WO2014132415A1 - 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置 - Google Patents

蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置 Download PDF

Info

Publication number
WO2014132415A1
WO2014132415A1 PCT/JP2013/055553 JP2013055553W WO2014132415A1 WO 2014132415 A1 WO2014132415 A1 WO 2014132415A1 JP 2013055553 W JP2013055553 W JP 2013055553W WO 2014132415 A1 WO2014132415 A1 WO 2014132415A1
Authority
WO
WIPO (PCT)
Prior art keywords
emission
light
phosphorescence
irradiation
valuable medium
Prior art date
Application number
PCT/JP2013/055553
Other languages
English (en)
French (fr)
Inventor
佐藤 剛
博 小西
史哲 嶋岡
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2013/055553 priority Critical patent/WO2014132415A1/ja
Publication of WO2014132415A1 publication Critical patent/WO2014132415A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/205Matching spectral properties

Definitions

  • the present invention provides a fluorescence / phosphorescence detection method and apparatus for detecting fluorescence emission and phosphorescence emission observed in a valuable medium, and a truth for determining the authenticity of a valuable medium using the fluorescence / phosphorescence detection method.
  • the present invention relates to a false determination method and apparatus.
  • inks in which fluorescence emission is observed by irradiating excitation light of a predetermined wavelength and inks in which phosphorescence emission is observed. If a mark or the like is printed on the valuable medium using such ink, the authenticity of the valuable medium can be determined from the relationship between the irradiation timing of the excitation light and the emission state of the excited light emission.
  • Patent Document 1 discloses a technique for detecting both fluorescence emission and phosphorescence emission.
  • This apparatus distinguishes and detects fluorescence and phosphorescence from the relationship between the irradiation timing of excitation light and the timing at which the excited light is measured. Specifically, while conveying paper sheets, ultraviolet light, which is excitation light, is irradiated at a predetermined position, and fluorescence emission excited by the paper sheets is measured by a sensor provided at this position. Then, at a position downstream of the conveyance direction from the position where the fluorescence emission is measured, another sensor provided at this position measures the phosphorescence emission observed without being irradiated with the excitation light after the excitation light irradiation. To do.
  • fluorescence and phosphorescence are measured in a bright phase in which excitation light is irradiated on a measurement target, and phosphorescence is measured in a dark phase in which excitation light is not irradiated after excitation light irradiation. And a technique for detecting both phosphorescence is disclosed.
  • Patent Document 3 discloses a technique for measuring the emission intensity of each of fluorescence and phosphorescence using a filter from a measurement object in which both fluorescence emission and phosphorescence emission are observed. Specifically, when measuring in the bright phase and the dark phase using two sensors, one sensor uses a filter to measure only fluorescence emitted in a predetermined wavelength range, and the other sensor Measure light in the entire wavelength range including fluorescence and phosphorescence. Then, phosphorescence is detected from the difference between the measurement result of light in the entire wavelength region and the measurement result of fluorescence.
  • Patent Document 4 discloses a technique for detecting phosphorescence emission based on a temporal change in emission intensity of phosphorescence emission. Specifically, fluorescence emission shows a substantially constant emission intensity immediately after excitation light irradiation until excitation light irradiation stops, whereas phosphorescence emits excitation light after starting excitation light irradiation. The emission intensity gradually increases until it stops. Using this characteristic at the time of phosphorescence emission, based on the integral value within a predetermined time after the excitation light irradiation of the signal whose emission intensity was measured, and the integral value within a predetermined time immediately before stopping the excitation light irradiation, It detects phosphorescence.
  • JP 2010-60524 A International Publication No. 2010/018353 JP-T-2001-506001 Japanese Patent No. 4048121
  • Patent Document 4 since the signal used for phosphorescence detection is a short-time signal, it may be affected by noise.
  • Patent Document 4 discloses that the integral value is obtained with a time length of 25% or less of the time from when the excitation light irradiation is started to when it is stopped. With this time length, phosphorescence is emitted. The intensity is low, and measurement errors may occur due to the influence of noise.
  • the present invention has been made to solve the above-described problems caused by the prior art, and can accurately distinguish and detect the fluorescence emission and phosphorescence emission observed in a valuable medium, and can distinguish the type of phosphorescence. It is an object of the present invention to provide a fluorescence / phosphorescence detection method and apparatus, and a true / false determination method and apparatus for determining the authenticity of a valuable medium using the fluorescence / phosphorescence detection method.
