WO2014133124A1 - 導電性微粒子、異方性導電材料、及び、導電接続構造体 - Google Patents
導電性微粒子、異方性導電材料、及び、導電接続構造体 Download PDFInfo
- Publication number
- WO2014133124A1 WO2014133124A1 PCT/JP2014/055035 JP2014055035W WO2014133124A1 WO 2014133124 A1 WO2014133124 A1 WO 2014133124A1 JP 2014055035 W JP2014055035 W JP 2014055035W WO 2014133124 A1 WO2014133124 A1 WO 2014133124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- copper
- fine particles
- solder layer
- conductive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/615—Microstructure of the layers, e.g. mixed structure
- C25D5/619—Amorphous layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1651—Two or more layers only obtained by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
- H05K3/323—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/27001—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
- H01L2224/27003—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/271—Manufacture and pre-treatment of the layer connector preform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/273—Manufacturing methods by local deposition of the material of the layer connector
- H01L2224/2731—Manufacturing methods by local deposition of the material of the layer connector in liquid form
- H01L2224/27312—Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/273—Manufacturing methods by local deposition of the material of the layer connector
- H01L2224/2731—Manufacturing methods by local deposition of the material of the layer connector in liquid form
- H01L2224/2732—Screen printing, i.e. using a stencil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/27—Manufacturing methods
- H01L2224/273—Manufacturing methods by local deposition of the material of the layer connector
- H01L2224/2733—Manufacturing methods by local deposition of the material of the layer connector in solid form
- H01L2224/27334—Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29355—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/2939—Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29401—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29411—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29439—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29457—Cobalt [Co] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29463—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29464—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29463—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29466—Titanium [Ti] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29463—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29469—Platinum [Pt] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29463—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29481—Tantalum [Ta] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/29486—Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2224/29487—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/32227—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/83815—Reflow soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83851—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3512—Cracking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/36—Material effects
- H01L2924/365—Metallurgical effects
- H01L2924/3651—Formation of intermetallics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0218—Composite particles, i.e. first metal coated with second metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0221—Insulating particles having an electrically conductive coating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/04—Soldering or other types of metallurgic bonding
- H05K2203/0425—Solder powder or solder coated metal powder
Definitions
- the present invention relates to a conductive fine particle that is less likely to be disconnected due to breakage of a connection interface between an electrode and the conductive fine particle even when an impact due to dropping or the like is applied, and that is not easily fatigued even when subjected to repeated heating and cooling. Further, the present invention relates to an anisotropic conductive material using the conductive fine particles and a conductive connection structure.
- soldering electrodes In an electronic circuit board, ICs and LSIs are connected by soldering electrodes to a printed circuit board.
- soldering cannot efficiently connect the printed circuit board to the IC or LSI.
- a BGA ball grid array
- solder balls If the BGA is used, the solder ball mounted on the chip or the substrate can be melted at a high temperature to connect the substrate and the chip. Therefore, the production efficiency of the electronic circuit board is improved, and an electronic circuit board with an improved chip mounting density can be manufactured.
- Patent Document 1 discloses a conductive material in which a conductive metal layer containing a highly conductive metal is formed on the surface of resin fine particles, and a solder layer is formed on the surface of the conductive metal layer. Fine particles have been disclosed. By using such conductive fine particles, the stress applied by the flexible resin fine particles to the conductive fine particles can be relaxed. Since the solder layer is formed on the outermost surface of the conductive fine particles, the electrodes can be easily conductively connected.
- the conductive fine particles on which the solder layer is formed on the electrode of the substrate When mounting the conductive fine particles on which the solder layer is formed on the electrode of the substrate, the conductive fine particles are placed on the electrode formed on one substrate and reflowed to melt the solder layer, and the conductive fine particles Secure to the electrode. Thereafter, the electrodes formed on the other substrate and the electrodes formed on the one substrate are arranged so as to face each other, and the electrodes on the substrate are conductively connected by reflowing.
- conductive fine particles having a solder layer formed on the surface of the core particle as disclosed in Patent Document 1 are used for conductive connection of an electronic circuit board having an electrode made of copper, which has become the mainstream in recent years, There has been a problem that disconnection due to destruction of the connection interface is likely to occur when an impact due to dropping or the like is applied.
- the temperature inside the electronic device rises due to the heat generated by the electronic component. After the electronic device is used, the temperature inside the electronic device returns to room temperature. Cycle "is in progress. Even when this heat cycle was repeated, the connection interface between the electrode and the conductive fine particles was broken and sometimes disconnected.
- Another object of the present invention is to provide an anisotropic conductive material using the conductive fine particles and a conductive connection structure.
- the present invention provides conductive fine particles in which at least a conductive metal layer, a barrier layer, a copper layer, and a solder layer containing tin are laminated in this order on the surface of a core particle made of resin or metal, the copper layer And the solder layer are in direct contact with each other, and the conductive fine particles in which the ratio of copper in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 0.5 to 5% by weight.
- the present invention is described in detail below.
- the inventors have found that when conductive fine particles having a solder layer formed on the surface of core particles are used for conductive connection of an electronic circuit board having an electrode made of copper, impact due to dropping or the like may be applied.
- the cause of the disconnection due to the destruction of the connection interface when the heat cycle is repeated is that a tin-copper intermetallic compound (hereinafter also simply referred to as “intermetallic compound”) is formed at the connection interface.
- intermetallic compound tin-copper intermetallic compound
- Intermetallic compounds are hard and brittle compared to copper and solder, so when impacts such as dropping are applied, or when the heat cycle is repeated, there are sites made of intermetallic compounds formed at the connection interface. It is thought that it is destroyed and disconnection occurs.
- the present inventor by bringing the copper layer directly into contact with the solder layer so that the ratio to the tin contained in the solder layer is within a certain range, an impact due to dropping or the like is applied, The inventors have found that conductive fine particles that are less likely to be broken due to destruction of the connection interface can be obtained even when the heat cycle is repeated, and the present invention has been completed. This is because, when the copper layer is brought into direct contact with the solder layer of conductive fine particles in advance, when it is heated and melted during reflow, copper is first diffused from the copper layer into the solder layer and the copper in the solder layer is melted. This is thought to be because the momentum of “copper erosion” that attempts to take in more copper is suppressed, leaving pure copper in the electrode and preventing the formation of a large amount of intermetallic compounds at the connection interface.
