WO2014132627A1 - 厚鋼板及び厚鋼板の製造方法 - Google Patents
厚鋼板及び厚鋼板の製造方法 Download PDFInfo
- Publication number
- WO2014132627A1 WO2014132627A1 PCT/JP2014/000983 JP2014000983W WO2014132627A1 WO 2014132627 A1 WO2014132627 A1 WO 2014132627A1 JP 2014000983 W JP2014000983 W JP 2014000983W WO 2014132627 A1 WO2014132627 A1 WO 2014132627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling
- steel plate
- thick steel
- less
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to a thick steel plate used for offshore structures, construction machinery, bridges, pressure vessels, storage tanks, buildings, etc., and having excellent toughness even in a low temperature environment, and a method for producing the same.
- Patent Documents 1 to 8 disclose methods for improving the toughness of a steel sheet by refining the steel sheet structure.
- Patent Documents 1 and 2 may have insufficient low-temperature toughness (toughness in a low-temperature environment) at the center of the plate thickness depending on the application.
- the present inventors have used steel sheets having a specific component composition, the area fraction of polygonal ferrite, the effective crystal grain size at the center of the plate thickness, the effective crystal grain size By adjusting the standard deviation, it was found that the steel sheet has high tensile strength and yield strength and is excellent in low-temperature toughness, and the present invention has been completed.
- the present invention provides the following.
- 1st invention is the mass%, C: 0.04-0.15%, Si: 0.1-2.0%, Mn: 0.8-2.0%, P: 0.025% or less , S: 0.020% or less, Al: 0.001 to 0.100%, Nb: 0.010 to 0.050%, Ti: 0.005 to 0.050%, and further 0.5% ⁇ Cu + Ni + Cr + Mo ⁇ Cu, Ni, Cr, and Mo are included so as to satisfy 3.0%, N is included so that 1.8 ⁇ Ti / N ⁇ 4.5 is satisfied, and the balance is Fe and inevitable impurities.
- a thick steel plate characterized in that the area fraction of ferrite is less than 10%, the effective crystal grain size at the center of the plate thickness is 15 ⁇ m or less, and the standard deviation of the effective crystal grain size is 10 ⁇ m or less.
- V 0.01 to 0.10%
- W 0.01 to 1.00%
- B 0.0005 to 0.0050%
- Ca 0.0005 to 0.0060 %
- REM 0.0020 to 0.0200%
- Mg 0.0002 to 0.0060%
- a steel plate having the component composition described in the first invention or the second invention is heated to 950 ° C. or higher and 1150 ° C. or lower, and after the heating step, the plate thickness center temperature is 930 ° C.
- a recrystallization temperature region rolling step in which rolling with a rolling shape ratio of 0.5 or more and a rolling reduction per pass of 6.0% or more in a temperature range of 1050 ° C. or less and 3 passes or more, and the recrystallization temperature region
- a non-recrystallization temperature region rolling step in which, after the rolling step, the rolling thickness ratio is 0.5 or more and the rolling reduction is 35% or more in a temperature range where the plate thickness center temperature is less than 930 ° C.
- cooling is started from a temperature where the sheet thickness center temperature is Ar 3 + 15 ° C. or more, and the average cooling rate between the sheet thickness center temperatures of 700 ° C. and 500 ° C. is 3.5 ° C. / Cooler that cools under conditions of more than / sec It characterized by having a a method for producing the first or the steel plate of the second invention.
- the fourth invention is the manufacturing method according to the third invention, further comprising a tempering step of performing a tempering treatment at a temperature of 700 ° C. or lower after the cooling step.
- the thick steel plate of the present invention and the thick steel plate manufactured by the manufacturing method of the present invention have high tensile strength and yield strength, and have excellent low temperature toughness.
- FIG. 1 is a diagram showing conditions for a thermal expansion test in determining Ar 3 .
- the thick steel plate of the present invention is, in mass%, C: 0.04 to 0.15%, Si: 0.1 to 2.0%, Mn: 0.8 to 2.0%, P: 0.025%
- Ti: 0.005 to 0.050%, and further 0.5% ⁇ Cu + Ni + Cr + Mo Cu, Ni, Cr, and Mo are included so as to satisfy ⁇ 3.0%
- Ti and N are included so that 1.8 ⁇ Ti / N ⁇ 4.5 is satisfied, and the balance is Fe and inevitable impurities.
- % representing the content of each component means “mass%”.
- C 0.04 to 0.15%
- C is an element that improves the strength of the thick steel plate.
- the lower limit of the C content is 0.04%.
- the upper limit of the C content is 0.15%.
- the minimum of preferable content of C is 0.045%, and an upper limit is 0.145%.
- Si 0.1-2.0%
- Si is an element that mainly improves the yield strength of thick steel plates by solid solution strengthening.
- the lower limit of the Si content is set to 0.1%.
- the upper limit of the Si content in the present invention is 2.0%.
- the minimum of content of preferable Si is 0.10%, and an upper limit is 1.90%.
- Mn 0.8 to 2.0%
- Mn is an element that improves the strength of the thick steel plate by improving the hardenability of the steel.
- the Mn content is 0.8% or more and 2.0% or less.
- the range is preferably 1.10% or more and 1.80% or less.
- P 0.025% or less
- P is an element unavoidably present in steel as an impurity. Moreover, P may reduce the toughness of steel. For this reason, it is desirable to reduce the content of P as much as possible. In particular, when P exceeds 0.025%, the toughness of the thick steel plate tends to be lowered. In the present invention, the P content is 0.025% or less. Preferably it is 0.010% or less.
