボイデンチャンバーは、チャンバー内部に、8μmの均一な微細孔を有するフィルターを底部に有するインサートを含む。インサートのフィルター上部にMuse細胞又は非Muse細胞を含む培養液を添加し、インサートの下部に遊走因子を含む培養液を添加し、18時間培養後、フィルターの微細孔を通過した細胞数をカウントする(図2参照)。この方法を用いれば、実施例1で得られた、遊走因子の候補をそれぞれ試験することにより、Muse細胞に対する遊走因子を特定することができる。
 より具体的には、フィルター上にMuse細胞又は非Muse細胞を1×10細胞/ウェルの濃度で播種し、インサートの下部にS1Pを所定濃度(0、100、500、1000、5000nM)で含む培養液を添加した。細胞を18時間インキュベート後、フィルターの微細孔を通過した細胞をカウントした。結果を図3に示す。図中、横軸は、S1Pの異なる濃度を示し、縦軸は、S1P(0nM)により遊走したMuse細胞を1とした場合の各濃度に対する細胞数の相対値を示す。図3からも明らかなように、Muse細胞を添加した系では、S1Pの濃度に依存して、遊走された細胞数が増大していることから、S1Pは、Muse細胞に対して遊走因子として機能することが示唆された。一方、非Muse細胞は、いずれの濃度のS1Pに対しても遊走性を示さないことから、S1PはMuse細胞に特異的な遊走因子であることが示唆された。
(3)細胞動態解析技術(TAXIScanテクノロジー)
 細胞動態解析技術は、ECI社が開発した細胞遊走能解析法である(Nitta, et al., Journal of Immunological method;320,155-163(2007)を参照されたい)。この解析法に使用される装置では、最新の微細加工技術を駆使して作成したシリコンウエハーチップを用いて、一定の走化性因子の濃度勾配を形成させ、その勾配依存的な細胞の水平方向への遊走活性測定が可能なシステムを用いる(図4)。このシステムから結果として得られる画像を解析することによって、方向性(例えば、Muse細胞が遊走因子高濃度側に対してどれだけ方向的に進んだか)を定量化することができる(図5)。
 より具体的には、チップ上部のチャンバーに設けられた約1mmφの穴の一方にMuse細胞を任意の細胞密度で添加し、もう一方のスリットからは遊走因子としてS1P(2μM)を添加した。細胞及びS1Pを添加後からタイムラプス撮影を開始し、約14時間観察した。シリコンウエハーチップに設けられた幅1200μm、テラス長250μm、及び深さ8μmの構造を有するテラスを、各細胞がその長さ方向に移動した距離を測定することにより細胞の遊走性を評価した。なお、S1Pを添加していない系を対照とした。図6左は、S1Pを2μM添加した場合のMuse細胞(A~N)の遊走性をリアルタイムで観察した結果である。図6右は、S1Pを添加しなかった場合のMuse細胞の動きを観察した結果を示す。S1Pを添加した系では、Muse細胞(A~N)は、S1Pの濃度勾配に従ってテラスを直線的に通過する様子がわかる。また、一部の細胞では、テラスを通過できなかった細胞も存在するが、これらは、テラスに設けられた柱によって遊走を阻害されたものがメインと考えられる(図6右)。一方、S1Pを添加していない系では、Muse細胞(a~j)は、ランダムに拡がるに留まった(図6左)。上記の結果から、ボイデンチャンバー法を用いて評価した場合と同様に、S1PはMuse細胞に特異的な遊走因子であることが強く示唆された。
 また、S1Pの代わりに、S1PR2のアゴニストである1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-5-(トリフルオロメチル)ピリジン-2(1H)-オンを用いて、上記と同様に、Muse細胞の遊走性をリアルタイムで観察した(データ示さず)。該アゴニスト(2μM)を添加した系では、Muse細胞は、該アゴニストの濃度勾配に従ってテラスを直線的に通過する様子がわかる。上記の結果から、Muse細胞に対する該アゴニストの遊走活性が確認された。
(4)in vivoにおける遊走因子によるMuse細胞の集積
 マウスを実験モデルとして、生体内において遊走因子によってMuse細胞が集積されるかどうかを以下のように行った(図7参照)。使用したマウスは、ヒト細胞を拒絶しない免疫不全であるSCIDマウス(雄性7週齢)を日本SLC株式会社又は日本チャールス・リバー株式会社から購入した。遊走因子としてS1Pを用いた。予めS1P溶液(500nM又は1,000nM)を染み込ませた、大きさ0.5cm×0.5cmの生分解性ハイドロゲル(MedGel(登録商標)製)をマウスの背中の任意部位に移植した。その後、実施例1で調製したGFP標識されたヒトMuse細胞をマウスの尾静脈から注入した。2日後、移植した部位からハイドロゲル周辺の組織を取り出し、GFPの抗体を用いてGFP標識を検出し、GFP陽性のMuse細胞をレーザー顕微鏡にてカウントした。
 より具体的には、取り出されたハイドロゲルをGFPに対する抗GFP抗体(Alexa568、Invitrogenより購入)を用いて、一般的に使用される組織化学的手法によって染色を行った。染色図を図8として示す。矢印で示した部分は、GFP陽性Muse細胞を示す。S1Pの濃度を500nMとした場合(図8左)と1,000nMとした場合(図8右)を比較すると、S1Pの濃度に依存して、Muse細胞の数が増加していることが分かる。図中、右上の画像は、中央部の四角で囲った部分の拡大図である。また、それぞれ得られた画像に基づいて細胞数をカウントした結果を図9に示す。この結果からもMuse細胞はS1Pの濃度に依存して集積されることが分かった。
 本発明の医薬組成物は、損傷部位にMuse細胞を集積させることができ、Muse細胞を用いた再生医療において、効率的な組織再生を目的とした新たな医療用途を提供することができる。
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。