  • the present invention is a fluorescence / phosphorescence detection method for detecting fluorescence emission and phosphorescence emission having different time characteristics of emission intensity when irradiated with the same excitation light.
  • the first excitation light irradiation step of irradiating the valuable medium with the excitation light for the first irradiation time at the first emission intensity, and the valuable excited by the excitation light irradiated in the first excitation light irradiation step The first light emission amount measuring step for measuring the light emission amount from the medium and the second light irradiation time that is different from the length of the first irradiation time, and the same amount of light as the excitation light irradiated in the first excitation light irradiation step.
  • a second excitation light irradiation step of irradiating the valuable medium with excitation light at a second emission intensity set to be, and the valuable excited by the excitation light irradiated in the second excitation light irradiation step Second luminescence measurement to measure luminescence from the medium Comparing the measurement result obtained in the step and the first luminescence measurement step with the measurement result obtained in the second luminescence measurement step, the emission from the valuable medium is either fluorescence or phosphorescence. And a light emission determination step of determining whether or not there is a feature.
  • the first emission amount measured in the first emission amount measurement step and the second emission amount measured in the second emission amount measurement step are the same.
  • the emission from the valuable medium is determined to be fluorescence emission, and the first emission amount and the second emission amount are different, the emission from the valuable medium is phosphorescence emission. It is determined that it exists.
  • the first light emission amount and the second light emission amount are different, the first light emission amount and the second light emission amount are compared and phosphorescence is compared. The type of light emission is identified.
  • the present invention also relates to a fluorescence / phosphorescence detection device that detects fluorescence emission and phosphorescence emission having different time characteristics of emission intensity when irradiated with the same excitation light, and is a light source that irradiates a valuable medium with excitation light.
  • the excitation light is irradiated with the first emission intensity, and during the second irradiation time different from the time length of the first irradiation time, the first irradiation time and the first emission intensity.
  • a light source control unit that controls the light source so as to irradiate excitation light with a second light emission intensity that is set to have the same light amount as the excitation that is irradiated; a sensor that measures light emission excited by the valuable medium; The first emission intensity obtained by measuring the emission emitted by the first emission intensity and the excitation light of the first irradiation time by the sensor, and the excitation light of the second emission intensity and the second irradiation time. The excited luminescence is measured by the sensor Obtained by comparing the second light emission amount, light emitted from the valuable medium is characterized by comprising a fluorescence emission and determining emission determination unit which of phosphorescent.
  • the light emission determination unit determines that the light emission from the valuable medium is a fluorescence light emission when the first light emission amount and the second light emission amount are the same. When the first light emission amount and the second light emission amount are different, it is determined that light emission from the valuable medium is phosphorescence light emission.
  • the light emission determination unit compares the first light emission amount with the second light emission amount when the first light emission amount and the second light emission amount are different from each other. The type of light emission is identified.
  • a light source filter that transmits the excitation light from the light source side to the valuable medium side and blocks light emission from the valuable medium side to the light source side, and an excitation light from the light source.
  • a light source monitor sensor provided in the vicinity of the light source on the light source side for monitoring irradiation, and a timing control unit for determining a control timing of the light source based on an output from the light source monitor sensor The light source control unit is controlled by the timing control unit.
  • the present invention detects the authenticity of a valuable medium by detecting fluorescence emission and phosphorescence emission having different time characteristics of emission intensity when irradiated with the same excitation light, and determining the authenticity of the valuable medium based on the detection result
  • a first excitation light irradiation step of irradiating a valuable medium with excitation light for a first irradiation time at a first emission intensity, and excitation by the excitation light irradiated in the first excitation light irradiation step A first light emission measuring step for measuring the amount of light emitted from the valuable medium, and the excitation light irradiated in the first excitation light irradiation step during a second irradiation time different from the length of the first irradiation time; Excited by the second excitation light irradiation step of irradiating the valuable medium with the excitation light at the second emission intensity set to have the same light amount and the excitation light irradiated in the second excitation light ir
  • a fluorescence / phosphorescence determination step for determining whether or not the authenticity of the valuable medium is determined based on a determination result in the fluorescence / phosphorescence determination step.
  • the present invention detects the authenticity of a valuable medium by detecting fluorescence emission and phosphorescence emission having different time characteristics of emission intensity when irradiated with the same excitation light, and determining the authenticity of the valuable medium based on the detection result
  • a light source control unit that controls the light source so as to irradiate the excitation light with the second light emission intensity set so as to have the same light amount as the excitation irradiated with the first irradiation time and the first light emission intensity during the time.
