WO2014132929A1 - 化合物、太陽電池モジュール及び太陽光発電装置 - Google Patents

化合物、太陽電池モジュール及び太陽光発電装置 Download PDF

Info

Publication number
WO2014132929A1
WO2014132929A1 PCT/JP2014/054362 JP2014054362W WO2014132929A1 WO 2014132929 A1 WO2014132929 A1 WO 2014132929A1 JP 2014054362 W JP2014054362 W JP 2014054362W WO 2014132929 A1 WO2014132929 A1 WO 2014132929A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
light
group
solar cell
reaction
Prior art date
Application number
PCT/JP2014/054362
Other languages
English (en)
French (fr)
Inventor
時由 梅田
大輔 槻尾
裕喜雄 竹中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015502915A priority Critical patent/JP6195423B2/ja
Priority to US14/769,936 priority patent/US9403825B2/en
Publication of WO2014132929A1 publication Critical patent/WO2014132929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/62Cyclic imides or amidines of peri-dicarboxylic acids of the anthracene, benzanthrene, or perylene series
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel compound, a solar cell module using the compound, and a solar power generation apparatus including the solar cell module.
  • a compound (phosphor) that emits light in the near-infrared region is in high demand in various fields such as a condensing material and a wavelength conversion material in a solar power generation device, and a fluorescent probe material in a living body.
  • a solar power generation apparatus using such a phosphor will be described.
  • a solar power generation device that includes a solar cell element in a part of a light guide and generates power by making light propagated inside the light guide incident on the solar cell element ( Solar energy recovery windows) are known.
  • This solar power generation device is configured to propagate a part of sunlight incident from one main surface of the light guide to the inside of the light guide and guide it to the solar cell element.
  • the light guide contains a phosphor (fluorescent material), and this phosphor absorbs sunlight (incident light) incident on the light guide and is excited to emit light. And the radiated light (fluorescence) from the fluorescent substance at this time propagates through the inside of the light guide and enters the solar cell element to generate power.
  • a phosphor fluorescent material
  • one factor that determines the amount of power generation is the luminous ability of the phosphor.
  • the solar power generation apparatus has been described, but it is extremely important to be able to select a phosphor that can absorb light having a sufficiently long wavelength in other applications, such as a fluorescent probe in a living body. is there.
  • Non-Patent Document 1 discloses a compound represented by the following formula (9) -1 (hereinafter “compound (9) -1”).
  • Non-patent document 2 discloses a compound represented by the following formula (9) -2 (hereinafter abbreviated as “compound (9) -2”).
  • compound (9) -1 has a high fluorescence quantum yield
  • the peak wavelength of light that can be absorbed is about 630 nm
  • the absorption wavelength of light is not sufficiently long.
  • the compound (9) -2 has a problem that the fluorescence quantum yield is low although the light absorption peak wavelength is sufficiently long at 650 nm.
  • a compound in which either one of the light absorption peak wavelength and the fluorescence quantum yield is insufficient is used in a desired object such as a solar cell module for a solar power generation device, further performance improvement is achieved. It was difficult to predict and application of a new compound was desired.
  • the present invention has been made in view of the above circumstances, a novel compound capable of absorbing light having a sufficiently long wavelength and having a high fluorescence quantum yield, a solar cell module using the compound, and the solar cell module It is an object to provide a solar power generation device including the above.
  • the present invention provides a compound represented by the following general formula (IA) or (IB).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, and a plurality of R 1 and R 2 may be the same or different from each other;
  • R 3 is a hydrogen atom or an alkyl group, and a plurality of R 3 may be the same or different from each other.
  • the R 1 and R 2 are each independently a hydrogen atom, an alkyl group or alkoxy group having 1 to 22 carbon atoms, or an aryl group or aryloxy group having 6 to 22 carbon atoms.
  • a compound in which R 3 is a hydrogen atom or an alkyl group having 1 to 22 carbon atoms is provided.
  • the present invention is the compound, wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group or alkoxy group having 1 to 18 carbon atoms, or an aryl group or aryloxy group having 6 to 10 carbon atoms.
  • R 3 is a hydrogen atom or an alkyl group having 6 to 18 carbon atoms.
  • the present invention also provides a compound in which all the R 1 groups are groups other than a hydrogen atom.
  • the present invention also provides a solar cell module using such a compound. Further, the present invention provides a solar cell module comprising: a light incident surface; a light guide having a light emission surface having a smaller area than the light incident surface; and light emitted from the light emission surface.
  • the light guide body further includes the compound, and the emitted light from the compound generated when the incident light from the light incident surface is absorbed by the compound is used as the emitted light.
  • a solar cell module is provided.
  • this invention provides the solar power generation device provided with this solar cell module.
  • a novel compound capable of absorbing light having a sufficiently long wavelength and having a high fluorescence quantum yield, a solar cell module using the compound, and a solar power generation device including the solar cell module Provided.
  • FIG. 1 It is a schematic diagram which shows schematic structure of one Embodiment of the solar cell module which concerns on this invention. It is sectional drawing of the solar cell module which concerns on this invention. It is a sectional side view which shows the modification of the light-condensing plate of the solar cell module which concerns on this invention. It is a sectional side view which shows the modification of the light-condensing plate of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on
  • FIG. 5A It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a principal part enlarged view of FIG. 5A. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a perspective view which shows the modification of the solar cell module which concerns on this invention. It is a schematic structure figure of one embodiment of a solar power generation device concerning the present invention.
  • 1 is a 1 H-NMR spectrum data of the compound (I) obtained in Example 1.
  • 2 is a UV-VIS absorption spectrum and fluorescence spectrum data of the compound (I) obtained in Example 1.
  • FIG. 2 is IR spectrum data of the compound (I) obtained in Example 1.
  • the compound according to the present invention is represented by the following general formula (IA) or (IB) (hereinafter, these compounds may be collectively abbreviated as compound (I)).
  • Compound (I) is a novel fluorescent compound and has a high absorption coefficient with respect to light having a long wavelength, and thus can sufficiently absorb such light.
  • Compound (I) has a high fluorescence quantum yield.
  • a compound represented by the following general formula (IA) is a syn isomer
  • a compound represented by the following general formula (IB) is an anti isomer.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, and a plurality of R 1 and R 2 may be the same or different from each other;
  • R 3 is a hydrogen atom or an alkyl group, and a plurality of R 3 may be the same or different from each other.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group.
  • the alkyl group in R 1 and R 2 may be linear, branched or cyclic, and when it is cyclic, the alkyl group may be monocyclic or polycyclic.
  • the alkyl group preferably has 1 to 22 carbon atoms, more preferably 1 to 18 carbon atoms, and in order to obtain a compound (I) having higher solubility in a solvent described later, More preferably, the number is 6-18.
  • the linear or branched alkyl group preferably has 1 to 22 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3-e
  • the cyclic alkyl group preferably has 3 to 22 carbon atoms.
  • the alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • cyclic alkyl group may be linear, branched or The thing substituted by the cyclic alkyl group can be illustrated.
  • examples of the linear, branched, and cyclic alkyl groups for substituting a hydrogen atom include those described above as the alkyl groups for R 1 and R 2 .
  • the cyclic alkyl group preferably has 3 to 18 carbon atoms, and more preferably 6 to 18 carbon atoms from the viewpoint of the solubility of the compound (I).
  • R 1 s may be the same as or different from each other. That is, all R 1 s may be the same, may all be different, or may be partially different.
  • a plurality (12) of R 2 may be the same as or different from each other. That is, all R 2 may be the same, may all be different, or may be partially different.
  • the alkoxy group in R 1 and R 2, the alkyl group in R 1 and R 2 can be exemplified a monovalent group formed by bonding an oxygen atom, it is preferably 1 to 22 carbon atoms, 1 From the viewpoint of the solubility of the compound (I), the number of carbon atoms is more preferably 6-18.
  • the aryl group in R 1 and R 2 may be monocyclic or polycyclic, preferably has 6 to 22 carbon atoms, and includes a phenyl group, 1-naphthyl group, 2-naphthyl group, o-tolyl group. , M-tolyl group, p-tolyl group, xylyl group (dimethylphenyl group) and the like, and one or more hydrogen atoms of these aryl groups are further substituted with these aryl groups or the alkyl groups in R 1 and R 2
  • These aryl groups having a substituent preferably have 6 to 22 carbon atoms including the substituent. Among these, the aryl group preferably has 6 to 10 carbon atoms.
  • Examples of the aryloxy group in R 1 and R 2 include a monovalent group formed by bonding the aryl group in R 1 and R 2 to an oxygen atom, preferably having 6 to 22 carbon atoms, More preferably, it is 6-10.
  • R 1 or R 2 is an alkyl group, an alkoxy group, an aryl group, or an aryloxy group
  • the position and number of these groups in the compound (I) are not particularly limited.
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group or alkoxy group having 1 to 22 carbon atoms, or an aryl group or aryloxy group having 6 to 22 carbon atoms, and each independently represents a hydrogen atom, It is more preferably an alkyl group or alkoxy group having 1 to 18 carbon atoms, or an aryl group or aryloxy group having 6 to 10 carbon atoms.
  • the solubility in the solvent is improved as described above by selecting an appropriate solvent.
  • the handleability of the compound (I) is further improved. For example, in the case of a solar power generation device described later, a fluorescent probe having a larger power generation amount is used. If so, those having higher detection sensitivity can be more easily obtained as the respective objects. However, even when the compound (I) having no alkyl group is used as R 1 and R 2 , a sufficiently useful object can be obtained.
  • R 3 is a hydrogen atom or an alkyl group.
  • Examples of the alkyl group in R 3, can be exemplified the same ones as the alkyl group in R 1 and R 2, the alkyl to groups may be the same as for R 1 and R 2 in the same molecule, it may be different .
  • a plurality (20) of R 3 may be the same as or different from each other. That is, R 3 may all be the same, may all be different, or may be partially different.
  • R 3 When any one or more R 3 is an alkyl group, the position and number of the alkyl group in the compound (I) are not particularly limited. Among them, the benzene ring structure R 3 and oxygen atoms are attached, (para-position to the oxygen atom) 4-position bonded to that carbon atom is preferably R 3 is an alkyl group. Of the four benzene ring skeletons, the number of R 3 bonded to the 4-position carbon atom being an alkyl group is preferably 2 or more, and more preferably 3 or more. In all four benzene ring skeletons, R 3 bonded to the 4-position carbon atom is particularly preferably an alkyl group.
  • the four benzene ring skeletons to which R 3 is bonded have a relatively large steric hindrance, so that it is difficult to rotate around the bond between adjacent oxygen atoms.
  • an alkyl group as R 3 is bonded to the 2-position carbon atom of the benzene ring skeleton, and all hydrogen atoms are bonded as R 3 to the other carbon atoms.
  • an alkyl group as R 3 is bonded to the 6-position carbon atom of the benzene ring skeleton, and all hydrogen atoms are bonded as R 3 to the other carbon atoms.
  • These compounds (I) can be distinguished as stereoisomers even if the above alkyl groups are the same.
  • the above alkyl group was the same as the compound (I) in which an alkyl group as R 3 was bonded to the 5-position carbon atom and hydrogen atoms were all bonded as R 3 to the other carbon atoms.
  • what was mentioned here is an example and a stereoisomer is not limited to these.
  • R 3 is preferably a hydrogen atom or an alkyl group having 1 to 22 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 6 to 18 carbon atoms.
  • the alkyl group has 6 or more carbon atoms, the solubility of the compound (I) in the solvent is further improved.
  • Peak wavelength means the wavelength of the main peak of the optical spectrum, preferably the wavelength of the peak having the maximum spectrum intensity.
  • the compound (I) is preferably such that the two triphenylene skeletons are identical to each other from the viewpoint that production by the production method described later is easier.
  • Compound (I) has a light absorption peak wavelength of preferably 650 nm or more, and a light absorption wavelength that is sufficiently long.
  • the light absorption peak wavelength and the light emission peak wavelength of compound (I) can also be determined by quantum chemical calculation.
  • general-purpose quantum chemistry calculation software can be used, and as such, Gaussian 09 (manufactured by Gaussian) can be exemplified.
  • Gaussian 09 manufactured by Gaussian
  • the calculation condition is B3LYP / 6-31 + g (d) and light absorption is performed.
  • the peak wavelength can be determined.
  • the calculation conditions are not limited to this.
  • Preferred examples of compound (I) include those in which one or more R 1 is a group other than a hydrogen atom (an alkyl group, an alkoxy group, an aryl group, or an aryloxy group), and two or more R 1 are A group other than a hydrogen atom is preferable, and four or more R 1 groups are more preferably groups other than a hydrogen atom.
  • all (8) R 1 groups are hydrogen atoms. Although what is groups other than an atom can be illustrated, it is not limited to this.
  • Compound (I) can absorb light having a sufficiently long wavelength, and the peak wavelength of light emission is also sufficiently long. Furthermore, compound (I) has a high fluorescence quantum yield. Therefore, for example, by using the compound (I) as a phosphor in the solar power generation device described later, the solar power generation device has an excellent power generation amount. Moreover, detection sensitivity becomes higher by using compound (I) as a fluorescent probe. In addition, the use of the compound (I) is not limited thereto, and the compound (I) can be applied in all fields using a phosphor.
  • Compound (I) includes, for example, a compound represented by the following general formula (Id) (hereinafter abbreviated as “compound (Id)”) and a compound represented by the following general formula (Ic) (hereinafter “compound”). (Abbreviated as “(Ic)”) to obtain a compound represented by the following general formula (Ib) (hereinafter abbreviated as “compound (Ib)”) (hereinafter referred to as “compound (Ib) production”). And a compound represented by the following general formula (Ia) (hereinafter abbreviated as “compound (Ia)”) to obtain a compound (I).
  • compound (I) production process It can be produced by a production method having a process (hereinafter abbreviated as “compound (I) production process”).
  • compound (I) production process the production method listed here is an example, and the production method of compound (I) is not limited thereto.
  • reaction formula shows the example which the compound represented with general formula (IA) and (IB) produces
  • compound (Ib) In the production process of compound (Ib), compounds (Ic) and (Id) are reacted.
  • R 3 is the same as R 3 in formulas (IA) and (IB).
  • X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom, and a plurality (four) of X may be the same or different from each other, but they are all the same. It is preferable.
  • the reaction is preferably performed using a solvent.
  • the solvent can be arbitrarily selected from those that do not interfere with the reaction in consideration of the solubility of the starting compound and reaction conditions. Specific solvents include N-methylpyrrolidone, N, N-dimethylformamide, N And amide compounds such as N-dimethylacetamide.
  • the reaction is preferably performed using a base such as potassium carbonate or sodium carbonate.
  • the amount of compound (Ic) to be used is preferably 4 times mol or more, more preferably 4 to 8 times mol, of compound (Id).
  • the amount of the base used is preferably 1 mol or more, more preferably 1 to 6 mol per mol of the compound (Ic).
  • the reaction temperature of the reaction in the production step of compound (Ib) is preferably 50 to 180 ° C., and the reaction time is preferably 6 to 72 hours.
  • the compound (Ib) may be taken out by performing post-treatment as necessary by a known method. That is, as necessary, post-treatment operations such as filtration, washing, extraction, pH adjustment, dehydration, concentration, etc. are performed alone or in combination of two or more, and concentration, crystallization, reprecipitation, column chromatography are performed.
  • the compound (Ib) may be taken out by, for example.
  • the extracted compound (Ib) can be used alone or in combination of two or more kinds of operations such as crystallization, reprecipitation, column chromatography, extraction, and stirring and washing of the crystals with a solvent, if necessary. You may refine
  • the compound (Ib) production process after completion of the reaction, the compound (I) production process may be continued without taking out the compound (Ib) after performing post-treatment as necessary.
  • reaction is preferably performed using a solvent.
  • the solvent can be arbitrarily selected from those that do not interfere with the reaction in consideration of the solubility of the raw material compound, reaction conditions, and the like. Specific examples of the solvent include aromatic compounds such as toluene and phenol.
  • the reaction is preferably performed using a base such as pyridine or pyrazine.
  • the amount of compound (Ia) to be used is preferably 2 times mol or more, more preferably 4 to 5 times mol, of compound (Ib). Further, the amount of the base used is preferably 1 mol or more, more preferably 1 to 4 mol per mol of the compound (Ia).
  • the reaction temperature is preferably 50 to 180 ° C., and the reaction time is preferably 6 to 72 hours. The reaction may be performed while removing by-product water by, for example, azeotropic dehydration. At this time, a solvent may be appropriately added during the reaction.
  • the compound (I) after completion of the reaction, the compound (I) may be taken out by the same method as in the compound (Ib) production process, and the taken out compound (I) may be further purified.
