WO2014133009A1 - 蓄電池、蓄電池の制御方法、制御装置及び制御方法 - Google Patents

蓄電池、蓄電池の制御方法、制御装置及び制御方法 Download PDF

Info

Publication number
WO2014133009A1
WO2014133009A1 PCT/JP2014/054701 JP2014054701W WO2014133009A1 WO 2014133009 A1 WO2014133009 A1 WO 2014133009A1 JP 2014054701 W JP2014054701 W JP 2014054701W WO 2014133009 A1 WO2014133009 A1 WO 2014133009A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage means
soc
temperature
charge
Prior art date
Application number
PCT/JP2014/054701
Other languages
English (en)
French (fr)
Inventor
高治 松永
梶谷 浩司
克也 小野瀬
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015502956A priority Critical patent/JP6041040B2/ja
Priority to US14/770,514 priority patent/US9774062B2/en
Publication of WO2014133009A1 publication Critical patent/WO2014133009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery, a storage battery control method, a control device, and a control method.
  • Storage batteries such as lithium ion secondary batteries and lead storage batteries are prone to battery capacity deterioration when placed in a harsh temperature environment in a charged state.
  • the battery capacity is significantly deteriorated in a fully charged state where the SOC (state of charge) is 100% (see FIGS. 7 and 8).
  • the storage battery is preferably used in a non-harsh temperature environment (normal temperature environment) of, for example, about ⁇ 10 ° C. to 50 ° C.
  • Patent Document 1 discloses a power supply device including a secondary battery and a capacitor connected in parallel to the secondary battery.
  • the power supply device includes: a detection unit that detects a temperature of the capacitor and a voltage of the capacitor; a switching element that limits a discharge current from the capacitor based on a detection value of the detection unit; and a detection value to the capacitor based on the detection value of the detection unit. And a switching element that performs at least one of limiting and cutting off the charging current.
  • the power supply device disconnects the capacitor when the temperature of the capacitor is equal to or higher than a preset temperature threshold (the lower limit of the temperature determined to be abnormal). By such control, temperature information and deterioration of the capacitor are suppressed.
  • Patent Document 2 discloses a battery pack that can reduce the risk of deterioration due to charging of a secondary battery at a temperature that is not suitable for charging, regardless of whether the temperature of the secondary battery is low or high.
  • the battery pack includes a secondary battery, a connection terminal for receiving a charging current output from a charging unit that outputs a charging current for charging the secondary battery, and a temperature detection for detecting a temperature of the secondary battery. And the temperature of the secondary battery detected by the temperature detection unit is received by the connection terminal when the second temperature is different from the first temperature preset as a temperature suitable for charging the secondary battery.
  • a charging voltage controller configured to lower a charging voltage of the secondary battery based on the current from a first voltage set in advance as a voltage for charging the secondary battery at a constant voltage.
  • Storage batteries may be used in harsh temperature environments. For this reason, the technique which suppresses battery capacity degradation when a storage battery is used under a severe temperature environment is desired.
  • the inventor completes (stops) charging at a lower SOC level than when used under a normal temperature environment, and the SOC is 100%.
  • the means of not charging until fully charged As described above, the battery capacity deterioration in the fully charged state where the SOC is 100% is remarkable (see FIG. 7). According to the technique, the degree of deterioration can be reduced.
  • SOC a predetermined level
  • the use in a severe temperature environment with a low SOC level when stopping charging is faster.
  • inconveniences such as replacement with a new storage battery may occur although it is still usable.
  • This invention makes it a subject to provide the new technique which suppresses battery capacity degradation which generate
  • First power storage means Second power storage means connected in parallel with the first power storage means; Temperature measuring means for measuring the temperature; Charge / discharge control means for controlling charge / discharge of the first power storage means and the second power storage means; Have The charge / discharge control means calculates SOC (state of charge) of the first power storage means and the second power storage means in a charge completion state that does not allow further charging according to the measurement result by the temperature measurement means. And when increasing the SOC of the first power storage means, increasing the SOC of the second power storage means, and increasing the SOC of the first power storage means. A storage battery that reduces the SOC of the storage means is provided.
  • First power storage means To storage battery, First power storage means; Second power storage means connected in parallel with the first power storage means; Temperature measuring means for measuring the temperature; With The SOC of the first power storage means and the second power storage means in a charging completion state that does not allow further charging is changed according to the measurement result by the temperature measuring means, and the first power storage means
  • First power storage means First power storage means; Second power storage means connected in parallel with the first power storage means; Temperature measuring means for measuring the temperature; Charge / discharge control means for controlling charge / discharge of the storage battery having The charge / discharge control means changes the SOC of the first power storage means and the second power storage means in a charge completion state that does not allow further charging according to the measurement result by the temperature measurement means, and When decreasing the SOC of the first power storage means, the SOC of the second power storage means is increased, and when increasing the SOC of the first power storage means, the SOC of the second power storage means.
  • First power storage means Second power storage means connected in parallel with the first power storage means; Temperature measuring means for measuring the temperature; Having a step of controlling charging and discharging of the storage battery having In the step, the SOCs of the first power storage unit and the second power storage unit in a charging completion state in which no further charging is permitted are changed according to the measurement result by the temperature measurement unit, and the first When reducing the SOC of the second power storage means, the SOC of the second power storage means is increased, and when increasing the SOC of the first power storage means, the SOC of the second power storage means is decreased.
  • a control method is provided.
  • the storage battery control method and the operation subject may be a computer.
  • the storage battery of this embodiment includes a CPU, a memory, and a program loaded in the memory of an arbitrary computer (a program stored in the memory from the stage of shipping the device in advance, a storage medium such as a CD, and the Internet). And a storage unit such as a hard disk for storing the program, and a network connection interface, and any combination of hardware and software. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • FIG. 1 shows an example of a functional block diagram of the storage battery 1 of the present embodiment.
  • the storage battery 1 includes a power storage unit (first power storage unit) 10, an auxiliary power storage unit (second power storage unit) 11, a temperature measurement unit 13, and a charge / discharge control unit 14.
  • first power storage unit 10
  • second power storage unit 11
  • temperature measurement unit 13 13
  • charge / discharge control unit 14 14
  • the power storage unit 10 includes one or a plurality of battery cells.
  • the plurality of battery cells constituting the power storage unit 10 are connected in series and / or in parallel.
  • the electrical storage part 10 can be comprised with a lithium ion secondary battery or a lead acid battery, for example.
  • the auxiliary power storage unit 11 is composed of one or a plurality of battery cells, and is connected in parallel with the power storage unit 10.
  • the plurality of battery cells constituting the auxiliary power storage unit 11 are connected in series and / or in parallel.
  • the auxiliary power storage unit 11 may be, for example, a lithium ion secondary battery or a lead storage battery, or may be a capacitor (such as an electric double layer capacitor).
  • the configuration (type of battery, cell connection method, capacity) of power storage unit 10 and auxiliary power storage unit 11 may be the same or different.
  • the capacity of the auxiliary power storage unit 11 may be equal to or less than the capacity of the power storage unit 10.
  • the roles of the power storage unit 10 and the auxiliary power storage unit 11 will be described.
  • charging / discharging of the storage battery 1 of this embodiment is implement
  • the power storage unit 10 composed of a lithium ion secondary battery or a lead storage battery has low temperature resistance, and the above-described problem of battery capacity deterioration may occur.
  • the power storage unit 10 of the present embodiment is controlled by the charge / discharge control unit 14 described below, and the SOC in the charge completion state (hereinafter, “charge completion SOC”) changes according to the temperature environment. Specifically, the SOC when the charge is completed in a severe temperature environment (eg, ⁇ 10 ° C. or less or 50 ° C. or more) is in a normal temperature environment (eg, greater than ⁇ 10 ° C. and less than 50 ° C.). It becomes smaller than the charge completion SOC in the case of With such a configuration, deterioration of the power storage unit 10 when the storage battery 1 is used under a severe temperature environment is suppressed.
  • a severe temperature environment eg, ⁇ 10 ° C. or less or 50 ° C. or more
  • a normal temperature environment eg, greater than ⁇ 10 ° C. and less than 50 ° C.
  • the charging completion state is a state in which no further charging is allowed (not performed) for any of the power storage unit 10 and the auxiliary power storage unit 11, and a state in which the user recognizes that the charging rate is 100%. is there.
  • the amount of charge in the charged state (the sum of the charge amount of the power storage unit 10 and the charge amount of the auxiliary power storage unit 11) is smaller than the sum of the capacity of the power storage unit 10 and the capacity of the auxiliary power storage unit 11. That is, in the charging completion state, both the SOC of power storage unit 10 and the SOC of auxiliary power storage unit 11 do not become 100%.
  • the charging completion SOC of the power storage unit 10 is reduced, the charging completion SOC of the auxiliary power storage unit 11 is increased accordingly. Further, when the charging completion SOC of the power storage unit 10 is increased, the charging completion SOC of the auxiliary power storage unit 11 is decreased accordingly.
  • the amount of power corresponding to the change in the charge completion SOC of the power storage unit 10 and the amount of power corresponding to the change in the charge completion SOC of the auxiliary power storage unit 11 can be substantially matched. In such a case, regardless of the temperature environment, the sum of the charge amount of the power storage unit 10 and the charge amount of the auxiliary power storage unit 11 in the charging completion state can be made substantially constant. As a result, the above problems can be avoided.
  • the temperature measuring unit 13 measures the temperature of the environment where the power storage unit 10 is placed. For example, the temperature measurement unit 13 measures the temperature around the power storage unit 10.