- S 0.020% or less
- S is an element unavoidably present in steel as an impurity. Moreover, S may reduce the toughness of steel and the drawing in the thickness direction tensile test. For this reason, it is desirable to reduce the S content as much as possible. In particular, when the S content exceeds 0.020%, the above-described deterioration in characteristics tends to be remarkable. Therefore, in the present invention, the S content is 0.020% or less. Preferably it is 0.004% or less.
- Al 0.001 to 0.100%
- Al is an element that acts as a deoxidizing material, and is the most widely used element as a deoxidizing material in the deoxidation process of molten steel.
- the lower limit of the Al content is set to 0.001%.
- the upper limit of the Al content is 0.100%.
- the lower limit is 0.003% and the upper limit is 0.050%.
- Nb 0.010 to 0.050%
- Nb is an element that widens the non-recrystallization temperature range of the austenite phase, and is an element necessary for efficiently rolling in the non-recrystallization temperature range and obtaining a desired microstructure. For this reason, the content of Nb is set to 0.010% or more. However, if the Nb content exceeds 0.050%, the toughness is deteriorated, so the upper limit is made 0.050%.
- the Nb content is preferably 0.015% at the lower limit and 0.035% at the upper limit.
- Cu + Ni + Cr + Mo 0.5-3.0%
- Cu, Ni, Cr, and Mo are elements that increase the hardenability of the steel and improve the strength of the thick steel plate. By making these total contents 0.5% or more, polygonal ferrite formation can be suppressed and the yield strength can be increased. However, if the total content exceeds 3.0%, the weldability of the thick steel plate deteriorates. Therefore, in the present invention, the total content of Cu + Ni + Cr + Mo is 0.5 to 3.0%, preferably the lower limit is 0.7% and the upper limit is 2.5%.
- each element symbol of “Cu + Ni + Cr + Mo” means the content of each element.
- Ti 0.005 to 0.050%
- Ti suppresses coarsening of austenite grains during slab heating when rolling the steel sheet.
- Ti is an effective element that contributes to the refinement of the final structure obtained after rolling and helps to improve the toughness of the thick steel plate.
- the Ti content is set to 0.005% or more.
- the Ti content in the present invention is 0.005 to 0.050%, preferably the lower limit is 0.005% and the upper limit is 0.040%.
- the thick steel plate of the present invention has the above-described components as the basic composition. Further, the thick steel plate of the present invention is further provided for the purpose of adjusting strength, toughness and improving joint toughness, V: 0.01 to 0.10%, W: 0.01 to 1.00%, B: 0.0005 to One or more of 0.0050%, Ca: 0.0005 to 0.0060%, REM: 0.0020 to 0.0200%, Mg: 0.0002 to 0.0060% can be contained.
- V 0.01 to 0.10%
- V is an element that further improves the strength and toughness of the thick steel plate, and exhibits an effect when added in an amount of 0.01% or more.
- the upper limit of the V content is preferably 0.10%. More preferably, the V content is 0.03 to 0.08%.
- W 0.01-1.00%
- W is an element that improves the strength of the thick steel plate, and exhibits an effect when added in an amount of 0.01% or more. However, if the W content exceeds 1.00%, there may be a problem that weldability is lowered. Therefore, the W content is preferably 0.01 to 1.00%. A more preferable W content is 0.05 to 0.15%.
- B 0.0005 to 0.0050%
- B is an element effective for improving the hardenability by containing a very small amount and thereby improving the strength of the thick steel plate.
- the B content is preferably 0.0005% or more.
- the upper limit of the B content is preferably 0.0050%.
- Ca 0.0005 to 0.0060%
- Ca suppresses the generation of MnS by fixing S, and improves the drawing characteristics in the plate thickness direction.
- Ca also has the effect of improving the weld heat affected zone toughness.
- the Ca content is preferably 0.0005% or more.
- the toughness of the thick steel plate may be reduced, so the upper limit of the Ca content is preferably 0.0060%.
- REM 0.0020 to 0.0200%
- the REM suppresses the generation of MnS by fixing S and improves the drawing characteristics in the plate thickness direction.
- REM also has the effect of improving the weld heat affected zone toughness.
- the REM content is preferably 0.0020% or more.
- the upper limit of the content of REM is preferably 0.0200%.
- Mg 0.0002 to 0.0060%
- Mg is an element that suppresses the growth of austenite grains in the weld heat affected zone and is effective in improving the toughness of the weld heat affected zone.
- the Mg content is preferably 0.0002% or more.
- the upper limit of the Mg content is preferably 0.0060%.
- the balance other than the above components is Fe and inevitable impurities.
- inevitable impurities are O and the like.
- O is a typical inevitable impurity that is inevitably mixed in the stage of manufacturing a steel material.
- a typical inevitable impurity is O, but the inevitable impurity refers to a component other than the essential components. Therefore, it is also within the scope of the present invention to include an arbitrary component to the extent that it does not impair the effects of the present invention, whether intentional or accidental.
- the area ratio of polygonal ferrite less than 10%
- the area ratio of polygonal ferrite is 10% or more, the yield strength of the thick steel plate decreases. Therefore, in the thick steel plate of the present invention, the area ratio of polygonal ferrite is limited to less than 10%.
- the area ratio is preferably 8% or less, and most preferably 5% or less.
- the area ratio of polygonal ferrite refers to the ratio of polygonal ferrite in the observation surface of the steel sheet structure.
- the above-mentioned observation of the steel sheet structure is performed by polishing the plate thickness section parallel to the rolling direction of the thick steel plate, corroding the plate thickness section with 3% nital, and examining the corroded plate thickness section with SEM (scanning electron microscope). In this method, 10 fields of view are observed at a magnification of 2000 times. In addition, commercially available image processing software or the like can be used for deriving the area ratio.
- the main structures are bainite and martensite. Further, the smaller the crystal grain size of the crystal structure, the better. This crystal grain size means the following effective crystal grain size in the present invention.