  • compound (Ia) when a commercial product of compound (Ia) is not available, compound (Ia) may be produced by the following method combining known methods. That is, the compound (Ia) includes, for example, a compound represented by the following general formula (Iad) (hereinafter abbreviated as “compound (Iad)”) and a compound represented by the following general formula (Iac) (hereinafter, (Hereinafter abbreviated as “compound (Iab)”) to react with a compound represented by the following general formula (Iab) (hereinafter abbreviated as “compound (Iab)”) (hereinafter referred to as “compound (Iab)”).
  • compound (Iad) a compound represented by the following general formula (Iad)
  • compound (Iac) hereinafter, (Hereinafter abbreviated as “compound (Iab)”
  • the reaction is preferably performed using a solvent.
  • the solvent can be arbitrarily selected from those that do not interfere with the reaction in consideration of the solubility of the starting compound, reaction conditions, and the like. Specific examples of the solvent include halogenated hydrocarbons such as dichloromethane.
  • the amount of compound (Iad) to be used is preferably 1 mol or more, more preferably 1 to 6 mol per mol of compound (Iac).
  • the amount of iron (III) chloride used is preferably at least 2 mol, more preferably 2 to 12 mol, relative to compound (Iac).
  • the reaction temperature of the reaction in the step of producing compound (Iab) is preferably 5 to 40 ° C., and the reaction time is preferably 0.5 to 10 hours.
  • the compound (Iab) may be taken out by the same method as in the compound (Ib) production process, and the taken out compound (Iab) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Iab).
  • compound (Iaa) is obtained from compound (Iab).
  • a halogenated hydrocarbon such as dichloromethane is used as a reaction solvent, and bromine (Br 2 ) is used, and the reaction is preferably performed at ⁇ 10 to 5 ° C., preferably 0.5 to 10 hours.
  • the amount of bromine used is preferably at least 2 mol, preferably 2 to 8 mol, relative to compound (Iab).
  • the compound (Iaa) after completion of the reaction, the compound (Iaa) may be taken out by the same method as in the compound (Ib) production process, and the taken out compound (Iaa) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Iaa).
  • compound (Ia) is obtained from compound (Iaa).
  • an amination reaction may be performed, and for example, a method described in “J. Am. Chem. Soc., 2009, 131, 7287” or the like can be applied. That is, first, a base (strong base) such as sodium tert-butoxide or potassium tert-butoxide is used as a reaction solvent with respect to the compound (Iaa) in an inert gas atmosphere such as argon gas.
  • a base strong base
  • an inert gas atmosphere such as argon gas.
  • a benzophenone imine (HN C (C 6 H 5 ) 2 ), a palladium catalyst such as tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba) 3 ), ( ⁇ ) -2, Reaction is performed using an asymmetric ligand such as 2′-bis (diphenylphosphino) -1,1′-binaphthyl, and two bromine atoms (—Br) are represented by the formula “—N ⁇ C (C 6 Into a group represented by H 5 ) 2 ”.
  • the amounts of the base and benzophenone imine used are each independently preferably 2 times mol or more, and preferably 2 to 4 times mol of the compound (Iaa).
  • the amount of the palladium catalyst and the asymmetric ligand used is preferably 0.002 to 0.2 times mol of the compound (Iaa) independently.
  • the reaction is preferably carried out under heating and refluxing conditions, preferably for 2 to 20 hours.
  • the obtained intermediate is subjected to an acid treatment using an ether compound such as tetrahydrofuran as a reaction solvent and an acid such as hydrochloric acid, and two formulas “—N ⁇ C (C 6 H 5 ) 2 are used. Is converted to an amino group (—NH 2 ).
  • the amount of the acid used is preferably at least 2 moles, more preferably 2 to 4 moles, relative to the intermediate.
  • the intermediate or compound (Ia) may be taken out in the same manner as in the compound (Ib) production process, and the taken out intermediate or compound (Ia) May be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production step may be continued without taking out the intermediate or compound (Ia).
  • R 1 or R 2 is a group other than the desired one, or R 1 or R 2 is another group.
  • a compound (Iab) is produced by a production method using a substituted, different compound having a non-target group as a raw material and converting the non-target group into desired R 1 or R 2. That's fine.
  • a method of producing compound (Iab) when compounds (Iac) and (Iad) having desired R 1 are not available will be described.
  • the compound (Iab) includes, for example, a compound represented by the following general formula (Iabd) (hereinafter abbreviated as “compound (Iabd)”) and a compound represented by the following general formula (IAbc) (hereinafter, (Hereinafter abbreviated as “compound (Iabb)”) to react with a compound represented by the following general formula (Iabb) (hereinafter abbreviated as “compound (Iabb)”) (hereinafter referred to as “compound (Iabb)”).
  • compound (Iabb) production process compounds (Iabc) and (Iabd) are reacted.
  • the production process of compound (Iabb) can be carried out in the same manner as the production process of compound (Iab), except that compounds (Iabc) and (Iabd) are used in place of compounds (Iac) and (Iad). .
  • compound (Iaba) is obtained from compound (Iabb).
  • an organic acid such as acetic acid is used as a reaction solvent, and the reaction is carried out using hydrogen bromide (HBr), preferably under heating and refluxing conditions, preferably for 2 to 20 hours.
  • the amount of hydrogen bromide used is preferably a large excess with respect to compound (Iabb), for example, preferably 10 to 100 times mol.
  • the compound (Iaba) after completion of the reaction, the compound (Iaba) may be taken out in the same manner as in the compound (Ib) production process, and the taken out compound (Iaba) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Iaba).
  • compound (Iab) is obtained from compound (Iaba).
  • an amide compound such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide or the like is used as a reaction solvent, and the general formula “R 1 -Br (wherein R 1 is the above-mentioned formula).
  • the reaction is preferably carried out using a bromide represented by “)” and a base such as potassium carbonate or sodium carbonate under the conditions of preferably 50 to 140 ° C., preferably 1 to 24 hours.
  • the bromide is used in an amount of preferably 4 times mol or more and preferably 4 to 8 times mol of the compound (Iaba). Further, the amount of the base used is preferably at least 1 mol, more preferably 1 to 3 mol, relative to the bromide.
  • the compound (Iab) after completion of the reaction, the compound (Iab) may be taken out by the same method as in the compound (Ib) production step, and the taken out compound (Iab) is further purified. Also good. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Iab).
  • compound (Iac) and (Iad) when a commercial product having the desired R 1 is not available, a different compound in which R 1 is a group other than the desired one is used as a raw material, The method for producing the compound (Iab) by the production method having the step of converting the group into the desired R 1 has been described, but commercially available products having the desired R 2 cannot be obtained as the compounds (Iac) and (Iad). In the case where a commercial product having the desired R 1 and R 2 is not available, compound (Iab) can be produced by the same method.
  • compound (Iac) in the above production method those obtained by the following production methods can be used according to a known method. That is, when using Suzuki-Miyaura coupling, the compound (Iac) is, for example, a compound represented by the following general formula (Iaca) (hereinafter abbreviated as “compound (Iaca)”), and A step of obtaining a compound (Iac) by reacting with a compound represented by the general formula (Iacb) (hereinafter abbreviated as “compound (Iacb)”) (hereinafter abbreviated as “compound (Iac) production step”). ).
  • the production methods listed here are merely examples, and the production method of compound (Iac) is not limited thereto.
  • the reaction is preferably carried out using a mixed solvent of an aromatic hydrocarbon such as toluene and water as a reaction solvent in an inert gas atmosphere such as argon gas.
  • the reaction is preferably performed using a base such as potassium carbonate or sodium carbonate and a palladium catalyst such as PdCl 2 (PPh 3 ) 2 .
  • the amount of compound (Iacb) to be used is preferably 1 mol or more, more preferably 1 to 3 mol, per mol of compound (Iaca).
  • the amount of the base used is preferably 1 to 6 moles compared to the compound (Iaca).
  • the amount of the palladium catalyst used is preferably 0.005 to 0.05 moles compared to the compound (Iaca).
  • the reaction is preferably carried out under heating and refluxing conditions, preferably for 2 to 20 hours.
  • the compound (Iac) after completion of the reaction, the compound (Iac) may be taken out by the same method as in the compound (Ib) production process, and the taken out compound (Iac) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Iac).
  • compound (Id) in the above production method was obtained in accordance with a known method, for example, in the step of obtaining compound (Id) (hereinafter abbreviated as “compound (Id) production step”) as shown below. Things can also be used. That is, compound (Id) comprises 3,4,9,10-perylenetetracarboxylic dianhydride, a chlorinating agent such as chlorosulfuric acid, iodine (I 2 ), and the like under an inert gas atmosphere such as argon gas. It is obtained by mixing and reacting.
  • compound (Id) comprises 3,4,9,10-perylenetetracarboxylic dianhydride, a chlorinating agent such as chlorosulfuric acid, iodine (I 2 ), and the like under an inert gas atmosphere such as argon gas. It is obtained by mixing and reacting.
  • the amount of the chlorinating agent used is preferably a large excess with respect to 3,4,9,10-perylenetetracarboxylic dianhydride, for example, preferably 10 to 50 times mol. Further, the amount of iodine used is preferably 0.02 to 0.8-fold mol with respect to 3,4,9,10-perylenetetracarboxylic dianhydride.
  • the reaction temperature of the reaction is preferably 40 to 100 ° C., and the reaction time is preferably 0.2 to 10 hours. After completion of the reaction, compound (Id) may be taken out in the same manner as in the production step of compound (Ib), and the taken out compound (Id) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Id).
  • the carboxylic acid anhydride moiety (—C ( ⁇ O) —O—C ( ⁇ O) —) in the compound (Id) is converted into another structure (protected) as necessary. ) Thereafter, this compound and compound (Ic) are reacted, and then, in the obtained compound, compound (Ib) is converted into the original carboxylic anhydride moiety by the above-described method (deprotection). May be obtained.
  • compound (Iba) production step and a step of reacting compound (Iba) to obtain compound (Ib) (hereinafter referred to as “compound (Ib) production”).
  • a method having the step (2) ”) can be exemplified, but is not limited thereto.
  • R 3 and X are the same as above; R 9 is an alkyl group.
  • compound (Ibb) is obtained from compound (Id).
  • X is the same as X in the general formula (Id).
  • an organic acid such as propionic acid is used as a reaction solvent, and an amine represented by the general formula “R 9 —NH 2 (wherein R 9 is an alkyl group)” is used.
  • the reaction is carried out using the compound, preferably under conditions of 100 to 180 ° C., preferably 6 to 72 hours.
  • the alkyl group for R 9 include the same alkyl groups as those described above for R 1 and R 2 , preferably having 3 to 10 carbon atoms, preferably linear or branched, More preferably, it is linear.
  • the amount of the amine compound used is preferably at least 2 mol, preferably 2 to 6 mol, relative to compound (Id).
  • the compound (Ibb) after completion of the reaction, the compound (Ibb) may be taken out by the same method as in the compound (Ib) production process, and the taken out compound (Ibb) may be further purified. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Ibb).
  • compound (Iba) In the production process of compound (Iba), compounds (Ibb) and (Ic) are reacted.
  • the compound (Iba) production step can be carried out in the same manner as the compound (Ib) production step, except that compound (Ibb) is used in place of compound (Id).
  • compound (Ib) production step (2) compound (Ib) is obtained from compound (Iba).
  • an alcohol such as ethanol or 2-propanol is used as a reaction solvent
  • a base such as sodium hydroxide or potassium hydroxide, water and the like, preferably under heating and reflux conditions, preferably 24 to The reaction is performed for 120 hours.
  • the amount of the base used is preferably a large excess with respect to the compound (Iba), for example, preferably 10 to 150-fold mol.
  • the compound (Ib) after completion of the reaction, the compound (Ib) may be taken out by the same method as in the compound (Ib) production step, and the taken out compound (Ib) is further purified. Also good. Further, after completion of the reaction, after the post-treatment as necessary, the next production process may be continued without taking out the compound (Ib).
  • the product of each step such as compound (I) and compound (Ib) is, for example, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared spectroscopy (IR), ultraviolet / visible spectroscopy (The structure can be confirmed by a known method such as UV-VIS absorption spectrum.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • UV-VIS absorption spectrum UV-VIS absorption spectrum
  • the solar cell module according to the present invention is characterized by using the compound (I), wherein the compound (I) absorbs sunlight and condenses the emitted light from the resulting compound (I).
  • transduces into a solar cell element can be illustrated.
  • the solar cell module preferably includes a light incident surface, a light guide having a light exit surface smaller in area than the light incident surface, and light emitted from the light exit surface to receive power.
  • the light guide includes a compound (I), and the emitted light from the compound (I) generated when the incident light from the light incident surface is absorbed by the compound (I).
  • the above-mentioned emission light can be exemplified.
  • the solar cell module according to the present invention is excellent in power generation by using the compound (I).
  • a solar cell module according to the present invention will be described in detail with reference to the drawings.
  • the scale of each component is appropriately changed in order to make each component recognizable.
  • FIG. 1 is a diagram schematically showing a schematic configuration of one embodiment of a solar cell module according to the present invention
  • FIG. 2 is a cross-sectional view of the solar cell module.
  • a solar cell module 1 shown in FIG. 1 has a rectangular plate-shaped light collector 2 installed facing the sun S, a solar cell element 3 provided on an end surface of the light collector 2, and a back surface side of the light collector 2.
  • the reflector plate (reflector) 4 and the frame body 5 are provided.
  • the light collector 2 is a light guide that introduces emitted light into the solar cell element 3.
  • the solar cell element 3 receives the emitted light emitted from the first end surface 2 c of the light collector 2.
  • the frame 5 integrally holds the light collector 2 and the solar cell element 3.
  • the light collector 2 includes a main surface 2a serving as a light incident surface, a back surface 2b opposite to the main surface 2a, the first end surface 2c serving as a light exit surface, and other end surfaces. And.
  • the reflective layer 6 is provided on the end face other than the first end face 2c.
  • the first end surface 2 c has a smaller area than the main surface 2 a, whereby the light collection efficiency to the solar cell element 3 is increased, and the power generation amount of the solar cell module 1 is further increased. .
  • the light collector 2 is obtained by dispersing phosphors 8 in a transparent substrate 7.
  • the transparent substrate 7 is made of an acrylic resin such as polymethyl methacrylate (PMMA), an organic material having high transparency such as polycarbonate; an inorganic material having high transparency such as glass.
  • PMMA polymethyl methacrylate
  • organic material having high transparency such as polycarbonate
  • inorganic material having high transparency such as glass.
  • the transparent substrate 7 examples include those having a transmittance of preferably 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 to 800 nm so that external light can be effectively taken in. And since the transmittance
  • the compound (I) is used as the phosphor 8.
  • the phosphor 8 is dispersed almost uniformly in the transparent substrate 7.
  • Compound (I) may be used alone or in combination of two or more.
  • the phosphor 8 in addition to the compound (I), other known phosphors may be used in combination.
  • the phosphor other than the compound (I) include an optical functional material that absorbs ultraviolet light or visible light and emits and emits visible light or infrared light. Note that visible light is light in the wavelength region of 380 to 750 nm, ultraviolet light is light in the wavelength region of less than 380 nm, and infrared light is light in the wavelength region of greater than 750 nm.
  • the phosphor other than the compound (I) may be either an inorganic phosphor or an organic phosphor.
  • organic phosphor include coumarin dyes, perylene dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, xanthene dyes, pyridine dyes, oxazine dyes, chrysene dyes, and thioflavine dyes.
  • organic phosphor examples include 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7).
  • Examples of the inorganic phosphor include GdBO 3 : Eu, Gd 2 O 3 : Eu, Gd 2 O 2 S: Eu, Gd 3 Al 5 O 12 : Eu, Gd 3 Ga 5 O 12 : Eu, GdVO 4 : Eu, gd 3 Ga 5 O 12: Ce , Cr, Y 2 O 3: Eu, Y 2 O 2 S: Eu, La 2 O 3: Eu, La 2 O 2 S: Eu, InBO 3: Eu, (Y, In ) BO 3 : red light emitting phosphor such as Eu; Gd 2 O 3 : Tb, Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, Gd 3 Al 5 O 12 : Tb, Gd 3 Ga 5 O 12 : Tb, Y 2 O 3 : Tb, Y 2 O 2 S: Tb, Y 2 O 2 S: Tb, Dy, La 2 O 2 S: Tb, ZnS: Cu, ZnS: Cu, Au, Zn 2 SiO 4
  • Fluorescent substances other than compound (I) may be used alone or in combination of two or more.
  • the compound (I) can be used as one or more of the plural types of phosphors 8 to be used in combination, and it can be arbitrarily selected which is used as the compound (I).
  • the excitation energy moves directly between two adjacent phosphors by electron resonance without going through the process of light generation and absorption. Since energy transfer between phosphors by the Förster mechanism is performed without going through the process of light generation and absorption, the energy transfer efficiency can be almost 100% under optimum conditions, and energy loss is reduced. small. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module.
  • the density of the phosphor 8 to be used in the transparent substrate 7 may be increased.
  • the ratio of the compound (I) to the total amount of the phosphor 8 in the transparent substrate 7 is 5% by mass because the light collection efficiency to the solar cell element 3 is increased and the power generation amount of the solar cell module 1 is further increased.
  • the above is preferable, and it is preferable to adjust appropriately according to the number of other phosphors used in combination with the compound (I), the light absorption peak wavelength, and the like.
  • a resin composition containing the raw material monomer constituting the transparent base material 7 and the phosphor 8 is prepared. It can be obtained by curing the resin composition in a state where is dispersed. What is necessary is just to select the hardening method of a resin composition according to the kind of raw material monomer.
