WO2014132579A1 - 非水電解質二次電池用負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2014132579A1
WO2014132579A1 PCT/JP2014/000692 JP2014000692W WO2014132579A1 WO 2014132579 A1 WO2014132579 A1 WO 2014132579A1 JP 2014000692 W JP2014000692 W JP 2014000692W WO 2014132579 A1 WO2014132579 A1 WO 2014132579A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
electrolyte secondary
secondary battery
aqueous electrolyte
Prior art date
Application number
PCT/JP2014/000692
Other languages
English (en)
French (fr)
Inventor
村岡 芳幸
径 小林
樹 平岡
匡洋 白神
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/763,965 priority Critical patent/US10056606B2/en
Priority to JP2015502745A priority patent/JPWO2014132579A1/ja
Priority to CN201480010341.5A priority patent/CN105074975B/zh
Publication of WO2014132579A1 publication Critical patent/WO2014132579A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Metal materials that can be alloyed with lithium such as silicon, germanium, tin and zinc instead of carbonaceous materials such as graphite as negative electrode active materials, and these metals for higher energy density and higher output of lithium ion batteries
  • silicon, germanium, tin and zinc instead of carbonaceous materials such as graphite as negative electrode active materials, and these metals for higher energy density and higher output of lithium ion batteries
  • carbonaceous materials such as graphite
  • Patent Document 1 discloses the contents of supplementing lithium to the negative electrode in order to compensate for the irreversible capacity of silicon oxide.
  • the nonaqueous electrolyte secondary battery of Patent Document 1 using silicon oxide and graphite for the negative electrode has a problem that the irreversible capacity of silicon oxide cannot be sufficiently compensated.
  • a negative electrode for a non-aqueous electrolyte secondary battery comprises a carbon material and a metal or metal oxide that is alloyed with lithium, and at least a part of the surface of the carbon material is It is coated with a polymer material that does not react with lithium.
  • a non-aqueous electrolyte secondary battery includes the negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the initial charge / discharge efficiency can be improved.
  • a nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an organic material layer provided between the positive electrode and the negative electrode, and a nonaqueous solvent. And a non-aqueous electrolyte.
  • a separator is preferably provided between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte secondary battery there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.
  • the positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used.
  • the positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
  • the positive electrode active material is not particularly limited, but is preferably a lithium-containing transition metal oxide.
  • the lithium-containing transition metal oxide may contain non-transition metal elements such as Mg and Al. Specific examples include lithium-containing transition metal oxides such as lithium cobaltate, olivine-type lithium phosphate represented by lithium iron phosphate, Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. It is done. These positive electrode active materials may be used alone or in combination of two or more.
  • carbon materials such as carbon black, acetylene black, ketjen black, graphite, and a mixture of two or more thereof can be used.
  • binder polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl acetate, polyacrylonitrile, polyvinyl alcohol, and a mixture of two or more thereof can be used.
  • the negative electrode preferably includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • a negative electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used.
  • the negative electrode active material layer preferably contains a binder in addition to the negative electrode active material.
  • the binder polytetrafluoroethylene or the like can be used as in the case of the positive electrode, but styrene-butadiene rubber (SBR), polyimide, or the like is preferably used.
  • SBR styrene-butadiene rubber
  • the binder may be used in combination with a thickener such as carboxymethylcellulose.
  • the negative electrode active material includes a carbon material having at least a part of the surface coated with a polymer material that does not react with lithium, and a metal or metal oxide that forms an alloy with lithium.
  • the fact that at least a part of the surface of the carbon material is coated with a polymer material that does not react with lithium includes the case where the polymer material that does not react with lithium is adsorbed on the surface of the carbon material.
  • a polymer material that does not react with lithium can be used without limitation as long as it has ion permeability and does not react with lithium.