  • the charge / discharge control unit 14 controls charging / discharging of the power storage unit 10 and the auxiliary power storage unit 11. In other words, the charge / discharge control unit 14 charges each of the power storage unit 10 and the auxiliary power storage unit 11 with a predetermined charge completion SOC as an upper limit, and discharges the power charged in the power storage unit 10 and the auxiliary power storage unit 11. .
  • the charge / discharge control unit 14 may store power during charging.
  • the SOC of each of the unit 10 and the auxiliary power storage unit 11 may be configured to be measurable.
  • the means for measuring the SOC is not particularly limited, and any conventional technique can be adopted. Then, the charging of each of the power storage unit 10 and the auxiliary power storage unit 11 is completed (stopped) by comparing the measured SOC with the charge completion SOC set in each of the power storage unit 10 and the auxiliary power storage unit 11 at that time. Timing may be determined.
  • the charge / discharge control unit 14 changes the charge completion SOC of the power storage unit 10 and the auxiliary power storage unit 11 in the charge completion state according to the measurement result by the temperature measurement unit 13.
  • the charge / discharge control unit 14 also increases the charge completion SOC of the auxiliary power storage unit 11. Further, when the charge completion SOC of power storage unit 10 is increased, the charge completion SOC of auxiliary power storage unit 11 is also reduced.
  • the charge / discharge control unit 14 may be operated in a severe temperature environment (eg, ⁇ 10) from a range where the measurement result by the temperature measurement unit 13 is within a normal temperature environment (eg, greater than ⁇ 10 ° C. and less than 50 ° C.) And within the range of less than 50 ° C. or more than 50 ° C.) the charge completion SOC of the power storage unit 10 is made smaller than the previous charge completion SOC (eg, 100% ⁇ 90%, 95% ⁇ 90%) and auxiliary The charge completion SOC of the power storage unit 11 is made larger than the charge completion SOC so far (eg, 0% ⁇ 100%, 0% ⁇ 50%, 10% ⁇ 50%).
  • the charge / discharge control unit 14 operates in a normal temperature environment (eg, from ⁇ 10 ° C.) within a range where the measurement result by the temperature measurement unit 13 is severe (eg, ⁇ 10 ° C. or less or 50 ° C. or more). If it is within the range of large and smaller than 50 ° C., the charge completion SOC of the power storage unit 10 is made larger than the charge completion SOC so far (eg, 90% ⁇ 100%, 90% ⁇ 95%) and auxiliary The charging completion SOC of the power storage unit 11 is made smaller than the charging completion SOC so far (eg, 100% ⁇ 0%, 50% ⁇ 0%, 50% ⁇ 5%).
  • the charge / discharge control unit 14 holds information that associates the value of the charge completion SOC of the power storage unit 10 and the value of the charge completion SOC of the auxiliary power storage unit 11 for each predetermined temperature range. You may control charge completion SOC using information. It should be noted that the amount of power corresponding to the change in the charge completion SOC of power storage unit 10 and the amount of power corresponding to the change in the charge completion SOC of auxiliary power storage unit 11 can be set to match.
  • the charge completion SOC of the auxiliary power storage unit 11 is relatively high (90% , 100%, etc.), it is preferable to configure the auxiliary power storage unit 11 with a capacitor having a relatively high temperature resistance.
  • the auxiliary power storage unit 11 is composed of a lithium ion secondary battery or a lead storage battery having a relatively low temperature resistance, the capacity of the auxiliary power storage unit 11 is sufficiently increased so as to be in a severe temperature environment (eg, ⁇ 10 ° C.). It is preferable to prevent the SOC of the auxiliary power storage unit 11 from becoming too large at the following or 50 ° C. or higher). By comprising in this way, degradation of the auxiliary
  • the charge completion SOC of the power storage unit 10 and the auxiliary power storage unit 11 can be changed according to the usage environment of the storage battery. Specifically, when the charging completion SOC of the power storage unit 10 is decreased, the charging completion SOC of the auxiliary power storage unit 11 is increased, and when the charging completion SOC of the power storage unit 10 is increased, the charging completion SOC of the auxiliary power storage unit 11 is increased. Can be small.
  • the storage battery 1 of this embodiment when used in a severe temperature environment (eg, ⁇ 10 ° C. or lower or 50 ° C. or higher), a lithium ion secondary battery or a lead storage battery with low temperature resistance is used. Charging completion SOC of power storage unit 10 configured can be reduced. That is, it is possible to avoid the SOC of the power storage unit 10 from becoming 100% and set it to a small value. As a result, deterioration of the power storage unit 10 can be suppressed.
  • a severe temperature environment eg, ⁇ 10 ° C. or lower or 50 ° C. or higher
  • Charging completion SOC of power storage unit 10 configured can be reduced. That is, it is possible to avoid the SOC of the power storage unit 10 from becoming 100% and set it to a small value. As a result, deterioration of the power storage unit 10 can be suppressed.
  • the capacity of the auxiliary power storage unit 11 can be made smaller than that of the power storage unit 10.
  • the auxiliary power storage unit 11 can be configured with, for example, a capacitor having high temperature resistance.
  • the auxiliary power storage unit 11 is a lithium ion secondary battery having a capacity such that the charge completion SOC does not become 100% when used in a severe temperature environment (eg, ⁇ 10 ° C. or lower or 50 ° C. or higher). It can be composed of a lead storage battery.
  • the capacity of the auxiliary power storage unit 11 can be made relatively small, it is possible to avoid an excessive increase in the capacity of the auxiliary power storage unit 11 even if such requirements are satisfied.
  • the charging completion SOC of the power storage unit 10 when the charging completion SOC of the power storage unit 10 is reduced, the charging completion SOC of the auxiliary power storage unit 11 is increased, and the reduced power is charged in the auxiliary power storage unit 11. Can do. Further, when the charge completion SOC of the power storage unit 10 is increased, the charge completion SOC of the auxiliary power storage unit 11 can be reduced, and the increased power can be reduced from the charge amount of the auxiliary power storage unit 11. For this reason, even if the charge completion SOC of the power storage unit 10 becomes small due to the temperature environment, the charge amount of the storage battery 1 as a whole can be kept almost constant without changing.
  • the present embodiment is an embodiment in which the storage battery 1 of the first embodiment is more specific.
  • FIG. 2 an example of a structure of the storage battery 1 of this embodiment is shown.
  • the storage battery 1 includes a power storage unit 10, an auxiliary power storage unit 11, a switch 12, a temperature measurement unit 13, a charge / discharge control unit (control circuit) 14, a balance circuit 15, a switch 16, And a switch 17.
  • the storage battery 1 is connected to a charger 18 via an external connection terminal for charging / discharging.
  • the power storage unit 10 has a configuration in which a plurality of lithium ion secondary battery cells are connected in series.
  • the energy density of the power storage unit 10 can be set to, for example, 100 Wh / kg or more.
  • the auxiliary power storage unit 11 has a configuration in which a plurality of capacitor cells (such as electric double layer capacitor cells) are connected in series.
  • the energy density of the auxiliary power storage unit 11 is, for example, 10 Wh / kg or more.
  • the power storage unit 10 and the auxiliary power storage unit 11 are connected in parallel.
  • the temperature measurement unit 13 has the same number of temperature sensors as the number of the plurality of lithium ion secondary battery cells constituting the power storage unit 10, and is configured to measure the temperature (ambient temperature) of each lithium ion secondary battery cell. Has been.
  • the temperature sensor is installed closer to the auxiliary power storage unit 11 than the power storage unit 10, but the installation position of the temperature sensor is not particularly limited, and the temperature of the power storage unit 10 (ambient temperature). Can be measured.
  • the temperature measurement part 13 may be comprised with one temperature sensor, and may be comprised with the number of temperature sensors which do not correspond with the number of lithium ion secondary battery cells.
  • the balance circuit 15 is used to reduce a difference in charge amount between a plurality of lithium ion secondary battery cells. Such a balance circuit 15 can be realized according to the prior art.
  • the charge / discharge control unit 14 acquires a measurement result from the temperature measurement unit 13 and controls on / off of the switch 12 during charge / discharge according to the result. Further, the charge / discharge control unit 14 controls on / off of the switch 16 for switching the connection between the balance circuit 15 and the power storage unit 10. Further, the charge / discharge control unit 14 controls on / off of the switch 17 for switching connection between the charger 18 and the power storage unit 10 and the auxiliary power storage unit 11.
  • the storage battery 1 of the present embodiment has a 100% charge completion SOC of the power storage unit 10 when used in a normal temperature environment (first temperature range, eg, greater than ⁇ 10 ° C. and less than 50 ° C.),
  • the SOC of the auxiliary power storage unit 11 is set to 0%, and the SOC of the power storage unit 10 when used in a severe temperature environment (second temperature range, eg, ⁇ 10 ° C. or lower or 50 ° C. or higher)
  • P% (0 ⁇ P ⁇ 100, a design matter
  • the SOC of the auxiliary power storage unit 11 is 100%. That is, the charge completion SOC of power storage unit 10 in a normal temperature environment (first temperature range) is the charge completion SOC of power storage unit 10 in a severe temperature environment (second temperature range). Bigger than.
  • the charge / discharge control unit 14 acquires measurement results from the temperature measurement unit 13 continuously (eg, every predetermined time, every predetermined timing), and the measurement results (temperature) are in a normal temperature environment (first temperature range). ) Or monitoring whether the temperature environment has changed between them, and monitoring whether the temperature environment is within the range (second temperature range) .