  • the content of the phosphor 8 is preferably 0.001 to 0.04 mass% with respect to the transparent substrate 7.
  • the main surface 2a and the back surface 2b of the light collector 2 are parallel and flat surfaces. Light that travels from the inside of the light collector 2 to the outside (light emitted from the phosphor 8) is reflected toward all the end surfaces other than the first end surface 2 c of the light collector 2 toward the inside of the light collector 2.
  • the reflective layer 6 is provided in direct contact with or without the air layer.
  • the reflective layer 6 examples include a reflective layer made of a metal film such as silver or aluminum; a reflective layer made of a dielectric multilayer such as an ESR (Enhanced Special Reflector) reflective film (manufactured by 3M).
  • the reflection layer may be a mirror reflection layer that specularly reflects incident light, or may be a scattering reflection layer that scatters and reflects incident light.
  • the scattering reflection layer is used as the reflection layer, the amount of light directly going in the direction of the solar cell element 3 is increased, so that the light collection efficiency to the solar cell element 3 is increased, and the power generation amount of the solar cell module 1 is further increased. Increase.
  • the reflected light since the reflected light is scattered, changes in the amount of power generation with time and season are averaged.
  • a scattering reflection layer what consists of micro foaming PET (polyethylene terephthalate) (made by Furukawa Electric) etc. can be illustrated.
  • the reflective plate 4 can be the same as the reflective layer 6 except that the shape is different.
  • the reflecting plate 4 is configured so that a part of the incident light L1 incident on the light collector 2 out of the light from the sun S (sunlight L) is incident light L1 with respect to the normal line of the main surface 2a of the light collector 2. It can also be reflected as reflected light in a predetermined direction on the incident light path side of (sunlight L).
  • Examples of the reflecting plate 4 that reflects a part of the incident light L1 as reflected light in the predetermined direction include a retroreflecting plate and an off-axis reflecting plate.
  • the retroreflecting plate examples include those having a prism layer (corner cube array) having a large number of prism shapes in which three planes are formed on the surface of a resin substrate via an air layer.
  • Examples thereof include a high intensity grade HIP high-intensity reflection sheet, a diamond grade DG ultra-high-intensity reflection sheet (manufactured by 3M Company), a prism-type ultra-high-intensity retroreflective sheet (manufactured by Nippon Carbide Industries Co., Ltd.), and the like.
  • a retroreflecting plate it is also possible to exemplify a reflector configured to refract incident light with glass beads, reflect it with a reflective layer on the back side, and return to the incident direction again.
  • Grade EGP normal reflection sheet manufactured by 3M
  • encapsulated lens type retroreflective sheet encapsulated lens type retroreflective sheet
  • capsule lens type retroreflective sheet above, manufactured by Nippon Carbide Industries Co., Ltd.
  • a prism shape is provided on one surface of a substrate such as an acrylic plate, and a reflective material such as aluminum or silver is deposited on the prism surface to form a reflection surface.
  • a high refractive index layer and a low refractive index layer are alternately laminated to form a dielectric multilayer film.
  • the solar cell element 3 has a light receiving surface disposed so as to face the first end surface 2c of the light collector 2 and is optically bonded to the first end surface 2c.
  • the solar cell element 3 may be a known one, and examples thereof include a silicon-based solar cell, a compound-based solar cell, a quantum dot solar cell, and an organic solar cell. Among these, since the solar cell element 3 can generate electric power with higher efficiency, it is preferably a compound solar cell or a quantum dot solar cell using a compound semiconductor.
  • the compound solar cell those using InGaP, GaAs, InGaAs, AlGaAs, Cu (In, Ga) Se 2 , Cu (In, Ga) (Se, S) 2 , CuInS 2 , CdTe, CdS or the like are used. It can be illustrated.
  • the quantum dot solar cell include those using Si, InGaAs or the like. However, other types of solar cells such as silicon solar cells and organic solar cells may be preferable depending on the price and application.
  • the solar cell element 3 may be installed on a plurality of end surfaces of the light collector 2. Good.
  • the reflective layer 6 may be installed on the end surface where the solar cell element 3 is not installed. preferable.
  • the frame 5 is made of a frame such as aluminum, the main surface 2 a of the light collector 2 is exposed to the outside, and in this state, the four sides of the light collector 2 are held, and the solar cell elements 3 are also collected. It is held together with the light plate 2.
  • a transparent member such as glass may be fitted into the opening 5a that faces the main surface 2a of the light collector 2 to the outside.
  • the light collector 2 has a main surface 2a facing the outside from the frame 5 as a light incident surface, and a first end surface 2c of the light collector 2 as a light exit surface. A part of the external light (sunlight) incident from the main surface 2 a is transmitted through the back surface 2 b and is incident on the reflection plate 4.
  • the solar cell module 1 is installed with the main surface 2a of the light collector 2 facing the sun S as shown in FIGS.
  • the solar cell module 1 receives a part of light from the sun S (sunlight L) as incident light L1 on the main surface 2a of the light collector 2, and the incident light L1 is incident on the phosphor 8 in the light collector 2. Absorbed and phosphor 8 emits light.
  • the emitted light from the phosphor 8 generated at this time propagates through the transparent substrate 7 of the light collector 2, is emitted from the first end face 2 c, and is introduced into the solar cell element 3.
  • the solar cell element 3 generates electric power by receiving the emitted light.
  • the light collecting plate 2 is shown in which the phosphor 8 is dispersed in the transparent base material 7.
  • the light collecting plate is not limited to such a configuration, for example, FIG. 3A or FIG. 3B.
  • the light collector shown in FIG. 3A is obtained by applying a paint in which a phosphor (not shown) is dispersed to the surface of a plate-like transparent substrate 7 made of an acrylic plate or the like to form a phosphor layer 26.
  • the paint contains a phosphor and a transparent resin in which the phosphor is dispersed. That is, the transparent resin in the paint becomes a transparent substrate on which the phosphor is uniformly dispersed.
  • the light collector shown in FIG. 3B is obtained by further providing a transparent protective layer (transparent layer) 27 on the surface of the phosphor layer 26 (surface opposite to the transparent substrate 7).
  • a transparent protective layer (transparent layer) 27 on the surface of the phosphor layer 26 (surface opposite to the transparent substrate 7).
  • the material of the transparent protective layer 27 include various transparent resins.
  • the transparent protective layer 27 can be formed by laminating a transparent resin film made of polyethylene terephthalate (PET), polyethylene (PE), polyvinylidene chloride, polyamide, or the like on the phosphor layer 26.
  • the transparent protective layer 27 is composed of cellulose derivatives such as cellulose acetate, ethyl cellulose, cellulose acetate butyrate, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polycarbonate, polyvinyl butyral, polymethyl methacrylate, polyvinyl formal, It can also be formed by preparing a coating solution in which a transparent resin such as polyurethane is dissolved, applying the coating solution on the phosphor layer 26, and then drying it.
  • a transparent resin such as polyurethane
  • the solar cell module 1 of this embodiment is provided with a flat plate-like light collector 2 and a flat plate-like reflector (reflector) 4 as shown in FIG.
  • the entire solar cell module may be adjusted according to the shape of the installation surface, etc.
  • the light collector 2 is preferably one in which a phosphor layer is formed by applying a coating material in which a phosphor is dispersed on the surface of a transparent substrate as shown in FIGS. 3A and 3B.
  • a phosphor layer having a desired curved shape can be formed on the surface thereof.
  • a reflecting plate what formed the board
  • the reflecting plate may have a curved plate shape or a flat plate shape as described above.
  • the solar cell module can also be installed on the roof, pillar, utility pole, etc. of a building.
  • the light collecting plate and the reflecting plate are formed in a tile shape or a corrugated shape by the same method as the curved plate shape shown in FIG. 4B, and the entire solar cell module is tiled or corrugated. Or the like.
  • positioned at the inner peripheral surface side Forming a solar cell module having a hollow columnar shape (cylindrical shape) and a hollow cylindrical shape (cylindrical shape) or ring-shaped solar cell element 3 disposed on the end face of the light collector 2; It is preferable to install this by extrapolating it to a pillar.
  • the shape of the hollow part is exemplified here in the case where the shape in the direction perpendicular to the axis is circular, but it may be appropriately adjusted according to the shape of the object to be extrapolated. It is not limited.
  • the cylindrical light-collecting members 2e may be arranged in a planar shape and installed as an apparent plate-like body, that is, the light-collecting plate 2.
  • the solar cell element 3 is disposed on one end face (end portion) of the light collecting member 2e.
  • the condensing members 2e can be flexibly connected to each other so that they can be freely changed in shape to a curved surface that is not flat. Further, by forming the shape like a blind, it is possible to adjust such as unfolding and condensing when necessary, and winding and storing when not necessary.
  • a light collector 28 having a prism shape as shown in FIG. 5A may be used.
  • the light collecting plate 28 has a prism surface 29 on the back surface opposite to the main surface 28a serving as a light incident surface.
  • the prism surface 29 is formed with a large number of slope surfaces 29a facing one end surface as shown in FIG. 5B, and the incident light L1 is refracted by the slope surface 29a.
  • the solar cell element 3 is arranged on the side of the end face. Further, the radiated light from the phosphor 8 that propagates in the same manner as the light L 1 is also emitted to the solar cell element 3.
  • a wedge-shaped light collector having a prism surface 29 and having a thickness that gradually decreases as the distance from the solar cell element 3 increases. 30 may be used.
  • the number of times the incident light L1 and the radiated light from the phosphor 8 are totally reflected inside is reduced, and the light generated by the light being refracted by the slope surface 29a. Loss is reduced. Therefore, the light extraction efficiency is increased.
  • the shape light collector 28 (30) having a prism shape may or may not contain the compound (I).
  • a solar power generation device includes the above-described solar cell module according to the present invention.
  • FIG. 6 is a schematic configuration diagram of an embodiment of the solar power generation device according to the present invention.
  • the solar power generation apparatus 1000 shown here includes a solar cell module 1001 that converts sunlight energy from the sun S into electric power, and an inverter (DC / AC) that converts DC power output from the solar cell module 1001 into AC power. Converter) 1004 and a storage battery 1005 for storing the DC power output from the solar cell module 1001.
  • the solar cell module 1001 is the solar cell module according to the present invention described above.
  • the solar cell module 1001 collects sunlight with a light collecting member (light collecting plate) 1002 and the solar power is generated by the sunlight condensed by the light collecting member 1002.
  • the solar power generation device 1000 supplies power to the external electronic device 1006.
  • the electronic device 1006 is supplied with power from the auxiliary power source 1007 as necessary. Since the solar power generation device 1000 having such a configuration includes the solar cell module according to the present invention, the power generation amount is excellent.
  • the reaction mixture was cooled to room temperature, added to a mixed solvent of water (300 ml) and dichloromethane (100 ml) and separated, and the aqueous layer was extracted with dichloromethane (50 ml).
  • the extracted organic layers were combined, washed twice with water (50 ml), and further washed with saturated brine, and then activated carbon and anhydrous magnesium sulfate were added and stirred, followed by filtration.
  • the obtained filtrate was concentrated, and the concentrated residue was passed through silica gel (65 g) using a mixed solvent of hexane / ethyl acetate (5/1, volume ratio), and the obtained fraction was separated.
  • the fraction (6 g) containing the desired product was dispersed in ethanol (30 ml), and the tar-like solid was collected by filtration and dried to obtain the compound (Iaa) represented by the following formula (1)
  • the extracted organic layers were combined, washed with water (50 ml), and further washed with saturated brine (50 ml), and then activated carbon and anhydrous magnesium sulfate were added and stirred, followed by filtration.
  • the obtained filtrate was concentrated, ethanol (50 ml) was added and dissolved, and a few drops of 25% aqueous sodium hydroxide solution were added to adjust the pH of the solution to 9-10. Ether was added and stirred for extraction.
  • the obtained organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, and concentrated.
  • reaction solution turned from dark brown to vermilion and crystals were deposited.
  • the crystals were collected by filtration, washed with a slurry three times with water (1000 ml), then washed with a slurry three times with acetonitrile (500 ml), and the collected crystals were dried to give the following formula (1) as compound (Id).
  • a compound represented by ⁇ 101d (hereinafter abbreviated as “compound (1) -101d”) was obtained (yield 50.1 g, yield 74.4%). It was confirmed by MS measurement, ion chromatography and IR measurement that Compound (1) -101d was obtained.
  • reaction solution After completion of the reaction, the reaction solution is cooled to room temperature, added to 2N hydrochloric acid, and the tar-like solid is collected by filtration, washed with water (1000 ml) and then twice with methanol (1000 ml). Further, a tar-like solid was collected by filtration (65 g in a wet state). This tar-like solid is dissolved in dichloromethane (300 ml), and the filtrate obtained by filtration is concentrated until the liquid volume becomes about 200 ml, and then a mixed solvent of dichloromethane / hexane (1/1, volume ratio) is added.
  • the concentrated residue was subjected to column chromatography through silica gel (250 g), and a compound represented by the following formula (1) -101ba (hereinafter referred to as “compound (1) -101ba”) was obtained as a tar-like compound (Iba). (Abbreviated) was obtained (yield 23.0 g). It was confirmed by NMR measurement and IR measurement that Compound (1) -101ba was obtained. For example, in 1 H-NMR measurement, it was confirmed that the ratio of “H number of alkyl group: H number of benzene ring” was 123.76: 20.02 (theoretical value was 121: 20).
  • the reaction solution was cooled to room temperature, added to methanol (160 ml), the precipitated crystals were collected by filtration, dissolved in dichloromethane (25 ml), and filtered. Then, using a mixed solvent of dichloromethane / hexane (1/1, volume ratio), the obtained filtrate was subjected to column chromatography through silica gel (120 g), and a fraction (0.9 g) containing the target product was separated into dichloromethane (0.9 g). 20 ml), activated carbon was added thereto, and the mixture was stirred and filtered.
  • UV-VIS absorption spectrum measurement absorption maximum values ( ⁇ max ) were observed at wavelengths of 626 nm and 674 nm in the wavelength range of 500 to 800 nm.
  • fluorescence spectrum measurement a fluorescence spectrum having a maximum value at a wavelength of 720 nm was observed.
  • the compounds (1A) -101 and (1B) -101 show almost the same light absorption characteristics and light emission characteristics, both of which have the above absorption maximum values and the same fluorescence spectrum. Conceivable.
  • the UV-VIS absorption spectrum and fluorescence spectrum data at this time are shown in FIG. In the graph of FIG. 8, the left vertical axis indicates the absorbance scale, and the right vertical axis indicates the fluorescence intensity scale.
  • FIG. 9 shows IR spectrum data.
  • Compound (1A) -101 has a light absorption peak wavelength of 626 nm and 674 nm, and can absorb light having a sufficiently long wavelength. Further, the peak wavelength of light emission is 720 nm, and the emitted light (fluorescence) is sufficiently long. Furthermore, the fluorescence quantum yield is 10%.
  • the light absorption peak wavelength of the compound (1A) -101 which was obtained from B3LYP / 6-31 + g (d) using Gaussian 09 (manufactured by Gaussian), was 696 nm, which was close to the above actual measurement value. .
  • the compound of formula (I) is represented by the following formula (I) except that a compound represented by the following formula (1) -102a is used instead of the compound (1) -101a.
  • the compounds represented by (1A) -102 and (1B) -102 (hereinafter abbreviated as “compound (1A) -102” and “compound (1B) -102”, respectively) are produced.
  • the absorption peak wavelength of light of the compounds (1A) -102 and (1B) -102 obtained by B3LYP / 6-31 + g (d) using Gaussian 09 (manufactured by Gaussian) is 696 nm.
  • Compound (1) -102a is the same as Compound (1) -101a except that cyclohexyl bromide is used in place of 1-bromo-2-ethylhexane in Compound (Iab) production step (2). It is manufactured by the same method.
  • the compound of formula (I) is represented by the following formula (I) except that a compound represented by the following formula (1) -103a is used instead of the compound (1) -101a.
  • the compounds represented by (1A) -103 and (1B) -103 (hereinafter abbreviated as “compound (1A) -103” and “compound (1B) -103”, respectively) are produced.
  • the absorption peak wavelength of light of the compounds (1A) -103 and (1B) -103 obtained by B3LYP / 6-31 + g (d) using Gaussian 09 (manufactured by Gaussian) is 696 nm.
  • Compound (1) -103a does not undergo Compound (Iaba) production step and Compound (Iab) production step (2), and Compound (1) -101abb obtained in Compound (Iabb) production step (Iaa) Production is carried out in the same manner as in the case of compound (1) -101a except that it is used in place of compound (1) -101ab in the production process.
  • Example 4 As the phosphor 8, the compounds (I) of Examples 1 to 3 are used separately to produce the solar cell module 1 shown in FIGS.
  • Example 5 As the phosphor 8, the compounds (I) of Examples 1 to 3 are used separately, and other phosphors other than the compound (I) are used together to produce the solar cell module 1 shown in FIGS. .
  • the present invention can be used for a solar cell module and a solar power generation device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