  • a sensor for measuring the light emission excited by the valuable medium, the light emission amount obtained by measuring the light emission excited by the excitation light of the first light emission intensity and the first irradiation time by the sensor, Excitation of second emission intensity and second irradiation time A light emission determination unit that compares the light emission amount obtained by measuring the light emission excited by the sensor with the light emission amount to determine whether the light emission from the valuable medium is fluorescent light emission or phosphorescence light emission; and A true / false determination unit that determines the authenticity of the valuable medium based on a determination result by the determination unit.
  • the excitation light is irradiated a plurality of times with different irradiation times, but the light emission intensity of each irradiation is set so that the light emission amount is the same. By comparing these, it is possible to determine whether this emission is fluorescence emission or phosphorescence emission. Whether the valuable medium emits fluorescent light or phosphorescent light can be detected with high accuracy. Therefore, the authenticity of the valuable medium can be determined based on whether light emission to be detected from the valuable medium is detected.
  • the present invention not only the difference between fluorescence and phosphorescence but also the kind of phosphorescence can be identified from the difference in the amount of emitted light excited by the valuable medium in each irradiation.
  • the authenticity determination of the valuable medium is performed based on the difference in the type of phosphorescence emission. be able to.
  • FIG. 1 is a diagram for explaining the relationship between excitation light applied to a valuable medium and fluorescence emission and phosphorescence emission excited by the excitation light.
  • FIG. 2 is a diagram showing the relationship between the irradiation time and the light emission amounts of fluorescence, phosphorescence A and phosphorescence B when the irradiation time and light emission intensity are changed so that the same light emission amount is obtained and the excitation light is irradiated.
  • FIG. 3 shows sensor output integrated values obtained by excited fluorescence, phosphorescence A, and phosphorescence B when irradiation with excitation light is performed twice while changing the irradiation time and emission intensity so as to achieve the same light emission amount.
  • FIG. 4 is a schematic cross-sectional view illustrating the structural outline of the fluorescence / phosphorescence detection apparatus according to the first embodiment.
  • FIG. 5 is a functional block diagram for explaining the functional outline of the fluorescence / phosphorescence detection apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of the circuit configuration of the integrator.
  • FIG. 7 is a diagram for explaining a method for measuring luminescence excited by a valuable medium by the fluorescence / phosphorescence detection apparatus according to the first embodiment.
  • FIG. 8 is a functional block diagram for explaining the functional outline of the fluorescence / phosphorescence detection apparatus according to the second embodiment.
  • FIG. 9 is a diagram for explaining a method for measuring luminescence excited by a valuable medium by the fluorescence / phosphorescence detection apparatus according to the second embodiment.
  • FIG. 10 is a diagram for explaining an example in which the irradiation of excitation light in the fluorescence / phosphorescence detection apparatus is controlled by the shutter unit.
  • the fluorescence / phosphorescence detection method and the fluorescence / phosphorescence detection apparatus according to the present invention, and a true / false determination method for determining the authenticity of a valuable medium based on a detection result by the fluorescence / phosphorescence detection method And a preferred embodiment of the apparatus will be described in detail.
  • the fluorescence / phosphorescence detection method and the fluorescence / phosphorescence detection apparatus according to the present embodiment for example, the fluorescence / phosphorescence emitted by excitation light such as ultraviolet light (UV light) is emitted at a wavelength different from the excitation light. Can be detected.
  • excitation light such as ultraviolet light (UV light)
  • fluorescence / phosphorescence detection method it is possible to detect the presence / absence of fluorescence emission ink and phosphorescence emission ink used in valuable media such as banknotes, checks, gift certificates, cards and the like.
  • a light source is irradiated with excitation light for exciting fluorescence emission and phosphorescence emission from a light source a plurality of times under different conditions. Measure with And based on each measurement result obtained by multiple times of irradiation, it is determined whether the light emission measured by the valuable medium is fluorescence emission or phosphorescence emission.
  • the fluorescence / phosphorescence detection method will be described with reference to FIG.
  • FIG. 1 is a diagram for explaining the relationship between excitation light applied to a valuable medium to excite fluorescence and phosphorescence, and fluorescence emission and phosphorescence emission excited by the excitation light.
  • FIG. 1A shows the emission intensity and irradiation timing of irradiation light irradiated as excitation light from a light source.
  • the left figure of FIG. 1 (b) shows the temporal characteristics of the fluorescence emission excited on the valuable medium by the irradiation light shown in FIG. 1 (a), and the right figure shows the measurement of the fluorescence emission.
  • the integrated value (light emission amount) of the obtained sensor output is shown.