- the conductive fine particles of the present invention have a structure in which at least a conductive metal layer, a barrier layer, a copper layer, and a solder layer containing tin are laminated in this order on the surface of a core particle made of resin or metal.
- the resin that forms the core particles include polyethylene resins, polypropylene resins, polystyrene resins, polyisobutylene resins, polybutadiene resins, polyvinyl chloride resins, polyvinylidene chloride resins, and polytetrafluoroethylene resins.
- Examples thereof include acrylic resins such as methyl methacrylate resin and polymethyl acrylate resin, polyalkylene terephthalate resin, polysulfone resin, polycarbonate resin, polyamide resin, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like.
- the metal that forms the core particles include copper, nickel, silver, and the like.
- core particles made of resin even if distortion or expansion / contraction due to changes in the external environment occurs on the substrate to which the conductive fine particles of the present invention are conductively connected, flexible resin becomes conductive fine particles. The applied stress can be relaxed.
- core particles made of metal even if the chip generates heat, it can be expected that heat dissipation is improved by transmitting to the substrate through the particles.
- the preferred lower limit of the 10% K value of the core particle is 1000 MPa and the preferred upper limit is 15000 MPa from the viewpoint of the shape when the conductive fine particles are compressed and deformed and the damage to the electrode.
- the more preferable lower limit of the 10% K value is 2000 MPa, and the more preferable upper limit is 10,000 MPa.
- the 10% K value is obtained by using a micro compression tester (for example, “PCT-200” manufactured by Shimadzu Corporation), and using a smooth indenter end face of a diamond cylinder having a diameter of 50 ⁇ m as a core particle made of resin.
- Compressive displacement (mm) when compressed under conditions of 6 mN / sec and a maximum test load of 10 g can be obtained by the following equation.
- K value (N / mm 2) ( 3 / ⁇ 2) ⁇ F ⁇ S -3/2 ⁇ R -1/2
- F Load value (N) at 10% compression deformation of core particles made of resin
- S Compression displacement (mm) in 10% compression deformation of core particles made of resin
- R Radius of core particle made of resin (mm)
- the core particle has a preferable lower limit of the average particle diameter of 10 ⁇ m and a preferable upper limit of 2000 ⁇ m.
- a more preferable lower limit of the average particle diameter is 30 ⁇ m, and a more preferable upper limit is 1500 ⁇ m.
- the more preferable lower limit of the average particle diameter is 50 ⁇ m, and the more preferable upper limit is 1000 ⁇ m.
- the average particle diameter of the said core particle means the average value of the diameter obtained by observing 50 core particles selected at random using an optical microscope or an electron microscope.
- the upper limit of the CV value of the particle diameter is preferably 15%.
- a more preferable upper limit of the CV value is 10%.
- the CV value is a numerical value indicated by a percentage (%) of a value obtained by dividing the standard deviation by the average particle diameter.
- the method for producing the core particles made of the resin is not particularly limited, and examples thereof include a polymerization method, a method using a polymer protective agent, and a method using a surfactant.
- the method by the said polymerization method is not specifically limited,
- the method by polymerization methods such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization, is mentioned.
- the conductive metal layer has a role of improving the reliability of electrical connection between the conductive fine particles and the electrode.
- the conductive metal layer may be directly formed on the core particle, and a base metal layer such as a nickel layer may be formed between the conductive metal layer and the core particle.
- the metal forming the conductive metal layer examples include gold, silver, copper, platinum, palladium, cobalt, nickel, and the like. Especially, since it is excellent in the effect which improves the electrical connection reliability of electroconductive fine particles and an electrode, it is preferable that the said conductive metal layer contains copper.
- the thickness of the said conductive metal layer is not specifically limited, From a viewpoint of electroconductivity and the softness
- the thickness of the conductive metal layer is a thickness obtained by observing and measuring a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and arithmetically averaging the measured values.
- the barrier layer is located between the conductive metal layer and the copper layer, and has a role of preventing the metal constituting the conductive metal layer from diffusing into the solder layer during reflow.
- pure copper is reduced due to copper erosion during reflow, a large amount of intermetallic compounds are formed and become brittle, causing disconnection.
- electrical characteristics may be impaired due to a decrease in pure copper.
- the material for forming the barrier layer examples include nickel, titanium, tantalum, titanium nitride, zirconia, and zirconia nitride. Especially, since the formation of the said barrier layer is easy, it is preferable that the said barrier layer contains nickel.
- the barrier layer preferably has an amorphous structure, and specific examples include a nickel-phosphorus layer and a nickel-boron layer. When the barrier layer has an amorphous structure, the crystal grain boundary is reduced, so that copper hardly diffuses into the solder layer.
- the thickness of the barrier layer is not particularly limited, from the viewpoint of preventing the diffusion of a metal such as copper into the solder layer and the formation of a hard and brittle intermetallic compound at the interface between the solder layer and the conductive metal layer.
- a preferred lower limit is 0.2 ⁇ m and a preferred upper limit is 5 ⁇ m.
- a more preferable lower limit of the thickness of the barrier layer is 0.5 ⁇ m, and a more preferable upper limit is 3 ⁇ m.
- the thickness of the barrier layer is a thickness obtained by observing and measuring a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and arithmetically averaging the measured values.
- SEM scanning electron microscope
- the conductive fine particles of the present invention are formed so that the copper layer and the solder layer are in direct contact with the outside of the barrier layer.
- the solder layer has a role of being electrically connected between the electrodes of the substrate by melting by heating during reflow.
- the solder layer is preferably formed on the outermost surface of the conductive fine particles.
- the solder layer contains tin.
- the solder layer preferably further contains silver.
- a solder layer having a relatively low melting point and high strength can be obtained.
- the silver content in the solder layer is not particularly limited, but the preferred lower limit of the ratio of silver to tin is 0.5% by weight, and the preferred upper limit is 10% by weight. Within this range, both a relatively low melting point and high strength can be achieved.
- the solder layer may further contain a metal such as antimony, bismuth, indium, germanium, aluminum, zinc, nickel, and cobalt. Further, as will be described later, the solder layer may contain copper at a certain ratio.
- the thickness of the solder layer is not particularly limited, the preferable lower limit is 1 ⁇ m and the preferable upper limit is 50 ⁇ m from the viewpoints of bondability with the electrode and dispersibility of the conductive fine particles when forming the solder layer.
- the more preferable lower limit of the thickness of the solder layer is 3 ⁇ m, and the more preferable upper limit is 40 ⁇ m.
- the thickness of the solder layer is a thickness obtained by observing and measuring a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and arithmetically averaging the measured values.