- Effective crystal grain size 15 ⁇ m or less
- the effective crystal grain size at the center of the plate thickness is 15 ⁇ m or less.
- the effective crystal grain size is larger than 15 ⁇ m, the toughness of the thick steel plate is deteriorated.
- a more preferable effective crystal grain size is 10 ⁇ m or less.
- the effective crystal grain size can be derived by an EBSP (Electron Backscatter Diffraction Pattern) method.
- the effective crystal grain size can be obtained by deriving the average of the effective crystal grain sizes on the observation plane.
- commercially available image processing software etc. can also be used for derivation
- the effective crystal grain size is measured by mirror-polishing a cross section parallel to the rolling direction taken from the thickness center of the thick steel plate, and performing an EBSP analysis on a 5 mm ⁇ 5 mm region at the thickness center. Even if there is a sample having an effective crystal grain size exceeding 15 ⁇ m in this range, it is within the scope of the present invention if the proportion of the effective crystal grain size of 15 ⁇ m or less is 80% or more of the total.
- Standard deviation of effective crystal grain size 10 ⁇ m or less
- the standard deviation of the grain size distribution of the effective crystal grain size is 10 ⁇ m or less.
- the standard deviation is preferably 7 ⁇ m or less.
- the manufacturing method and manufacturing conditions of the thick steel plate of the present invention are not particularly limited.
- the thick steel plate of the present invention can be manufactured by a method including a heating step, a recrystallization temperature region rolling step, a non-recrystallization temperature region rolling step, and a cooling step.
- the crystal grain size of the crystal structure is fine as possible.
- One way to achieve this goal is to refine the austenite grains under high pressure in the recrystallization temperature range of austenite, introduce transformation nuclei by reduction in the non-recrystallization temperature range of austenite, and then There is a method of rapid cooling.
- ld / hm ⁇ R (h i ⁇ h 0 ) ⁇ 1/2 / ⁇ (h i + 2h 0 ) / 3 ⁇
- ld at each symbol, respectively each rolling pass projected contact arc length
- hm average thickness
- R roll radius
- h i thickness at entrance side
- h 0 thickness at delivery side of a.
- the rolling shape ratio is expressed by the above formula and relates to the strain distribution in the thickness direction when rolling. If the rolling shape ratio is small, the strain tends to concentrate on the surface of the steel sheet. If the roll has the same diameter, the rolling shape ratio is reduced if the reduction amount is reduced. Moreover, when the rolling shape ratio is large, not only the surface of the steel sheet but also the thickness center part tends to be distorted. In order to increase the rolling shape ratio, if the roll has the same diameter, the reduction amount may be increased.
- the heating step is a step of heating a steel plate having the above component composition.
- the heating temperature is less than 950 ° C., the austenite untransformed part is partially formed, and thus necessary characteristics cannot be obtained after rolling.
- the heating temperature exceeds 1150 ° C., the austenite grains become coarse and a fine grain structure, which is a desired steel sheet structure, cannot be obtained after controlled rolling.
- a particularly preferable heating temperature is 950 ° C. or higher and 1120 ° C. or lower.
- the recrystallization temperature range rolling step is a rolling process in which the center thickness of the sheet is 930 ° C. or more and 1050 ° C. or less, the rolling shape ratio is 0.5 or more, and the rolling reduction per pass is 6.0% or more. This is a process of performing more than pass. Further, the strain applied to the steel sheet during rolling differs depending on the plate thickness position, and the smaller the rolling shape ratio, the smaller the strain applied to the plate thickness center. In order to add a strain corresponding to the reduction ratio to the center of the plate thickness, it is necessary to adjust the rolling shape ratio to 0.5 or more. In order to cause recrystallization, a rolling reduction of 6.0% or more per pass is required. In addition, Preferably it is 8% or more per path
- the temperature range of the sheet thickness center temperature when performing this step is less than 930 ° C., recrystallization hardly occurs during rolling, and there is a tendency that the required amount of austenite grains is not reduced.
- the temperature range is preferably 930 ° C. or higher and 1050 ° C. or lower.
- the plate thickness center temperature was calculated by conducting heat transfer calculations of conduction heat transfer, convection heat transfer, and radiation heat transfer, taking into account the descaling water and the cooling water injection for adjusting the temperature of the steel plate.
- the non-recrystallization temperature region rolling step is a temperature range in which the sheet thickness center temperature is less than 930 ° C. after the recrystallization temperature region rolling step, the rolling shape ratio is 0.5 or more, and the reduction ratio or the total reduction ratio is 35. % Is a step of performing rolling for 1 pass or more.
- this step is performed at 930 ° C. or higher, recrystallization is likely to occur, and the introduced strain will not be accumulated because it will be consumed during recrystallization, and the final structure cannot be used as a transformation nucleus at the time of subsequent cooling. Become coarse.
- the rolling shape ratio is less than 0.5
- the rolling reduction or the sum of the rolling reductions is less than 35%
- the strain applied to the center of the sheet thickness is reduced, and the fine grains at the transformation of the austenite phase
- the required amount is not generated.
- Rolling is preferably 2 passes or more, and a preferable range of the sum of the rolling reductions is 45% or more.
- the cooling step refers to the cooling starting from a temperature at which the sheet thickness center temperature is Ar 3 + 15 ° C. or higher after the non-recrystallization temperature region rolling step, and the average cooling rate is between 700 ° C. and 500 ° C. This is a step of cooling under conditions of 3.5 ° C./sec or more.
- the cooling start temperature at the center of the plate thickness is less than Ar 3 + 15 ° C.