  • the charge / discharge control unit 14 sets the set value of the charge completion SOC of the power storage unit 10 to a state suitable for the temperature environment.
  • the charging completion SOC of power storage unit 10 is set to 100%.
  • the charge / discharge control unit 14 turns off the switch 12 to turn off the connection between the auxiliary power storage unit 11 and the charge / discharge external connection terminal (terminal connected to the charger 18). Charge and discharge using only. That is, only the power storage unit 10 is charged when charging the power, and the power is taken out only from the power storage unit 10 when discharging the power.
  • the charge / discharge control unit 14 continuously obtains the measurement result from the temperature measurement unit 13 (for example, every predetermined time and every predetermined timing) (S10), and the measurement result (temperature) is in a normal temperature environment. (First temperature range) or whether it is within a severe temperature environment (second temperature range), whether the temperature environment has changed between them Monitoring is continued (S20).
  • the charge / discharge control unit 14 changes the set value of the charge completion SOC of the power storage unit 10 to a state suitable for the changed temperature environment.
  • the charge completion SOC of power storage unit 10 is changed to P%.
  • the charge / discharge control unit 14 turns on the switch 12 to turn on the connection between the auxiliary power storage unit 11 and the external connection terminal for charge / discharge (terminal connected to the charger 18).
  • charging / discharging is performed using the auxiliary power storage unit 11.
  • the SOC of the auxiliary power storage unit 11 is set to 100%. That is, when charging the electric power, the power storage unit 10 is charged with SOC up to P%, and the auxiliary power storage unit 11 is charged with SOC up to 100%.
  • the power is taken out from the power storage unit 10 and the auxiliary power storage unit 11.
  • a capacitor can be discharged in a shorter time than a lithium ion secondary battery, and is discharged from the auxiliary power storage unit 11 immediately after the start of discharge, and then discharged from the power storage unit 10. Can be considered.
  • a means of discharging from the power storage unit 10 immediately after the start of discharge and then discharging from the auxiliary power storage unit 11 is also conceivable.
  • charging / discharging is performed using only the power storage unit 10 composed of a lithium ion secondary battery. It will be discharged from.
  • second temperature range the operation immediately after the start of discharge is equivalent regardless of the temperature environment by discharging from the power storage unit 10 immediately after the start of discharge. It can be. As a result, it is possible to avoid the inconvenience that gives the user an uncomfortable feeling.
  • a means of taking electric power from both the power storage unit 10 and the auxiliary power storage unit 11 and discharging it can be considered.
  • the charge / discharge current value flowing through the power storage unit 10 can be reduced, and deterioration of the power storage unit 10 can be reduced.
  • the charge / discharge current path (I) also flows to the capacitor side (Ic). Can be made. Since the internal resistance (Rc) of a capacitor is generally lower than the internal resistance (Rb) of a lithium ion secondary battery, the shunt current (Ib) flowing through the lithium ion secondary battery is larger than the shunt current (Ic) flowing through the capacitor section. However, the shunt current (Ib) can be made smaller than the charge / discharge current path (I) (see the following formula).
  • the amount of current of the lithium ion battery unit (power storage unit 10) is reduced as compared with a system of a single lithium ion secondary battery having the same charge / discharge current value of the entire storage battery. be able to.
  • the SOC of the lithium ion secondary battery in a severe temperature environment can be reduced, and the SOH of the lithium ion battery can be greatly increased.
  • the temperature environment in which the storage battery can be used can be expanded, and the useful life of the entire system can be greatly increased.
  • significant operational cost savings are possible.
  • the present embodiment is an embodiment in which the storage battery 1 of the first embodiment is more specific.
  • FIG. 4 an example of a structure of the storage battery 1 of this embodiment is shown.
  • the storage battery 1 includes a power storage unit 10, an auxiliary power storage unit 11 (child auxiliary power storage units 11a and 11b), switches 12a and 12b, a temperature measurement unit 13, and a charge / discharge control unit (control circuit) 14.
  • the storage battery 1 is connected to a charger 18.
  • the power storage unit 10, the temperature measurement unit 13, the balance circuit 15, the switch 16, and the switch 17 are the same as those in the second embodiment.
  • the auxiliary power storage unit 11 has two rows of child auxiliary power storage units 11a and 11b.
  • Each of the child auxiliary power storage units 11a and 11b has a configuration in which a plurality of capacitor cells (such as electric double layer capacitor cells) are connected in series.
  • the plurality of child auxiliary power storage units 11a and 11b are connected in parallel to each other.
  • the plurality of child auxiliary power storage units 11 a and 11 b are also connected in parallel with the power storage unit 10.
  • the plurality of child auxiliary power storage units 11a and 11b are configured to be able to individually control the connection state with the external connection terminals for charging and discharging by controlling on / off of the switches 12a and 12b.
  • the energy density of each of the child auxiliary power storage units 11a and 11b is, for example, 10 Wh / kg or more.
  • the number of child auxiliary power storage units 11a and 11b may be three or more. Further, the configurations (battery types, cell connection methods, capacities, etc.) of the plurality of child auxiliary power storage units 11a, 11b may be the same or different.
  • the charge / discharge control unit 14 obtains the measurement result from the temperature measurement unit 13, changes the charge completion SOC of the power storage unit 10 according to the result, and turns on / off each of the switches 12a and 12b at the time of charge / discharge. Control.
  • the charge / discharge control unit 14 holds correspondence information as shown in FIG.
  • the correspondence information shown in the figure corresponds to the value of the charge completion SOC of the power storage unit 10 and the number of columns of the child auxiliary power storage units 11a and 11b that turn on the connection with the external connection terminal for charge / discharge for each predetermined temperature range. Information.
  • the charge / discharge control unit 14 When the charge / discharge control unit 14 acquires the measurement result from the temperature measurement unit 13, the charge / discharge control unit 14 refers to the correspondence information as illustrated in FIG. 5 and connects the charge completion SOC of the power storage unit 10 and the charge / discharge external connection terminal. The number of columns of the child auxiliary power storage units 11a and 11b to be turned on is determined. Then, on / off of each of the switches 12a and 12b is controlled so as to satisfy the determined number of columns.
  • the temperature measuring unit 13 includes a plurality of temperature sensors, the correspondence information can be searched using the representative value as a key. However, the representative value may be an average value or the worst value (the largest value). There may be.
  • the charge / discharge control unit 14 includes all the child auxiliary power storage units 11a and 11b.
  • the connection with the external connection terminal for charging / discharging is turned off, and charging / discharging is performed using only the power storage unit 10.
  • the SOC of the power storage unit 10 at this time is 100%.
  • the charge / discharge control unit 14 is arranged so that when the measurement result (temperature T) of the temperature measurement unit 13 is in the temperature range of ⁇ 20 ⁇ T ⁇ ⁇ 10 or 50 ⁇ T ⁇ 75, one row of child auxiliary power storage units 11a and the external connection terminal for charging / discharging are turned on, and charging / discharging is performed using the power storage unit 10 and the one row of child auxiliary power storage units 11a.
  • the charging completion SOC of the power storage unit 10 is 90%
  • the charging completion SOC of the child auxiliary power storage unit 11a is 100%.
  • the amount of power for 10% SOC of power storage unit 10 and the amount of power for 100% SOC of child auxiliary power storage unit 11a substantially coincide.
  • the charge / discharge control unit 14 and the two rows of child auxiliary power storage units 11a and 11b and the external charge / discharge unit The connection with the connection terminal is turned on, and charging / discharging is performed using the power storage unit 10 and the two rows of child auxiliary power storage units 11a and 11b.
  • the charging completion SOC of the power storage unit 10 is 80%, and the charging completion SOC of the child auxiliary power storage units 11a and 11b is 100%.
  • the amount of power for 10% SOC of power storage unit 10 and the amount of power for 100% SOC of child auxiliary power storage unit 11b substantially coincide.
  • the charge / discharge control unit 14 turns off the connection between the auxiliary power storage unit 11 (all child auxiliary power storage units 11a and 11b) and the external connection terminals for charge / discharge, Charge / discharge is performed using only the unit 10. Further, when the temperature is in the fourth temperature range, the connection between the child auxiliary power storage units 11a and 11b in the M row (M is an integer of 1 or more) and the external connection terminal for charging / discharging is turned on, and the power storage units 10 and M Charging / discharging is performed using the child auxiliary power storage units 11a and 11b in the row.
  • the connection between the child auxiliary power storage units 11a, 11b in N columns (N is an integer greater than M) and the external connection terminal for charging / discharging is turned on, and the power storage units 10 and N Charging / discharging is performed using the child auxiliary power storage units 11a and 11b in the row.
  • the charging completion SOC of power storage unit 10 when the temperature is in the third temperature range is higher than the charging completion SOC of power storage unit 10 when the temperature is in the fourth temperature range, and the temperature is fourth.
  • the charging completion SOC of the power storage unit 10 when the temperature is within the temperature range is greater than the charging completion SOC of the power storage unit 10 when the temperature is within the fifth temperature range.
  • the present embodiment it is possible to achieve the same operational effects as those of the first and second embodiments.
  • a control device having a charge / discharge control unit 14 may be provided in a manner that can be distinguished from the storage battery 1 having the power storage unit 10, the auxiliary power storage unit 11, and the temperature measurement unit 13. Good.
  • the control device may be attached to a predetermined position in the storage battery 1 and integrated with the storage battery 1.