  • the sensor includes, for example, an LED that emits excitation light having a UV wavelength and a photodiode that measures the excited light emission.
  • FIG. 1A and the left diagrams of FIGS. 1B and 1C the vertical axis indicates the emission intensity and the horizontal axis indicates time.
  • the right diagrams of FIGS. 1B and 1C show the integrated values of sensor outputs obtained by measuring the luminescence excited during the first and second irradiations.
  • the emission intensity of irradiation light is, for example, an LED whose emission intensity increases linearly according to the applied current value. This corresponds to the current value applied to the light source.
  • the emission intensity of fluorescence and phosphorescence is a sensor using an element such as a photodiode whose current amount increases linearly according to the received emission intensity, and corresponds to the current value output from the sensor.
  • the excitation light is irradiated so that the light emission amounts are the same while changing the light emission intensity and the irradiation time.
  • excitation light with emission intensity H is irradiated for the irradiation time T (t0 to t1).
  • excitation light having an emission intensity of n ⁇ H is irradiated for the irradiation time T / n (t2 to t3).
  • n is, for example, a natural number of 2 or more
  • the second irradiation indicates that the irradiation is performed for a short time of 1 / n compared to the first irradiation. While the irradiation time for the second time is shorter than that for the first time, the light emission intensity for the second time is set to n times the light emission intensity for the first time.
  • the light emission amounts of the second irradiation light and the first irradiation light are made the same. is there.
  • the fluorescence is excited at the same time as the start of the excitation light irradiation, and this fluorescence emission is observed for a time T / n (t2 to t3) until the irradiation is stopped.
  • T / n time
  • fluorescence emission light emission starts simultaneously with the excitation light irradiation, and disappears at the same time as the excitation light irradiation is stopped.
  • the fluorescence emission As shown in the left diagram of FIG. 1B, a constant emission intensity is maintained while the excitation light is irradiated.
  • the emission intensity varies depending on the ink characteristics and the like, but is an intensity corresponding to the emission intensity of the excitation light.
  • the second irradiation with the emission intensity n ⁇ H is performed.
  • the intensity of fluorescence emission is n ⁇ Ha.
  • the light emission amount obtained by the first irradiation is Ha ⁇ T
  • the emission intensity is set so that the light emission amount becomes the same value (HT) and the excitation light is irradiated
  • the fluorescence emission is the first time.
  • the amount of fluorescent light emission obtained by the irradiation of 2 and the amount of fluorescent light emission obtained by the second irradiation become the same value (Ha ⁇ T). For this reason, when integrating the sensor output that receives the fluorescence emission excited by the first irradiation and the second irradiation, the same integrated value (Sa) is obtained as shown in the right diagram of FIG. Become.
  • FIG. 1 (a) When a phosphorescent light-emitting ink is used as a valuable medium, as shown in FIG. 1 (a), if irradiation is performed twice with different irradiation times and light emission intensities, as shown in FIG. Phosphorescence emission is observed.
  • phosphorescence emission starts simultaneously with the start of excitation light irradiation (t0), and then the emission intensity gradually increases (becomes bright) and eventually reaches a saturated state. Then, phosphorescence emission is observed even after irradiation of excitation light is stopped (t1), but the emission intensity gradually decreases (darkens), and eventually disappears. Even in the second irradiation, after the irradiation is started (t2), the emission intensity of phosphorescence gradually increases. When the emission intensity of the excitation light to be irradiated is strong, the emission intensity of phosphorescence emission may increase even after the irradiation is stopped. The second phosphorescence emission in the left figure of FIG. 1 (c) shows such a case. After the emission intensity rises after the excitation light irradiation is stopped (t3) (t4), the light emission is gradually emitted. The strength decreases and eventually disappears.
  • the emission intensity at the time of saturation of phosphorescence varies depending on the characteristics of the ink and the like. For example, as shown in the left diagram of FIG. 1C, when the saturation state is reached by the first irradiation of the emission intensity H (t1) When the phosphorescence emission intensity is Hb and the phosphorescence emission intensity when the saturation state is reached after the second irradiation of the emission intensity n ⁇ H (t4) is Hd, the emission intensity has a relationship of Hb ⁇ Hd.
  • the emission intensity Hc at (t3) when the second irradiation is stopped is lower than the emission intensity Hd.
  • the light emission amount obtained by the second irradiation is lower than the light emission amount obtained by the first irradiation. Value.
  • the emission intensity is set so that the light emission amount becomes the same value (HT)
  • the excitation light is irradiated.