この化合物は、下記一般式(IA)又は(IB)で表される(式中、R及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、複数個のR及びRは互いに同一でも異なっていてもよく;Rは水素原子又はアルキル基であり、複数個のRは互いに同一でも異なっていてもよい。)。太陽電池モジュールは、かかる化合物を含む。太陽光発電装置は、かかる太陽電池モジュールを備える。

Description

化合物、太陽電池モジュール及び太陽光発電装置
 本発明は、新規の化合物、該化合物を用いた太陽電池モジュール、及び該太陽電池モジュールを備えた太陽光発電装置に関する。
 本願は、2013年2月27日に、日本に出願された特願2013-037938号に基づき優先権を主張し、その内容をここに援用する。
 近赤外領域で発光する化合物(蛍光体)は、例えば、太陽光発電装置における集光材料及び波長変換材料、並びに生体内の蛍光プローブ用材料等、種々の分野で高い需要がある。
 一例として、このような蛍光体を用いた太陽光発電装置について説明する。導光体の一部に太陽電池素子を備え、導光体の内部を伝播した光を太陽電池素子に入射させて発電を行う太陽光発電装置として、特許文献1に記載の太陽光発電装置(太陽エネルギー回収窓)が知られている。
 この太陽光発電装置は、導光体の一主面から入射した太陽光の一部を導光体の内部に伝播させて、太陽電池素子に導くように構成されている。導光体は蛍光体(蛍光物質)を含有しており、この蛍光体は、導光体に入射した太陽光(入射光)を吸収して励起され、発光する。そして、このときの蛍光体からの放射光(蛍光)は導光体の内部を伝播し、太陽電池素子に入射することにより、発電が行われるようになっている。
 このような太陽光発電装置においては、発電量を決定する一つの要因として、蛍光体の発光能が挙げられる。そして、太陽光発電装置の発電量を増大させるためには、蛍光体として、十分に長波長の光を吸収可能で、且つ蛍光量子収率が高いものを用いることが望まれ、蛍光体の選択が重要となる。
 ここでは、太陽光発電装置について説明したが、生体内の蛍光プローブ等、他の用途でも同様に、十分に長波長の光を吸収可能な蛍光体を選択できるようになることは、極めて重要である。
 蛍光体としては、これまでに種々のものが探索されてきており、例えば、非特許文献1には、下記式(9)-1で表される化合物(以下、「化合物(9)-1」と略記する)が開示され、非特許文献2には、下記式(9)-2で表される化合物(以下、「化合物(9)-2」と略記する)が開示されている。
Figure JPOXMLDOC01-appb-C000002
 
特開平3-273686号公報
Michael G.Debije,et al., Appl.Opt.,50(2011)163 Heribert Quante,et.al., Chem.Mater.,1997,9,495
 しかし、化合物(9)-1は、蛍光量子収率が高いものの、吸収可能な光のピーク波長(光の吸収ピーク波長)が630nm程度であり、光の吸収波長が十分に長波長ではないという問題点があった。また、化合物(9)-2は、光の吸収ピーク波長が650nmと十分に長波長であるものの、蛍光量子収率が低いという問題点があった。このように、光の吸収ピーク波長と蛍光量子収率とのいずれか一方が十分ではない化合物を、太陽光発電装置用の太陽電池モジュール等の所望の目的物において用いた場合、さらなる性能向上を見込むことが難しく、新規の化合物の適用が望まれていた。
 本発明は上記事情に鑑みてなされたものであり、十分に長波長の光を吸収可能で、且つ蛍光量子収率が高い新規の化合物、該化合物を用いた太陽電池モジュール、及び該太陽電池モジュールを備えた太陽光発電装置を提供することを課題とする。
 本発明は、下記一般式(IA)又は(IB)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000003
 

 (式中、R及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、複数個のR及びRは互いに同一でも異なっていてもよく;Rは水素原子又はアルキル基であり、複数個のRは互いに同一でも異なっていてもよい。)
 また、本発明は、かかる化合物において、前記R及びRが、それぞれ独立に水素原子、炭素数1~22のアルキル基又はアルコキシ基、あるいは炭素数6~22のアリール基又はアリールオキシ基であり、前記Rが水素原子又は炭素数1~22のアルキル基である化合物を提供する。
 また、本発明は、かかる化合物において、前記R及びRが、それぞれ独立に水素原子、炭素数1~18のアルキル基又はアルコキシ基、あるいは炭素数6~10のアリール基又はアリールオキシ基であり、前記Rが水素原子又は炭素数6~18のアルキル基である化合物を提供する。
 また、本発明は、かかる化合物において、すべての前記Rが水素原子以外の基である化合物を提供する。
 また、本発明は、かかる化合物を用いたことを特徴とする太陽電池モジュールを提供する。
 また、本発明は、かかる太陽電池モジュールにおいて、光入射面及び該光入射面よりも面積が小さい光射出面を有する導光体、並びに前記光射出面からの射出光を受光して、電力を発生する太陽電池素子を備え、前記導光体は、さらに前記化合物を含み、前記光入射面からの入射光が前記化合物に吸収されて生じた前記化合物からの放射光を、前記射出光とすることを特徴とする太陽電池モジュールを提供する。
 また、本発明は、かかる太陽電池モジュールを備えたことを特徴とする太陽光発電装置を提供する。
 本発明によれば、十分に長波長の光を吸収可能で、且つ蛍光量子収率が高い新規の化合物、該化合物を用いた太陽電池モジュール、及び該太陽電池モジュールを備えた太陽光発電装置が提供される。
本発明に係る太陽電池モジュールの一実施形態の概略構成を示す模式図である。 本発明に係る太陽電池モジュールの断面図である。 本発明に係る太陽電池モジュールの集光板の変形例を示す側断面図である。 本発明に係る太陽電池モジュールの集光板の変形例を示す側断面図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 図5Aの要部拡大図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽電池モジュールの変形例を示す斜視図である。 本発明に係る太陽光発電装置の一実施形態の概略構成図である。 実施例1で得られた化合物(I)のH-NMRのスペクトルデータである。 実施例1で得られた化合物(I)のUV-VIS吸収スペクトル及び蛍光スペクトルのデータである。 実施例1で得られた化合物(I)のIRのスペクトルデータである。
<化合物>
 本発明に係る化合物は、下記一般式(IA)又は(IB)で表される(以下、これら化合物をまとめて化合物(I)と略記することがある)。化合物(I)は、蛍光性の新規化合物であり、長波長の光に対して吸収係数が高いので、このような光を十分に吸収可能である。また、化合物(I)は、蛍光量子収率が高い。化合物(I)のうち、下記一般式(IA)で表される化合物はsyn体であり、下記一般式(IB)で表される化合物はanti体である。
Figure JPOXMLDOC01-appb-C000004
 

 (式中、R及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、複数個のR及びRは互いに同一でも異なっていてもよく;Rは水素原子又はアルキル基であり、複数個のRは互いに同一でも異なっていてもよい。)
 式中、R及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基である。
 R及びRにおける前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、前記アルキル基は、単環状及び多環状のいずれでもよい。そして、前記アルキル基は、炭素数が1~22であることが好ましく、1~18であることがより好ましく、後述する溶媒への溶解性がより高い化合物(I)とするためには、炭素数が6~18であることがさらに好ましい。
 直鎖状又は分岐鎖状の前記アルキル基は、炭素数が1~22であることが好ましく、該アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基が例示できる。
 なかでも、直鎖状又は分岐鎖状の前記アルキル基は、炭素数が1~18であることがより好ましく、化合物(I)の前記溶解性の観点からは、炭素数が6~18であることがさらに好ましい。
 環状の前記アルキル基は、炭素数が3~22であることが好ましく、該アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示でき、さらに、これら環状のアルキル基の1個以上の水素原子が、直鎖状、分岐鎖状又は環状のアルキル基で置換されたものが例示できる。ここで、水素原子を置換する直鎖状、分岐鎖状及び環状のアルキル基としては、R及びRにおけるアルキル基として例示した上記のものが挙げられる。
 なかでも、環状の前記アルキル基は、炭素数が3~18であることがより好ましく、化合物(I)の前記溶解性の観点からは、炭素数が6~18であることがさらに好ましい。
 複数個(8個)のRは互いに同一でも異なっていてもよい。すなわち、Rはすべて同一でもよいし、すべて異なっていてもよく、一部のみ異なっていてもよい。
 同様に、複数個(12個)のRは互いに同一でも異なっていてもよい。すなわち、Rはすべて同一でもよいし、すべて異なっていてもよく、一部のみ異なっていてもよい。
 R及びRにおける前記アルコキシ基としては、R及びRにおける前記アルキル基が酸素原子に結合してなる1価の基が例示でき、炭素数が1~22であることが好ましく、1~18であることがより好ましく、化合物(I)の前記溶解性の観点からは、炭素数が6~18であることがさらに好ましい。
 R及びRにおける前記アリール基は、単環状及び多環状のいずれでもよく、炭素数が6~22であることが好ましく、フェニル基、1-ナフチル基、2-ナフチル基、o-トリル基、m-トリル基、p-トリル基、キシリル基(ジメチルフェニル基)等が例示でき、これらアリール基の1個以上の水素原子が、さらにこれらアリール基や、R及びRにおける前記アルキル基で置換されたものも例示できる。これら置換基を有するアリール基は、置換基も含めて炭素数が6~22であることが好ましい。
 これらのなかでも、前記アリール基は、炭素数が6~10であることが好ましい。
 R及びRにおける前記アリールオキシ基としては、R及びRにおける前記アリール基が酸素原子に結合してなる1価の基が例示でき、炭素数が6~22であることが好ましく、6~10であることがより好ましい。
 いずれか1個以上のR又はRがアルキル基、アルコキシ基、アリール基又はアリールオキシ基である場合、化合物(I)中でのこれら基の位置及び数は、特に限定されない。
 R及びRは、それぞれ独立に水素原子、炭素数1~22のアルキル基又はアルコキシ基、あるいは炭素数6~22のアリール基又はアリールオキシ基であることが好ましく、それぞれ独立に水素原子、炭素数1~18のアルキル基又はアルコキシ基、あるいは炭素数6~10のアリール基又はアリールオキシ基であることがより好ましい。
 化合物(I)は、R又はRとして、アルキル基であるものを分子中に1個以上有する場合、適切な溶媒を選択することで、上記のように溶媒への溶解性が向上する。溶媒への溶解性が高い化合物(I)を使用することで、化合物(I)の取り扱い性がより向上し、例えば、後述する太陽光発電装置であれば発電量がより多いものが、蛍光プローブであれば検出感度がより高いものが、それぞれ目的物としてより容易に得られる。ただし、R及びRとして、アルキル基を全く有しない化合物(I)を使用した場合でも、十分有用な目的物が得られる。
 式中、Rは水素原子又はアルキル基である。
 Rにおける前記アルキル基としては、R及びRにおける前記アルキル基と同様のものが例示でき、同一分子中のR及びRにおける前記アルキル基と同一でもよいし、異なっていてもよい。
 複数個(20個)のRは互いに同一でも異なっていてもよい。すなわち、Rはすべて同一でもよいし、すべて異なっていてもよく、一部のみ異なっていてもよい。
 いずれか1個以上のRがアルキル基である場合、化合物(I)中での前記アルキル基の位置及び数は、特に限定されない。なかでも、R及び酸素原子が結合しているベンゼン環骨格において、4位の炭素原子に結合している(前記酸素原子に対してパラ位の)Rがアルキル基であることが好ましい。そして、4個の前記ベンゼン環骨格のうち、4位の炭素原子に結合しているRがアルキル基であるものの数が2個以上であることが好ましく、3個以上であることがより好ましく、4個の前記ベンゼン環骨格すべてにおいて、4位の炭素原子に結合しているRがアルキル基であることが特に好ましい。
 なお、化合物(I)においては、Rが結合している4個のベンゼン環骨格は、立体障害が比較的大きいため、隣接する酸素原子との間の結合を軸として回転し難い。例えば、2分子の化合物(I)について、同じ位置のベンゼン環骨格に着目し、このベンゼン環骨格が回転しない場合を考える。一方の化合物(I)は、前記ベンゼン環骨格の2位の炭素原子にRとしてアルキル基が結合し、その他の炭素原子にはRとしてすべて水素原子が結合している。これに対して他方の化合物(I)は、前記ベンゼン環骨格の6位の炭素原子にRとしてアルキル基が結合し、その他の炭素原子にはRとしてすべて水素原子が結合している。これら化合物(I)は、上記のアルキル基がたとえ同一であったとしても、立体異性体として区別され得る。同様に、前記ベンゼン環骨格の3位の炭素原子にRとしてアルキル基が結合し、その他の炭素原子にはRとしてすべて水素原子が結合している化合物(I)と、前記ベンゼン環骨格の5位の炭素原子にRとしてアルキル基が結合し、その他の炭素原子にはRとしてすべて水素原子が結合している化合物(I)とは、上記のアルキル基がたとえ同一であったとしても、立体異性体として区別され得る。
なお、ここに挙げたものは一例であり、立体異性体はこれらに限定されない。
 Rは、水素原子又は炭素数1~22のアルキル基であることが好ましく、水素原子又は炭素数6~18のアルキル基であることがより好ましい。アルキル基の炭素数が6以上であれば、化合物(I)は溶媒への溶解性がより向上する。
 化合物(I)は、R及びRが結合している2個のトリフェニレン骨格を有することで、光の吸収ピーク波長が長波長となる。また、蛍光量子収率が大きくなる。
 なお、本明細書において、「ピーク波長」とは、光スペクトルの主たるピークの波長を意味し、好ましくはスペクトル強度が最大のピークの波長である。
 化合物(I)は、後述する製造方法による製造がより容易である点から、2個のトリフェニレン骨格は、互いに同一であることが好ましい。
 化合物(I)は、光の吸収ピーク波長が、好ましくは650nm以上となり、光の吸収波長が十分に長波長のものである。
 化合物(I)の光の吸収ピーク波長及び発光のピーク波長は、量子化学計算によって求めることもできる。このとき、汎用の量子化学計算ソフトを用いることができ、このようなものとしては、Gaussian09(Gaussian社製)が例示でき、例えば、計算条件をB3LYP/6-31+g(d)として、光の吸収ピーク波長を求めることができる。ただし、計算条件は、これに限定されるものではない。
 化合物(I)で好ましいものとしては、1個以上のRが水素原子以外の基(アルキル基、アルコキシ基、アリール基又はアリールオキシ基)であるものが例示でき、2個以上のRが水素原子以外の基であることが好ましく、4個以上のRが水素原子以外の基であることがより好ましく、このような化合物(I)としては、すべて(8個)のRが水素原子以外の基であるものが例示できるが、これに限定されない。
 化合物(I)は、十分に長波長の光を吸収可能で、発光のピーク波長も十分に長波長となる。さらに化合物(I)は、蛍光量子収率が高い。したがって、例えば、後述する太陽光発電装置における蛍光体として化合物(I)を用いることで、かかる太陽光発電装置は発電量に優れたものとなる。また、蛍光プローブとして化合物(I)用いることで、検出感度がより高いものとなる。なお、化合物(I)の用途はこれらに限定されず、蛍光体を用いるすべての分野で、化合物(I)を適用できる。
 化合物(I)は、例えば、下記一般式(Id)で表される化合物(以下、「化合物(Id)」と略記する)と、下記一般式(Ic)で表される化合物(以下、「化合物(Ic)」と略記する)とを反応させて、下記一般式(Ib)で表される化合物(以下、「化合物(Ib)」と略記する)を得る工程(以下、「化合物(Ib)製造工程」と略記する)、及び化合物(Ib)と、下記一般式(Ia)で表される化合物(以下、「化合物(Ia)」と略記する)とを反応させて、化合物(I)を得る工程(以下、「化合物(I)製造工程」と略記する)を有する製造方法により、製造できる。ただし、ここに挙げた製造方法は一例であり、化合物(I)の製造方法は、これに限定されない。
 なお、下記反応式では、化合物(I)として、一般式(IA)及び(IB)で表される化合物がともに生成する例を示しているが、反応条件によっては、いずれか一方のみが生成することもある。
Figure JPOXMLDOC01-appb-C000005
 