  • Power storage means composed of one or more battery cells; An auxiliary power storage means composed of one or a plurality of battery cells and connected in parallel with the power storage means; Temperature measuring means for measuring the temperature; Charge / discharge control means for controlling charge / discharge of the power storage means and the auxiliary power storage means; Have The charge / discharge control means changes the SOC (state of charge) of the power storage means and the auxiliary power storage means in a charge completion state that does not allow further charging according to the measurement result by the temperature measurement means, and A storage battery in which the SOC of the auxiliary power storage means is increased when the SOC of the power storage means is decreased, and the SOC of the auxiliary power storage means is decreased when the SOC of the power storage means is increased.
  • the charge / discharge control means includes When the temperature is in the first temperature range, turn off the connection between the auxiliary power storage means and the external connection terminal for charging / discharging, and charge / discharge using only the power storage means, A storage battery that turns on the connection between the auxiliary power storage means and the external connection terminal for charge / discharge and charges and discharges using the power storage means and the auxiliary power storage means when the temperature is in the second temperature range. 3.
  • the auxiliary power storage means is a storage battery having a plurality of rows of secondary auxiliary power storage means connected in parallel to each other and individually configured to control the connection state with the external connection terminals for charging and discharging. 5.
  • the charge / discharge control means includes When the temperature is in the third temperature range, turn off the connection between the auxiliary power storage means and the external connection terminal for charging / discharging, and charge / discharge using only the power storage means, When the temperature is in the fourth temperature range, the connection between the child auxiliary power storage unit in the M row (M is an integer of 1 or more) and the external connection terminal for charge / discharge is turned on, and the power storage unit and the M row Charge and discharge using the child auxiliary power storage means, When the temperature is in the fifth temperature range, the connection between the child auxiliary power storage means in N columns (N is an integer greater than M) and the external connection terminal for charge / discharge is turned on, and the power storage means and the N columns A storage battery that charges and discharges using
  • the SOC of the power storage means when the temperature is in the third temperature range is greater than the SOC of the power storage means when the temperature is within the fourth temperature range
  • a storage battery in which the SOC of the electricity storage means when the temperature is in the fourth temperature range is greater than the SOC of the electricity storage means when the temperature is in the fifth temperature range . 7).
  • the charge / discharge control means is configured to turn on the connection between the charge completion state SOC value and the charge / discharge external connection terminal for each predetermined temperature range.
  • the storage means is a storage battery which is a lithium ion secondary battery.
  • the auxiliary power storage means is a storage battery composed of a capacitor. 10.
  • Power storage means composed of one or more battery cells;
  • An auxiliary power storage means composed of one or a plurality of battery cells and connected in parallel with the power storage means;
  • Temperature measuring means for measuring the temperature;
  • a storage battery control method in which the SOC of the auxiliary power storage means is increased, and the SOC of the auxiliary power storage means is reduced when increasing the SOC of the power storage means.
  • the auxiliary power storage means is a storage battery control method comprising a plurality of rows of secondary auxiliary power storage means that are connected in parallel to each other and individually configured to control the connection state with the external connection terminals for charging and discharging. 10-5.
  • the storage means is a storage battery control method which is a lithium ion secondary battery. 10-9.
  • the auxiliary power storage means is a storage battery control method including a capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 蓄電部(10)と、蓄電部(10)と並列に接続された補助蓄電部(11)と、温度を測定する温度測定部(13)と、蓄電部(10)及び補助蓄電部(11)の充放電を制御する充放電制御部(14)と、を有し、充放電制御部(14)は、温度測定部(13)による測定結果に応じて、それ以上の充電を許容しない充電完了状態における蓄電部(10)及び補助蓄電部(11)のSOC(充電完了SOC)を変化させ、かつ、蓄電部(10)の充電完了SOCを小さくする際は補助蓄電部(11)の充電完了SOCを大きくし、蓄電部(10)の充電完了SOCを大きくする際は補助蓄電部(11)の充電完了SOCを小さくする蓄電池(1)。

Description

蓄電池、蓄電池の制御方法、制御装置及び制御方法
 本発明は、蓄電池、蓄電池の制御方法、制御装置及び制御方法に関する。
 リチウムイオン二次電池や鉛蓄電池等の蓄電池は、充電状態で過酷な温度環境下に置かれると、電池容量劣化が進行しやすい。特にSOC(state of charge)が100%である満充電状態での電池容量劣化は著しい(図7及び8参照)。このため、蓄電池は、例えば-10℃から50℃程度の過酷でない温度環境下(通常の温度環境下)で使用されるのが好ましい。
 特許文献1には、二次電池とその二次電池に並列接続されたキャパシタとを備えた電源装置が開示されている。当該電源装置は、キャパシタの温度及びキャパシタの電圧を検出する検出手段と、検出手段の検出値に基づき、キャパシタからの放電電流を制限するスイッチング素子と、検出手段の検出値に基づき、キャパシタへの充電電流の制限及び遮断の少なくとも一つを行うスイッチング素子とを備えている。当該電源装置は、キャパシタの温度が予め設定された温度閾値(異常と判定される温度の下限)以上である場合、キャパシタを切り離す。このような制御により、キャパシタの温度情報及び劣化を抑制している。