  • Polymer materials that do not react with lithium are starch derivatives having a basic structure of C 6 H 10 O 5 , such as starch acetate, phosphate starch, carboxymethyl starch, hydroxyethyl starch, and the like, C 6 H 10 O Viscous polysaccharides such as pullulan and dextrin having a basic structure of 5 , carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, water-soluble acrylic resin, water-soluble cellulose derivatives having a basic structure of C 6 H 10 O 5 , water-soluble Examples thereof include epoxy resins, water-soluble polyester resins, water-soluble polyamide resins, vinylidene fluoride / hexafluoropropylene copolymers and polyvinylidene fluoride.
  • carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose which are water-soluble cellulose derivatives having a high electrochemical stability and having a basic structure of C 6 H 10 O 5 , are preferable.
  • the mass ratio of the polymer material that does not react with lithium to the carbon material is preferably 0.1 to 3% by mass, and more preferably 0.5 to 2% by mass. If the mass ratio is too small, the lithium supplementation to the carbon material is likely to proceed, while the lithium supplementation to the metal or metal oxide alloyed with lithium tends to be difficult to proceed, and the mass ratio is increased. If it is too high, the conductivity of the carbon material surface and the amount of occlusion of lithium ions by the carbon material tend to decrease.
  • the metal or metal oxide that forms an alloy with lithium may be coated with a polymer material that does not react with lithium at least part of its surface.
  • the ratio B / A of the mass ratio (B) of the polymer material that does not react with lithium to the metal or metal oxide alloyed with lithium to the mass ratio (A) of the polymer material that does not react with lithium to the carbon material is less than 1. More preferably 0.5 or less, further preferably 0.1 or less, and still more preferably zero. As B / A becomes smaller, lithium supplementation to the metal or metal oxide alloyed with lithium tends to proceed sufficiently.
  • the mass ratio of the carbon material having a polymer material that does not react with lithium and the metal or metal oxide alloyed with lithium is preferably 99: 1 to 50:50, more preferably 97: 3 to 80:20. is there. If mass ratio is in the said range, it will become easy to make high capacity
  • Examples of the carbon material include hard carbon, graphite, and a mixture of two or more thereof.
  • Examples of the metal or metal oxide alloyed with lithium include silicon, silicon oxide (SiO x , 0 ⁇ x ⁇ 1.5), tin, and germanium.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • Examples of non-aqueous solvents that can be used include esters, ethers, nitriles (acetonitrile, etc.), amides (dimethylformamide, etc.), and a mixture of two or more of these.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC), methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, and the like.
  • carboxylic acid esters such as chain carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone.
  • ethers examples include cyclic ethers such as 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, furan, 1,8-cineol, , 2-dimethoxyethane, ethyl vinyl ether, ethyl phenyl ether, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol
  • chain ethers such as dimethyl ether.
  • non-aqueous solvent it is preferable to use at least a cyclic carbonate among the solvents exemplified above, and it is more preferable to use a cyclic carbonate and a chain carbonate in combination.
  • the electrolyte salt is preferably a lithium salt.
  • lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 5 ) 2 , LiPF 6-X (C n F 2n + 1 ) X (1 ⁇ x ⁇ 6, n is 1 or 2). These lithium salts may be used alone or in combination of two or more.
  • the concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • separator a porous sheet having ion permeability and insulating properties is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • material of the separator polyolefin such as polyethylene and polypropylene is suitable.
  • Lithium filling of negative electrode An example of lithium supplementation (lithium pre-doping) to the negative electrode is a method of lithium supplementation before battery assembly.
  • a homogeneous lithium metal film is formed on the negative electrode by lithium vacuum vapor deposition (evaporating the lithium source by resistance heating), and the environment is 10 ° C. to 120 ° C., dew point ⁇ 20
  • a method of filling the negative electrode with lithium by a method such as leaving in an environment of ° C. can be mentioned.
  • the lithium metal film include a film obtained by lithium deposition or lithium sticking, a film containing lithium particles, and the like.
  • a non-aqueous electrolyte secondary battery supplemented in advance with an irreversible capacity equivalent lithium or more that is fixed in the negative electrode active material
  • the SOC of the non-aqueous electrolyte secondary battery when the SOC of the non-aqueous electrolyte secondary battery is 0%, the negative electrode does not face the positive electrode
  • the lithium content in the part is not less than the lithium content in the positive electrode facing part of the negative electrode.