 (式中、R、R及びRは、前記と同じであり;Xはハロゲン原子である。)
 化合物(Ib)製造工程においては、化合物(Ic)及び(Id)を反応させる。
 化合物(Ic)において、Rは、一般式(IA)及び(IB)におけるRと同じである。
 化合物(Id)において、Xはハロゲン原子であり、塩素原子、臭素原子又はヨウ素原子であることが好ましく、複数個(4個)のXは互いに同一でも異なっていてもよいが、すべて同一であることが好ましい。
 化合物(Ib)製造工程においては、溶媒を用いて反応を行うことが好ましい。溶媒は、原料となる化合物の溶解性や反応条件等を考慮し、反応を妨げないものから適宜任意に選択でき、具体的な溶媒としては、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物等が例示できる。
 また、化合物(Ib)製造工程においては、炭酸カリウム、炭酸ナトリウム等の塩基を用いて反応を行うことが好ましい。
 化合物(Ib)製造工程において、化合物(Ic)の使用量は、化合物(Id)に対して4倍モル以上であることが好ましく、4~8倍モルであることがより好ましい。また、塩基の使用量は、化合物(Ic)に対して1倍モル以上であることが好ましく、1~6倍モルであることがより好ましい。
 化合物(Ib)製造工程における前記反応の反応温度は、50~180℃であることが好ましく、反応時間は6~72時間であることが好ましい。
 化合物(Ib)製造工程において、反応終了後は、公知の手法によって、必要に応じて後処理を行い、化合物(Ib)を取り出せばよい。すなわち、適宜必要に応じて、ろ過、洗浄、抽出、pH調整、脱水、濃縮等の後処理操作をいずれか単独で、又は二種以上組み合わせて行い、濃縮、結晶化、再沈殿、カラムクロマトグラフィー等により、化合物(Ib)を取り出せばよい。また、取り出した化合物(Ib)は、さらに必要に応じて、結晶化、再沈殿、カラムクロマトグラフィー、抽出、溶媒による結晶の撹拌洗浄等の操作をいずれか単独で、又は二種以上組み合わせて一回以上行うことで、精製してもよい。
 化合物(Ib)製造工程においては、反応終了後、必要に応じて後処理を行った後、化合物(Ib)を取り出すことなく、引き続き化合物(I)製造工程を行ってもよい。
 化合物(I)製造工程においては、化合物(Ia)及び(Ib)を反応させる。かかる反応は脱水縮合反応である。
 化合物(Ia)において、R及びRは、一般式(IA)及び(IB)におけるR及びRと同じである。
 化合物(I)製造工程においては、溶媒を用いて反応を行うことが好ましい。溶媒は、原料となる化合物の溶解性や反応条件等を考慮し、反応を妨げないものから適宜任意に選択でき、具体的な溶媒としては、トルエン、フェノール等の芳香族化合物が例示できる。
 また、化合物(I)製造工程においては、ピリジン、ピラジン等の塩基を用いて反応を行うことが好ましい。
 化合物(I)製造工程において、化合物(Ia)の使用量は、化合物(Ib)に対して2倍モル以上であることが好ましく、4~5倍モルであることがより好ましい。また、塩基の使用量は、化合物(Ia)に対して1倍モル以上であることが好ましく、1~4倍モルであることがより好ましい。
 化合物(I)製造工程において、反応温度は50~180℃であることが好ましく、反応時間は6~72時間であることが好ましい。
 反応は、例えば、共沸脱水等により、副生する水を除去しながら行ってもよい。このとき、反応中に適宜溶媒を追加してもよい。
 化合物(I)製造工程においては、化合物(Ia)及び(Ib)として、それぞれ一種の化合物を使用した場合でも、一般式(IA)及び(IB)で表される2種の化合物(I)が生成し得る。また、化合物(Ia)及び(Ib)の少なくとも一方で、複数種の化合物を使用した場合、複数種の化合物(I)が生成し得る。このように、化合物(I)として複数種のものが生成し、そのうちの一部の種類を使用する場合には、上記の化合物(Ib)の場合と同様の方法で、目的物を分離すればよいし、反応条件を調節することで、目的物の生成率を向上させるようにしてもよい。
 化合物(I)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(I)を取り出せばよく、取り出した化合物(I)をさらに精製してもよい。
 上記の製造方法において、化合物(Ia)の市販品が入手できない場合には、公知の方法を組み合わせた以下に示す方法で、化合物(Ia)を製造すればよい。
 すなわち、化合物(Ia)は、例えば、下記一般式(Iad)で表される化合物(以下、「化合物(Iad)」と略記する)と、下記一般式(Iac)で表される化合物(以下、「化合物(Iac)」と略記する)とを反応させて、下記一般式(Iab)で表される化合物(以下、「化合物(Iab)」と略記する)を得る工程(以下、「化合物(Iab)製造工程」と略記する)、化合物(Iab)を反応させて、下記一般式(Iaa)で表される化合物(以下、「化合物(Iaa)」と略記する)を得る工程(以下、「化合物(Iaa)製造工程」と略記する)、及び化合物(Iaa)を反応させて、化合物(Ia)を得る工程(以下、「化合物(Ia)製造工程」と略記する)を有する製造方法により、製造できる。ただし、ここに挙げた製造方法は一例であり、化合物(Ia)の製造方法は、これに限定されない。
Figure JPOXMLDOC01-appb-C000006
 

 (式中、R及びRは、前記と同じである。)
 化合物(Iab)製造工程においては、化合物(Iac)及び(Iad)を反応させる。
 化合物(Iac)及び(Iad)において、R及びRは、一般式(IA)及び(IB)におけるR及びRと同じである。
 化合物(Iab)製造工程においては、溶媒を用いて反応を行うことが好ましい。溶媒は、原料となる化合物の溶解性や反応条件等を考慮し、反応を妨げないものから適宜任意に選択でき、具体的な溶媒としては、ジクロロメタン等のハロゲン化炭化水素等が例示できる。
 また、化合物(Iab)製造工程においては、塩化鉄(III)を用いて反応を行うことが好ましい。
 化合物(Iab)製造工程において、化合物(Iad)の使用量は、化合物(Iac)に対して1倍モル以上であることが好ましく、1~6倍モルであることがより好ましい。
また、塩化鉄(III)の使用量は、化合物(Iac)に対して2倍モル以上であることが好ましく、2~12倍モルであることがより好ましい。
 化合物(Iab)製造工程における前記反応の反応温度は、5~40℃であることが好ましく、反応時間は0.5~10時間であることが好ましい。
 化合物(Iab)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Iab)を取り出せばよく、取り出した化合物(Iab)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Iab)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 化合物(Iaa)製造工程においては、化合物(Iab)から化合物(Iaa)を得る。そのためには、例えば、ジクロロメタン等のハロゲン化炭化水素を反応溶媒として用い、臭素(Br)を用いて、好ましくは-10~5℃、好ましくは0.5~10時間の条件で反応を行う。
 化合物(Iaa)製造工程において、臭素の使用量は、化合物(Iab)に対して2倍モル以上であることが好ましく、2~8倍モルであることが好ましい。
 化合物(Iaa)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Iaa)を取り出せばよく、取り出した化合物(Iaa)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Iaa)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 化合物(Ia)製造工程においては、化合物(Iaa)から化合物(Ia)を得る。そのためには、アミノ化反応を行えばよく、例えば、「J.Am.Chem.Soc.,2009,131,7287」等に記載されている方法が適用できる。すなわち、まず、アルゴンガス等の不活性ガス雰囲気下、化合物(Iaa)に対して、トルエン等の芳香族炭化水素を反応溶媒として用い、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド等の塩基(強塩基)と、ベンゾフェノンイミン(HN=C(C)と、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))等のパラジウム触媒と、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル等の不斉配位子等を用いて反応を行い、2個の臭素原子(-Br)を式「-N=C(C」で表される基に変換する。塩基及びベンゾフェノンイミンの使用量は、それぞれ独立に化合物(Iaa)に対して2倍モル以上であることが好ましく、2~4倍モルであることが好ましい。また、パラジウム触媒及び不斉配位子の使用量は、それぞれ独立に化合物(Iaa)に対して0.002~0.2倍モルであることが好ましい。そして、好ましくは加熱還流条件下で、好ましくは2~20時間の条件で反応を行う。
 次いで、得られた中間体に対して、テトラヒドロフラン等のエーテル化合物を反応溶媒として用い、塩酸等の酸を用いて酸処理を行い、2個の式「-N=C(C」で表される基をアミノ基(-NH)に変換する。酸の使用量は、前記中間体に対して2倍モル以上であることが好ましく、2~4倍モルであることが好ましい。
 化合物(Ia)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、前記中間体又は化合物(Ia)を取り出せばよく、取り出した前記中間体又は化合物(Ia)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、前記中間体又は化合物(Ia)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 上記の方法では、使用する化合物(Iab)の種類によっては、化合物(Iac)又は(Iad)として、所望のR又はRを有する市販品が入手できないことがある。そのような場合には、本来使用すべき化合物(Iac)又は(Iad)に代えて、R又はRが所望のもの以外の基であるか、あるいはR又はRがその他の基で置換されている、目的外の基を有する、異なる化合物を原料として使用し、前記目的外の基を所望のR又はRに変換する工程を有する製造方法により、化合物(Iab)を製造すればよい。
以下、所望のRを有する化合物(Iac)及び(Iad)が入手できない場合に、化合物(Iab)を製造する方法について説明する。
 すなわち、化合物(Iab)は、例えば、下記一般式(Iabd)で表される化合物(以下、「化合物(Iabd)」と略記する)と、下記一般式(Iabc)で表される化合物(以下、「化合物(Iabc)」と略記する)とを反応させて、下記一般式(Iabb)で表される化合物(以下、「化合物(Iabb)」と略記する)を得る工程(以下、「化合物(Iabb)製造工程」と略記する)、化合物(Iabb)を反応させて、下記一般式(Iaba)で表される化合物(以下、「化合物(Iaba)」と略記する)を得る工程(以下、「化合物(Iaba)製造工程」と略記する)、及び化合物(Iaba)を反応させて、化合物(Iab)を得る工程(以下、「化合物(Iab)製造工程(2)」と略記する)を有する製造方法により、製造できる。ここで、化合物(Iabd)は化合物(Iad)の一種であり、化合物(Iabc)は化合物(Iac)の一種である。ただし、ここに挙げた製造方法は一例であり、化合物(Iab)の製造方法は、これに限定されない。
Figure JPOXMLDOC01-appb-C000007
 

 (式中、R及びRは、前記と同じである。)
 化合物(Iabb)製造工程においては、化合物(Iabc)及び(Iabd)を反応させる。化合物(Iabb)製造工程は、化合物(Iac)及び(Iad)に代えて、化合物(Iabc)及び(Iabd)を使用すること以外は、化合物(Iab)製造工程と同様の方法で行うことができる。
 化合物(Iaba)製造工程においては、化合物(Iabb)から化合物(Iaba)を得る。そのためには、例えば、酢酸等の有機酸を反応溶媒として用い、臭化水素(HBr)を用いて、好ましくは加熱還流条件下で、好ましくは2~20時間の条件で反応を行う。
 化合物(Iaba)製造工程において、臭化水素の使用量は、化合物(Iabb)に対して大過剰量であることが好ましく、例えば、10~100倍モルであることが好ましい。
 化合物(Iaba)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Iaba)を取り出せばよく、取り出した化合物(Iaba)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Iaba)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 化合物(Iab)製造工程(2)においては、化合物(Iaba)から化合物(Iab)を得る。そのためには、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物等を反応溶媒として用い、一般式「R-Br(式中、Rは前記と同じである。)」で表される臭化物と、炭酸カリウム、炭酸ナトリウム等の塩基とを用いて、好ましくは50~140℃、好ましくは1~24時間の条件で反応を行う。
 化合物(Iab)製造工程(2)において、前記臭化物の使用量は、化合物(Iaba)に対して4倍モル以上であることが好ましく、4~8倍モルであることが好ましい。また、塩基の使用量は、前記臭化物に対して1倍モル以上であることが好ましく、1~3倍モルであることがより好ましい。
 化合物(Iab)製造工程(2)において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Iab)を取り出せばよく、取り出した化合物(Iab)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Iab)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 なお、ここでは、化合物(Iabc)及び(Iabd)として、メチルエーテル化合物を使用した場合について説明したが、メチルエーテル以外の他のエーテル化合物を使用してもよい。
 また、ここでは、化合物(Iac)及び(Iad)として、所望のRを有する市販品が入手できない場合に、Rが所望のもの以外の基である、異なる化合物を原料として使用し、前記基を所望のRに変換する工程を有する製造方法により、化合物(Iab)を製造する方法について説明したが、化合物(Iac)及び(Iad)として、所望のRを有する市販品が入手できない場合、並びに所望のR及びRを有する市販品が入手できない場合にも、同様の手法で、化合物(Iab)を製造できる。
 上記の製造方法における化合物(Iac)としては、公知の方法に従って、以下の製造方法で得られたものを用いることもできる。
 すなわち、鈴木・宮浦カップリングを利用する場合であれば、化合物(Iac)は、例えば、下記一般式(Iaca)で表される化合物(以下、「化合物(Iaca)」と略記する)と、下記一般式(Iacb)で表される化合物(以下、「化合物(Iacb)」と略記する)とを反応させて、化合物(Iac)を得る工程(以下、「化合物(Iac)製造工程」と略記する)を有する製造方法により、製造できる。ただし、ここに挙げた製造方法は一例であり、化合物(Iac)の製造方法は、これに限定されない。
Figure JPOXMLDOC01-appb-C000008
 

 (式中、R及びRは、前記と同じである。)
 化合物(Iac)製造工程においては、化合物(Iaca)及び(Iacb)を反応させる。
 化合物(Iaca)及び(Iacb)において、R及びRは、一般式(IA)及び(IB)におけるR及びRと同じである。
 化合物(Iac)製造工程においては、アルゴンガス等の不活性ガス雰囲気下、トルエン等の芳香族炭化水素と水との混合溶媒を反応溶媒として用い、反応を行うことが好ましい。
 また、化合物(Iab)製造工程においては、炭酸カリウム、炭酸ナトリウム等の塩基と、PdCl(PPh等のパラジウム触媒と、を用いて反応を行うことが好ましい。
 化合物(Iac)製造工程において、化合物(Iacb)の使用量は、化合物(Iaca)に対して1倍モル以上であることが好ましく、1~3倍モルであることがより好ましい。また、塩基の使用量は、化合物(Iaca)に対して1~6倍モルであることが好ましい。また、パラジウム触媒の使用量は、化合物(Iaca)に対して0.005~0.05倍モルであることが好ましい。
 化合物(Iac)製造工程においては、好ましくは加熱還流条件下で、好ましくは2~20時間の条件で反応を行う。
 化合物(Iac)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Iac)を取り出せばよく、取り出した化合物(Iac)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Iac)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 上記の製造方法における化合物(Id)としては、公知の方法に従って、例えば以下に示すような、化合物(Id)を得る工程(以下、「化合物(Id)製造工程」と略記する)で得られたものを用いることもできる。
 すなわち、化合物(Id)は、アルゴンガス等の不活性ガス雰囲気下、3,4,9,10-ペリレンテトラカルボン酸二無水物と、クロロ硫酸等のクロロ化剤と、ヨウ素(I)と、を混合して反応させることで得られる。
 クロロ化剤の使用量は、3,4,9,10-ペリレンテトラカルボン酸二無水物に対して大過剰量であることが好ましく、例えば、10~50倍モルであることが好ましい。また、ヨウ素の使用量は、3,4,9,10-ペリレンテトラカルボン酸二無水物に対して0.02~0.8倍モルであることが好ましい。
 前記反応の反応温度は、40~100℃であることが好ましく、反応時間は0.2~10時間であることが好ましい。
 反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Id)を取り出せばよく、取り出した化合物(Id)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Id)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 上記の製造方法においては、必要に応じて化合物(Id)において、そのカルボン酸無水物部位(-C(=O)-O-C(=O)-)を他の構造に変換した(保護した)後、この化合物と化合物(Ic)とを反応させ、次いで、得られた化合物において、上記の変換部位を元のカルボン酸無水物部位に戻す(脱保護する)方法によって、化合物(Ib)を得てもよい。
 このように化合物(Ib)を得る方法としては、化合物(Id)を反応させて、下記一般式(Ibb)で表される化合物(以下、「化合物(Ibb)」と略記する)を得る工程(以下、「化合物(Ibb)製造工程」と略記する)、化合物(Ibb)と、化合物(Ic)とを反応させて、下記一般式(Iba)で表される化合物(以下、「化合物(Iba)」と略記する)を得る工程(以下、「化合物(Iba)製造工程」と略記する)、及び化合物(Iba)を反応させて、化合物(Ib)を得る工程(以下、「化合物(Ib)製造工程(2)」と略記する)を有する方法が例示できるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000009
 