- the copper layer is formed so as to be in direct contact with the solder layer.
- copper is first diffused from the copper layer into the solder layer at the time of heating and melting, and the copper concentration in the solder layer falls within a certain range.
- the pure copper of the electrode is left, and a large amount of intermetallic compounds can be prevented from being formed at the connection interface.
- the lower limit of the ratio of copper in the copper layer in direct contact with the solder layer with respect to tin contained in the solder layer is 0.5% by weight, and the upper limit is 5% by weight. If the copper ratio is less than 0.5% by weight, even if copper diffuses into the solder layer during reflow, the copper concentration will not be sufficient, and “copper erosion” cannot be sufficiently suppressed, and the purity of the electrode Therefore, it is impossible to prevent the formation of an intermetallic compound at the connection interface. If the copper ratio exceeds 5% by weight, the concentration of copper diffusing into the solder layer at the time of reflow becomes too high, the melting point of the solder rises, and the mountability is affected.
- the upper limit with the preferable ratio of the copper in the copper layer which touches the said solder layer directly with respect to the tin contained in the said solder layer is 3 weight%.
- the copper concentration diffused into the solder layer when the solder layer is heated and melted during reflow is in a certain range. It is important to make it. That is, when heated at 150 ° C. for 12 hours, the preferred lower limit of the copper concentration at any position of the solder layer is 0.5% by weight, the preferred upper limit is 40% by weight, and the more preferred lower limit is 0.7% by weight. A more preferred upper limit is 30% by weight.
- the ratio of copper in the copper layer in direct contact with the solder layer corresponds to the concentration of copper diffused in the solder layer within this range when the solder layer is heated and melted during reflow.
- the conductive fine particles of the present invention may further have nickel and / or cobalt attached to the surface of the solder layer. Since nickel, nickel and / or cobalt is attached to the surface of the solder layer, the crystal structure of the intermetallic compound formed at the connection interface between the conductive fine particles and the electrode after reflow is refined. Even when an impact due to the above is applied or the heat cycle is repeated, it is possible to obtain conductive fine particles that are less prone to disconnection due to destruction of the connection interface.
- adhesion means that nickel and / or cobalt metal is present on the surface of the solder layer, and that the nickel and / or cobalt metal layer completely covers the surface of the solder layer. It means a state where it is not formed.
- FIG. 1 is a schematic diagram showing an example of a preferred embodiment of the conductive fine particles of the present invention.
- a base metal layer 2 a conductive metal layer 3, a barrier layer 4, a copper layer 5, and a solder layer 6 are formed in this order on the surface of a core particle 1 made of resin. . Further, nickel and / or cobalt 7 is attached to the surface of the solder layer 6.
- the manufacturing method of the electroconductive fine particles of this invention is not specifically limited, A conventionally well-known method can be used.
- the conductive fine particles of the present invention having the structure shown in FIG. 1 can be produced by the following method.
- a nickel layer (hereinafter also referred to as a base nickel plating layer) is formed as a base plating layer on the surface of the core particles by an electroless plating method.
- a conductive metal layer is formed on the surface of the base nickel plating layer.
- the method for forming the conductive metal layer is not particularly limited, and examples thereof include a method using an electrolytic plating method, an electroless plating method, or the like.
- a nickel layer is formed as a barrier layer on the surface of the conductive metal layer.
- the method for forming the nickel layer is not particularly limited, and examples thereof include a method using an electrolytic plating method, an electroless plating method, or the like.
- a copper layer is formed on the surface of the barrier layer.
- the method for forming the copper layer is not particularly limited, and examples thereof include a method using an electrolytic plating method, an electroless plating method, or the like.
- solder layer containing tin is formed on the surface of the copper layer.
- the method for forming the solder layer is not particularly limited, and examples thereof include a method using an electrolytic plating method.
- a method for attaching nickel and / or cobalt to the surface of the solder layer is not particularly limited, and examples thereof include a sputtering method and an electroless plating method.
- An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.
- anisotropic conductive material of the present invention examples include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, and anisotropic conductive sheet.
- the said binder resin is not specifically limited, A vinyl resin, a thermoplastic resin, curable resin, a thermoplastic block copolymer, an elastomer, etc. are mentioned.
- the said vinyl resin is not specifically limited, Vinyl acetate resin, an acrylic resin, a styrene resin etc. are mentioned.
- the thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins, ethylene-vinyl acetate copolymers, polyamide resins and the like.
- the said curable resin is not specifically limited, An epoxy resin, a urethane resin, a polyimide resin, an unsaturated polyester resin etc. are mentioned.
- thermoplastic block copolymer is not particularly limited, but a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
- these resins may be used alone or in combination of two or more.
- the curable resin may be any one of a room temperature curable resin, a thermosetting resin, a photocurable resin, and a moisture curable resin.
- the anisotropic conductive material of the present invention can be used, for example, as a bulking agent, a plasticizer, an adhesive improver, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, You may contain various additives, such as a flame retardant and an organic solvent.
- the method for producing the anisotropic conductive material of the present invention is not particularly limited.
- the conductive fine particles of the present invention are added to the binder resin, and the mixture is uniformly mixed and dispersed. And a method for producing a conductive conductive ink, an anisotropic conductive adhesive, and the like.
- the conductive fine particles of the present invention are added to the binder resin and dispersed uniformly, or dissolved by heating, release paper, release film, etc.
- a method for producing an anisotropic conductive film, an anisotropic conductive sheet, etc. by coating the mold release treatment surface of the mold release material so as to have a predetermined thickness and drying or cooling as necessary. It is done.
- An appropriate manufacturing method can be selected in accordance with the type of anisotropic conductive material.
- a conductive connection structure using the conductive fine particles of the present invention or the anisotropic conductive material of the present invention is also one aspect of the present invention.
- the conductive connection structure of the present invention is a conductive connection structure in which a pair of circuit boards are connected by filling the pair of circuit boards with the conductive fine particles of the present invention or the anisotropic conductive material of the present invention. It is.
- conductive fine particles which are less likely to be disconnected due to the destruction of the connection interface between the electrode and the conductive fine particles even when an impact due to dropping or the like is applied, and which are not easily fatigued even when subjected to repeated heating and cooling. be able to.
- an anisotropic conductive material using the conductive fine particles and a conductive connection structure can be provided.