  • the SOC State Of Charge
  • the lithium content represents a state of charge when the full charge capacity is 100%.
  • the lithium content can be measured by ICP or the like.
  • the negative electrode does not face the positive electrode
  • the lithium content in the part is greater than 0 and less than the lithium ion content in the positive electrode facing part of the negative electrode.
  • a non-aqueous electrolyte secondary battery using a negative electrode that has not been supplemented with lithium has irreversible capacity of lithium remaining in the positive electrode facing portion of the negative electrode, and the lithium in the negative electrode non-facing portion of the negative electrode.
  • the content is substantially zero.
  • the appropriate amount of lithium filling varies depending on the irreversible capacity of the negative electrode active material layer to be used, and is appropriately adjusted.
  • Example 1 [Production of positive electrode] Lithium cobaltate, acetylene black, and polyvinylidene fluoride were mixed with an appropriate amount of N-methylpyrrolidone in a mixer so that the mass ratio was 100: 1.5: 1.5, to prepare a positive electrode mixture slurry.
  • This positive electrode mixture slurry was applied to both sides of a positive electrode current collector sheet made of an Al foil having a thickness of 15 ⁇ m, dried, and after rolling, cut into a size corresponding to a battery case made of a predetermined laminate material.
  • the positive electrode used with a lithium ion battery was obtained.
  • the packing density of the positive electrode active material layer was 3.8 g / mL.
  • Metal lithium having a thickness of 4.0 ⁇ m was formed on both sides of the negative electrode by using a vacuum deposition method, and was left at 60 ° C. for 6 hours under vacuum to supplement the negative electrode with lithium.
  • a tab was attached to each of the electrodes, and the positive electrode and the negative electrode were wound in a spiral shape through a separator so that the tab was positioned on the outermost periphery, thereby preparing a wound electrode body.
  • the electrode body is inserted into an exterior body made of an aluminum laminate sheet and vacuum-dried at 105 ° C. for 2 hours, and then the non-aqueous electrolyte is injected, and the opening of the exterior body is sealed to form the battery C1.
  • the design capacity of the battery C1 is 800 mAh.
  • Example 2 A battery C2 was produced in the same manner as in Example 1 except that the mass ratio of sodium carboxymethylcellulose to graphite was 0.5% by mass.
  • Example 3 A battery C3 was produced in the same manner as in Example 1 except that the mass ratio of sodium carboxymethylcellulose to graphite was 2.0% by mass.
  • Example 4 A battery C4 was produced in the same manner as in Example 1 except that carboxymethylcellulose ammonium (Daicel DN400) was used instead of sodium carboxymethylcellulose.
  • the batteries C1 to C4 are supplied to the negative electrode so that the lithium content of the negative electrode non-facing portion of the negative electrode is equal to or higher than the lithium content of the negative electrode facing portion of the negative electrode. Replenishment of lithium is performed.