- the ferrite transformation starts before the rapid cooling of the center portion of the plate thickness starts, and the yield strength of the thick steel plate decreases. Therefore, the cooling start temperature at the center of the plate thickness is limited to Ar 3 + 15 ° C. or higher.
- Ar 3 uses the value obtained in the thermal expansion test shown in the examples.
- the average cooling speed at the center of the plate thickness is less than 3.5 ° C./sec, a ferrite phase is generated and the yield strength is lowered. Therefore, the average cooling speed between 700 and 500 ° C. at the center of the plate thickness is limited to 3.5 ° C./sec or more.
- the tempering temperature When the tempering temperature is higher than 700 ° C., a ferrite phase is generated and the yield strength of the thick steel plate is lowered. For this reason, the tempering temperature was limited to 700 ° C. or lower.
- the tempering temperature is preferably 650 ° C. or lower.
- Table 1 shows the composition of the steel used for the evaluation.
- Steel types A to H are invention examples whose component compositions satisfy the scope of the present invention
- steel types I to M are comparative examples whose component compositions are outside the scope of the present invention.
- Table 3 shows the results of producing a thick steel plate using these steel types under the production conditions shown in Table 2, and evaluating the structure of the obtained thick steel plate, the strength of the base metal, and the toughness.
- the plate thickness center temperature was measured by attaching a thermocouple to the plate length, width, and plate thickness direction center when rolling the steel plate.
- Tissue size is sampled from the center of plate length, width, thickness direction, mirror polished and subjected to EBSP analysis under the following conditions. Adjacent to the obtained crystal orientation map The equivalent circle diameter of a structure surrounded by large-angle grain boundaries whose orientation difference from the crystal grains was 15 ° or more was evaluated as an effective crystal grain size. Based on the evaluation results, the effective crystal grain size (average value) and standard deviation were derived.
- V-notch test piece was sampled in accordance with the provisions of JISZ2202 (1998) in the direction perpendicular to the rolling direction from the nearest thickness center position of the obtained EBSP sample of the steel sheet, and the provisions of JISZ2242 (1998).
- the Charpy impact test was conducted according to the above, and the ductile-brittle fracture surface transition temperature (vTrs) was evaluated. Evaluation criteria of -60 ° C or less were evaluated as excellent in low temperature toughness.
- No. Nos. 1 to 8 and 18 are invention examples.
- Reference numerals 9 to 17 and 19 are comparative examples.
- inventive examples obtained in accordance with the present invention all have excellent strength and low temperature toughness with a yield strength of 500 MPa or more, a tensile strength of 600 MPa or more and a vTrs of ⁇ 60 ° C. or less.
- the total amount of Cu, Ni, Cr and Mo is less than the range of the present invention, so that the required strength is not obtained.
- the amount of Nb was less than the range of the present invention, and the reduction of the unrecrystallized region could not be effectively performed, so the effective crystal grain size became coarse, the toughness was lowered, and the required strength was not obtained.
- Ti / N is larger than the range of the present invention, and coarse Ti precipitates are generated, so that the toughness is low.
- No. No. 13 has a low toughness because the amount of Nb is larger than the range of the present invention.