- Example 1 Preparation of core particles made of resin 50 parts by weight of divinylbenzene and 50 parts by weight of tetramethylolmethanetetraacrylate were copolymerized to form core particles made of resin (average particle diameter 180 ⁇ m, CV value 0.42%). Produced.
- the obtained core particles were electroless nickel-plated to form a base nickel plating layer having a thickness of 0.3 ⁇ m on the surface of the core particles. Then, a copper layer (conductive metal layer) having a thickness of 7 ⁇ m was formed by performing electrolytic copper plating. Next, a nickel layer (barrier layer) having a thickness of 0.6 ⁇ m was formed by performing electrolytic nickel plating. Next, a copper layer having a thickness of 1 ⁇ m was formed by performing electrolytic copper plating. Subsequently, a solder layer containing tin having a thickness of 34 ⁇ m was formed by electrolytic plating.
- the electrolytic plating solution is filtered, and the obtained particles are washed with water and then dried with a vacuum dryer at 50 ° C., and the surface of the core particles is coated with a base metal layer, a conductive metal layer, a barrier layer, copper Conductive fine particles in which a layer and a solder layer were sequentially formed were obtained.
- the ratio of the copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 2.6% by weight.
- Example 2 A base metal layer, a conductive metal layer, a barrier layer, a copper layer, and a solder layer were sequentially formed on the surface of the core particle in the same manner as in Example 1 except that the thickness of the copper layer in direct contact with the solder layer was 0.4 ⁇ m.
- the formed conductive fine particles were obtained.
- the ratio of copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 1.0% by weight.
- Example 3 A base metal layer, a conductive metal layer, a barrier layer, a copper layer, and a solder layer are sequentially formed on the surface of the core particle in the same manner as in Example 1 except that the thickness of the copper layer in direct contact with the solder layer is 2 ⁇ m. Conductive fine particles were obtained. In the obtained conductive fine particles, the ratio of the copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 5.0% by weight.
- Example 4 A base metal layer, a conductive metal layer, a barrier layer, a copper layer, and a solder layer are sequentially formed on the surface of the core particle in the same manner as in Example 1 except that the thickness of the copper layer in direct contact with the solder layer is 0.2 ⁇ m.
- the formed conductive fine particles were obtained.
- the ratio of copper contained in the copper layer in direct contact with the solder layer to tin contained in the solder layer is 0.5% by weight.
- Example 5 A base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and solder are formed on the surface of the core particle in the same manner as in Example 1 except that nickel is attached to the surface of the solder layer by sputtering. Conductive fine particles in which nickel adhered to the layer were sequentially formed were obtained.
- Example 6 In the same manner as in Example 1 except that nickel is attached to the surface of the solder layer by electroless plating, the base metal layer, the conductive metal layer, the barrier layer, the copper layer, the solder layer, Then, conductive fine particles were obtained in which nickel adhered to the solder layer was sequentially formed.
- Example 7 In the same manner as in Example 1 except that cobalt was attached to the surface of the solder layer by electroless plating, the base metal layer, the conductive metal layer, the barrier layer, the copper layer, the solder layer, and As a result, conductive fine particles in which cobalt adhered to the solder layer was sequentially formed were obtained.
- Example 8 Preparation of core particles made of resin 50 parts by weight of divinylbenzene and 50 parts by weight of tetramethylolmethanetetraacrylate were copolymerized to form core particles made of resin (average particle diameter 150 ⁇ m, CV value 0.38%). Produced.
- the obtained core particles were electroless nickel-plated to form a base nickel plating layer having a thickness of 0.3 ⁇ m on the surface of the core particles.
- a copper layer (conductive metal layer) having a thickness of 10 ⁇ m was formed by performing electrolytic copper plating.
- a nickel layer (barrier layer) having a thickness of 0.6 ⁇ m was formed by performing electrolytic nickel plating.
- a copper layer having a thickness of 0.5 ⁇ m was formed by performing electrolytic copper plating.
- a solder layer containing tin having a thickness of 40 ⁇ m was formed by electrolytic plating.
- the electrolytic plating solution is filtered, and the obtained particles are washed with water and then dried with a vacuum dryer at 50 ° C., and the surface of the core particles is coated with a base metal layer, a conductive metal layer, a barrier layer, copper Conductive fine particles in which a layer and a solder layer were sequentially formed were obtained.
- the ratio of copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 1.0% by weight.
- Example 9 In the same manner as in Example 8 except that nickel was adhered to the surface of the solder layer by electroless plating, the surface of the core particle was coated with a base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and Then, conductive fine particles were obtained in which nickel adhered to the solder layer was sequentially formed.
- Example 10 In the same manner as in Example 1 except that cobalt was attached to the surface of the solder layer by electroless plating, the base metal layer, the conductive metal layer, the barrier layer, the copper layer, the solder layer, and As a result, conductive fine particles in which cobalt adhered to the solder layer was sequentially formed were obtained.
- Example 1 Conductive fine particles in which a base metal layer, a conductive metal layer, a barrier layer, and a solder layer are sequentially formed on the surface of the core particle are the same as in Example 1 except that the copper layer that is in direct contact with the solder layer is not formed. Obtained.
- Example 2 A base metal layer, a conductive metal layer, and a barrier layer are formed on the surface of the core particle in the same manner as in Example 1 except that a copper layer that is in direct contact with the solder layer is formed by electroless plating and the thickness is 0.05 ⁇ m.
- a copper layer that is in direct contact with the solder layer is formed by electroless plating and the thickness is 0.05 ⁇ m.
- conductive fine particles in which a copper layer and a solder layer were sequentially formed were obtained.
- the ratio of copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 0.1% by weight.
- Example 3 A base metal layer, a conductive metal layer, a barrier layer, a copper layer, and a solder layer were sequentially formed on the surface of the core particle in the same manner as in Example 1 except that the thickness of the copper layer in direct contact with the solder layer was 4 ⁇ m. Conductive fine particles were obtained. In the obtained conductive fine particles, the ratio of the copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 10% by weight.
- Comparative Example 4 In the same manner as in Comparative Example 2 except that nickel was adhered to the surface of the solder layer by electroless plating, the surface of the core particle was coated with a base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and Then, conductive fine particles were obtained in which nickel adhered to the solder layer was sequentially formed.
- Comparative Example 5 In the same manner as in Comparative Example 2 except that cobalt was attached to the surface of the solder layer by electroless plating, the surface of the core particle was coated with a base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and As a result, conductive fine particles in which cobalt adhered to the solder layer was sequentially formed were obtained.