 特許文献2には、二次電池の温度が低温であるか高温であるかに関わらず、二次電池が充電に適さない温度で充電される事により劣化する恐れを低減することができる電池パックが開示されている。当該電池パックは、二次電池と、二次電池を充電するための充電電流を出力する充電部から出力された充電電流を受電するための接続端子と、二次電池の温度を検出する温度検出部と、温度検出部により検出される二次電池の温度が、二次電池の充電に適した温度として予め設定された第1温度とは異なる第2温度である場合、接続端子により受電された電流に基づく二次電池の充電電圧を、二次電池を定電圧充電するための電圧として予め設定された第1電圧より低下させる充電電圧制御部と、を有する。
特開2009-273305号公報 特開2009-43554号公報
 蓄電池が過酷な温度環境下で使用される場合もある。このため、過酷な温度環境下で蓄電池が使用された場合における電池容量劣化を抑制する技術が望まれる。
 そこで、本発明者は、過酷な温度環境下で蓄電池が使用される場合、通常の温度環境下で使用される場合に比べて低いSOCレベルで充電を完了(停止)し、SOCが100%となる満充電状態まで充電しない手段を検討した。上述の通り、SOCが100%である満充電状態での電池容量劣化は著しい(図7参照)。当該技術によれば劣化の程度を軽減できる。
 しかし、当該手段の場合、過酷な温度環境下での使用の際、通常の温度環境下での使用に比べて、放電深度(DOD)が小さくなるという問題がある。このような問題により、例えば以下のような不都合が発生し得る。
 過酷な温度環境下での使用、及び、通常の温度環境下での使用の充電タイミング(充電完了後、充電量が所定のレベル(例:SOC=10%)まで減って充電が必要となった状態)を比較すると、充電を停止する際のSOCレベルが低い過酷な温度環境下での使用の方が早くなる。通常の温度環境下で蓄電池を使用後、過酷な温度環境下でその蓄電池を使用し、このような充電タイミングの違いを知覚した使用者は、蓄電池の劣化が進行したため充電タイミングが早くなったと勘違いする恐れがある。結果、まだ使用可能であるにも関わらず、新たな蓄電池と交換してしまう等の不都合が発生し得る。
 本発明は、過酷な温度環境下で蓄電池が使用された場合に発生する電池容量劣化を抑制する新たな技術を提供することを課題とする。
 本発明によれば、
 第1の蓄電手段と、
 前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
 温度を測定する温度測定手段と、
 前記第1の蓄電手段及び前記第2の蓄電手段の充放電を制御する充放電制御手段と、
を有し、
 前記充放電制御手段は、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOC(state of charge)を変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする蓄電池が提供される。
 また、本発明によれば、
 蓄電池に、
 第1の蓄電手段と、
 前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
 温度を測定する温度測定手段と、
を備えておき、
 前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする蓄電池の制御方法が提供される。
 また、本発明によれば、
 第1の蓄電手段と、
 前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
 温度を測定する温度測定手段と、
を有する蓄電池の充放電を制御する充放電制御手段を有し、
 前記充放電制御手段は、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする制御装置が提供される。
 また、本発明によれば、
 第1の蓄電手段と、
 前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
 温度を測定する温度測定手段と、
を有する蓄電池の充放電を制御する工程を有し、
 前記工程では、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする制御方法が提供される。
 なお、上記蓄電池の制御方法及び制御方法の動作主体は、コンピュータであってもよい。
 本発明によれば、過酷な温度環境下で蓄電池が使用された場合に発生する電池容量劣化を抑制する新たな技術を提供することを課題とする。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の蓄電池の機能ブロック図の一例である。 本実施形態の蓄電池の構成の一例を示す図である。 本実施形態の蓄電池の処理の流れの一例を示すフローチャートである。 本実施形態の蓄電池の構成の一例を示す図である。 本実施形態の充放電制御部が保持できる情報の一例を示す図である。 本実施形態の作用効果を説明するための図である。 本実施形態の関連技術を説明するための図である。 本実施形態の関連技術を説明するための図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、複数の図面に共通して現れる構成要素については共通の符号を付し、適宜説明を省略する。
 なお、本実施形態の蓄電池は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム(あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む)、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インターフェースを中心にハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 また、本実施形態の説明において利用する機能ブロック図は、ハードウェア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各システム、装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。
<第1の実施形態>
 図1に本実施形態の蓄電池1の機能ブロック図の一例を示す。図示するように、蓄電池1は、蓄電部(第1の蓄電手段)10と、補助蓄電部(第2の蓄電手段)11と、温度測定部13と、充放電制御部14とを有する。以下、各部について説明する。
 蓄電部10は、1つ又は複数の電池セルで構成されている。蓄電部10を構成する複数の電池セルは、互いに直列及び/又は並列に接続されている。蓄電部10は、例えば、リチウムイオン二次電池や鉛蓄電池で構成することができる。
 補助蓄電部11は、1つ又は複数の電池セルで構成され、蓄電部10と並列に接続されている。補助蓄電部11を構成する複数の電池セルは、互いに直列及び/又は並列に接続されている。補助蓄電部11は、例えば、リチウムイオン二次電池や鉛蓄電池であってもよいし、キャパシタ(電気二重層キャパシタ等)であってもよい。蓄電部10と補助蓄電部11の構成(電池の種類、セルの接続方法、容量)は同じであってもよいし、異なっていてもよい。補助蓄電部11の容量は、蓄電部10の容量以下であってもよい。
 ここで、蓄電部10と補助蓄電部11各々の役割について説明する。本実施形態の蓄電池1の充放電は蓄電部10及び補助蓄電部11により実現されるが、その大部分(少なくとも半分以上)は蓄電部10により実現される。このため、蓄電部10は、比較的安価に大容量を実現できるリチウムイオン二次電池や鉛蓄電池で構成するのが好ましい。しかし、リチウムイオン二次電池や鉛蓄電池で構成した蓄電部10は、温度耐性が低くなり、上述したような電池容量劣化の問題が発生し得る。
 そこで、本実施形態の蓄電部10は、以下で説明する充放電制御部14により制御され、温度環境に応じて充電完了状態におけるSOC(以下、「充電完了SOC」)が変化する。具体的には、過酷な温度環境下(例:-10℃以下又は50℃以上)にある場合の充電完了SOCが、通常の温度環境下(例:-10℃より大かつ50℃より小)にある場合の充電完了SOCよりも小さくなる。このような構成により、過酷な温度環境下で蓄電池1が使用される場合における蓄電部10の劣化が抑制される。
 なお、充電完了状態とは、蓄電部10及び補助蓄電部11いずれに対してもそれ以上の充電を許容しない(実施しない)状態であり、充電率が100%と使用者に認識される状態である。充電完了状態における充電量(蓄電部10の充電量及び補助蓄電部11の充電量の和)は、蓄電部10の容量と補助蓄電部11の容量の和よりも小さくなる。すなわち、充電完了状態において、蓄電部10のSOC、及び、補助蓄電部11のSOC両方が100%となることはない。
 ところで、通常の温度環境下にある場合の蓄電部10の充電完了SOCと、過酷な温度環境下にある場合の蓄電部10の充電完了SOCを変化させる(異なる値とする)と、上述の通り、放電深度(DOD)が変化し、また、充電タイミングが変化し、様々な問題を引き起こす恐れがある。
 そこで、本実施形態では、蓄電部10の充電完了SOCを小さくすると、その分、補助蓄電部11の充電完了SOCを大きくする。また、蓄電部10の充電完了SOCを大きくすると、その分、補助蓄電部11の充電完了SOCを小さくする。例えば、蓄電部10の充電完了SOCの変化分に相当する電力量と、補助蓄電部11の充電完了SOCの変化分に相当する電力量とをほぼ一致させることができる。かかる場合、温度環境に関わらず、充電完了状態における蓄電部10の充電量と補助蓄電部11の充電量の和を、ほぼ一定とすることができる。結果、上述のような問題を回避することができる。
 温度測定部13は、蓄電部10がおかれた環境の温度を測定する。例えば、温度測定部13は、蓄電部10の周辺の温度を測定する。
 充放電制御部14は、蓄電部10及び補助蓄電部11の充放電を制御する。すなわち、充放電制御部14は、所定の充電完了SOCを上限として蓄電部10及び補助蓄電部11各々に電力を充電するとともに、蓄電部10及び補助蓄電部11に充電されている電力を放電する。
 所定のSOCを上限とした充電(所定のSOCまでの充電)を実現する手段の一例は以下の実施形態で説明するが、その他の例として、例えば、充放電制御部14は、充電中、蓄電部10及び補助蓄電部11各々のSOCを測定可能に構成されていてもよい。SOCを測定する手段は特段制限されず、従来のあらゆる技術を採用することができる。そして、測定したSOCとその時点で蓄電部10及び補助蓄電部11各々に設定されている充電完了SOCとを比較することで、蓄電部10及び補助蓄電部11各々に対する充電を完了(停止)するタイミングを決定してもよい。
 なお、充放電制御部14は、温度測定部13による測定結果に応じて、充電完了状態における蓄電部10及び補助蓄電部11の充電完了SOCを変化させる。充放電制御部14は、蓄電部10の充電完了SOCを小さくすると、あわせて、補助蓄電部11の充電完了SOCを大きくする。また、蓄電部10の充電完了SOCを大きくすると、あわせて、補助蓄電部11の充電完了SOCを小さくする。
 例えば、充放電制御部14は、温度測定部13による測定結果が通常の温度環境下(例:-10℃より大かつ50℃より小)の範囲内から過酷な温度環境下(例:-10℃以下又は50℃以上)の範囲内に代わると、蓄電部10の充電完了SOCをそれまでの充電完了SOCよりも小さくするとともに(例:100%→90%、95%→90%)、補助蓄電部11の充電完了SOCをそれまでの充電完了SOCよりも大きくする(例:0%→100%、0%→50%、10%→50%)。
 また、充放電制御部14は、温度測定部13による測定結果が過酷な温度環境下(例:-10℃以下又は50℃以上)の範囲内から通常の温度環境下(例:-10℃より大かつ50℃より小)の範囲内に代わると、蓄電部10の充電完了SOCをそれまでの充電完了SOCよりも大きくするとともに(例:90%→100%、90%→95%)、補助蓄電部11の充電完了SOCをそれまでの充電完了SOCよりも小さくする(例:100%→0%、50%→0%、50%→5%)。
 例えば、充放電制御部14は、所定の温度範囲毎に、蓄電部10の充電完了SOCの値、及び、補助蓄電部11の充電完了SOCの値を対応付けた情報を保持しておき、当該情報を利用して充電完了SOCの制御を実施してもよい。なお、蓄電部10の充電完了SOCの変化分に相当する電力量と、補助蓄電部11の充電完了SOCの変化分に相当する電力量とは一致するように設定することができる。
 ところで、温度測定部13による測定結果が過酷な温度環境下(例:-10℃以下又は50℃以上)の範囲内である場合に補助蓄電部11の充電完了SOCを比較的高い値(90%、100%等)とする構成の場合、補助蓄電部11を温度耐性が比較的強いキャパシタ等で構成するのが好ましい。補助蓄電部11を温度耐性が比較的弱いリチウムイオン二次電池や鉛蓄電池で構成する場合は、補助蓄電部11の容量を十分に大きくすることで、過酷な温度環境下(例:-10℃以下又は50℃以上)における補助蓄電部11の充電完了SOCが大きくなり過ぎないようにするのが好ましい。このように構成することで、過酷な温度環境下で蓄電池1が使用される場合における補助蓄電部11の劣化が抑制される。