  • the non-aqueous electrolyte secondary battery using SiO and graphite coated with a polymer material that does not react with lithium as the negative electrode active material has improved initial charge / discharge efficiency. This is because, by using graphite coated with a polymer material that does not react with lithium instead of graphite in the negative electrode, lithium supplementation from the lithium film formed on the negative electrode to SiO in the negative electrode progressed selectively. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極活物質として炭素材料と、リチウムと合金化する金属または金属酸化物を用いる非水電解質二次電池において、初回充放電効率を改善することを目的とする。負極活物質として炭素材料と、リチウムと合金化する金属または金属酸化物とを備え、前記炭素材料表面の少なくとも一部が、リチウムと反応しないポリマー材料で被覆されている負極と、正極と、非水電解質を用いた非水電解質二次電池を提供する。前記炭素材料に対する前記リチウムと反応しないポリマー材料の質量比は、0.5~2質量%であることが好ましい。

Description

非水電解質二次電池用負極及び非水電解質二次電池
 本発明は、非水電解質二次電池用負極及び非水電解質二次電池に関する。
 リチウムイオン電池の高エネルギー密度化、高出力化に向け、負極活物質として、黒鉛等の炭素質材料に替えてケイ素、ゲルマニウム、錫及び亜鉛などのリチウムと合金化する金属材料や、これらの金属の酸化物などを用いることが検討されている。
 リチウムと合金化する金属材料やこれらの金属の酸化物からなる負極活物質は、初回の充電時には正極活物質からのリチウムが負極活物質中に取り込まれるが、このリチウムの全てが放電時に取り出すことができるわけではなく、不特定量が負極活物質中に固定されてしまい、不可逆容量となる。下記特許文献1には、酸化ケイ素の不可逆容量を補うため、リチウムを負極に補填する内容が開示されている。
特開2007-242580号公報
 しかしながら、負極に酸化ケイ素と黒鉛とを用いている特許文献1の非水電解質二次電池では、酸化ケイ素の不可逆容量を充分に補うことができないという課題がある。
 上記課題を解決すべく、本発明に係る非水電解質二次電池用負極は、炭素材料と、リチウムと合金化する金属または金属酸化物とを備え、上記炭素材料の表面の少なくとも一部は、リチウムと反応しないポリマー材料で被覆されている。
 本発明に係る非水電解質二次電池は、上記負極と、正極と、非水電解質と、を備える。
 本発明の非水電解質二次電池によれば、初回充放電効率を改善することができる。
 以下、本発明の実施形態について詳細に説明する。
 本明細書において「略**」とは、「略同等」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。
 本発明の実施形態の一例である非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極の間に設けられた有機物層と、非水溶媒を含む非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造が挙げられる。
 〔正極〕
 正極は、正極集電体と、正極集電体上に形成された正極活物質層とで構成されることが好適である。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。
 正極活物質は、特に限定されないが、好ましくはリチウム含有遷移金属酸化物である。リチウム含有遷移金属酸化物は、Mg、Al等の非遷移金属元素を含有するものであってもよい。具体例としては、コバルト酸リチウム、リン酸鉄リチウムに代表されるオリビン型リン酸リチウム、Ni-Co-Mn、Ni-Mn-Al、Ni-Co-Al等のリチウム含有遷移金属酸化物が挙げられる。正極活物質は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。
 導電材には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料、及びこれらの2種以上の混合物などを用いることができる。結着剤には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリビニルアセテート、ポリアクリロニトリル、ポリビニルアルコール、及びこれらの2種以上の混合物などを用いることができる。
 〔負極〕
 負極は、負極集電体と、負極集電体上に形成された負極活物質層とを備えることが好適である。負極集電体には、例えば、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルムが用いられる。負極活物質層は、負極活物質の他に、結着剤を含むことが好適である。結着剤としては、正極の場合と同様にポリテトラフルオロエチレン等を用いることもできるが、スチレン-ブタジエンゴム(SBR)やポリイミド等を用いることが好ましい。結着剤は、カルボキシメチルセルロース等の増粘剤と併用されてもよい。