- Example 7 A base metal layer, a conductive metal layer, and a barrier layer are formed on the surface of the core particles in the same manner as in Example 8 except that a copper layer directly contacting the solder layer is formed by electroless plating and the thickness is 0.1 ⁇ m.
- a copper layer directly contacting the solder layer is formed by electroless plating and the thickness is 0.1 ⁇ m.
- conductive fine particles in which a copper layer and a solder layer were sequentially formed were obtained.
- the ratio of the copper contained in the copper layer in direct contact with the solder layer to the tin contained in the solder layer is 0.2% by weight.
- Comparative Example 8 In the same manner as in Comparative Example 7, except that nickel was adhered to the surface of the solder layer by electroless plating, the surface of the core particle was coated with a base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and Then, conductive fine particles were obtained in which nickel adhered to the solder layer was sequentially formed.
- Comparative Example 9 In the same manner as in Comparative Example 2 except that cobalt was attached to the surface of the solder layer by electroless plating, the surface of the core particle was coated with a base metal layer, a conductive metal layer, a barrier layer, a copper layer, a solder layer, and As a result, conductive fine particles in which cobalt adhered to the solder layer was sequentially formed were obtained.
- Temperature cycle test Flux (“WS-9160-M7” manufactured by Cookson Electronics Co., Ltd.) was applied to 121 electrode lands (diameter: 230 ⁇ m) provided at a pitch of 0.4 mm on a silicon chip (length 5 mm ⁇ width 5 mm). Applied. The obtained conductive fine particles were placed on all the electrode lands, reflowed (heating temperature 250 ° C., 30 seconds), and the conductive fine particles were mounted on the electrode lands. Next, a solder paste (“M705-GRN360-K2-V” manufactured by Senju Metal Industry Co., Ltd.) was applied to the printed circuit board on which the copper electrode (diameter 250 ⁇ m) was formed.
- One silicon chip on which conductive fine particles were mounted was placed on a printed circuit board, reflowed (heating temperature 250 ° C., 30 seconds), and one silicon chip was mounted on the printed circuit board to obtain a conductive connection structure. Since the obtained conductive connection structure is formed with a daisy chain circuit, it can be detected even if one electrode land is disconnected.
- a temperature cycle test in which one cycle was ⁇ 40 ° C. to 125 ° C. was performed. The heat profile for the temperature cycle test was held at ⁇ 40 ° C. for 10 minutes, raised from ⁇ 40 ° C. to 125 ° C. for 2 minutes, held at 125 ° C. for 10 minutes, and then from 125 ° C.
- the temperature cycle test was evaluated according to the following criteria. A: The number of cycles in which the disconnection of the conductive connection structure was confirmed was 1000 cycles or more. X: The number of cycles in which disconnection of the conductive connection structure was confirmed was less than 1000 cycles.
- Example 11 As a result of dispersing the particles of Example 1 in a binder resin and performing circuit connection, it was confirmed that electrical conduction was achieved.
- conductive fine particles which are less likely to be disconnected due to the destruction of the connection interface between the electrode and the conductive fine particles even when an impact due to dropping or the like is applied, and which are not easily fatigued even when subjected to repeated heating and cooling. be able to.
- an anisotropic conductive material using the conductive fine particles and a conductive connection structure can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
これを解決するためにハンダを球状にした、いわゆる「ハンダボール」でICやLSIを基板に接続するBGA(ボールグリッドアレイ)が開発された。BGAを用いれば、チップ又は基板に実装されたハンダボールを高温で溶融させ、基板とチップとを接続することができる。したがって、電子回路基板の生産効率が改善され、チップの実装密度が向上した電子回路基板を製造することができる。
例えば、ハンダボールを用いて、半導体が基板に接続されると、半導体と基板との線膨張係数が違うため、ハンダボールに応力が加わる。その結果、ハンダボールに亀裂が入り、断線することがあった。
しかしながら、近年主流となっている銅からなる電極を有する電子回路基板の導電接続に特許文献1に開示されているようなコア粒子の表面にハンダ層が形成された導電性微粒子を用いた場合、落下等による衝撃が加わったときに接続界面の破壊による断線が生じやすいという問題があった。また、電子機器は使用されると、電子部品の発熱によって、電子機器内部の温度が上がり、電子機器の使用後は、電子機器内部の温度が室温に戻るという加熱-冷却の繰返し、いわゆる「ヒートサイクル」が進行している。このヒートサイクルが繰返されたときも、電極と導電性微粒子との接続界面が破壊され、断線することがあった。
以下に本発明を詳述する。
これは、予め導電性微粒子のハンダ層に直接銅層を接触させることにより、リフロー時に加熱溶融したときに、まず銅層からハンダ層中に銅が拡散してハンダ層中の銅が溶け込むことから、それ以上の銅を取り込もうとする「銅食い」の勢いを抑制し、電極の純粋な銅を残し、接続界面に多量の金属間化合物が形成されるのを防止できるためと考えられる。