 (式中、R及びXは、前記と同じであり;Rはアルキル基である。)
 化合物(Ibb)製造工程においては、化合物(Id)から化合物(Ibb)を得る。
 化合物(Ibb)において、Xは、一般式(Id)におけるXと同じである。
 化合物(Ibb)製造工程においては、例えば、プロピオン酸等の有機酸を反応溶媒として用い、一般式「R-NH(式中、Rはアルキル基である。)」で表されるアミン化合物を用いて、好ましくは100~180℃、好ましくは6~72時間の条件で反応を行う。
 Rにおけるアルキル基としては、R及びRにおける前記アルキル基と同様のものが例示でき、炭素数が3~10であることが好ましく、直鎖状又は分岐鎖状であることが好ましく、直鎖状であることがより好ましい。
 化合物(Ibb)製造工程において、前記アミン化合物の使用量は、化合物(Id)に対して2倍モル以上であることが好ましく、2~6倍モルであることが好ましい。
 化合物(Ibb)製造工程において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Ibb)を取り出せばよく、取り出した化合物(Ibb)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Ibb)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 化合物(Iba)製造工程においては、化合物(Ibb)及び(Ic)を反応させる。
化合物(Iba)製造工程は、化合物(Id)に代えて、化合物(Ibb)を使用すること以外は、化合物(Ib)製造工程と同様の方法で行うことができる。
 化合物(Ib)製造工程(2)においては、化合物(Iba)から化合物(Ib)を得る。そのためには、例えば、エタノール、2-プロパノール等のアルコールを反応溶媒として用い、水酸化ナトリウム、水酸化カリウム等の塩基と、水等を用いて、好ましくは加熱還流条件下で、好ましくは24~120時間の条件で反応を行う。
 化合物(Ib)製造工程(2)において、塩基の使用量は、化合物(Iba)に対して大過剰量であることが好ましく、例えば、10~150倍モルであることが好ましい。
 化合物(Ib)製造工程(2)において、反応終了後は、化合物(Ib)製造工程の場合と同様の方法で、化合物(Ib)を取り出せばよく、取り出した化合物(Ib)をさらに精製してもよい。また、反応終了後、必要に応じて後処理を行った後、化合物(Ib)を取り出すことなく、引き続き次の製造工程を行ってもよい。
 化合物(I)、化合物(Ib)等の各工程の生成物は、例えば、核磁気共鳴(NMR)分光法、質量分析法(MS)、赤外分光法(IR)、紫外・可視分光法(UV-VIS吸収スペクトル)等、公知の手法で構造を確認できる。
<太陽電池モジュール>
 本発明に係る太陽電池モジュールは、前記化合物(I)を用いたことを特徴とし、化合物(I)に太陽光を吸収させ、生じた化合物(I)からの放射光を集光して、これを太陽電池素子に導入する構成のものが例示できる。
 このような太陽電池モジュールで好ましいものとしては、光入射面及び該光入射面よりも面積が小さい光射出面を有する導光体、並びに前記光射出面からの射出光を受光して、電力を発生する太陽電池素子を備え、前記導光体は、さらに化合物(I)を含み、前記光入射面からの入射光が化合物(I)に吸収されて生じた化合物(I)からの放射光を、前記射出光とすることを特徴とするものが例示できる。
 本発明に係る太陽電池モジュールは、化合物(I)を用いたことで、発電量に優れる。
 以下、本発明に係る太陽電池モジュールについて、図面を参照しながら詳細に説明する。なお、以下の図面においては、各構成要素を認識可能な大きさとするために、各構成要素の縮尺を適宜変更している。
 図1は、本発明に係る太陽電池モジュールの一実施形態の概略構成を模式的に示す図であり、図2は、かかる太陽電池モジュールの断面図である。
 図1に示す太陽電池モジュール1は、太陽Sに対向して設置された矩形板状の集光板2と、集光板2の端面に設けられた太陽電池素子3と、集光板2の背面側に設けられた反射板(反射体)4と、枠体5とを備えて構成されたものである。
 集光板2は、太陽電池素子3に射出光を導入する導光体である。そして、太陽電池素子3は、集光板2の第1端面2cから射出された射出光を受光する。枠体5は、集光板2と太陽電池素子3とを一体に保持する。
 集光板2は、図1~2に示すように光入射面となる主面2aと、主面2aと反対の側の背面2bと、光射出面となる前記第1端面2cと、その他の端面とを備えている。本実施形態では、第1端面2c以外の端面には反射層6が設けられている。
 集光板2において、第1端面2cは、主面2aよりも面積が小さく、このようにすることで、太陽電池素子3への集光効率が高まり、太陽電池モジュール1の発電量がより増大する。
 集光板2は、図2に示すように、透明基材7中に、蛍光体8が分散されたものである。
透明基材7は、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂や、ポリカーボネート等の透明性が高い有機材料;ガラス等の透明性が高い無機材料等からなる。
 透明基材7としては、外光を有効に取り込めるように、360~800nmの波長領域の光に対して好ましくは90%以上、より好ましくは93%以上の透過率を有するものが例示できる。そして、広い波長領域の光の透過率が高い点から、好ましい透明基材7としては、PMMA等のアクリル樹脂からなる基板、シリコン樹脂基板、石英基板等が例示できる。
 本実施形態においては、蛍光体8として、前記化合物(I)を用いる。
 蛍光体8は、透明基材7中にほぼ均一に分散している。
 化合物(I)は、一種を単独で用いてもよく、二種以上を併用してもよい。
 蛍光体8としては、化合物(I)以外に、公知のその他の蛍光体を併用してもよい。
 化合物(I)以外の蛍光体としては、紫外光又は可視光を吸収して、可視光又は赤外光を発光し、放射する光機能材料が例示できる。なお、可視光とは、380~750nmの波長領域の光であり、紫外光とは、380nm未満の波長領域の光であり、赤外光とは、750nmよりも大きい波長領域の光である。
 化合物(I)以外の蛍光体は、無機蛍光体及び有機蛍光体のいずれでもよい。
 前記有機蛍光体としては、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素,キサンテン系色素,ピリジン系色素、オキサジン系色素、クリセン系色素、チオフラビン系色素、ピレン系色素、アントラセン系色素、アクリドン系色素、アクリジン系色素、フルオレン系色素、ターフェニル系色素、エテン系色素、ブタジエン系色素、ヘキサトリエン系色素、オキサゾール系色素、ジフェニルメタン系色素、トリフェニルメタン系色素、チアゾール系色素、チアジン系色素、ナフタルイミド系色素、アントラキノン系色素等が例示できる。
 前記有機蛍光体として、より具体的には、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)等のクマリン系色素;クマリン色素系染料であるベーシックイエロー51;ソルベントイエロー11、ソルベントイエロー116等のナフタルイミド系色素;ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2等のローダミン系色素;1-エチル-2-〔4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕ピリジニウム-パークロレート(ピリジン1)等のピリジン系色素;シアニン系色素:オキサジン系色素等が例示できる。
 さらに、これら以外でも、直接染料、酸性染料、塩基性染料及び分散染料等の各種染料で、蛍光性を有するものも使用可能である。
 前記無機蛍光体としては、GdBO:Eu、Gd:Eu、GdS:Eu、GdAl12:Eu、GdGa12:Eu、GdVO:Eu、GdGa12:Ce,Cr、Y:Eu、YS:Eu、La:Eu、LaS:Eu、InBO:Eu、(Y,In)BO:Eu等の赤色発光の蛍光体;Gd:Tb、GdS:Tb、GdS:Pr、GdAl12:Tb、GdGa12:Tb、Y:Tb、YS:Tb、YS:Tb,Dy、LaS:Tb、ZnS:Cu、ZnS:Cu,Au、ZnSiO:Mn、InBO:Tb、MgGa:Mn等の緑色発光の蛍光体;YAlO:Ce、YSiO:Ce、GdSiO:Ce、YTaO:Nb、BaFCl:Eu、ZnS:Ag、CaWO、CdWO、ZnWO、MgWO、Sr(POCl:Eu、YPO:Cl等の青色発光の蛍光体が例示できる。
 化合物(I)以外の蛍光体は、一種を単独で用いてもよく、二種以上を併用してもよい。
 蛍光体8を二種以上併用する場合、これら蛍光体8の間でフェルスター機構によるエネルギー移動を生じさせ、最も発光スペクトルのピーク波長の大きい蛍光体8から放射された光を、太陽電池素子3への射出光とするように構成してもよい。この場合、併用する複数種の蛍光体8のうちの一種以上として、化合物(I)を用いることができ、いずれを化合物(I)とするかは、任意に選択できる。
 フェルスター機構は、光の発生及び吸収のプロセスを経ずに、近接した2つの蛍光体の間で励起エネルギーが電子の共鳴により直接移動するものである。フェルスター機構による蛍光体間のエネルギー移動は、光の発生及び吸収のプロセスを介さずに行われるため、最適条件では、エネルギー移動効率はほぼ100%にすることが可能であり、エネルギーのロスが小さい。よって、太陽電池モジュールの発電効率の向上に寄与する。エネルギーのロスを抑制して効率よく発電を行うためには、例えば、併用する蛍光体8の透明基材7中での密度を高くすればよい。
 また、フェルスター機構によるエネルギー移動は、蛍光体のような発光材料だけでなく、外光によって励起されるが、光を発生せずに失活する非発光体においても生じる。したがって、蛍光体8以外に、このような非発光体を光機能性材料として、透明基材7中に分散させてもよい。
 透明基材7中の蛍光体8の総量に占める化合物(I)の比率は、太陽電池素子3への集光効率が高まり、太陽電池モジュール1の発電量がより増大することから、5質量%以上であることが好ましく、化合物(I)と併用するその他の蛍光体の数や光の吸収ピーク波長等に応じて、適宜調節することが好ましい。
 透明基材7中に蛍光体8が分散されてなる集光板2は、例えば、透明基材7を構成する原料モノマーと、蛍光体8と、を含有する樹脂組成物を調製し、蛍光体8を分散させた状態で、該樹脂組成物を硬化させることで得られる。樹脂組成物の硬化方法は、原料モノマーの種類に応じて選択すればよい。
 集光板2において、蛍光体8の含有量は、透明基材7に対して好ましくは0.001~0.04質量%である。下限値以上であることで、集光板2における太陽光の吸収量が向上し、太陽電池モジュール1の発電量がより増大する。また、上限値以下であることで、太陽電池素子3への集光効率が向上し、太陽電池モジュール1の発電量がより増大する。
 集光板2の主面2aと背面2bとは、互いに平行で且つ平坦な面となっている。集光板2の第1端面2c以外の全ての端面には、集光板2の内部から外部に向けて進行する光(蛍光体8から放射された光)を、集光板2の内部に向けて反射する反射層6が、空気層を介して又は空気層を介さずに直接接触して設けられている。
 反射層6としては、銀、アルミニウム等の金属の膜からなる反射層;ESR(Enhanced Specular Reflector)反射フィルム(3M社製)等の誘電体多層膜からなる反射層等が例示できる。また、反射層は、入射した光を鏡面反射する鏡面反射層でもよく、入射した光を散乱反射する散乱反射層でもよい。反射層に散乱反射層を用いた場合には、太陽電池素子3の方向に直接向かう光の光量が増えるため、太陽電池素子3への集光効率が高まり、太陽電池モジュール1の発電量がより増大する。また、反射光が散乱されるため、時間や季節による発電量の変化が平均化される。なお、散乱反射層としては、マイクロ発泡PET(ポリエチレンテレフタレート)(古河電工社製)等からなるものが例示できる。
 反射板4は、形状が異なる点以外は、反射層6と同様のものとすることができる。
 また、反射板4は、太陽Sからの光(太陽光L)のうち、集光板2に入射した入射光L1の一部を、集光板2の主面2aの法線に対して入射光L1(太陽光L)の入射光路側の所定方向に反射光として反射するものとすることもできる。
 反射板4を設けることにより、太陽電池素子3への集光効率が高まり、太陽電池モジュール1の発電量がより増大する。
 入射光L1の一部を、前記所定方向に反射光として反射する反射板4としては、再帰性反射板、オフアクシス反射板が例示できる。
 再帰性反射板としては、樹脂からなる基材の表面上に空気層を介して、3つの平面を形成したプリズム形状を多数有するプリズム層(コーナーキューブアレイ)を有したものが例示でき、市販品としては、ハイ・インテンシティグレードHIP高輝度反射シート、ダイヤモンドグレードDG超高輝度反射シート(以上、3M社製)、プリズム型超高輝度再帰反射シート(日本カーバイド工業社製)等が例示できる。
 また、再帰性反射板としては、入射した光をガラスビーズで屈折させ、裏側の反射層にて反射させて再び入射した方向に帰るように構成されたものも例示でき、市販品としては、エンジニアグレードEGP普通反射シート(3M社製)、封入レンズ型再帰反射シート、カプセルレンズ型再帰反射シート(以上、日本カーバイド工業社製)等が例示できる。
 オフアクシス反射板としては、例えば、アクリル板等の基板の一方の面にプリズム形状が付与され、このプリズム面にアルミニウム又は銀等の反射性材料が蒸着されて反射面とされ、さらにその表面に透明保護層がコーティングされて形成されたもの、4分の1波長の光学膜厚毎に、高屈折率層と低屈折率層とを交互に積層して誘電体の多層膜とし、この多層膜を所定の角度でスライスして(切り出して)得られた、誘電体多層膜からなるもの、透明基材中にて反射性板状粒子が所定方向に向けて整列配置されたものが例示できる。
 太陽電池素子3は、受光面が集光板2の第1端面2cに対向して配置されており、第1端面2cと光学接着されていることが好ましい。
 太陽電池素子3は、公知のものでよく、シリコン系太陽電池、化合物系太陽電池、量子ドット太陽電池、有機系太陽電池等が例示できる。これらの中でも、太陽電池素子3は、より高い効率で発電できることから、化合物半導体を用いた化合物系太陽電池又は量子ドット太陽電池であることが好ましい。
 前記化合物系太陽電池としては、InGaP、GaAs、InGaAs,AlGaAs、Cu(In,Ga)Se、Cu(In,Ga)(Se,S)、CuInS、CdTe、CdS等を用いたものが例示できる。
 前記量子ドット太陽電池としては、Si、InGaAs等を用いたものが例示できる。
 ただし、価格や用途によっては、シリコン系太陽電池、有機系太陽電池等の他の種類の太陽電池が好ましい場合もある。
 なお、図1~2では、太陽電池素子3を集光板2の一つの第1端面2cのみに設置した例を示したが、太陽電池素子3は集光板2の複数の端面に設置してもよい。太陽電池素子3を集光板2の一部の端面(1辺、2辺又は3辺)に設置する場合には、太陽電池素子3が設置されていない端面に、反射層6を設置することが好ましい。
 図2に示すように枠体5は、アルミニウム等のフレームからなり、集光板2の主面2aを外部に臨ませ、その状態で集光板2の四周を保持するとともに、太陽電池素子3も集光板2とともに保持している。集光板2の主面2aを外部に臨ませる開口部5aには、ガラス等の透明部材が嵌め込まれていてもよい。このような構成のもとに集光板2は、枠体5から外部に臨む主面2aが光入射面となっており、集光板2の第1端面2cが光射出面となっている。また、主面2aから入射した外光(太陽光)の一部は、背面2bを透過して反射板4に入射するようになっている。
 太陽電池モジュール1は、図1~2に示したように、集光板2の主面2aを太陽Sに対向させて設置される。そして、太陽電池モジュール1は、太陽Sからの光(太陽光L)の一部を入射光L1として集光板2の主面2aで受光し、集光板2中の蛍光体8に入射光L1が吸収され、蛍光体8が発光する。このとき生じた蛍光体8からの放射光は、集光板2の透明基材7中を伝播し、第1端面2cから射出され、太陽電池素子3に導入される。このように、前記射出光を受光することで、太陽電池素子3は電力を発生する。
 なお、本実施形態では、集光板2として、透明基材7中に蛍光体8が分散されたものを示したが、集光板はこのような構成に限定されず、例えば、図3A又は図3Bに示す構成のものでもよい。
 図3Aに示す集光板は、アクリル板等からなる板状の透明基材7の表面に、蛍光体(図示せず)を分散させた塗料を塗布し、蛍光体層26を形成したものである。前記塗料は、蛍光体とこれを分散させる透明樹脂とを含有するものである。すなわち、この塗料中の透明樹脂が、蛍光体を均一に分散させる透明基材となる。
 図3Bに示す集光板は、前記蛍光体層26の表面(透明基材7とは反対側の表面)に、さらに透明保護層(透明層)27を設けたものである。
 透明保護層27の材質としては、各種の透明樹脂が例示できる。例えば、透明保護層27は、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリ塩化ビニリデン又はポリアミド等からなる透明樹脂フィルムを、蛍光体層26上にラミネートすることで形成できる。また、透明保護層27は、酢酸セルロース、エチルセルロース、セルロースアセテートブチレート等のセルロース誘導体や、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニルコポリマー、ポリカーボネート、ポリビニルブチラール、ポリメチルメタクリレート、ポリビニルホルマール、ポリウレタン等の透明樹脂を溶解させた塗布液を調製し、これを蛍光体層26上に塗布した後、乾燥させることによっても形成できる。
 また、本実施形態の太陽電池モジュール1は、建物の平面からなる側壁面に設置するものとして、図4Aに示すような、平板状の集光板2及び平板状の反射板(反射体)4を用い、これによって全体を平板状に構成したものであるが、太陽電池モジュールは、設置面の形状等に応じて、全体形状を調節してもよい。
 このような平板状以外の太陽電池モジュールとしては、表面が曲面状である建物の壁面に対応させて、図4Bに示すように、全体を湾曲させた曲板状のものが例示できる。
この場合、集光板2としては、図3A、図3Bに示したような、透明基材の表面に蛍光体を分散させた塗料を塗布し、蛍光体層を形成したものが好ましい。透明基材を所望の湾曲形状(曲板状)に形成しておくことで、その表面に所望の湾曲形状の蛍光体層を形成できる。また、反射板としては、基板を所望の湾曲形状(曲板状)に形成し、その表面上に再帰性シートを貼設したものが例示できる。
 なお、上記の曲板状の集光板を、建物の平板状の壁面に設置してもよい。この場合の反射板は、上記と同様に曲板状でもよいし、平板状でもよい。
 また、太陽電池モジュールは、建物の屋根や柱、電柱等にも設置できる。例えば、屋根に設置する場合には、図4Bに示した曲板状のものと同様の手法で、集光板や反射板を瓦状や波状等に形成し、太陽電池モジュール全体を瓦状や波状等に形成すればよい。
 また、電柱等の柱に設置する場合には、図4Cに示すように中空円柱状(円筒状)の集光板2と、その内周面側に配置された中空円柱状(円筒状)の反射体4と、集光板2の端面に配置された中空円柱状(円筒状)又はリング状の太陽電池素子3とを備えた、全体が中空円柱状(円筒状)の太陽電池モジュールを形成し、これを柱に外挿して設置するのが好ましい。なお、中空部の形状は、ここでは、その軸に対して垂直な方向の形状が円形の場合について例示しているが、外挿する対象物の形状に応じて適宜調節すればよく、円形に限定されるものではない。
 また、図4Dに示すように円柱状の集光部材2eを平面状に並べて見かけ上板状体、すなわち集光板2として設置してもよい。集光部材2eの一方の端面(端部)には、太陽電池素子3が配置されている。さらに、集光部材2eを柔軟に互いに連結させることで、平面でない曲面などに自由に形を変えて設置することもできる。また、すだれのような形状に構成することで、必要なときに展開して集光を行い、必要でないときには巻き取って収納するなどの調整も可能である。
 また、本発明における集光板としては、図5Aに示すようなプリズム形状を有する集光板28を用いてもよい。この集光板28は、光入射面となる主面28aと反対側の背面に、プリズム面29を有するものである。プリズム面29は、図5Bに示すように一方の端面側に向くスロープ面29aを多数形成したもので、入射した光L1がこのスロープ面29aにて屈折することにより、図5Aに示すように一方の端面側に配置された太陽電池素子3に射出されるようになっている。また、このような光L1と同様に伝播する蛍光体8からの放射光も、同様に太陽電池素子3に射出されるようになっている。
 さらに、本発明における集光板としては、図5Cに示すように、プリズム面29を有し、且つ厚さが太陽電池素子3から遠ざかるにつれて徐々に薄くなるように形成された、クサビ形状の集光板30を用いてよい。このように形成されることで集光板30は、入射した光L1及び蛍光体8からの放射光が、その内部を全反射する回数が減り、光がスロープ面29aで屈折されることにより生じる光のロスが低減する。したがって、光の取り出し効率が高くなる。
 また、本発明における集光板としては、図5Dに示すように、前記集光板2と、プリズム形状を有する形状集光板28(30)とを積層したタンデム構造としたものも例示できる。この場合、プリズム形状を有する形状集光板28(30)は、化合物(I)を含んでいてもよいし、含んでいなくてもよい。
<太陽光発電装置>
 本発明に係る太陽光発電装置は、上記の本発明に係る太陽電池モジュールを備えたことを特徴とする。
 図6は、本発明に係る太陽光発電装置の一実施形態の概略構成図である。
 ここに示す太陽光発電装置1000は、太陽Sからの太陽光のエネルギーを電力に変換する太陽電池モジュール1001と、太陽電池モジュール1001から出力された直流電力を交流電力に変換するインバータ(直流/交流変換器)1004と、太陽電池モジュール1001から出力された直流電力を蓄える蓄電池1005と、を備えている。
 太陽電池モジュール1001は、上記の本発明に係る太陽電池モジュールであり、太陽光を集光する集光部材(集光板)1002と、集光部材1002によって集光された太陽光によって発電を行う太陽電池素子1003とを備えている。
 太陽光発電装置1000は、外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。
 このような構成の太陽光発電装置1000は、上記の本発明に係る太陽電池モジュールを備えているため、発電量に優れる。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。
<化合物(I)の製造>[実施例1]
 下記手順に従い、化合物(I)として、下記式(1A)-101及び(1B)-101で表される化合物(以下、それぞれ「化合物(1A)-101」、「化合物(1B)-101」と略記する)を製造した。
(化合物(Iac)製造工程)
 2000ml三つ口フラスコに、アルゴンガス気流下、フェニルボロン酸(56g、0.46mol)、4-ブロモ-1,2-ジメトキシベンゼン(50g、0.23mol)、炭酸ナトリウム(117g、1.10mol)、PdCl(PPh(5.0g、6.2mmol)、トルエン(1000ml)、水(930ml)を仕込んだ。
 次いで、反応液を還流するまで昇温し、9時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、不溶物をセライトろ過により除去した。そして、ろ液を分液して、有機層を水(500ml)で2回洗浄し、さらに飽和食塩水(500ml)で洗浄した後、無水硫酸マグネシウムを用いて有機層を脱水し、活性炭ろ過を行った。そして、得られたろ液を濃縮した後、エタノールを加えて晶析し、結晶をろ取して乾燥させることにより、化合物(Iac)として下記式(1)-101acで表される化合物(以下、「化合物(1)-101ac」と略記する)を得た(収量26g、収率52.8%)。
 化合物(1)-101acが得られたことは、NMR測定及びIR測定により確認した。なお、化合物(1)-101acは、化合物(Iabc)にも該当するものである。
Figure JPOXMLDOC01-appb-C000010
 