Claims (13)

  1.  スフィンゴシン-1-リン酸受容体2を活性化する化合物を有効成分として含む、多能性幹細胞の遊走を活性化するための医薬組成物。
  2.  スフィンゴシン-1-リン酸受容体2を活性化する化合物が、スフィンゴシン-1-リン酸受容体2のアゴニストである、請求項1に記載の医薬組成物。
  3.  スフィンゴシン-1-リン酸受容体2のアゴニストが、スフィンゴシン-1-リン酸又はその誘導体である、請求項2に記載の医薬組成物。
  4.  スフィンゴシン-1-リン酸受容体2のアゴニストが、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-5-(トリフルオロメチル)ピリジン-2(1H)-オン、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)ピロリジン-2,5-ジオン、1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-3-メチルイミダゾリジン-2,4,5-トリオン、1-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-((1-メチル-1H-テトラゾール-5-イル)チオ)エタノン、及び(S)-1-(2-(1-ベンジル-2,5-ジメチル-1H-ピロール-3-イル)-2-オキソエチル)-2’,3’-ジヒドロスピロ[イミダゾリジン-4,1’-インデン]-2,5-ジオンからなる群から選択される、請求項2に記載の医薬組成物。
  5.  スフィンゴシン-1-リン酸受容体2を活性化する化合物が、スフィンゴシン-1-リン酸リアーゼ阻害剤である請求項1に記載の医薬組成物。
  6.  スフィンゴシン-1-リン酸リアーゼ阻害剤が、(E)-1-(4-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノンオキシム、(1R,2S,3R)-1-(2-(イソキサゾール-3-イル)-1H-イミダゾール-4-イル)ブタン-1,2,3,4-テトラオール、及び1-(5-((1R,2S,3R)-1,2,3,4-テトラヒドロキシブチル)-1H-イミダゾール-2-イル)エタノンからなる群から選択される、請求項5に記載の医薬組成物。
  7.  遊走の活性化が生体の損傷部位への誘導である、請求項1~6のいずれか1項に記載の医薬組成物。
  8.  前記多能性幹細胞が、SSEA3陽性である、請求項1~7のいずれか1項に記載の医薬組成物。
  9.  前記多能性幹細胞が、CD105陽性である、請求項1~8のいずれか1項に記載の医薬組成物。
  10.  前記多能性幹細胞が、CD117陰性及びCD146陰性である、請求項1~9のいずれか1項に記載の医薬組成物。
  11.  前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、請求項1~10のいずれか1項に記載の医薬組成物。
  12.  前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、請求項1~11のいずれか1項に記載の医薬組成物。
  13.  前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、請求項1~12のいずれか1項に記載の医薬組成物:
    (i)テロメラーゼ活性が低いか又は無い;
    (ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
    (iii)腫瘍性増殖を示さない;及び
    (iv)セルフリニューアル能を持つ。
PCT/JP2014/055181 2013-03-01 2014-02-28 多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物 WO2014133170A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2015503070A JP6511606B2 (ja) 2013-03-01 2014-02-28 多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物
CA2903415A CA2903415C (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
US14/771,588 US9446033B2 (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
ES14756298T ES2877555T3 (es) 2013-03-01 2014-02-28 Composición farmacéutica que incluye factor migratorio para guiar a las células madre pluripotenciales hacia la lesión
KR1020157025190A KR102180319B1 (ko) 2013-03-01 2014-02-28 다능성 줄기세포를 손상부위로 유도하는 유주인자를 포함하는 의약조성물
AU2014221659A AU2014221659B2 (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
CN201480011901.9A CN105188754B (zh) 2013-03-01 2014-02-28 含有将多能干细胞诱导至损伤部位的迁移因子的药物组合物
EP14756298.7A EP2962698B1 (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
SG11201506845XA SG11201506845XA (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage
US15/238,020 US10034889B2 (en) 2013-03-01 2016-08-16 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage
US15/642,534 US10369162B2 (en) 2013-03-01 2017-07-06 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013041161 2013-03-01
JP2013-041161 2013-03-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/771,588 A-371-Of-International US9446033B2 (en) 2013-03-01 2014-02-28 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to injury
US201514711588A Substitution 2014-05-16 2015-05-13
US15/238,020 Continuation US10034889B2 (en) 2013-03-01 2016-08-16 Pharmaceutical composition including migratory factor for guiding pluripotent stem cells to damage