上記コア粒子を形成する樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等のポリオレフィン樹脂や、ポリメチルメタクリレート樹脂、ポリメチルアクリレート樹脂等のアクリル樹脂や、ポリアルキレンテレフタレート樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
上記コア粒子を形成する金属としては、例えば、銅、ニッケル、銀等が挙げられる。
なかでも、樹脂からなるコア粒子を用いた場合には、本発明の導電性微粒子を導電接続させた基板に、外環境変化による歪みや伸縮が発生しても、柔軟な樹脂が導電性微粒子に加わる応力を緩和できる。一方、金属からなるコア粒子を用いた場合には、チップが発熱しても、粒子を介して基板に伝達することで放熱性を向上させることが期待できる。
K値(N/mm2)=(3/√2)・F・S-3/2・R-1/2
F:樹脂からなるコア粒子の10%圧縮変形における荷重値(N)
S:樹脂からなるコア粒子の10%圧縮変形における圧縮変位(mm)
R:樹脂からなるコア粒子の半径(mm)
なお、上記コア粒子の平均粒子径は、光学顕微鏡、又は、電子顕微鏡を用いて無作為に選んだ50個のコア粒子を観察して得られた直径の平均値を意味する。
上記重合法による方法は特に限定されず、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法が挙げられる。
上記導電金属層は、上記コア粒子に直接形成されていてもよく、上記導電金属層と上記コア粒子との間に、ニッケル層等の下地金属層が形成されていてもよい。
なお、上記導電金属層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
なお、上記バリア層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
上記ハンダ層は、リフロー時の加熱により溶融して、基板の電極間を導電接続する役割を有する。上記ハンダ層は、導電性微粒子の最表面に形成されていることが好ましい。
上記ハンダ層は、更に、銀を含有することが好ましい。銀を含有することにより、比較的低融点で高強度のハンダ層とすることができる。
上記ハンダ層における銀の含有量は特に限定されないが、錫に対する銀の比率の好ましい下限は0.5重量%、好ましい上限は10重量%である。この範囲内であると、比較的低融点と高強度とを両立させることができる。
なお、上記ハンダ層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
なお、「銅食い」を充分に抑制し、かつ、ハンダの融点の上昇を防止するためには、リフロー時にハンダ層を加熱溶融させたときにハンダ層中に拡散される銅濃度を一定の範囲にすることが重要である。即ち、150℃、12時間加熱したときに、ハンダ層の任意の位置における銅の濃度の好ましい下限が0.5重量%、好ましい上限が40重量%であり、より好ましい下限が0.7重量%、より好ましい上限が30重量%である。上記ハンダ層に直接接する銅層における銅の比率は、リフロー時にハンダ層を加熱溶融させたときにハンダ層中に拡散される銅濃度をこの範囲内にすることに対応したものである。
なお、本願明細書において付着とは、上記ハンダ層の表面にニッケル及び/又はコバルトの金属が存在しており、かつ、上記ハンダ層の表面を完全に被覆するニッケル及び/又はコバルトの金属層が形成されていない状態を意味する。
図1に示した導電性微粒子は、樹脂からなるコア粒子1の表面に、下地金属層2、導電金属層3、バリア層4、銅層5、及び、ハンダ層6がこの順に形成されている。また、ハンダ層6の表面には、ニッケル及び/又はコバルト7が付着されている。
上記導電金属層を形成させる方法は特に限定されず、例えば、電解メッキ法、無電解メッキ法等による方法が挙げられる。
上記ニッケル層を形成させる方法は特に限定されず、例えば、電解メッキ法、無電解メッキ法等による方法が挙げられる。
上記銅層を形成させる方法は特に限定されず、例えば、電解メッキ法、無電解メッキ法等による方法が挙げられる。
上記ハンダ層を形成させる方法は特に限定されず、例えば、電解メッキ法による方法が挙げられる。
上記ハンダ層の表面にニッケル及び/又はコバルトを付着させる方法は特に限定されず、スパッタリング法や無電解メッキ法等が挙げられる。
上記ビニル樹脂は特に限定されないが、酢酸ビニル樹脂、アクリル樹脂、スチレン樹脂等が挙げられる。上記熱可塑性樹脂は特に限定されないが、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体、ポリアミド樹脂等が挙げられる。上記硬化性樹脂は特に限定されないが、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。上記熱可塑性ブロック共重合体は特に限定されないが、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、スチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂、湿気硬化型樹脂のいずれの硬化型樹脂であってもよい。
また、上記バインダー樹脂と、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
(1)樹脂からなるコア粒子の作製
ジビニルベンゼン50重量部と、テトラメチロールメタンテトラアクリレート50重量部とを共重合させ、樹脂からなるコア粒子(平均粒子径180μm、CV値0.42%)を作製した。
得られたコア粒子を無電解ニッケルメッキし、コア粒子の表面に厚さ0.3μmの下地ニッケルメッキ層を形成させた。次いで、電解銅メッキをすることにより、厚さ7μmの銅層(導電金属層)を形成させた。次いで、電解ニッケルメッキをすることにより、厚さ0.6μmのニッケル層(バリア層)を形成させた。次いで、電解銅メッキをすることにより、厚さ1μmの銅層を形成させた。次いで、電解メッキをすることにより、厚さ34μmの錫を含有するハンダ層を形成させた。最後に、電解メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させて、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、2.6重量%である。
ハンダ層に直接接する銅層の厚さを0.4μmとした以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、1.0重量%である。
ハンダ層に直接接する銅層の厚さを2μmとした以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、5.0重量%である。
ハンダ層に直接接する銅層の厚さを0.2μmとした以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、0.5重量%である。
スパッタリング法により、ハンダ層の表面にニッケルを付着させた以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたニッケルが順次形成された導電性微粒子を得た。
無電解メッキ法により、ハンダ層の表面にニッケルを付着させた以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたニッケルが順次形成された導電性微粒子を得た。
無電解メッキ法により、ハンダ層の表面にコバルトを付着させた以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたコバルトが順次形成された導電性微粒子を得た。
(1)樹脂からなるコア粒子の作製
ジビニルベンゼン50重量部と、テトラメチロールメタンテトラアクリレート50重量部とを共重合させ、樹脂からなるコア粒子(平均粒子径150μm、CV値0.38%)を作製した。
得られたコア粒子を無電解ニッケルメッキし、コア粒子の表面に厚さ0.3μmの下地ニッケルメッキ層を形成させた。次いで、電解銅メッキをすることにより、厚さ10μmの銅層(導電金属層)を形成させた。次いで、電解ニッケルメッキをすることにより、厚さ0.6μmのニッケル層(バリア層)を形成させた。次いで、電解銅メッキをすることにより、厚さ0.5μmの銅層を形成させた。次いで、電解メッキをすることにより、厚さ40μmの錫を含有するハンダ層を形成させた。最後に、電解メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させて、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、1.0重量%である。
無電解メッキ法により、ハンダ層の表面にニッケルを付着させた以外は実施例8と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたニッケルが順次形成された導電性微粒子を得た。
無電解メッキ法により、ハンダ層の表面にコバルトを付着させた以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたコバルトが順次形成された導電性微粒子を得た。
ハンダ層に直接接する銅層を形成しなかった以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層及びハンダ層が順次形成された導電性微粒子を得た。
ハンダ層に直接接する銅層を無電解メッキで形成し、その厚さを0.05μmとした以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、0.1重量%である。
ハンダ層に直接接する銅層の厚さを4μmとした以外は実施例1と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、10重量%である。
無電解メッキ法により、ハンダ層の表面にニッケルを付着させた以外は比較例2と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたニッケルが順次形成された導電性微粒子を得た。