- No. No. 18 has a slightly lower strength than the preferred invention example because the cooling rate is out of the invention range of the production method.
- the tempering temperature was higher than the range of the present invention, and polygonal ferrite was generated, so that the deviation of the effective crystal grain size was increased, the toughness was lowered, and the strength was lowered.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
Cは、厚鋼板の強度を向上させる元素である。本発明では強度を確保するために、Cの含有量の下限は0.04%である。また、Cの含有量が0.15%を超えると厚鋼板の溶接性が低下する。このため、本発明においてCの含有量の上限は0.15%である。また、Cの好ましい含有量の下限は0.045%、上限は0.145%である。
Siは固溶強化により主に厚鋼板の降伏強度を向上させる元素である。本発明では降伏強度を確保するために、Siの含有量の下限を0.1%にする。また、Siの含有量が2.0%を超えると厚鋼板の溶接性が低下する。このため、本発明においてSiの含有量の上限は2.0%である。また、好ましいSiの含有量の下限は0.10%、上限は1.90%である。
Mnは、鋼の焼入れ性の向上により厚鋼板の強度を向上させる元素である。しかし、過剰にMnを含有すると、厚鋼板の溶接性が低下する。このため、本発明においてMnの含有量は0.8%以上2.0%以下である。なお好ましくは1.10%以上1.80%以下の範囲である。
Pは、不純物として鋼中に不可避的に存在する元素である。また、Pは鋼の靭性を低下させる場合がある。このため、Pの含有量は可能な限り低減することが望ましい。特に0.025%を超えてPを含有すると、厚鋼板の靭性が低下しやすい傾向にある。本発明においてPの含有量は0.025%以下である。好ましくは0.010%以下である。
Sは、不純物として鋼中に不可避的に存在する元素である。また、Sは鋼の靭性や板厚方向引張試験における絞りを低下させる場合がある。このため、Sの含有量は可能な限り低減することが望ましい。特にSの含有量が0.020%を超えると、上記した特性の低下が著しくなる傾向にある。そこで、本発明においてSの含有量は0.020%以下である。好ましくは0.004%以下である。
Alは、脱酸材として作用する元素であり、溶鋼の脱酸プロセスにおいて、脱酸材としてもっとも汎用的に使用される元素である。この脱酸材としてのAlが充分機能するために、Alの含有量の下限を0.001%にする。一方、Alの含有量が0.100%を超えると、Alが粗大な炭化物を形成して、厚鋼板の延性を低下させる傾向にある。このため、本発明においてAlの含有量の上限は0.100%である。好ましくは下限が0.003%、上限が0.050%である。
Nbは、オーステナイト相の未再結晶温度域を広げる元素であり、未再結晶温度域での圧延を効率的に行い、所望の微細組織を得るために必要な元素である。このため、Nbの含有量を0.010%以上にする。しかし、Nbの含有量が0.050%を超えるとかえって靭性の低下を招くため、上限は0.050%とする。なお、Nbの含有量は好ましくは下限が0.015%、上限が0.035%である。
Cu、Ni、Cr、Moは、鋼の焼入れ性を増加させて、厚鋼板の強度を向上させる元素である。これらの合計含有量を0.5%以上にすることで、ポリゴナルフェライト形成を抑制し、降伏強度を高められる。しかし、合計含有量が3.0%を超えると厚鋼板の溶接性が劣化する。このため、本発明においてはCu+Ni+Cr+Moの合計含有量は0.5~3.0%であり、好ましくは下限が0.7%、上限が2.5%である。なお、「Cu+Ni+Cr+Mo」の各元素記号は、各元素の含有量を意味する。
Tiは、TiNとして析出する結果、鋼板を圧延する際のスラブ加熱時にオーステナイト粒が粗大化することを抑制する。このように、Tiは圧延後に得られる最終組織の微細化に寄与し、厚鋼板の靭性向上に役立つ有効な元素である。このような効果を得るためにTiの含有量は0.005%以上とする。一方、Tiの含有量が0.050%を超えると、溶接熱影響部の靭性が低下する。このため、本発明におけるTiの含有量は0.005~0.050%であり、好ましくは下限が0.005%、上限が0.040%である。
1.8>Ti/N(質量比)とすると、TiNがスラブ加熱時に溶解し易くなりオーステナイト粒の粗大化抑制効果が得難くなる。さらに固溶Nの存在により厚鋼板の靭性が劣化する。一方、Ti/N>4.5とするとNに対して過剰に存在するTiが粗大TiCを形成することで厚鋼板の靭性が劣化する。このため、1.8≦Ti/N≦4.5の範囲に限定した。なお好ましくは2.0≦Ti/N≦4.0である。
Vは、厚鋼板の強度と靭性をさらに向上させる元素であり、0.01%以上の添加で効果を発揮する。しかし、Vの含有量が0.10%を超えるとかえって靭性の低下を招くことがあるため、Vの含有量の上限を0.10%とするのが好ましい。なお、さらに好ましくは、Vの含有量が0.03~0.08%である。
Wは、厚鋼板の強度を向上させる元素であり、0.01%以上の添加で効果を発揮する。しかし、Wの含有量が1.00%を超えると溶接性が低下する問題が生じる場合がある。したがって、Wの含有量は0.01~1.00%であることが好ましい。より好ましいWの含有量は0.05~0.15%である。
Bは、極微量の含有で焼入れ性を向上させ、それにより厚鋼板の強度を向上させるのに有効な元素である。このような効果を得るにはBの含有量を0.0005%以上にするのが好ましい。一方、0.0050%を超えてBを含有すると、溶接性が低下する場合があるため、Bの含有量の上限は0.0050%が好ましい。
Caは、Sを固定することによってMnSの生成を抑制して、板厚方向の絞り特性を改善する。また、Caは溶接熱影響部靭性を改善する効果も有する。このような効果を得るためには、Caの含有量を0.0005%以上にするのが好ましい。一方、0.0060%を超えるCaの含有は、厚鋼板の靭性を低下させる場合があるため、Caの含有量の上限は0.0060%が好ましい。
REMは、Sを固定することによってMnSの生成を抑制して、板厚方向の絞り特性を改善する。また、REMは溶接熱影響部靭性も改善する効果を有する。このような効果を得るために、REMの含有量を0.0020%以上にするのが好ましい。一方、0.0200%を超えるREMの含有は、厚鋼板の靭性を低下させる場合があるため、REMの含有量の上限は0.0200%が好ましい。
Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制し、溶接熱影響部の靭性の改善に有効な元素である。このような効果を得るには、Mgの含有量を0.0002%以上にするのが好ましい。一方、0.0060%を超えるMgの含有は、効果が飽和して含有量に見合う効果が期待できずに経済的に不利となる場合がある。そこで、Mgの含有量の上限は0.0060%が好ましい。
ポリゴナルフェライトの面積率が10%以上になると、厚鋼板の降伏強度が低下する。そのため、本発明の厚鋼板においてはポリゴナルフェライトの面積率を10%未満に限定した。なお、上記面積率は8%以下が好ましく、最も好ましくは5%以下である。ここで、ポリゴナルフェライトの面積率とは、鋼板組織の観察面中にポリゴナルフェライトが占める割合を指す。なお、鋼板組織の上記観察は、厚鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで上記板厚断面を腐食させ、この腐食させた板厚断面をSEM(走査電子顕微鏡)で2000倍の倍率で10視野観察する方法で行う。また、面積率の導出には、市販の画像処理ソフト等を用いることができる。
本発明の厚鋼板においては、板厚中心の有効結晶粒径が15μm以下である。有効結晶粒径が15μmより大きくなると、厚鋼板の靭性が劣化する。より好ましい有効結晶粒径は10μm以下である。なお、有効結晶粒径は、EBSP(Electron Backscatter Diffraction Pattern:電子線後方散乱パターン)法により導出することができる。そして、観察面における有効結晶粒径の平均を導出することで有効結晶粒径が得られる。なお、有効結晶粒径の導出には市販の画像処理ソフト等を用いることもできる。