 負極活物質は、リチウムと反応しないポリマー材料で表面の少なくとも一部が被覆された炭素材料と、リチウムと合金化する金属または金属酸化物とを備える。炭素材料表面の少なくとも一部がリチウムと反応しないポリマー材料で被覆されているとは、炭素材料表面に、リチウムと反応しないポリマー材料が吸着されている場合も含む。
 リチウムと反応しないポリマー材料は、イオン透過性があって、リチウムと反応しない材料であれば制限なく用いることができる。リチウムと反応しないポリマー材料は、C6105を基本構造とした澱粉の誘導体である酢酸澱粉、リン酸澱粉、カルボキシメチル澱粉、ヒドロキシエチル澱粉などのヒドロキシアルキル澱粉類、C6105を基本構造としたプルランやデキストリンなどの粘性多糖類、C6105基本構造とした水溶性セルロース誘導体であるカルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、水溶性アクリル樹脂、水溶性エポキシ樹脂、水溶性ポリエステル樹脂、水溶性ポリアミド樹脂、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体及びポリフッ化ビニリデン、が挙げられる。このうち、好ましくは、電気化学的安定性が高い、C6105を基本構造とした水溶性セルロース誘導体であるカルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースである。
 炭素材料に対するリチウムと反応しないポリマー材料の質量比は、0.1~3質量%であることが好ましく、さらに好ましくは、0.5~2質量%である。上記質量比が小さくなりすぎると、炭素材料へのリチウム補填が進みやすくなる一方で、リチウムと合金化する金属または金属酸化物へのリチウム補填が進みにくくなる傾向があり、上記質量比が大きくなりすぎると、炭素材料表面の導電性や炭素材料がリチウムイオンを吸蔵する量が低下する傾向がある。
 リチウムと合金化する金属または金属酸化物は、その表面の少なくとも一部を、リチウムと反応しないポリマー材料で被覆されていてもよい。炭素材料に対するリチウムと反応しないポリマー材料の質量比(A)に対する、リチウムと合金化する金属または金属酸化物に対するリチウムと反応しないポリマー材料の質量比(B)の比率B/Aは、1未満であり、さらに好ましくは、0.5以下、さらに好ましくは、0.1以下、さらに好ましくは、ゼロである。B/Aが小さくなるに従い、リチウムと合金化する金属または金属酸化物へのリチウム補填が充分に進行する傾向にある。
 リチウムと反応しないポリマー材料を有する炭素材料と、リチウムと合金化する金属または金属酸化物との質量比は、好ましくは、99:1~50:50、さらに好ましくは97:3~80:20である。質量比が当該範囲内であれば、高容量化と初回充放電特性向上を両立し易くなる。
 炭素材料は、ハードカーボン、黒鉛、及びこれらの2種以上の混合物が例示される。
 リチウムと合金化する金属または金属酸化物は、ケイ素、ケイ素酸化物(SiOx、0<x≦1.5)、スズ、ゲルマニウムが例示される。
 〔非水電解質〕
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類(アセトニトリル等)、アミド類(ジメチルホルムアミド等)、及びこれらの2種以上の混合溶媒などを用いることができる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のカルボン酸エステル類などが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、フラン、1,8-シネオール等の環状エーテル、1,2-ジメトキシエタン、エチルビニルエーテル、エチルフェニルエーテル、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 非水溶媒としては、上記例示した溶媒のうち、少なくとも環状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートを併用することがより好ましい。また、非水溶媒には、各種溶媒の水素をフッ素等のハロゲン原子で置換したハロゲン置換体を用いてもよい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiPF6、LiBF4、LiAsF6、LiN(SO2CF32、LiN(SO2CF52、LiPF6-X(Cn2n+1X(1<x<6,nは1又は2)などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 〔セパレータ〕
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィンが好適である。
 〔負極へのリチウム補填〕
 負極へのリチウム補填(リチウムプレドープ)は、電池組立て前にリチウム補填する方法が例示される。電池組立て前にリチウム補填する方法としては、負極上へリチウム真空蒸着法(抵抗加熱にてリチウム源を蒸発)にて均質なリチウム金属膜を形成して、10℃~120℃環境、露点-20℃環境にて放置する、等の方法によって負極へリチウム補填する方法が挙げられる。上記リチウム金属膜は、リチウム蒸着やリチウム貼付によって得られる膜、リチウム粒子を含む膜等が挙げられる。
 負極活物質中に固定されてしまう不可逆容量相当分以上のリチウムを予め補っている非水電解質二次電池においては、非水電解質二次電池のSOCが0%のとき、前記負極の正極非対向部のリチウム含有量は、前記負極の正極対向部のリチウム含有量以上である。上記SOC(State Of Charge)は、満充電時の充電容量を100%とした場合の充電状態を表す。非水電解質二次電池SOCが0%のときは、すなわち、完全放電状態である。上記リチウム含有量は、ICP等により測定することができる。