 以上、説明した本実施形態の蓄電池1によれば、蓄電池の使用環境に応じて、蓄電部10及び補助蓄電部11の充電完了SOCを変化させることができる。具体的には、蓄電部10の充電完了SOCを小さくする際は補助蓄電部11の充電完了SOCを大きくし、蓄電部10の充電完了SOCを大きくする際は補助蓄電部11の充電完了SOCを小さくすることができる。
 このような本実施形態の蓄電池1によれば、過酷な温度環境下(例:-10℃以下又は50℃以上)で使用される場合は、温度耐性の低いリチウムイオン二次電池や鉛蓄電池で構成される蓄電部10の充電完了SOCを小さくすることができる。すなわち、蓄電部10の充電完了SOCが100%となることを回避し、小さな値に設定することができる。結果、蓄電部10の劣化を抑制することができる。
 一方、補助蓄電部11は、蓄電部10に比べて容量を小さくできる。このため、補助蓄電部11は、例えば、温度耐性に強いキャパシタで構成することができる。また、補助蓄電部11は、過酷な温度環境下(例:-10℃以下又は50℃以上)で使用される際に充電完了SOCが100%とならない程度の容量を有するリチウムイオン二次電池や鉛蓄電池で構成することができる。上述の通り、補助蓄電部11の容量は比較的小さくできるので、このような要件を満たすようにしても、補助蓄電部11の容量が過度に大きくなることを回避できる。結果、過酷な温度環境下(例:-10℃以下又は50℃以上)で使用される際に補助蓄電部11の充電完了SOCを大きくしても、補助蓄電部11の劣化は抑制される。
 以上より、図6に示すように、本願発明によれば、従来技術に比べて、より広い温度範囲で劣化を軽減しながら蓄電池1を使用することが可能となる。
 また、本実施形態の蓄電池1によれば、蓄電部10の充電完了SOCを小さくした場合、補助蓄電部11の充電完了SOCを大きくし、減らした分の電力を補助蓄電部11に充電させることができる。また、蓄電部10の充電完了SOCを大きくした場合、補助蓄電部11の充電完了SOCを小さくし、増やした分の電力を補助蓄電部11の充電量から減らすことができる。このため、温度環境により蓄電部10の充電完了SOCが小さくなっても、蓄電池1全体としての充電量は変化させず、ほぼ一定に保つことができる。
<第2の実施形態>
 本実施形態は、第1の実施形態の蓄電池1をより具体化した実施形態である。図2に、本実施形態の蓄電池1の構成の一例を示す。
 図示するように、蓄電池1は、蓄電部10と、補助蓄電部11と、スイッチ12と、温度測定部13と、充放電制御部(制御回路)14と、バランス回路15と、スイッチ16と、スイッチ17とを有する。蓄電池1は、充放電用外部接続端子を介して充電器18と接続している。
 蓄電部10は、複数のリチウムイオン二次電池セルが直列に接続された構成となっている。蓄電部10のエネルギー密度は、例えば100Wh/kg以上とすることができる。
 補助蓄電部11は、複数のキャパシタセル(電気二重層キャパシタセル等)が直列に接続された構成となっている。補助蓄電部11のエネルギー密度は、例えば、10Wh/kg以上である。蓄電部10と補助蓄電部11は並列に接続されている。
 温度測定部13は、蓄電部10を構成する複数のリチウムイオン二次電池セルの数と同数の温度センサを有し、各リチウムイオン二次電池セルの温度(周辺温度)を測定するように構成されている。図においては、蓄電部10よりも補助蓄電部11の近くに温度センサが設置されているようになっているが、温度センサの設置位置は特段制限されず、蓄電部10の温度(周辺温度)を測定できればよい。
 なお、温度測定部13は、1つの温度センサで構成されてもよいし、リチウムイオン二次電池セルの数と一致しない数の温度センサで構成されてもよい。
 バランス回路15は、複数のリチウムイオン二次電池セル間の充電量の差を小さくするために用いられる。このようなバランス回路15は従来技術に準じて実現することができる。
 充放電制御部14は、温度測定部13から測定結果を取得し、その結果に応じて、充放電時におけるスイッチ12のオン/オフを制御する。また、充放電制御部14は、バランス回路15と蓄電部10との接続を切り替えるためのスイッチ16のオン/オフを制御する。また、充放電制御部14は、充電器18と、蓄電部10及び補助蓄電部11との接続を切り替えるためのスイッチ17のオン/オフを制御する。
 次に、図3のフローチャートを用いて、本実施形態の処理の流れについて説明する。
 本実施形態の蓄電池1は、通常の温度環境下(第1の温度範囲。例:-10℃より大かつ50℃より小)で使用される場合の蓄電部10の充電完了SOCを100%、補助蓄電部11の充電完了SOCを0%とし、過酷の温度環境下(第2の温度範囲。例:-10℃以下又は50℃以上)で使用される場合の蓄電部10の充電完了SOCをP%(0<P<100、設計的事項)、補助蓄電部11の充電完了SOCを100%とするものとする。すなわち、通常の温度環境下(第1の温度範囲)にある場合における蓄電部10の充電完了SOCは、過酷の温度環境下(第2の温度範囲)にある場合における蓄電部10の充電完了SOCよりも大きい。
 充放電制御部14は、温度測定部13から継続的(例:所定時間毎、所定のタイミング毎)に測定結果を取得し、測定結果(温度)が通常の温度環境下(第1の温度範囲)の範囲内にあるか、または、過酷な温度環境下(第2の温度範囲)の範囲内にあるかの監視、及び、温度環境がこれらの間で変化したか否かの監視を継続する。
 ここでは、測定結果(温度)が通常の温度環境下(第1の温度範囲)の範囲内にあるとする。充放電制御部14は、蓄電部10の充電完了SOCの設定値を当該温度環境下に適した状態に設定する。ここでは、蓄電部10の充電完了SOCを100%に設定する。また、充放電制御部14は、スイッチ12をオフにすることで、補助蓄電部11と充放電用外部接続端子(充電器18と接続する端子)との接続をオフにし、以降、蓄電部10のみを用いて充放電を行う。すなわち、電力を充電する際は蓄電部10のみに充電し、電力を放電する際は蓄電部10のみから電力を取出す。
 その後も、充放電制御部14は、温度測定部13から継続的(例:所定時間毎、所定のタイミング毎)に測定結果を取得し(S10)、測定結果(温度)が通常の温度環境下(第1の温度範囲)の範囲内にあるか、または、過酷な温度環境下(第2の温度範囲)の範囲内にあるかの監視、温度環境がこれらの間で変化したか否かの監視を継続する(S20)。
 温度環境(温度状態)がそれまでと変化がない場合は(S30のNo)、S10に戻り、S10~S30を繰り返す。
 一方、温度環境(温度状態)がそれまでと変化した場合は(S30のYes)、S40に進む。ここでは、測定結果(温度)が、通常の温度環境下(第1の温度範囲)の範囲内から、過酷な温度環境下(第2の温度範囲)の範囲内に変化したとする。
 すると、充放電制御部14は、蓄電部10の充電完了SOCの設定値を変化後の温度環境下に適した状態に変更する。ここでは、蓄電部10の充電完了SOCをP%に変更する。また、充放電制御部14は、スイッチ12をオンにすることで、補助蓄電部11と充放電用外部接続端子(充電器18と接続する端子)との接続をオンにし、以降、蓄電部10及び補助蓄電部11を用いて充放電を行う。なお、補助蓄電部11の充電完了SOCは100%に設定される。すなわち、電力を充電する際は蓄電部10にSOCがP%を上限として充電するとともに、補助蓄電部11にSOCが100%を上限として充電する。電力を放電する際は、蓄電部10及び補助蓄電部11から電力を取出す。
 その後、S10に戻り、同様の処理を継続する。
 ところで、過酷な温度環境下(第2の温度範囲)で蓄電池1が使用される場合の放電手段としては、以下の3通りの手段が考えられる。
 第1の手段としては、キャパシタはリチウムイオン二次電池に比べて短時間で放電ができるという特徴をいかし、放電開始直後は補助蓄電部11から放電し、その後、蓄電部10から放電するという手段が考えられる。
 第2の手段としては、放電開始直後は蓄電部10から放電し、その後、補助蓄電部11から放電するという手段も考えられる。通常の温度環境下(第1の温度範囲)で使用される場合、リチウムイオン二次電池で構成される蓄電部10のみを用いて充放電を行うこととなり、当然、放電開始直後は蓄電部10から放電されることとなる。過酷な温度環境下(第2の温度範囲)で使用される場合も放電開始直後は蓄電部10から放電されるようにすることで、温度環境に関わらず、放電開始直後の動作を同等なものとすることができる。結果、使用者に違和感を与える不都合を回避できる。
 第3の手段として、蓄電部10及び補助蓄電部11の両方から電力を取り出し、放電するという手段も考えられる。かかる手段の場合、蓄電部10に流れる充放電電流値を小さくでき、蓄電部10の劣化を軽減できる。
 本実施形態によれば、第1の実施形態と同様の作用効果を実現することができる。
 また、上記構成によれば、過酷な温度環境下(第2の温度範囲)にある場合、スイッチ12をオンにすることで、充放電電流パス(I)をキャパシタ側(Ic)にも流れる状態を作ることができる。一般にキャパシタの内部抵抗(Rc)は、リチウムイオン二次電池の内部抵抗(Rb)より低いために、リチウムイオン二次電池に流れる分流電流(Ib)はキャパシタ部に流れる分流電流(Ic)より大きくなるが、分流電流(Ib)は充放電電流パス(I)より小さくすることができる(下式参照)。
Figure JPOXMLDOC01-appb-M000001
 これにより、スイッチ12をオンにした状態においては、蓄電池全体の充放電電流値が同容量のリチウムイオン二次電池単独のシステムと比較し、リチウムイオン電池部(蓄電部10)の電流量を減らすことができる。結果として過酷な温度環境下(第2の温度範囲)でのリチウムイオン二次電池のSOCを減らすことができ、リチウムイオン電池のSOHを大幅に伸ばすことができる。かかる場合、蓄電池が使用できる温度環境を広げることができ、システム全体の耐用年数を大幅に増大させることが出来る。最終的に、大幅な運用コスト削減が可能になる。
<第3の実施形態>
 本実施形態は、第1の実施形態の蓄電池1をより具体化した実施形態である。図4に、本実施形態の蓄電池1の構成の一例を示す。
 図示するように、蓄電池1は、蓄電部10と、補助蓄電部11(子補助蓄電部11a、11b)と、スイッチ12a、12bと、温度測定部13と、充放電制御部(制御回路)14と、バランス回路15と、スイッチ16と、スイッチ17とを有する。蓄電池1は、充電器18と接続している。
 蓄電部10、温度測定部13、バランス回路15、スイッチ16、スイッチ17は、第2の実施形態と同様である。
 補助蓄電部11は、2列の子補助蓄電部11a、11bを有する。子補助蓄電部11a、11bは、各々、複数のキャパシタセル(電気二重層キャパシタセル等)が直列に接続された構成となっている。そして、複数の子補助蓄電部11a、11bは互いに並列に接続されている。また、複数の子補助蓄電部11a、11bは蓄電部10とも並列に接続されている。複数の子補助蓄電部11a、11bは、スイッチ12a、12b各々のオン/オフを制御することで、個別に充放電用外部接続端子との接続状態を制御可能に構成されている。子補助蓄電部11a、11b各々のエネルギー密度は、例えば、10Wh/kg以上である。
 なお、子補助蓄電部11a、11bの数は3列以上であってもよい。また、複数の子補助蓄電部11a、11bの構成(電池の種類、セルの接続方法、容量等)は同一であってもよいし、異なっていてもよい。
 充放電制御部14は、温度測定部13から測定結果を取得し、その結果に応じて、蓄電部10の充電完了SOCを変化させるとともに、充放電時におけるスイッチ12a、12b各々のオン/オフを制御する。
 例えば、充放電制御部14は、図5に示すような対応情報を保持しておく。図示する対応情報は、所定の温度範囲毎に、蓄電部10の充電完了SOCの値、及び、充放電用外部接続端子との接続をオンにする子補助蓄電部11a、11bの列数を対応付けた情報である。
 充放電制御部14は、温度測定部13から測定結果を取得すると、図5に示すような対応情報を参照して蓄電部10の充電完了SOC、及び、充放電用外部接続端子との接続をオンにする子補助蓄電部11a、11bの列数を決定する。そして、決定した列数を満たすように、スイッチ12a、12b各々のオン/オフを制御する。なお、温度測定部13が複数の温度センサを有する場合、代表値をキーとして対応情報を検索することができるが、代表値は平均値であってもよいし、最悪値(最も大きい値)であってもよい。