本発明においては、有効結晶粒径の粒径分布の標準偏差は、10μm以下である。上記標準偏差が10μmよりも大きくなると一部に存在する粗大粒が脆性破壊の起点となることで、厚鋼板の靭性を劣化させる。また、本発明において上記標準偏差は、7μm以下が好ましい。
ld/hm={R(hi-h0)}1/2/{(hi+2h0)/3}
ここで、各記号はそれぞれ各圧延パス時のld:投影接触弧長、hm:平均板厚、R:ロール半径、hi:入側板厚、h0:出側板厚、である。
鋼板圧延に使用したスラブの(1/4)t(tは板厚を表す)位置より8Φ×12mmのサンプルを採取し、図1に示す条件で熱膨張試験を行い、変態膨張からAr3を評価した。
得られた各厚鋼板について、鋼板組織の同定を行うとともに、その面積率(%)を測定した。鋼板組織は、鋼板の圧延方向に平行な板厚断面について、3%ナイタールによる腐食現出組織を走査型電子顕微鏡(SEM)で2000倍、10視野の条件で観察した。これを画像解析ソフト(Image-Pro;Cybernetics社製)により解析し、各々の相について当該相とこれ以外の相とに2値化した画像を作製した。マルテンサイト相と残留オーステナイト相は、識別が困難なため、両相を同一とみなして2値化した。これらをソフトの機能を用いてポリゴナルフェライト相の面積率を求めた。また、主な相は、ベイナイト、マルテンサイト組織であった。
組織サイズは板の長手、幅、板厚方向中心よりサンプルを採取し、鏡面研磨仕上げを行った後下記の条件でEBSP解析を行い、得られた結晶方位マップより隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を有効結晶粒径として評価した。この評価結果に基づいて有効結晶粒径(平均値)と標準偏差を導出した。
解析領域:板厚中心の1mm×1mm領域
ステップサイズ:0.4μm
降伏強度及び引張強度の測定
また、得られた鋼板のEBSPサンプルの直近の板厚中心位置から圧延方向と直角な方向にJIS4号引張試験片を採取し、JISZ2241(1998年)の規定に準拠して引張試験を行い、降伏強度と引張強度を評価した。
Claims (4)
- 質量%で、C:0.04~0.15%、Si:0.1~2.0%、Mn:0.8~2.0%、P:0.025%以下、S:0.020%以下、Al:0.001~0.100%、Nb:0.010~0.050%、Ti:0.005~0.050%、さらに0.5%≦Cu+Ni+Cr+Mo≦3.0%を満足するようにCu、Ni、Cr、Moを含み、1.8≦Ti/N≦4.5を満足するようにNを含み、残部Feおよび不可避的不純物からなり、
ポリゴナルフェライトの面積分率が10%未満であり、
板厚中心における有効結晶粒径が15μm以下であり、
有効結晶粒径の標準偏差が10μm以下であることを特徴とする厚鋼板。 - さらに、V:0.01~0.10%、W:0.01~1.00%、B:0.0005~0.0050%、Ca:0.0005~0.0060%、REM:0.0020~0.0200%、Mg:0.0002~0.0060%のうちの1種または2種以上を含むことを特徴とする請求項1に記載の厚鋼板。
- 請求項1又は2に記載の成分組成を有する鋼板を、950℃以上1150℃以下まで加熱する加熱工程と、
前記加熱工程後に、板厚中心温度が930℃以上1050℃以下の温度範囲で、圧延形状比が0.5以上かつ1パス当たりの圧下率が6.0%以上の圧延を3パス以上行う再結晶温度領域圧延工程と、
前記再結晶温度領域圧延工程後に、板厚中心温度が930℃未満の温度範囲で、圧延形状比が0.5以上、圧下率の合計が35%以上となる圧延を1パス以上行う未再結晶温度領域圧延工程と、
前記未再結晶温度領域圧延工程後に、板厚中心温度がAr3+15℃以上の温度から冷却を開始し、板厚中心温度が700℃~500℃の間の平均冷却速度が3.5℃/sec以上となる条件で冷却を行う冷却工程を有することを特徴とする請求項1又は2に記載の厚鋼板の製造方法。 - 前記冷却工程後に700℃以下の温度で焼戻し処理を行う焼戻工程を、さらに有することを特徴する請求項3に記載の厚鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/770,897 US10041159B2 (en) | 2013-02-28 | 2014-02-25 | Thick steel plate and production method for thick steel plate |
KR1020157024914A KR101737255B1 (ko) | 2013-02-28 | 2014-02-25 | 후 강판 및 후 강판의 제조 방법 |
JP2015502773A JP5910792B2 (ja) | 2013-02-28 | 2014-02-25 | 厚鋼板及び厚鋼板の製造方法 |
CN201480009869.0A CN105008569B (zh) | 2013-02-28 | 2014-02-25 | 厚钢板及厚钢板的制造方法 |
EP14757273.9A EP2963138B1 (en) | 2013-02-28 | 2014-02-25 | Production method for thick steel plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013038664 | 2013-02-28 | ||
JP2013-038664 | 2013-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014132627A1 true WO2014132627A1 (ja) | 2014-09-04 |
Family
ID=51427904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/000983 WO2014132627A1 (ja) | 2013-02-28 | 2014-02-25 | 厚鋼板及び厚鋼板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10041159B2 (ja) |
EP (1) | EP2963138B1 (ja) |
JP (1) | JP5910792B2 (ja) |
KR (1) | KR101737255B1 (ja) |
CN (1) | CN105008569B (ja) |
WO (1) | WO2014132627A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107109591A (zh) * | 2014-12-24 | 2017-08-29 | Posco公司 | 耐脆性裂纹扩展性优异的构造用超厚钢材及其制造方法 |
KR20170117149A (ko) * | 2015-03-16 | 2017-10-20 | 제이에프이 스틸 가부시키가이샤 | 복합 용기 축압기 라이너용 강재, 복합 용기 축압기 라이너용 강관 및, 복합 용기 축압기 라이너용 강관의 제조 방법 |
JP2017193740A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
JP2017193741A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
JP2017193739A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
WO2021054345A1 (ja) | 2019-09-20 | 2021-03-25 | Jfeスチール株式会社 | 厚鋼板およびその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3418411B1 (en) * | 2016-02-19 | 2020-11-04 | Nippon Steel Corporation | Steel useful as a material for chains |
CN109554623A (zh) * | 2018-12-07 | 2019-04-02 | 唐山中厚板材有限公司 | 屈服强度550MPa级耐候桥梁钢板及其生产方法 |
CN110592462B (zh) * | 2019-09-19 | 2021-04-06 | 舞阳钢铁有限责任公司 | 一种低温设备用钢板及其生产方法 |