Publications (1)

Publication Number Publication Date
WO2014133170A1 true WO2014133170A1 (ja) 2014-09-04

Family

ID=51428427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055181 WO2014133170A1 (ja) 2013-03-01 2014-02-28 多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物

Country Status (10)

Country Link
US (3) US9446033B2 (ja)
EP (1) EP2962698B1 (ja)
JP (2) JP6511606B2 (ja)
KR (1) KR102180319B1 (ja)
CN (1) CN105188754B (ja)
AU (1) AU2014221659B2 (ja)
CA (1) CA2903415C (ja)
ES (1) ES2877555T3 (ja)
SG (2) SG10201710901RA (ja)
WO (1) WO2014133170A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136947A1 (en) 2014-03-14 2015-09-17 Raqualia Pharma Inc. Azaspiro derivatives as trpm8 antagonists
WO2016121737A1 (ja) * 2015-01-29 2016-08-04 株式会社カネカ 細胞凝集塊の作製方法
JP2016183119A (ja) * 2015-03-25 2016-10-20 国立大学法人岐阜大学 スフィンゴシン−1−リン酸受容体2活性化化合物含有非傷害部位投与製剤
CN107073041A (zh) * 2014-09-05 2017-08-18 国立大学法人东京大学 糖尿病性皮肤溃疡治疗的多功能性干细胞
KR20180002860A (ko) * 2015-05-29 2018-01-08 니폰 조키 세야쿠 가부시키가이샤 다능성 간세포 유주 촉진제
KR20190034552A (ko) 2016-08-03 2019-04-02 가부시키가이샤 세이메이카가쿠 인스티튜트 인비트로로 다능성 간세포를 분화유도하는 방법
JP2019127463A (ja) * 2018-01-25 2019-08-01 国立大学法人岐阜大学 Muse細胞動員剤及び心筋障害への利用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180319B1 (ko) 2013-03-01 2020-11-18 가부시키가이샤 클리오 다능성 줄기세포를 손상부위로 유도하는 유주인자를 포함하는 의약조성물
KR101900818B1 (ko) * 2016-05-17 2018-09-20 주식회사 피토스 피토스핑고신-1-포스페이트 또는 그 유도체를 포함하는 줄기세포 성장 촉진용 조성물 및 이를 포함하는 줄기세포 배양배지용 조성물
DE102018105524A1 (de) * 2018-03-09 2019-09-12 Universität Duisburg-Essen Verwendung von Modulatoren der Sphingosin-1-phosphat-Signaltransduktion
EP3782702A1 (en) * 2019-08-21 2021-02-24 AC BioScience SA Compounds and use thereof for the treatment of infectious diseases and cancer
US20230121797A1 (en) * 2020-03-27 2023-04-20 Ac Bioscience Sa A combination of flavonoids and sphingosine 1 phosphate lyase inhibitors for the treatment of lung inflammation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248032A1 (en) * 2006-11-21 2008-10-09 Children's Hospital & Research Center At Oakland Compositions and methods for protection against cardiac and/or central nervous system tissue injury by inhibiting sphingosine-1-phosphate lyase
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2010520256A (ja) * 2007-03-06 2010-06-10 ノバルティス アーゲー 炎症またはアレルギー症状の処置に適する二環式有機化合物
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2709784A1 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
CN101361745B (zh) * 2008-09-17 2011-09-14 中国医学科学院阜外心血管病医院 S1p在制备抑制骨髓间充质干细胞凋亡药物上的应用
US9399758B2 (en) * 2009-07-15 2016-07-26 Mari Dezawa SSEA3(+) pluripotent stem cell that can be isolated from body tissue
US9682078B2 (en) * 2011-03-18 2017-06-20 University Of Virginia Patent Foundation Compositions and methods for tissue engineering and cell based therapies
US9658211B2 (en) 2012-04-18 2017-05-23 Hemoshear, Llc In vitro model for pathological or physiologic conditions
KR102180319B1 (ko) 2013-03-01 2020-11-18 가부시키가이샤 클리오 다능성 줄기세포를 손상부위로 유도하는 유주인자를 포함하는 의약조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
US20080248032A1 (en) * 2006-11-21 2008-10-09 Children's Hospital & Research Center At Oakland Compositions and methods for protection against cardiac and/or central nervous system tissue injury by inhibiting sphingosine-1-phosphate lyase
JP2010520256A (ja) * 2007-03-06 2010-06-10 ノバルティス アーゲー 炎症またはアレルギー症状の処置に適する二環式有機化合物
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BAGDANOFF, J. T. ET AL., J. MED. CHEM., vol. 53, 2010, pages 8650 - 8662
BAGDANOFF,JT. ET AL.: "Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1- (4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H- imidazol-2-yl)ethanone oxime (LX2931) and (1R, 2S,3R)-1-(2-(isoxazol-3-yl)-lH-imidazol-4-yl) butane-1,2,3,4-tetraol (LX2932", J MED CHEM, vol. 53, no. 24, 2010, pages 8650 - 62, XP055032796 *
BOYDEN, S., J. EXP. MED., vol. 115, 1962, pages 453 - 466
DEZAWA, M. ET AL., J. CLIN. INVEST., vol. 113, 2004, pages 1701 - 1710
DEZAWA, M. ET AL., SCIENCE, vol. 309, 2005, pages 314 - 317
HONG,CUI. ET AL., SPHINGOSINE-1-PHOSPHATE RECEPTOR-2 IS PROTECTIVE AGAINST LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY, vol. 121, no. 3, 2012, pages 106 - 118, XP008180932 *
IKEDA,H. ET AL.: "Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2", J LIPID RES, vol. 50, no. 3, 2009, pages 556 - 564, XP055282972 *
KURODA, Y. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 107, 2010, pages 8639 - 8643
NITTA ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 320, 2007, pages 155 - 163
PARK, S.W. ET AL., J. AM. SOC. NEPHROL., vol. 23, 2012, pages 266 - 280
PARK,SW. ET AL.: "Inhibition of sphingosine 1- phosphate receptor 2 protects against renal ischemia-reperfusion injury", J AM SOC NEPHROL, vol. 23, no. 2, 2012, pages 266 - 80, XP055241654 *
PEBAY,A. ET AL.: "Stem cell regulation by lysophospholipids", PROSTAGLANDINS OTHER LIPID MEDIAT, vol. 84, no. 3-4, 2007, pages 83 - 97, XP022329029 *
TAOKA, M. ET AL.: "Protein Analysis Model - The Definitive Version!", 2004, YODOSHA CO., LTD., pages: 92 - 100
WAKAO, S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 108, 2011, pages 9875 - 9880