無電解メッキ法により、ハンダ層の表面にコバルトを付着させた以外は比較例2と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたコバルトが順次形成された導電性微粒子を得た。
ハンダ層に直接接する銅層を形成しなかった以外は実施例8と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層及びハンダ層が順次形成された導電性微粒子を得た。
ハンダ層に直接接する銅層を無電解メッキで形成し、その厚さを0.1μmとした以外は実施例8と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層及びハンダ層が順次形成された導電性微粒子を得た。
なお、得られた導電性微粒子において、ハンダ層中に含まれる錫に対する、ハンダ層に直接接する銅層中に含有される銅の比率は、0.2重量%である。
無電解メッキ法により、ハンダ層の表面にニッケルを付着させた以外は比較例7と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたニッケルが順次形成された導電性微粒子を得た。
無電解メッキ法により、ハンダ層の表面にコバルトを付着させた以外は比較例2と同様にして、コア粒子の表面に、下地金属層、導電金属層、バリア層、銅層、ハンダ層、及び、ハンダ層に付着されたコバルトが順次形成された導電性微粒子を得た。
実施例及び比較例で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
得られた導電性微粒子を150℃、12時間加熱後、断面を取り、各粒子5個、2点の計10点について、SEM-EDXにてハンダ層中の銅濃度(重量%)を測定し、その最小値、最大値及び算術平均値を求めた。
シリコンチップ(縦5mm×横5mm)上に0.4mmピッチで121個設けられた電極ランド(直径230μm)にフラックス(クックソンエレクトロニクス社製「WS-9160-M7」)を塗布した。すべての電極ランドに、得られた導電性微粒子を配置し、リフロー(加熱温度250℃、30秒間)し、導電性微粒子を電極ランドに実装した。
次いで、銅電極(直径250μm)が形成されたプリント基板にハンダペースト(千住金属工業社製「M705-GRN360-K2-V」)を塗布した。導電性微粒子が実装されたシリコンチップ15個を、プリント基板に配置し、リフロー(加熱温度250℃、30秒間)し、シリコンチップ15個をプリント基板に実装し、導電接続構造体を得た。
JEDEC規格JESD22-B111に従い、得られた導電接続構造体の落下強度試験を行った。得られた導電接続構造体は、デイジーチェーン回路が形成されているため、1箇所の電極ランドの断線でも検出することができる。
15個のシリコンチップのすべてが断線する落下回数を測定した。
なお、電極ランドは、銅層で形成されていた。以下、同様である。
シリコンチップ(縦5mm×横5mm)上に0.4mmピッチで121個設けられた電極ランド(直径230μm)にフラックス(クックソンエレクトロニクス社製「WS-9160-M7」)を塗布した。すべての電極ランドに、得られた導電性微粒子を配置し、リフロー(加熱温度250℃、30秒間)し、導電性微粒子を電極ランドに実装した。
次いで、銅電極(直径250μm)が形成されたプリント基板にハンダペースト(千住金属工業社製「M705-GRN360-K2-V」)を塗布した。導電性微粒子が実装されたシリコンチップ1個を、プリント基板に配置し、リフロー(加熱温度250℃、30秒間)し、シリコンチップ1個をプリント基板に実装し、導電接続構造体を得た。
得られた導電接続構造体は、デイジーチェーン回路が形成されているため、1箇所の電極ランドの断線でも検出することができる。
得られた導電接続構造体を用いて、-40℃~125℃を1サイクルとする温度サイクル試験を行った。なお、温度サイクル試験のヒートプロファイルは、-40℃で10分間保持し、-40℃から125℃まで2分間で昇温させ、125℃で10分間保持し、125℃から-40℃まで2分間で降温させるヒートプロファイルであった。
温度サイクル試験は以下の基準で評価した。
○:導電接続構造体の断線が確認されるサイクル数が1000サイクル以上であった。
×:導電接続構造体の断線が確認されるサイクル数が1000サイクル未満であった。
実施例1の粒子をバインダー樹脂に分散させ、回路接続を実施した結果、電気導通することを確認した。
2 下地金属層
3 導電金属層
4 バリア層
5 銅層
6 ハンダ層
7 ハンダ層に付着されたニッケル及び/又はコバルト
Claims (5)
- 樹脂又は金属からなるコア粒子の表面に、少なくとも導電金属層、バリア層、銅層、及び、錫を含有するハンダ層がこの順に積層された導電性微粒子であって、
前記銅層とハンダ層とが直接接しており、前記ハンダ層中に含まれる錫に対する前記ハンダ層に直接接する銅層における銅の比率が0.5~5重量%である
ことを特徴とする導電性微粒子。 - 150℃、12時間加熱したときに、ハンダ層の任意の位置における銅の濃度が0.5~40重量%であることを特徴とする請求項1記載の導電性微粒子。
- ハンダ層の表面にニッケル及び/又はコバルトが付着されていることを特徴とする請求項1又は2記載の導電性微粒子。
- 請求項1、2又は3記載の導電性微粒子がバインダー樹脂に分散されてなることを特徴とする異方性導電材料。
- 請求項1、2若しくは3記載の導電性微粒子、又は、請求項4記載の異方性導電材料を用いてなることを特徴とする導電接続構造体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/768,837 US9478326B2 (en) | 2013-02-28 | 2014-02-28 | Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure |
JP2014511674A JP5580954B1 (ja) | 2013-02-28 | 2014-02-28 | 導電性微粒子、異方性導電材料、及び、導電接続構造体 |
EP14756789.5A EP2963655B1 (en) | 2013-02-28 | 2014-02-28 | Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure |
CN201480005809.1A CN104937675B (zh) | 2013-02-28 | 2014-02-28 | 导电性微粒、各向异性导电材料和导电连接结构体 |
KR1020157016027A KR101561418B1 (ko) | 2013-02-28 | 2014-02-28 | 도전성 미립자, 이방성 도전 재료 및 도전 접속 구조체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013039800 | 2013-02-28 | ||
JP2013-039800 | 2013-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014133124A1 true WO2014133124A1 (ja) | 2014-09-04 |
Family
ID=51428382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055035 WO2014133124A1 (ja) | 2013-02-28 | 2014-02-28 | 導電性微粒子、異方性導電材料、及び、導電接続構造体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9478326B2 (ja) |
EP (1) | EP2963655B1 (ja) |
JP (1) | JP5580954B1 (ja) |
KR (1) | KR101561418B1 (ja) |
CN (1) | CN104937675B (ja) |
WO (1) | WO2014133124A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018089683A (ja) * | 2016-12-06 | 2018-06-14 | テトス カンパニー,リミテッド | はんだ粒子 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9597752B2 (en) * | 2015-03-13 | 2017-03-21 | Mediatek Inc. | Composite solder ball, semiconductor package using the same, semiconductor device using the same and manufacturing method thereof |
JP2020184530A (ja) * | 2019-05-01 | 2020-11-12 | デクセリアルズ株式会社 | 接続構造体、接続構造体の製造方法、接続材料、及び被覆導電粒子 |
FR3100822B1 (fr) * | 2019-09-12 | 2021-10-01 | Lifco Ind | Billes de soudure composites metallisees en surface et calibrees pour l'assemblage de cartes electroniques |
CN111283345A (zh) * | 2020-04-02 | 2020-06-16 | 深圳群崴半导体材料有限公司 | 焊球结构、焊料以及制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220691A (ja) | 2000-02-03 | 2001-08-14 | Okuno Chem Ind Co Ltd | 導電性微粒子 |
JP2003068145A (ja) * | 2001-08-23 | 2003-03-07 | Sekisui Chem Co Ltd | 導電性微粒子及び導電接続構造体 |