 負極活物質中に固定されてしまう不可逆容量相当分未満のリチウムを予め補っている非水電解質二次電池においては、非水電解質二次電池のSOCが0%のとき、前記負極の正極非対向部のリチウム含有量は、0より大きく、かつ、前記負極の正極対向部のリチウムイオン含有量未満である。
 リチウム補填が行われていない負極を用いた非水電解質二次電池は、SOCが0%のとき、負極の正極対向部には不可逆容量分のリチウムが残存し、負極の正極非対向部のリチウム含有量は、略ゼロである。
 適切なリチウム補填量は、使用する負極活物質層の不可逆容量の大きさによって異なるものであり、適宜調整するものである。
 以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
[正極の作製]
 コバルト酸リチウム、アセチレンブラック及びポリフッ化ビニリデンを質量比で100:1.5:1.5となるように、適量のN-メチルピロリドンとともにミキサーで混合し、正極合剤スラリーを調製した。この正極合剤スラリーを厚さ15μmのAl箔からなる正極集電体シートの両面に塗布し、乾燥させ、圧延後に所定のラミネート材製の電池ケースに対応する大きさに裁断し、実験例1のリチウムイオン電池で使用する正極を得た。正極活物質層の充填密度は、3.8g/mLであった。
 [黒鉛への被覆]
 純水1リットルに対し、カルボキシメチルセルロースナトリウム(ダイセル製#1380)を所定量加えて溶解し、人造黒鉛粉末(平均粒径(D50)25μm)を1kg投入した後、ホモジナイザーで60分間攪拌して分散させた。スプレードライヤーを用い、得られた分散液を100℃で乾燥させ、黒鉛の乾燥粉を得た。
 [質量比の測定]
 得られた黒鉛の乾燥粉の重量(W1)およびそれらを大気中において400℃で2時間熱処理を施した黒鉛の重量(W2)から、次式により熱減耗量を算出し、黒鉛に対する被覆量とした。
 被覆量[重量%]=〔(W1-W2)/W1〕×100
 黒鉛に対するカルボキシメチルセルロース被覆量は、1.0質量%であった。
[負極の作製]
 得られた黒鉛粉末と、導電性炭素材料で被覆された平均粒径(D50)6μmのSiO粒子と、カルボキシメチルセルロース(ダイセル製#1380)と、スチレンブタジエンラバーとを、質量比で90:10:1:1となるように、適量の水とともにミキサーで混合し、負極合剤スラリーを調製した。この負極合剤スラリーを厚さ10μmの銅箔からなる負極集電体シートの両面に塗布し、乾燥させ、圧延後した。負極活物質層の充填密度は、1.60g/mLであった。
[負極へのリチウム補填]
 真空蒸着法を用いて厚さ4.0μmの金属リチウムを負極両面に形成し、真空下60℃で6時間放置して、負極へリチウムを補填した。
[非水電解液の調製]
 EC:DEC=3:7(容積比)となるように混合した非水溶媒に、LiPF6を1.0mol/Lとなるように添加して得られた電解液に2質量部のFECを添加して、非水電解液を調製した。
[電池C1の作製]
 上記各電極にタブをそれぞれ取り付け、タブが最外周部に位置するようにセパレータを介して上記正極及び上記負極を渦巻き状に巻回して巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の開口部を封止して電池C1を作製した。電池C1の設計容量は800mAhである。
 <実施例2>
 黒鉛に対するカルボキシメチルセルロースナトリウムの質量比を0.5質量%としたこと以外は、実施例1と同様の方法で電池C2を作製した。
 <実施例3>
 黒鉛に対するカルボキシメチルセルロースナトリウムの質量比を2.0質量%としたこと以外は、実施例1と同様の方法で電池C3を作製した。
 <実施例4>
 カルボキシメチルセルロースナトリウムに代えて、カルボキシメチルセルロースアンモニウム(ダイセル製DN400)を用いたこと以外は、実施例1と同様の方法で電池C4作製した。
 <比較例1>
 黒鉛にカルボキシメチルセルロースナトリウムを被覆しなかったこと以外は、実施例1と同様の方法で電池R1を作製した。
<電池性能評価>
 電池C1~C4、R1について、初回充放電効率の評価を行い、表1に示した。
 [初回充放電効率]
(1)充電;0.5Itの電流で電圧が4.3Vになるまで定電流充電を行い、その後電圧が4.3Vで0.05Itの電流になるまで定電圧充電を行った。
(2)放電;0.2Itの電流で電圧が3.0Vになるまで定電流放電を行った。
 1サイクル目の充電容量に対する1サイクル目の放電容量の割合を、初回充放電効率とした。
 初回充放電効率(%)
 =(1サイクル目の放電容量/1サイクル目の充電容量)×100
 なお、電池C1~C4は、SOCが0%(初期充放電後)のとき、負極の正極非対向部のリチウム含有量が、負極の正極対向部のリチウム含有量以上となるように、負極へのリチウム補填が行われている。
Figure JPOXMLDOC01-appb-T000001
 表1から解るように、SiOと、リチウムと反応しないポリマー材料で被覆した黒鉛とを負極活物質として用いた非水電解質二次電池は、初回充放電効率が改善される。これは、負極中の黒鉛にかえて、リチウムと反応しないポリマー材料で被覆した黒鉛を用いることにより、負極上に形成されたリチウム膜から負極中のSiOへのリチウム補填が選択的に進行したためである。

Claims (5)

  1.  非水電解質二次電池用負極であって、
     炭素材料と、リチウムと合金化する金属または金属酸化物とを備え、
     前記炭素材料の表面の少なくとも一部が、リチウムと反応しないポリマー材料で被覆されている、非水電解質二次電池用負極。
  2.  請求項1に記載の負極であって、
     前記炭素材料に対する前記リチウムと反応しないポリマー材料の質量比が、0.5~2質量%である、非水電解質二次電池用負極。
  3.  請求項1または請求項2に記載の負極であって、