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093678B2 (en) 2014-03-14 2018-10-09 Raqualia Pharma Inc. Azaspiro derivatives as TRPM8 antagonists
KR102425400B1 (ko) 2014-03-14 2022-07-26 라퀄리아 파마 인코포레이티드 Trpm8 길항제로 사용되는 아자스피로 유도체
KR20160132041A (ko) * 2014-03-14 2016-11-16 라퀄리아 파마 인코포레이티드 Trpm8 길항제로 사용되는 아자스피로 유도체
JP2017507981A (ja) * 2014-03-14 2017-03-23 ラクオリア創薬株式会社 Trpm8拮抗剤としてのアザスピロ誘導体
EP3116858A4 (en) * 2014-03-14 2017-11-22 RaQualia Pharma Inc. Azaspiro derivatives as trpm8 antagonists
WO2015136947A1 (en) 2014-03-14 2015-09-17 Raqualia Pharma Inc. Azaspiro derivatives as trpm8 antagonists
CN107073041A (zh) * 2014-09-05 2017-08-18 国立大学法人东京大学 糖尿病性皮肤溃疡治疗的多功能性干细胞
WO2016121737A1 (ja) * 2015-01-29 2016-08-04 株式会社カネカ 細胞凝集塊の作製方法
JPWO2016121737A1 (ja) * 2015-01-29 2017-10-19 株式会社カネカ 細胞凝集塊の作製方法
JP2016183119A (ja) * 2015-03-25 2016-10-20 国立大学法人岐阜大学 スフィンゴシン−1−リン酸受容体2活性化化合物含有非傷害部位投与製剤
KR20180002860A (ko) * 2015-05-29 2018-01-08 니폰 조키 세야쿠 가부시키가이샤 다능성 간세포 유주 촉진제
KR101919817B1 (ko) 2015-05-29 2018-11-19 니폰 조키 세야쿠 가부시키가이샤 다능성 간세포 유주 촉진제
KR20190034552A (ko) 2016-08-03 2019-04-02 가부시키가이샤 세이메이카가쿠 인스티튜트 인비트로로 다능성 간세포를 분화유도하는 방법
JP2019127463A (ja) * 2018-01-25 2019-08-01 国立大学法人岐阜大学 Muse細胞動員剤及び心筋障害への利用
JP7102666B2 (ja) 2018-01-25 2022-07-20 国立大学法人東海国立大学機構 Muse細胞動員剤及び心筋障害への利用