(化合物(Iabb)製造工程)
 2000ml三つ口フラスコに、1,2-ジメトキシベンゼン(50g、0.36mol)、化合物(1)-101ac(19.3g、0.09mol)、塩化鉄(III)(117g、0.72mol)、ジクロロメタン(1250ml)を仕込み、室温で2時間撹拌して反応させた。
 反応終了後、反応液を氷水(600ml)に加えて分液し、有機層を水(500ml)で2回洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて有機層を脱水し、活性炭ろ過を行った。そして、得られたろ液を濃縮した後、エタノールを加えて晶析し、結晶をろ取してエタノールでスラリー洗浄し、乾燥させることにより、化合物(Iabb)として下記式(1)-101abbで表される化合物(以下、「化合物(1)-101abb」と略記する)を得た(収量17.2g、収率54.9%)。
 化合物(1)-101abbが得られたことは、MS測定、NMR測定及びIR測定により確認した。例えば、MS測定では、親イオンピークm/z=348のスペクトルを確認した。
Figure JPOXMLDOC01-appb-C000011
 
(化合物(Iaba)製造工程)
 500ml三つ口フラスコに、化合物(1)-101abb(9g、26mmol)、47%臭化水素酸(187ml)、酢酸(187ml)を仕込んだ。
 次いで、反応液を還流するまで昇温し、一夜撹拌して反応させた。このとき、反応の進行に伴い、反応液は均一な液となった。
 反応終了後、反応液を室温まで冷却し、濃縮した後、炭酸水素ナトリウムを用いて得られた濃縮物のpHを3に調整し、酢酸エチルで抽出を行った。そして、抽出液を水(50ml)で3回洗浄し、さらに飽和食塩水で洗浄した後、活性炭及び無水硫酸マグネシウムを加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮乾固した後、析出した結晶を取り出して乾燥させることにより、化合物(Iaba)として下記式(1)-101abaで表される化合物(以下、「化合物(1)-101aba」と略記する)を得た(収量7.4g、収率98.7%)。
 化合物(1)-101abaが得られたことは、NMR測定及びIR測定により確認した。例えば、NMR測定では、脱メチル化されたことを確認し、IR測定では、-OH伸縮振動を確認した。
Figure JPOXMLDOC01-appb-C000012
 
(化合物(Iab)製造工程(2))
 200ml三つ口フラスコに、化合物(1)-101aba(5g、17.1mmol)、1-ブロモ-2-エチルヘキサン(19.8g、102.6mmol)、炭酸カリウム(14.2g、102.6mmol)、N,N-ジメチルホルムアミド(DMF、150ml)を仕込んだ。
 次いで、反応液を90℃まで昇温し、5時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、水(300ml)及びジクロロメタン(100ml)の混合溶媒中に加えて分液し、水層をジクロロメタン(50ml)で抽出した。そして、抽出した有機層を合一し、水(50ml)で2回洗浄し、さらに飽和食塩水で洗浄した後、活性炭及び無水硫酸マグネシウムを加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮して、ヘキサン/酢酸エチル(5/1、体積比)の混合溶媒を用いて濃縮残分をシリカゲル(65g)に通すカラムクロマトグラフィーを行い、得られたフラクションを濃縮乾固することにより、オイル状の化合物(Iab)として下記式(1)-101abで表される化合物(以下、「化合物(1)-101ab」と略記する)を得た(収量12.9g、収率101.5%)。
 化合物(1)-101abが得られたことは、MS測定、NMR測定及びIR測定により確認した。例えば、MS測定では、親イオンピークm/z=741のスペクトルを確認した。また、NMR測定では、2-エチルヘキシルオキシ基の存在を確認し、IR測定では、-OH伸縮振動の消失を確認した。
Figure JPOXMLDOC01-appb-C000013
 
(化合物(Iaa)製造工程)
 500ml三つ口フラスコに、化合物(1)-101ab(12.4g、16.7mmol)、ジクロロメタン(250ml)を仕込み、-5~0℃まで冷却した。ここへ、臭素(16.0g、100.0mmol)をジクロロメタン(250ml)に溶解させたものを、0℃以下となるように滴下し、滴下終了後、2時間撹拌して、薄層クロマトグラフィー(TLC)により、反応終了を確認した。
 次いで、反応液をチオ硫酸ナトリウム水溶液中に加えて、撹拌後、分液し、有機層を水(100ml)で2回洗浄し、さらに飽和食塩水(100ml)で洗浄した後、活性炭及び無水硫酸マグネシウムを加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮して、ヘキサン/クロロホルム(9/1、体積比)の混合溶媒を用いて濃縮残分をシリカゲル(300g)に通すカラムクロマトグラフィーを行い、トリブロム体、テトラブロム体等の不純物を除去して、目的物を含むフラクション(6g)をエタノール(30ml)中に分散させ、タール状の固形物をろ取し、乾燥させることにより、化合物(Iaa)として下記式(1)-101aaで表される化合物(以下、「化合物(1)-101aa」と略記する)を得た(収量4.6g、収率30.7%)。
 化合物(1)-101aaが得られたことは、MS測定、NMR測定及びIR測定により確認した。例えば、MS測定では、親イオンピークm/z=898のスペクトルを確認した。
Figure JPOXMLDOC01-appb-C000014
 
(化合物(Ia)製造工程)
 200ml三つ口フラスコに、アルゴンガス気流下、トリス(ジベンジリデンアセトン)ジパラジウム(0.10g、0.11mmol)、rac-BINAP(0.14g、0.22mmol)、トルエン(140ml)を仕込み、110℃で30分間撹拌した。
次いで、これを室温まで冷却し、ここへ、化合物(1)-101aa(4g、4.4mmol)、ベンゾフェノンイミン(2.06g、11.4mmol)、ナトリウムt-ブトキシド(1.09g、11.4mmol)を添加し、反応液を還流するまで昇温し、一夜撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、不溶物をセライトろ過により除去した。そして、母液に水(50ml)を加えて撹拌し、分液して、有機層を水(50ml)で洗浄し、さらに飽和食塩水(50ml)で洗浄した後、活性炭及び無水硫酸マグネシウムを加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮して、濃縮残分をエタノール(35ml)中に分散させ、結晶をろ取し、乾燥させることにより、2個の式「-N=C(C」で表される基を有する前記中間体(2,3-ジベンゾフェノンイミン-6,7,10,11-テトラキス(2-エチルヘキシロキシ)トリフェニレン)を得た(収量4.5g、収率93.7%)。
 前記中間体が得られたことは、NMR測定及びIR測定により確認した。例えば、H-NMR測定では、「アルキル基のH数:ベンゼン環のH数」の比が、72.4:26.1であることを確認した。
 100ml三つ口フラスコに、前記中間体(4g、3.64mmol)、2M塩酸(3.8ml、7.64mmol)、テトラヒドロフラン(THF、100ml)を仕込み、30分間撹拌して反応させた。
 反応終了後、反応液に水(100ml)及び酢酸エチル(200ml)を加えて撹拌し、分液し、水層を酢酸エチル(50ml)で抽出した。そして、抽出した有機層を合一し、水(50ml)で洗浄し、さらに飽和食塩水(50ml)で洗浄した後、活性炭及び無水硫酸マグネシウムを加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮し、エタノール(50ml)を加えて溶解させ、さらに25%水酸化ナトリウム水溶液を数滴加えて、溶液のpHを9~10に調整した後、ここに水及びジエチルエーテルを加えて撹拌し、抽出を行った。そして、得られた有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムを加えて脱水し、濃縮した。ヘキサン/酢酸エチル(5/1、体積比)の混合溶媒を用いて濃縮残分をシリカゲル(60g)に通すカラムクロマトグラフィーを行い、目的物を含むフラクションを濃縮することにより、化合物(Ia)として下記式(1)-101aで表される化合物(以下、「化合物(1)-101a」と略記する)を得た(収量1.9g、収率61.9%)。
 化合物(1)-101aが得られたことは、MS測定、NMR測定及びIR測定により確認した。例えば、MS測定では、親イオンピークm/z=771のスペクトルを確認した。また、H-NMR測定では、「アルキル基のH数:ベンゼン環のH数」の比が、68.4:6(理論値は68:6)であることを確認した。
Figure JPOXMLDOC01-appb-C000015
 
(化合物(Id)製造工程)
 1000ml三つ口フラスコに、アルゴンガス気流下、クロロ硫酸(500g、4.29mol)を仕込み、ここに室温下、3,4,9,10-ペリレンテトラカルボン酸二無水物(50g、0.127mol)を20分間かけて添加し、次いで、ヨウ素(8.5g、0.024mol)を添加した。
 次いで、反応液を70℃まで昇温し、6時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、氷水(2000ml)でクエンチしたところ、反応液は暗褐色から朱色に変色し、結晶が析出した。この結晶をろ取し、水(1000ml)で3回スラリー洗浄した後、アセトニトリル(500ml)で3回スラリー洗浄し、ろ取した結晶を乾燥させることにより、化合物(Id)として下記式(1)-101dで表される化合物(以下、「化合物(1)-101d」と略記する)を得た(収量50.1g、収率74.4%)。
 化合物(1)-101dが得られたことは、MS測定、イオンクロマトグラフィー及びIR測定により確認した。例えば、MS測定では、分子イオンピークm/z=530のスペクトルを確認した。また、イオンクロマトグラフィーでは、酸素燃焼法により塩素含量が25.1%(理論値26.8%)であることを確認した。
Figure JPOXMLDOC01-appb-C000016
 