US20220376338A1 (en) * | 2021-05-18 | 2022-11-24 | GM Global Technology Operations LLC | Sheet metal assembly having one stiffening members with a predetermined draw depth |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195058A (ja) * | 1992-01-14 | 1993-08-03 | Kobe Steel Ltd | 高靱性厚肉高張力鋼板の製造方法 |
JP2001049385A (ja) | 1999-08-09 | 2001-02-20 | Nkk Corp | 溶接部靭性に優れた高張力鋼及びその製造方法 |
JP2001064723A (ja) | 1999-08-26 | 2001-03-13 | Nkk Corp | 溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法 |
JP2001064727A (ja) | 1999-08-26 | 2001-03-13 | Nkk Corp | 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法 |
JP2001123245A (ja) * | 1999-10-21 | 2001-05-08 | Nippon Steel Corp | 溶接部靱性に優れた高靱性高張力鋼とその製造方法 |
JP2001200334A (ja) | 2000-01-17 | 2001-07-24 | Nkk Corp | 溶接性および靭性に優れた60キロ級高張力鋼 |
JP2003129133A (ja) | 2001-10-24 | 2003-05-08 | Nippon Steel Corp | 高強度高靭性厚鋼板の製造方法 |
JP2007211278A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐火厚鋼板及びその製造方法 |
JP2009074111A (ja) | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | 母材低温靭性のばらつきが少なく熱影響部の靭性に優れた大入熱溶接用厚肉高強度鋼板およびその製造方法 |
JP2010248599A (ja) | 2009-04-20 | 2010-11-04 | Kobe Steel Ltd | 低降伏比高靭性厚鋼板 |
WO2011099408A1 (ja) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | 厚鋼板の製造方法 |
JP2011195883A (ja) | 2010-03-19 | 2011-10-06 | Jfe Steel Corp | 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法 |
JP2011218370A (ja) * | 2010-04-05 | 2011-11-04 | Sumitomo Metal Ind Ltd | 厚板用鋼材、および厚板用鋼材の素材となる鋳片の連続鋳造方法 |
JP2012172258A (ja) * | 2011-02-24 | 2012-09-10 | Nippon Steel Corp | 厚鋼板の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3845113B2 (ja) | 1994-03-29 | 2006-11-15 | 新日本製鐵株式会社 | 脆性亀裂伝播停止特性と低温靭性の優れた厚鋼板とその製造方法 |
JP4294854B2 (ja) | 1997-07-28 | 2009-07-15 | エクソンモービル アップストリーム リサーチ カンパニー | 優れた超低温靭性を有する超高強度、溶接性鋼 |
JP4567907B2 (ja) * | 2001-04-02 | 2010-10-27 | 新日本製鐵株式会社 | ハイドロフォーム成形性に優れた鋼管およびその製造方法 |
JP2003321729A (ja) * | 2002-04-26 | 2003-11-14 | Jfe Steel Kk | 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法 |
EP2240618B1 (en) | 2007-12-04 | 2013-01-23 | Posco | High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof |
CA2750291C (en) * | 2009-01-30 | 2014-05-06 | Jfe Steel Corporation | Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof |
JP5177310B2 (ja) | 2011-02-15 | 2013-04-03 | Jfeスチール株式会社 | 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法 |
JP5776398B2 (ja) * | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 |
JP5818046B2 (ja) * | 2012-02-28 | 2015-11-18 | Jfeスチール株式会社 | Si含有高強度冷延鋼板の製造方法 |
-
2014
- 2014-02-25 EP EP14757273.9A patent/EP2963138B1/en active Active
- 2014-02-25 CN CN201480009869.0A patent/CN105008569B/zh active Active
- 2014-02-25 JP JP2015502773A patent/JP5910792B2/ja active Active
- 2014-02-25 US US14/770,897 patent/US10041159B2/en active Active
- 2014-02-25 WO PCT/JP2014/000983 patent/WO2014132627A1/ja active Application Filing
- 2014-02-25 KR KR1020157024914A patent/KR101737255B1/ko active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195058A (ja) * | 1992-01-14 | 1993-08-03 | Kobe Steel Ltd | 高靱性厚肉高張力鋼板の製造方法 |
JP2001049385A (ja) | 1999-08-09 | 2001-02-20 | Nkk Corp | 溶接部靭性に優れた高張力鋼及びその製造方法 |
JP2001064723A (ja) | 1999-08-26 | 2001-03-13 | Nkk Corp | 溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法 |
JP2001064727A (ja) | 1999-08-26 | 2001-03-13 | Nkk Corp | 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法 |
JP2001123245A (ja) * | 1999-10-21 | 2001-05-08 | Nippon Steel Corp | 溶接部靱性に優れた高靱性高張力鋼とその製造方法 |
JP2001200334A (ja) | 2000-01-17 | 2001-07-24 | Nkk Corp | 溶接性および靭性に優れた60キロ級高張力鋼 |
JP2003129133A (ja) | 2001-10-24 | 2003-05-08 | Nippon Steel Corp | 高強度高靭性厚鋼板の製造方法 |
JP2007211278A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐火厚鋼板及びその製造方法 |
JP2009074111A (ja) | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | 母材低温靭性のばらつきが少なく熱影響部の靭性に優れた大入熱溶接用厚肉高強度鋼板およびその製造方法 |
JP2010248599A (ja) | 2009-04-20 | 2010-11-04 | Kobe Steel Ltd | 低降伏比高靭性厚鋼板 |