Also Published As

Publication number Publication date
CN105188754B (zh) 2019-11-26
SG10201710901RA (en) 2018-02-27
EP2962698B1 (en) 2021-05-12
AU2014221659B2 (en) 2018-12-20
AU2014221659A1 (en) 2015-10-01
US20160354393A1 (en) 2016-12-08
CN105188754A (zh) 2015-12-23
JP2018111734A (ja) 2018-07-19
KR20150125673A (ko) 2015-11-09
EP2962698A1 (en) 2016-01-06
SG11201506845XA (en) 2015-09-29
CA2903415A1 (en) 2014-09-04
KR102180319B1 (ko) 2020-11-18
JP6511606B2 (ja) 2019-05-15
US20170304326A1 (en) 2017-10-26
JPWO2014133170A1 (ja) 2017-02-09
US9446033B2 (en) 2016-09-20
EP2962698A4 (en) 2016-11-23
US20160008340A1 (en) 2016-01-14
ES2877555T3 (es) 2021-11-17
CA2903415C (en) 2021-04-20
US10034889B2 (en) 2018-07-31
US10369162B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP2018111734A (ja) 多能性幹細胞を損傷部位に誘導する遊走因子を含む医薬組成物
Egea et al. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma
JPWO2003027281A1 (ja) 骨格筋間質由来多分化能幹細胞
CN106148274A (zh) 体干细胞
Ghoochani et al. A versatile ex vivo technique for assaying tumor angiogenesis and microglia in the brain
Feige et al. Isolation of satellite cells and transplantation into mice for lineage tracing in muscle
CN103237887A (zh) 胚胎干细胞来源的心肌细胞以及包含所述心肌细胞作为活性成分的细胞治疗剂
Rochfort et al. In vitro cell models of the human blood-brain barrier: Demonstrating the beneficial influence of shear stress on brain microvascular endothelial cell phenotype
JP6570053B2 (ja) スフィンゴシン−1−リン酸受容体2活性化化合物含有非傷害部位投与製剤
WO2021221179A1 (ja) ヒト膵癌オルガノイドを用いたマウスモデルの樹立
JP6770673B2 (ja) 急性心筋梗塞の予後マーカー及びその利用
Sadek et al. Bone-marrow-derived side population cells for myocardial regeneration
Praet et al. Histological characterization and quantification of cellular events following neural and fibroblast (-like) stem cell grafting in healthy and demyelinated CNS tissue
CN102448474A (zh) 脑组织损伤之细胞治疗
US20190192698A1 (en) A method for obtaining indicator signals from a cell
KR20200121316A (ko) Icam-1 마커 및 이의 응용
Zuba-Surma et al. Biological and regenerative properties of extracellular vesicles from mesenchymal stem cells of various origin in cardiovascular regeneration
WO2020171220A1 (ja) ヒト肝臓様立体構造体、肝毒性を評価する方法およびヒト肝臓様複合体
Justin et al. Morphological characteristics of young and old murine hematopoietic stem cell niches, as modeled in vitro
DAS et al. Cancer stem cells
JP5970721B2 (ja) 抑制性神経前駆細胞の増殖、分離、移植、およびこの細胞の増殖促進物質
Lauritzen Imaging of protein translocation in situ in skeletal muscle of living mice
WO2015146697A1 (ja) 心筋細胞の細胞死抑制方法
Gomez et al. Transcriptomic Analysis of Adult Renal Derived Mesenchymal Stem-Like Cells
Mak The role of synovial progenitor cells in cartilage repair

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011901.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771588

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2903415

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157025190

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014756298

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014221659

Country of ref document: AU

Date of ref document: 20140228

Kind code of ref document: A