(化合物(Ibb)製造工程)
 300ml三つ口フラスコに、化合物(1)-101d(20g、37.7mmol)、n-ペンチルアミン(13.1g、150.8mmol)、プロピオン酸(225g)を仕込んだ。
 次いで、反応液を140℃まで昇温し、24時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、結晶を析出させてろ取し、この結晶を10%炭酸水素ナトリウム水溶液(400ml)でスラリー洗浄した後、水(200ml)でスラリー洗浄し、ろ取した結晶をメタノールでかけ洗いして乾燥させることにより、化合物(Ibb)として下記式(1)-101bbで表される化合物(以下、「化合物(1)-101bb」と略記する)を得た(収量21.7g、収率86.1%)。
 化合物(1)-101bbが得られたことは、MS測定、NMR測定及びIR測定により確認した。例えば、MS測定では、親イオンピークm/z=668のスペクトルを確認した。また、NMR測定では、n-ペンチル基の存在を確認した。
Figure JPOXMLDOC01-appb-C000017
 
(化合物(Iba)製造工程)
 1000ml三つ口フラスコに、化合物(1)-101bb(20g、0.03mol)、化合物(Ic)として下記式(1)-101cで表される化合物(4-ドデシルフェノール、以下、「化合物(1)-101c」と略記する)(47.2g、0.18mol)、炭酸カリウム(24.8g、0.18mol)、N-メチルピロリドン(600ml)を仕込んだ。
 次いで、反応液を140℃まで昇温し、24時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、2N塩酸中に加えて、タール状固形物をろ取し、これを水(1000ml)でスラリー洗浄した後、メタノール(1000ml)で2回スラリー洗浄し、さらにタール状固形物をろ取した(ウエット状態で65g)。このタール状固形物をジクロロメタン(300ml)に溶解させ、ろ過して得られたろ液を、液量が200ml程度になるまで濃縮した後、ジクロロメタン/ヘキサン(1/1、体積比)の混合溶媒を用いて濃縮残分をシリカゲル(250g)に通すカラムクロマトグラフィーを行い、タール状の化合物(Iba)として下記式(1)-101baで表される化合物(以下、「化合物(1)-101ba」と略記する)を得た(収量23.0g)。
 化合物(1)-101baが得られたことは、NMR測定及びIR測定により確認した。例えば、H-NMR測定では、「アルキル基のH数:ベンゼン環のH数」の比が、123.76:20.02(理論値は121:20)であることを確認した。
Figure JPOXMLDOC01-appb-C000018
 
(化合物(Ib)製造工程(2))
 300ml三つ口フラスコに、化合物(1)-101ba(22g、14mmol)、85%水酸化カリウム(98g、1490mmol)、2-プロパノール(220m)を仕込んだ。
 次いで、反応液を還流するまで昇温し、72時間撹拌して反応させた。このとき、反応液は赤紫色から緑色に変色した。
 反応終了後、反応液を室温まで冷却し、8%塩酸でpHを4に調整して、析出したタール状固形物をろ取し、これを水(500ml)で2回スラリー洗浄した後、メタノール(500ml)で2回スラリー洗浄して、固形物をろ取し、室温で乾燥させることにより、化合物(Ib)として下記式(1)-101bで表される化合物(以下、「化合物(1)-101b」と略記する)を得た(収量14g、収率70%)。
 化合物(1)-101bが得られたことは、NMR測定及びIR測定により確認した。
例えば、H-NMR測定では、「アルキル基のH数:ベンゼン環のH数」の比が、104.80:19.98(理論値は100:20)であることを確認した。
Figure JPOXMLDOC01-appb-C000019
 
(化合物(I)製造工程)
 100ml三つ口フラスコに、化合物(1)-101b(0.75g、0.52mmol)、化合物(1)-101a(1.6g、2.08mmol)、ピラジン(0.16g、2.08mmol)、フェノール(16g)、トルエン(16ml)を仕込んだ。
 次いで、反応液を昇温し、系内で副生した水をトルエンとの共沸脱水により系外に取り出した。そして、留出温度100℃でフェノール(16g)を加え、反応液を145℃まで昇温し、さらに24 時間撹拌して反応させた。
 反応終了後、反応液を室温まで冷却し、メタノール(160ml)中に加えて、析出した結晶をろ取し、これをジクロロメタン(25ml)に溶解させ、ろ過した。そして、ジクロロメタン/ヘキサン(1/1、体積比)の混合溶媒を用いて、得られたろ液をシリカゲル(120g)に通すカラムクロマトグラフィーを行い、目的物を含むフラクション(0.9g)をジクロロメタン(20ml)に溶解させ、ここに活性炭を加えて撹拌し、ろ過を行った。そして、得られたろ液を濃縮乾固して、得られた固形物をメタノールでスラリー洗浄し、室温で乾燥させることにより、化合物(1A)-101及び(1B)-101の混合物を得た。
 化合物(1A)-101及び(1B)-101が得られたことは、NMR測定、UV-VIS吸収スペクトル測定、蛍光スペクトル測定及びIR測定により確認した。例えば、H-NMR測定では、「アルキル基のH数:ベンゼン環のH数」の比が、276.0:36.9であることを確認した。このときのH-NMRのスペクトルデータを図7に示す。また、UV-VIS吸収スペクトル測定では、波長範囲500~800nmにおいて、吸収極大値(λmax)が波長626nm及び674nmで観測された。そして、蛍光スペクトル測定では、波長720nmに極大値を有する蛍光スペクトルが観測された。なお、化合物(1A)-101及び(1B)-101は、ほぼ同じ吸光特性及び発光特性を示し、どちらも上記の吸収極大値を有しており、かつ同様の蛍光スペクトルを有していると考えられる。このときのUV-VIS吸収スペクトル及び蛍光スペクトルのデータを図8に示す。図8のグラフのうち、左側の縦軸は吸光度の目盛りを示し、右側の縦軸は蛍光強度の目盛りを示している。また、IRのスペクトルデータを図9に示す。
Figure JPOXMLDOC01-appb-C000020
 
 化合物(1A)-101は、光の吸収ピーク波長が626nm及び674nmで、十分に長波長の光を吸収可能である。また、発光のピーク波長が720nmであり、放射光(蛍光)は十分に長波長である。さらに、蛍光量子収率は10%である。
 なお、Gaussian09(Gaussian社製)を用い、B3LYP/6-31+g(d)により求めた、化合物(1A)-101の光の吸収ピーク波長は696nmであり、上記の実測値と近い値であった。
[実施例2]
 化合物(Ia)として化合物(1)-101aに代えて、下記式(1)-102aで表される化合物を使用すること以外は、実施例1と同様の方法で、化合物(I)として下記式(1A)-102及び(1B)-102で表される化合物(以下、それぞれ「化合物(1A)-102」、「化合物(1B)-102」と略記する)を製造する。
 Gaussian09(Gaussian社製)を用い、B3LYP/6-31+g(d)により求めた、化合物(1A)-102及び(1B)-102の光の吸収ピーク波長は696nmである。
Figure JPOXMLDOC01-appb-C000021
 
 なお、化合物(1)-102aは、化合物(Iab)製造工程(2)において、1-ブロモ-2-エチルヘキサンに代えてシクロヘキシルブロミドを用いること以外は、上記の化合物(1)-101aの場合と同様の方法で製造する。
[実施例3]
 化合物(Ia)として化合物(1)-101aに代えて、下記式(1)-103aで表される化合物を使用すること以外は、実施例1と同様の方法で、化合物(I)として下記式(1A)-103及び(1B)-103で表される化合物(以下、それぞれ「化合物(1A)-103」、「化合物(1B)-103」と略記する)を製造する。
 Gaussian09(Gaussian社製)を用い、B3LYP/6-31+g(d)により求めた、化合物(1A)-103及び(1B)-103の光の吸収ピーク波長は696nmである。
Figure JPOXMLDOC01-appb-C000022
 
 なお、化合物(1)-103aは、化合物(Iaba)製造工程、及び化合物(Iab)製造工程(2)を行わず、化合物(Iabb)製造工程で得られた化合物(1)-101abbを、化合物(Iaa)製造工程において、化合物(1)-101abに代えて使用すること以外は、上記の化合物(1)-101aの場合と同様の方法で製造する。
<太陽電池モジュールの製造>[実施例4]
 蛍光体8として、実施例1~3の化合物(I)をそれぞれ別々に用い、図1~3に示す太陽電池モジュール1を製造する。
[実施例5]
 蛍光体8として、実施例1~3の化合物(I)をそれぞれ別々に用い、さらに化合物(I)以外のその他の蛍光体も併用して、図1~3に示す太陽電池モジュール1を製造する。
 本発明は、太陽電池モジュール及び太陽光発電装置に利用可能である。
 1,1001・・・太陽電池モジュール、2,28,30,1002・・・集光板(導光体)、2a,28a・・・集光板の主面(光入射面)、2b・・・集光板の第1端面(光射出面)、3,1003・・・太陽電池素子、7・・・透明基材、8・・・蛍光体(化合物(I))、26・・・蛍光体層、1000・・・太陽光発電装置、L・・・太陽光、L1・・・入射光

Claims (7)

  1.  下記一般式(IA)又は(IB)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     

     (式中、R及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、複数個のR及びRは互いに同一でも異なっていてもよく;Rは水素原子又はアルキル基であり、複数個のRは互いに同一でも異なっていてもよい。)
  2.  前記R及びRが、それぞれ独立に水素原子、炭素数1~22のアルキル基又はアルコキシ基、あるいは炭素数6~22のアリール基又はアリールオキシ基であり、
     前記Rが水素原子又は炭素数1~22のアルキル基である請求項1に記載の化合物。
  3.  前記R及びRが、それぞれ独立に水素原子、炭素数1~18のアルキル基又はアルコキシ基、あるいは炭素数6~10のアリール基又はアリールオキシ基であり、
     前記Rが水素原子又は炭素数6~18のアルキル基である請求項2に記載の化合物。
  4.  すべての前記Rが水素原子以外の基である請求項1~3のいずれか一項に記載の化合物。
  5.  請求項1~4のいずれか一項に記載の化合物を用いたことを特徴とする太陽電池モジュール。
  6.  光入射面及び該光入射面よりも面積が小さい光射出面を有する導光体、並びに前記光射出面からの射出光を受光して、電力を発生する太陽電池素子を備え、
     前記導光体は、さらに前記化合物を含み、前記光入射面からの入射光が前記化合物に吸収されて生じた前記化合物からの放射光を、前記射出光とすることを特徴とする請求項5に記載の太陽電池モジュール。
  7.  請求項5又は6に記載の太陽電池モジュールを備えたことを特徴とする太陽光発電装置。
PCT/JP2014/054362 2013-02-27 2014-02-24 化合物、太陽電池モジュール及び太陽光発電装置 WO2014132929A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015502915A JP6195423B2 (ja) 2013-02-27 2014-02-24 化合物、太陽電池モジュール及び太陽光発電装置
US14/769,936 US9403825B2 (en) 2013-02-27 2014-02-24 Compound, solar cell module, and photovoltaic power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-037938 2013-02-27
JP2013037938 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132929A1 true WO2014132929A1 (ja) 2014-09-04

Family

ID=51428193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054362 WO2014132929A1 (ja) 2013-02-27 2014-02-24 化合物、太陽電池モジュール及び太陽光発電装置

Country Status (3)

Country Link
US (1) US9403825B2 (ja)
JP (1) JP6195423B2 (ja)
WO (1) WO2014132929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055540A (ja) * 2021-01-07 2021-04-08 株式会社Lixil 透明基材およびブラインド

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018013621A1 (en) * 2016-07-12 2018-01-18 Rensselaer Polytechnic Institute Solar power harvesting building envelope
US11368045B2 (en) 2017-04-21 2022-06-21 Nimbus Engineering Inc. Systems and methods for energy storage using phosphorescence and waveguides
EP3762969A4 (en) * 2018-03-05 2021-12-22 Nimbus Engineering Inc. SYSTEMS AND METHODS OF ENERGY ACCUMULATION USING PHOSPHORESCENCE AND WAVE GUIDES
WO2019213655A1 (en) 2018-05-04 2019-11-07 Nimbus Engineering Inc. Regenerative braking using phosphorescence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798424B1 (ko) * 2006-07-25 2008-01-28 한국화학연구원 아릴 융합고리를 포함하는 테트라플루오로벤지미다졸화합물
JP2009528277A (ja) * 2006-02-17 2009-08-06 ビーエーエスエフ ソシエタス・ヨーロピア フッ素化されたリレンテトラカルボン酸誘導体及びそれらの使用
JP2010525122A (ja) * 2007-04-24 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア フッ素化染料および電気泳動ディスプレイ装置におけるそれらの使用
WO2014010305A1 (ja) * 2012-07-09 2014-01-16 シャープ株式会社 化合物、太陽電池モジュール及び太陽光発電装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815666B2 (ja) 1990-03-22 1998-10-27 日本板硝子株式会社 太陽エネルギー回収窓

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528277A (ja) * 2006-02-17 2009-08-06 ビーエーエスエフ ソシエタス・ヨーロピア フッ素化されたリレンテトラカルボン酸誘導体及びそれらの使用
KR100798424B1 (ko) * 2006-07-25 2008-01-28 한국화학연구원 아릴 융합고리를 포함하는 테트라플루오로벤지미다졸화합물
JP2010525122A (ja) * 2007-04-24 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア フッ素化染料および電気泳動ディスプレイ装置におけるそれらの使用
WO2014010305A1 (ja) * 2012-07-09 2014-01-16 シャープ株式会社 化合物、太陽電池モジュール及び太陽光発電装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERIBERT QUANTE ET AL.: "Synthesis of Soluble Perylenebisamidine Derivatives. Novel Long-Wavelength Absorbing and fluorescent Dyes", CHEMISTRY OF MATERIALS, vol. 9, no. 2, 1997, pages 495 - 500 *
MICHAEL G. DEBIJE ET AL.: "Promising fluorescent dye for solar energy conversion based on a perylene perinone", APPLIED OPTICS, vol. 50, no. 2, pages 163 - 169 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055540A (ja) * 2021-01-07 2021-04-08 株式会社Lixil 透明基材およびブラインド

Also Published As

Publication number Publication date
US9403825B2 (en) 2016-08-02
JP6195423B2 (ja) 2017-09-13
US20160002238A1 (en) 2016-01-07
JPWO2014132929A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6195423B2 (ja) 化合物、太陽電池モジュール及び太陽光発電装置
JP6176858B2 (ja) 化合物、太陽電池モジュール及び太陽光発電装置
CN105073947B (zh) 具有多种光稳定的有机生色团的波长转换膜
JP5976675B2 (ja) 波長変換ペリレンジエステル発色団および発光膜
RU2670218C2 (ru) Цианированные нафталинбензимидазольные соединения
JP6608364B2 (ja) 色素化合物
JP6661872B2 (ja) 化合物およびこれを含む色変換フィルム
Mori et al. Luminescent solar concentrators based on PMMA films obtained from a red-emitting ATRP initiator
Mateen et al. Luminescent solar concentrators based on thermally activated delayed fluorescence dyes
CN105026518A (zh) 用于波长转换的高荧光且光稳定性发色团
KR20170003635A (ko) 시안화 페릴렌 화합물
Katsagounos et al. Enhanced photon harvesting in silicon multicrystalline solar cells by new lanthanide complexes as light concentrators
Li et al. A structurally modified perylene dye for efficient luminescent solar concentrators
JP2014240371A (ja) 化合物、太陽電池モジュール及び太陽光発電装置
Li et al. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units
WO2015023574A1 (en) Luminescent solar concentrator utilizing organic photostable chromophore compounds
Meti et al. Luminescent solar concentrator based on large-Stokes shift tetraphenylpyrazine fluorophore combining aggregation-induced emission and intramolecular charge transfer features
JP2014114229A (ja) 化合物、太陽電池モジュール及び太陽光発電装置
JP6772126B2 (ja) エネルギーの通過を制御するデバイス
JP2013084872A (ja) 太陽光集光効率を高めるための、感圧性接着剤層を有する波長変換フィルム
Cavazzini et al. Intimately bound coumarin and bis (alkylaminostyryl) benzene fragments: synthesis and energy transfer
CN109988141B (zh) 基于热激活延迟荧光的一类具有上转换发光性能的荧光素衍生化合物的应用
Li et al. Enhancing the output current of a CdTe solar cell via a CN-free hydrocarbon luminescent down-shifting fluorophore with intramolecular energy transfer and restricted internal rotation characteristics
CN110759935A (zh) 基于氟硼络合物的蓝色热活性延迟荧光材料及其应用
JP2014040380A (ja) 化合物、太陽電池モジュール及び太陽光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756980

Country of ref document: EP

Kind code of ref document: A1