     前記リチウムと反応しないポリマー材料は、C6105構造を有する澱粉の誘導体、C6105構造を有する粘性多糖類、C6105構造を有する水溶性のセルロース誘導体、水溶性アクリル樹脂、水溶性エポキシ樹脂、水溶性ポリエステル樹脂、水溶性ポリアミド樹脂、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体及びポリフッ化ビニリデンからなる群から選択される1つ以上である、非水電解質二次電池用負極。
  4.  請求項1~請求項3のいずれか1項に記載の負極と、正極と、非水電解質と、を備える非水電解質二次電池。
  5.  請求項4に記載の非水電解質二次電池であって、
     前記非水電解質二次電池の満充電時の充電容量を100%とした場合の充電状態が0%のとき、前記負極の正極非対向部のリチウム含有量が、前記負極の正極対向部のリチウム含有量以上である、非水電解質二次電池。
PCT/JP2014/000692 2013-02-26 2014-02-10 非水電解質二次電池用負極及び非水電解質二次電池 WO2014132579A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/763,965 US10056606B2 (en) 2013-02-26 2014-02-10 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2015502745A JPWO2014132579A1 (ja) 2013-02-26 2014-02-10 非水電解質二次電池用負極及び非水電解質二次電池
CN201480010341.5A CN105074975B (zh) 2013-02-26 2014-02-10 非水电解质二次电池用负极以及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035948 2013-02-26
JP2013035948 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132579A1 true WO2014132579A1 (ja) 2014-09-04

Family

ID=51427859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000692 WO2014132579A1 (ja) 2013-02-26 2014-02-10 非水電解質二次電池用負極及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US10056606B2 (ja)
JP (1) JPWO2014132579A1 (ja)
CN (1) CN105074975B (ja)
WO (1) WO2014132579A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470450A (zh) * 2014-10-16 2016-04-06 万向A一二三系统有限公司 一种锂离子动力电池硅负极极片及其制备方法
WO2017026269A1 (ja) * 2015-08-10 2017-02-16 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JPWO2017026268A1 (ja) * 2015-08-10 2018-05-31 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018216585A1 (ja) * 2017-05-25 2018-11-29 株式会社村田製作所 非水電解質二次電池および非水電解質二次電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322736B2 (en) * 2017-06-08 2022-05-03 Lg Energy Solution, Ltd. Negative electrode, secondary battery including the same, and method of preparing the negative electrode
JP2022060673A (ja) * 2020-10-05 2022-04-15 本田技研工業株式会社 非水電解質二次電池用負極及びこれを備える非水電解質二次電池
CN117117111A (zh) * 2023-02-20 2023-11-24 荣耀终端有限公司 电化学装置及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287505A (ja) * 2009-06-12 2010-12-24 Toyota Motor Corp 二次電池用負極の製造方法及び電極構造
JP2011054324A (ja) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd リチウムイオン二次電池およびその製造方法
WO2013018486A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008180B2 (ja) 2006-02-13 2012-08-22 日立マクセルエナジー株式会社 非水二次電池
KR100938058B1 (ko) * 2007-10-23 2010-01-21 삼성에스디아이 주식회사 리튬 이차전지용 음극 및 이를 이용한 리튬 이차 전지
JP5079025B2 (ja) * 2010-01-04 2012-11-21 日立マクセルエナジー株式会社 非水二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287505A (ja) * 2009-06-12 2010-12-24 Toyota Motor Corp 二次電池用負極の製造方法及び電極構造