 図5に示す例の場合、充放電制御部14は、温度測定部13の測定結果(温度T)が-10<T<50の温度範囲にある場合、すべての子補助蓄電部11a、11bと充放電用外部接続端子との接続をオフにし、蓄電部10のみを用いて充放電を行う。この時の蓄電部10の充電完了SOCは100%である。
 また、充放電制御部14は、温度測定部13の測定結果(温度T)が-20<T≦-10、又は、50≦T<75の温度範囲にある場合、1列の子補助蓄電部11aと充放電用外部接続端子との接続をオンにし、蓄電部10及び1列の子補助蓄電部11aを用いて充放電を行う。この時の蓄電部10の充電完了SOCは90%であり、子補助蓄電部11aの充電完了SOCは100%である。蓄電部10のSOC10%分の電力量と、子補助蓄電部11aのSOC100%分の電力量とはほぼ一致する。
 また、充放電制御部14は、温度測定部13の測定結果(温度T)がT≦-20、又は、75≦Tにある場合、2列の子補助蓄電部11a、11bと充放電用外部接続端子との接続をオンにし、蓄電部10及び2列の子補助蓄電部11a、11bを用いて充放電を行う。この時の蓄電部10の充電完了SOCは80%であり、子補助蓄電部11a、11bの充電完了SOCは100%である。蓄電部10のSOC10%分の電力量と、子補助蓄電部11bのSOC100%分の電力量とはほぼ一致する。
 すなわち、充放電制御部14は、温度が第3の温度範囲にある場合、補助蓄電部11(すべての子補助蓄電部11a、11b)と充放電用外部接続端子との接続をオフにし、蓄電部10のみを用いて充放電を行う。また、温度が第4の温度範囲にある場合、M列(Mは1以上の整数)の子補助蓄電部11a、11bと充放電用外部接続端子との接続をオンにし、蓄電部10及びM列の子補助蓄電部11a、11bを用いて充放電を行う。また、温度が第5の温度範囲にある場合、N列(NはMより大きい整数)の子補助蓄電部11a、11bと充放電用外部接続端子との接続をオンにし、蓄電部10及びN列の子補助蓄電部11a、11bを用いて充放電を行う。
 なお、温度が第3の温度範囲にある場合における蓄電部10の充電完了SOCは、温度が第4の温度範囲にある場合における蓄電部10の充電完了SOCよりも大きく、かつ、温度が第4の温度範囲にある場合における蓄電部10の充電完了SOCは、温度が第5の温度範囲にある場合における蓄電部10の充電完了SOCよりも大きい。
 本実施形態によれば、第1及び第2の実施形態と同様な作用効果を実現することができる。また、蓄電部10の充電完了SOCの値を、温度に応じてより細やかに変化させることが可能となる。
 第1及び第2の実施形態の変形例として、蓄電部10、補助蓄電部11及び温度測定部13を有する蓄電池1と区分け可能な態様で、充放電制御部14を有する制御装置を設けてもよい。この場合、制御装置は蓄電池1内の所定位置に取り付けられて蓄電池1と一体化されていてもよい。
<<付記>>
 以下、参考形態の例を付記する。
1. 1つ又は複数の電池セルで構成された蓄電手段と、
 1つ又は複数の電池セルで構成され、前記蓄電手段と並列に接続された補助蓄電手段と、
 温度を測定する温度測定手段と、
 前記蓄電手段及び前記補助蓄電手段の充放電を制御する充放電制御手段と、
を有し、
 前記充放電制御手段は、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記蓄電手段及び前記補助蓄電手段のSOC(state of charge)を変化させ、かつ、前記蓄電手段の前記SOCを小さくする際は前記補助蓄電手段の前記SOCを大きくし、前記蓄電手段の前記SOCを大きくする際は前記補助蓄電手段の前記SOCを小さくする蓄電池。
2. 1に記載の蓄電池において、
 前記充放電制御手段は、
 温度が第1の温度範囲にある場合、前記補助蓄電手段と充放電用外部接続端子との接続をオフにし、前記蓄電手段のみを用いて充放電を行い、
 温度が第2の温度範囲にある場合、前記補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及び前記補助蓄電手段を用いて充放電を行う蓄電池。
3. 2に記載の蓄電池において、
 温度が前記第1の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第2の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池。
4. 1に記載の蓄電池において、
 前記補助蓄電手段は、互いに並列に接続されるとともに、個別に充放電用外部接続端子との接続状態を制御可能に構成された複数列の子補助蓄電手段を有する蓄電池。
5. 4に記載の蓄電池において、
 前記充放電制御手段は、
 温度が第3の温度範囲にある場合、前記補助蓄電手段と充放電用外部接続端子との接続をオフにし、前記蓄電手段のみを用いて充放電を行い、
 温度が第4の温度範囲にある場合、M列(Mは1以上の整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及びM列の前記子補助蓄電手段を用いて充放電を行い、
 温度が第5の温度範囲にある場合、N列(NはMより大きい整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及びN列の前記子補助蓄電手段を用いて充放電を行う蓄電池。
6. 5に記載の蓄電池において、
 温度が前記第3の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第4の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きく、かつ、
 温度が前記第4の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第5の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池。
7. 4から6のいずれかに記載の蓄電池において、
 前記充放電制御手段は、所定の温度範囲毎に、前記蓄電手段の前記充電完了状態のSOCの値、及び、前記充放電用外部接続端子との接続をオンにする前記子補助蓄電手段の列数を対応付けた対応情報を保持しておき、当該対応情報を利用して前記蓄電手段及び前記補助蓄電手段の充放電を制御する蓄電池。
8. 1から7のいずれかに記載の蓄電池において、
 前記蓄電手段は、リチウムイオン二次電池である蓄電池。
9. 1から8のいずれかに記載の蓄電池において、
 前記補助蓄電手段は、キャパシタで構成されている蓄電池。
10. 蓄電池に、
 1つ又は複数の電池セルで構成された蓄電手段と、
 1つ又は複数の電池セルで構成され、前記蓄電手段と並列に接続された補助蓄電手段と、
 温度を測定する温度測定手段と、
を備えておき、
 前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記蓄電手段及び前記補助蓄電手段のSOCを変化させ、かつ、前記蓄電手段の前記SOCを小さくする際は前記補助蓄電手段の前記SOCを大きくし、前記蓄電手段の前記SOCを大きくする際は前記補助蓄電手段の前記SOCを小さくする蓄電池の制御方法。
10-2. 10に記載の蓄電池の制御方法において、
 温度が第1の温度範囲にある場合、前記補助蓄電手段と充放電用外部接続端子との接続をオフにし、前記蓄電手段のみを用いて充放電を行い、
 温度が第2の温度範囲にある場合、前記補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及び前記補助蓄電手段を用いて充放電を行う蓄電池の制御方法。
10-3. 10-2に記載の蓄電池の制御方法において、
 温度が前記第1の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第2の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池の制御方法。
10-4. 10に記載の蓄電池の制御方法において、
 前記補助蓄電手段は、互いに並列に接続されるとともに、個別に充放電用外部接続端子との接続状態を制御可能に構成された複数列の子補助蓄電手段を有する蓄電池の制御方法。
10-5. 10-4に記載の蓄電池の制御方法において、
 温度が第3の温度範囲にある場合、前記補助蓄電手段と充放電用外部接続端子との接続をオフにし、前記蓄電手段のみを用いて充放電を行い、
 温度が第4の温度範囲にある場合、M列(Mは1以上の整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及びM列の前記子補助蓄電手段を用いて充放電を行い、
 温度が第5の温度範囲にある場合、N列(NはMより大きい整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記蓄電手段及びN列の前記子補助蓄電手段を用いて充放電を行う蓄電池の制御方法。
10-6. 10-5に記載の蓄電池の制御方法において、
 温度が前記第3の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第4の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きく、かつ、
 温度が前記第4の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCは、温度が前記第5の温度範囲にある場合における前記蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池の制御方法。
10-7. 10-4から10-6のいずれかに記載の蓄電池の制御方法において、
 前記蓄電池は、所定の温度範囲毎に、前記蓄電手段の前記充電完了状態のSOCの値、及び、前記充放電用外部接続端子との接続をオンにする前記子補助蓄電手段の列数を対応付けた対応情報を記憶しており、当該対応情報を利用して前記蓄電手段及び前記補助蓄電手段の充放電を制御する蓄電池の制御方法。
10-8. 10から10-7のいずれかに記載の蓄電池の制御方法において、
 前記蓄電手段は、リチウムイオン二次電池である蓄電池の制御方法。
10-9. 10から10-8のいずれかに記載の蓄電池の制御方法において、
 前記補助蓄電手段は、キャパシタで構成されている蓄電池の制御方法。
 この出願は、2013年2月27日に出願された日本出願特願2013-037861号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  第1の蓄電手段と、
     前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
     温度を測定する温度測定手段と、
     前記第1の蓄電手段及び前記第2の蓄電手段の充放電を制御する充放電制御手段と、
    を有し、
     前記充放電制御手段は、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOC(state of charge)を変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする蓄電池。
  2.  請求項1に記載の蓄電池において、
     前記充放電制御手段は、
     温度が第1の温度範囲にある場合、前記第2の蓄電手段と充放電用外部接続端子との接続をオフにし、前記第1の蓄電手段のみを用いて充放電を行い、
     温度が第2の温度範囲にある場合、前記第2の蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記第1の蓄電手段及び前記第2の蓄電手段を用いて充放電を行う蓄電池。
  3.  請求項2に記載の蓄電池において、
     温度が前記第1の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCは、温度が前記第2の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池。
  4.  請求項1に記載の蓄電池において、
     前記第2の蓄電手段は、互いに並列に接続されるとともに、個別に充放電用外部接続端子との接続状態を制御可能に構成された複数列の子補助蓄電手段を有する蓄電池。
  5.  請求項4に記載の蓄電池において、
     前記充放電制御手段は、
     温度が第3の温度範囲にある場合、前記第2の蓄電手段と充放電用外部接続端子との接続をオフにし、前記第1の蓄電手段のみを用いて充放電を行い、
     温度が第4の温度範囲にある場合、M列(Mは1以上の整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記第1の蓄電手段及びM列の前記子補助蓄電手段を用いて充放電を行い、