WO2011099408A1 (ja) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | 厚鋼板の製造方法 |
JP2011195883A (ja) | 2010-03-19 | 2011-10-06 | Jfe Steel Corp | 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法 |
JP2011218370A (ja) * | 2010-04-05 | 2011-11-04 | Sumitomo Metal Ind Ltd | 厚板用鋼材、および厚板用鋼材の素材となる鋳片の連続鋳造方法 |
JP2012172258A (ja) * | 2011-02-24 | 2012-09-10 | Nippon Steel Corp | 厚鋼板の製造方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3239329A4 (en) * | 2014-12-24 | 2017-11-01 | Posco | Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor |
CN107109591A (zh) * | 2014-12-24 | 2017-08-29 | Posco公司 | 耐脆性裂纹扩展性优异的构造用超厚钢材及其制造方法 |
KR102022787B1 (ko) | 2015-03-16 | 2019-09-18 | 제이에프이 스틸 가부시키가이샤 | 복합 용기 축압기 라이너용 강관 및, 복합 용기 축압기 라이너용 강관의 제조 방법 |
CN107429340A (zh) * | 2015-03-16 | 2017-12-01 | 杰富意钢铁株式会社 | 复合压力容器内衬用钢材、复合压力容器内衬用钢管、以及复合压力容器内衬用钢管的制造方法 |
EP3272893A4 (en) * | 2015-03-16 | 2018-01-24 | JFE Steel Corporation | Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner |
CN107429340B (zh) * | 2015-03-16 | 2019-07-02 | 杰富意钢铁株式会社 | 复合压力容器内衬用钢材、复合压力容器内衬用钢管、以及复合压力容器内衬用钢管的制造方法 |
KR20170117149A (ko) * | 2015-03-16 | 2017-10-20 | 제이에프이 스틸 가부시키가이샤 | 복합 용기 축압기 라이너용 강재, 복합 용기 축압기 라이너용 강관 및, 복합 용기 축압기 라이너용 강관의 제조 방법 |
US10697036B2 (en) | 2015-03-16 | 2020-06-30 | Jfe Steel Corporation | Steel material for composite pressure vessel liner and steel pipe or tube for composite pressure vessel liner |
JP2017193741A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
JP2017193739A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
JP2017193740A (ja) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | 耐摩耗鋼板および耐摩耗鋼板の製造方法 |
WO2021054345A1 (ja) | 2019-09-20 | 2021-03-25 | Jfeスチール株式会社 | 厚鋼板およびその製造方法 |
KR20220047632A (ko) | 2019-09-20 | 2022-04-18 | 제이에프이 스틸 가부시키가이샤 | 후강판 및 그의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2963138B1 (en) | 2019-04-10 |
EP2963138A1 (en) | 2016-01-06 |
JP5910792B2 (ja) | 2016-04-27 |
EP2963138A4 (en) | 2016-03-23 |
CN105008569A (zh) | 2015-10-28 |
CN105008569B (zh) | 2017-03-08 |
US10041159B2 (en) | 2018-08-07 |
KR101737255B1 (ko) | 2017-05-17 |
US20160010193A1 (en) | 2016-01-14 |
JPWO2014132627A1 (ja) | 2017-02-02 |
KR20150119208A (ko) | 2015-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910792B2 (ja) | 厚鋼板及び厚鋼板の製造方法 | |
JP5522084B2 (ja) | 厚鋼板の製造方法 | |
JP5162382B2 (ja) | 低降伏比高靭性厚鋼板 | |
JP5098256B2 (ja) | 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法 | |
KR101892839B1 (ko) | 후강판 및 그 제조 방법 | |
JP5846311B2 (ja) | 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法 | |
JP5245476B2 (ja) | ラインパイプ用鋼板 | |
WO2013089156A1 (ja) | 低温靭性に優れた高強度h形鋼及びその製造方法 | |
JP2008208454A (ja) | 耐遅れ破壊特性に優れた高張力鋼材並びにその製造方法 | |
JP2022510873A (ja) | 冷間圧延熱処理鋼板及びその製造方法 | |
WO2016157862A1 (ja) | 高強度・高靭性鋼板およびその製造方法 | |
KR20220047363A (ko) | 후강판 및 후강판의 제조 방법 | |
WO2016157863A1 (ja) | 高強度・高靭性鋼板およびその製造方法 | |
JP5034290B2 (ja) | 低降伏比高強度厚鋼板およびその製造方法 | |
KR20200086737A (ko) | 열연 강판 및 그의 제조 방법 | |
WO2014175122A1 (ja) | H形鋼及びその製造方法 | |
JP6468410B1 (ja) | 熱延鋼板およびその製造方法 | |
JP5056771B2 (ja) | 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法 | |
JP2010174357A (ja) | 厚鋼板およびその製造方法 | |
WO2017094593A1 (ja) | 溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板 | |
JP4677883B2 (ja) | バウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法 | |
JP6624145B2 (ja) | 高強度・高靭性厚鋼板の製造方法 | |
JP6582590B2 (ja) | Lpg貯蔵タンク用鋼板およびその製造方法 | |
JP2017053028A (ja) | フェライト−マルテンサイト2相ステンレス鋼およびその製造方法 | |
WO2019064459A1 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14757273 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015502773 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14770897 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014757273 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157024914 Country of ref document: KR Kind code of ref document: A |