JP2011054324A (ja) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd リチウムイオン二次電池およびその製造方法
WO2013018486A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池用活物質及びその製造方法並びにそれを用いた負極

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470450A (zh) * 2014-10-16 2016-04-06 万向A一二三系统有限公司 一种锂离子动力电池硅负极极片及其制备方法
WO2017026269A1 (ja) * 2015-08-10 2017-02-16 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JPWO2017026269A1 (ja) * 2015-08-10 2018-05-31 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JPWO2017026268A1 (ja) * 2015-08-10 2018-05-31 ソニー株式会社 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11088359B2 (en) 2015-08-10 2021-08-10 Murata Manufacturing Co., Ltd. Secondary battery-use anode and method of manufacturing the same, secondary battery and method of manufacturing the same, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2018216585A1 (ja) * 2017-05-25 2018-11-29 株式会社村田製作所 非水電解質二次電池および非水電解質二次電池の製造方法
US11831008B2 (en) 2017-05-25 2023-11-28 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US10056606B2 (en) 2018-08-21
CN105074975B (zh) 2018-04-03
JPWO2014132579A1 (ja) 2017-02-02
CN105074975A (zh) 2015-11-18
US20150372306A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP7053130B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP6787700B2 (ja) リチウムイオン二次電池
US10056606B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2015115051A1 (ja) 非水電解質二次電池用負極
WO2015098021A1 (ja) 非水電解質二次電池用負極
WO2015098023A1 (ja) 非水電解質二次電池用負極
JP6314990B2 (ja) 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP2012022794A (ja) 非水電解質二次電池用負極及び非水電解質二次電池
KR20150067049A (ko) 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
JP2011023221A (ja) リチウムイオン二次電池
JPWO2017217408A1 (ja) リチウムイオン二次電池
JP6394612B2 (ja) 非水電解質二次電池用負極
JP6978234B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2015118834A1 (ja) 非水電解質二次電池用負極
JP2019185943A (ja) リチウム二次電池用負極の製造方法
JPWO2015045314A1 (ja) 非水電解質二次電池
JP6988169B2 (ja) 非水電解質二次電池用負極の製造方法、および非水電解質二次電池の製造方法
WO2013146115A1 (ja) 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
WO2015118833A1 (ja) 非水電解質二次電池
WO2014115322A1 (ja) リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池
JP2017126488A (ja) 非水電解液二次電池用非水電解液及び非水電解液二次電池
JP2008071746A (ja) 非水電解質二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015133296A (ja) 非水電解質二次電池
JP2020009562A (ja) 正極活物質粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010341.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502745

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763965

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756275

Country of ref document: EP

Kind code of ref document: A1