     温度が第5の温度範囲にある場合、N列(NはMより大きい整数)の前記子補助蓄電手段と前記充放電用外部接続端子との接続をオンにし、前記第1の蓄電手段及びN列の前記子補助蓄電手段を用いて充放電を行う蓄電池。
  6.  請求項5に記載の蓄電池において、
     温度が前記第3の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCは、温度が前記第4の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCよりも大きく、かつ、
     温度が前記第4の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCは、温度が前記第5の温度範囲にある場合における前記第1の蓄電手段の前記充電完了状態のSOCよりも大きい蓄電池。
  7.  請求項4から6のいずれか1項に記載の蓄電池において、
     前記充放電制御手段は、所定の温度範囲毎に、前記第1の蓄電手段の前記充電完了状態のSOCの値、及び、前記充放電用外部接続端子との接続をオンにする前記子補助蓄電手段の列数を対応付けた対応情報を保持しておき、当該対応情報を利用して前記第1の蓄電手段及び前記第2の蓄電手段の充放電を制御する蓄電池。
  8.  請求項1から7のいずれか1項に記載の蓄電池において、
     前記第1の蓄電手段は、リチウムイオン二次電池である蓄電池。
  9.  請求項1から8のいずれか1項に記載の蓄電池において、
     前記第2の蓄電手段は、キャパシタで構成されている蓄電池。
  10.  蓄電池に、
     第1の蓄電手段と、
     前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
     温度を測定する温度測定手段と、
    を備えておき、
     前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする蓄電池の制御方法。
  11.  第1の蓄電手段と、
     前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
     温度を測定する温度測定手段と、
    を有する蓄電池の充放電を制御する充放電制御手段を有し、
     前記充放電制御手段は、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする制御装置。
  12.  第1の蓄電手段と、
     前記第1の蓄電手段と並列に接続された第2の蓄電手段と、
     温度を測定する温度測定手段と、
    を有する蓄電池の充放電を制御する工程を有し、
     前記工程では、前記温度測定手段による測定結果に応じて、それ以上の充電を許容しない充電完了状態における前記第1の蓄電手段及び前記第2の蓄電手段のSOCを変化させ、かつ、前記第1の蓄電手段の前記SOCを小さくする際は前記第2の蓄電手段の前記SOCを大きくし、前記第1の蓄電手段の前記SOCを大きくする際は前記第2の蓄電手段の前記SOCを小さくする制御方法。
PCT/JP2014/054701 2013-02-27 2014-02-26 蓄電池、蓄電池の制御方法、制御装置及び制御方法 WO2014133009A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015502956A JP6041040B2 (ja) 2013-02-27 2014-02-26 蓄電池、蓄電池の制御方法、制御装置及び制御方法
US14/770,514 US9774062B2 (en) 2013-02-27 2014-02-26 Storage battery, control method of storage battery, control device, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013037861 2013-02-27
JP2013-037861 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014133009A1 true WO2014133009A1 (ja) 2014-09-04

Family

ID=51428271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054701 WO2014133009A1 (ja) 2013-02-27 2014-02-26 蓄電池、蓄電池の制御方法、制御装置及び制御方法

Country Status (3)

Country Link
US (1) US9774062B2 (ja)
JP (1) JP6041040B2 (ja)
WO (1) WO2014133009A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192337A4 (en) * 2014-09-09 2018-06-27 Power Me Tech Ltd. Multi-layer sticker containing a flat electronic circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979594B (zh) * 2014-04-02 2018-02-09 比亚迪股份有限公司 动力电池的控制方法及系统
JP6587259B2 (ja) * 2015-04-10 2019-10-09 ゼットティーイー コーポレイション アンライセンス搬送波の競争方法及び装置
WO2017087414A1 (en) * 2015-11-16 2017-05-26 Molex, Llc Power charging module and methods of using same
FR3060889B1 (fr) 2016-12-21 2020-12-04 Commissariat Energie Atomique Procede et dispositif de charge d'une batterie
US11133680B2 (en) * 2019-01-08 2021-09-28 GM Global Technology Operations LLC Balancing system for rechargeable energy storage assembly with multiple parallel units
CN113541250B (zh) * 2021-07-14 2023-04-11 维沃移动通信有限公司 电池充电控制电路及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035280A (ja) * 2008-07-25 2010-02-12 Toyota Motor Corp 電源システムおよびそれを備えた車両
WO2010143279A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の電源システムの制御方法
JP2011030308A (ja) * 2009-07-22 2011-02-10 Aisan Industry Co Ltd 電動車両用電源の電力供給制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122214B2 (ja) 2007-08-08 2013-01-16 パナソニック株式会社 電池パック、充電装置、及び充電システム
JP5277711B2 (ja) 2008-05-09 2013-08-28 新神戸電機株式会社 電源装置及び車両用電源装置
JP5502918B2 (ja) * 2011-10-13 2014-05-28 株式会社日本自動車部品総合研究所 組電池の充放電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035280A (ja) * 2008-07-25 2010-02-12 Toyota Motor Corp 電源システムおよびそれを備えた車両
WO2010143279A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の電源システムの制御方法
JP2011030308A (ja) * 2009-07-22 2011-02-10 Aisan Industry Co Ltd 電動車両用電源の電力供給制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192337A4 (en) * 2014-09-09 2018-06-27 Power Me Tech Ltd. Multi-layer sticker containing a flat electronic circuit

Also Published As

Publication number Publication date
US20160013521A1 (en) 2016-01-14
US9774062B2 (en) 2017-09-26
JP6041040B2 (ja) 2016-12-07
JPWO2014133009A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6041040B2 (ja) 蓄電池、蓄電池の制御方法、制御装置及び制御方法
JP6884966B2 (ja) バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
EP2418751B1 (en) Battery charger and battery charging method
KR101084828B1 (ko) 배터리팩의 충전제어방법
JP5618393B2 (ja) 蓄電システム及び二次電池制御方法
US20110234167A1 (en) Method of Predicting Remaining Capacity and Run-time of a Battery Device
JP5983784B2 (ja) 蓄電装置及び劣化判定方法
JP2005073498A (ja) 電池ユニット及び電池ユニットを使用する装置
JP2009139361A (ja) バッテリパックの残留容量測定の修正装置と方法
JP2010008067A (ja) 電池パックおよび制御方法
US20130147433A1 (en) Method of controlling the power status of a battery pack and related smart battery device
KR20130046234A (ko) 배터리 팩 및 이의 제어 방법
WO2015072510A1 (ja) 蓄電池、蓄電池の制御方法及びプログラム
KR101683603B1 (ko) 배터리 팩의 셀 밸런싱을 위한 장치 및 이를 위한 방법
US8076905B2 (en) Battery charging method and device thereof
JP2008021417A (ja) 電池パックおよび検出方法
JP2020526153A (ja) マルチセルバッテリー電力管理システム
JP2021520773A (ja) バッテリーバランシング装置及びそれを含むバッテリーパック
US9595836B2 (en) Power transfer circuit for achieving power transfer between stacked rechargeable battery cells
KR20090014898A (ko) 배터리팩과 이의 충방전제어방법
JP6332273B2 (ja) 蓄電システム、蓄電池の制御方法及びプログラム
JP2020096529A (ja) 蓄電池パック
KR20150050227A (ko) 배터리 팩 관리 장치 및 방법
WO2017022251A1 (ja) 二次電池の充放電装置、二次電池を用いた蓄電システム、二次電池の充放電方法、および二次電池の充放電プログラムが格納された非一時的なコンピュータ可読媒体
US20160294194A1 (en) Power supply device, power supply method, control device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502956

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14770514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756682

Country of ref document: EP

Kind code of ref document: A1