JP2004179137A (ja) * | 2002-10-02 | 2004-06-24 | Sekisui Chem Co Ltd | 導電性微粒子、導電性微粒子の製造方法及び導電接続構造体 |
JP2007081141A (ja) * | 2005-09-14 | 2007-03-29 | Nippon Steel Materials Co Ltd | Cuコアボールとその製造方法 |
JP2009117333A (ja) * | 2007-04-13 | 2009-05-28 | Sekisui Chem Co Ltd | 導電性微粒子、異方性導電材料、及び、導電接続構造体 |
JP2009224059A (ja) * | 2008-03-13 | 2009-10-01 | Sekisui Chem Co Ltd | 導電性微粒子、異方性導電材料、及び、接続構造体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2495732A3 (en) | 2000-08-04 | 2014-04-16 | Sekisui Chemical Co., Ltd. | Conductive fine particles, method for plating fine particles, and substrate structure |
EP2308904A4 (en) * | 2008-07-31 | 2012-11-14 | Sekisui Chemical Co Ltd | POLYMER PARTICLE, CONDUCTIVE PARTICLE, ANISOTROPIC CONDUCTIVE MATERIAL, AND CONNECTION STRUCTURE |
KR101055485B1 (ko) * | 2008-10-02 | 2011-08-08 | 삼성전기주식회사 | 범프볼을 갖는 반도체 패키지 |
KR20180024029A (ko) * | 2010-04-22 | 2018-03-07 | 세키스이가가쿠 고교가부시키가이샤 | 이방성 도전 재료 및 접속 구조체 |
-
2014
- 2014-02-28 JP JP2014511674A patent/JP5580954B1/ja not_active Expired - Fee Related
- 2014-02-28 CN CN201480005809.1A patent/CN104937675B/zh not_active Expired - Fee Related
- 2014-02-28 WO PCT/JP2014/055035 patent/WO2014133124A1/ja active Application Filing
- 2014-02-28 US US14/768,837 patent/US9478326B2/en not_active Expired - Fee Related
- 2014-02-28 EP EP14756789.5A patent/EP2963655B1/en not_active Not-in-force
- 2014-02-28 KR KR1020157016027A patent/KR101561418B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220691A (ja) | 2000-02-03 | 2001-08-14 | Okuno Chem Ind Co Ltd | 導電性微粒子 |
JP2003068145A (ja) * | 2001-08-23 | 2003-03-07 | Sekisui Chem Co Ltd | 導電性微粒子及び導電接続構造体 |
JP2004179137A (ja) * | 2002-10-02 | 2004-06-24 | Sekisui Chem Co Ltd | 導電性微粒子、導電性微粒子の製造方法及び導電接続構造体 |
JP2007081141A (ja) * | 2005-09-14 | 2007-03-29 | Nippon Steel Materials Co Ltd | Cuコアボールとその製造方法 |
JP2009117333A (ja) * | 2007-04-13 | 2009-05-28 | Sekisui Chem Co Ltd | 導電性微粒子、異方性導電材料、及び、導電接続構造体 |
JP2009224059A (ja) * | 2008-03-13 | 2009-10-01 | Sekisui Chem Co Ltd | 導電性微粒子、異方性導電材料、及び、接続構造体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2963655A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018089683A (ja) * | 2016-12-06 | 2018-06-14 | テトス カンパニー,リミテッド | はんだ粒子 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014133124A1 (ja) | 2017-02-02 |
KR20150081368A (ko) | 2015-07-13 |
CN104937675A (zh) | 2015-09-23 |
EP2963655A1 (en) | 2016-01-06 |
CN104937675B (zh) | 2016-08-24 |
US9478326B2 (en) | 2016-10-25 |
EP2963655A4 (en) | 2016-11-02 |
JP5580954B1 (ja) | 2014-08-27 |
EP2963655B1 (en) | 2017-12-27 |
KR101561418B1 (ko) | 2015-10-16 |
US20160005504A1 (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4364928B2 (ja) | 導電性微粒子、異方性導電材料及び導電接続構造体 | |
JP5580954B1 (ja) | 導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP4313836B2 (ja) | 導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
KR20210042429A (ko) | 이방성 도전 필름, 그 제조 방법, 및 접속 구조체 | |
JP6769986B2 (ja) | 熱可塑性ポリマーをベースとした金属導電性ホットメルトペースト | |
EP2139009B1 (en) | Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure | |
JP5210236B2 (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP6671881B2 (ja) | 導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP5275736B2 (ja) | 導電性微粒子の製造方法、導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP4313835B2 (ja) | 導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP5328434B2 (ja) | 導電性微粒子、及び、導電接続構造体 | |
JP5438450B2 (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
TW202147351A (zh) | 異向性導電膜之製造方法,及異向性導電膜 | |
JP2014096362A (ja) | 導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP5534745B2 (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP5275735B2 (ja) | 導電性微粒子の製造方法、導電性微粒子、異方性導電材料、及び、導電接続構造体 | |
JP2011113804A (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP2005317270A (ja) | 導電性微粒子及び導電接続構造体 | |
JP2009224058A (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP5438454B2 (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP2010238615A (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP2011076939A (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 | |
JP2009095865A (ja) | ニッケル担持ハンダボール | |
JP2004249359A (ja) | ハンダペースト及び導電接続構造体 | |
JP2011076782A (ja) | 導電性微粒子、異方性導電材料、及び、接続構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014511674 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14756789 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157016027 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14768837 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014756789 Country of ref document: EP |