  • the amount of phosphorescence emitted by the second irradiation is different from the amount of phosphorescence obtained by the second irradiation. For this reason, when integrating the sensor output that receives the phosphorescence emitted excited by the first irradiation and the second irradiation, different integration values (Sb and Sc) are obtained as shown in the right diagram of FIG. It will be.
  • the integrated value (light emission amount) of the sensor output becomes the same value for each irradiation, and in the case of phosphorescent light emission, the integrated value (light emission amount) of the sensor output becomes a different value. For this reason, based on the output value of the sensor obtained by measuring the excited luminescence, it is possible to accurately determine whether the emission is fluorescence or phosphorescence.
  • the irradiation light is irradiated twice as shown in FIG. 1A, and the integrated value of the signal output from the sensor is within a predetermined error range. If they coincide with each other, it is determined that the light emission is the fluorescence emission shown in the right figure (b). To do.
  • the first irradiation time (T) and the second irradiation time (T / n) are set such that the amount of phosphorescence emission differs between the first and second irradiations according to the emission characteristics of phosphorescence. That is, the integral values of the sensor outputs obtained by measuring phosphorescence are set to be different.
  • the time (t1 to t2) from the end of the first excitation light irradiation shown in FIG. 1A to the start of the second irradiation (t1 to t2) is, for example, that phosphorescence emitted by the first irradiation is phosphorescence. It is set according to the disappearance time. Specifically, as shown in FIG. 1 (c), after the first irradiation is stopped (t1), the phosphorescence decays to 0 (zero) (t2), or thereafter, the second time. Start irradiation.
  • the second irradiation is started without waiting for the disappearance of phosphorescence after the first irradiation. May be.
  • FIG. 1 shows a method for determining whether fluorescence emission or phosphorescence emission is based on the difference in temporal characteristics of emission intensity between fluorescence emission and phosphorescence emission
  • the fluorescence / phosphorescence according to the present embodiment is shown.
  • the detection method it is also possible to distinguish between the different types of phosphorescence emission.
  • the sensor output integral value shown in the right diagram of FIG. 1 (c) shows different values depending on the time characteristics of phosphorescence emission shown in the left diagram of the figure, so that the first and second sensor output integral values, Based on the difference or ratio of the integral values, the difference in the type of phosphorescence emission can be identified.
  • a method for identifying the type of phosphorescence emission will be described.
  • FIG. 2 shows the amount of emission of fluorescence, phosphorescence A and phosphorescence B excited by the excitation light, and the amount of excitation light when the emission intensity is set so that the irradiation time of the excitation light is changed and the same emission amount is obtained. It is a figure which shows the relationship with irradiation time. Further, FIG. 3 shows that the fluorescence, phosphorescence A, and phosphorescence B having the characteristics shown in FIG. 2 are irradiated twice by changing the irradiation time of the excitation light and setting the emission intensity so that the emission amount is the same. It is a figure which shows the integrated value of the sensor output obtained by measuring the light excited by each irradiation in the case of.
  • the first irradiation time is set to 200 ⁇ sec and the second irradiation time is set to 100 ⁇ sec when the excitation light is irradiated twice, the fluorescence, phosphorescence A, and phosphorescence B excited by each irradiation are shown in FIG.
  • the sensor output integral value shown in a) is obtained.
  • the sensor output integrated value shown in FIG. 3B is obtained.
  • the sensor output values obtained by the first irradiation and the second irradiation are compared, and the light emission having substantially the same sensor output integrated value is emitted by fluorescence and sensor output integration. It is possible to distinguish between phosphorescence A when the difference in value is the value d1 and phosphorescence B as the emission whose difference in the sensor output integral value is the value d2 and the type of emission. In addition, fluorescence, phosphorescence A, and phosphorescence B can be identified from the value of the sensor output integral value obtained by each irradiation and the ratio of the first and second sensor output integral values.
  • the fluorescence, phosphorescence A and the difference between the sensor output integrated value obtained by each irradiation and the difference or ratio between the first and second sensor output integrated values are also obtained.
  • Phosphorescence B can be identified.
  • the irradiation time is set so that the first sensor output integral value is substantially the same for fluorescence, phosphorescence A and phosphorescence B, so the second sensor output integral value. Based on the comparison result, fluorescence, phosphorescence A and phosphorescence B can also be distinguished.
  • fluorescence / phosphorescence detection method not only fluorescence emission and phosphorescence emission can be distinguished, but also the type of phosphorescence emission can be identified. Thus, when phosphorescence emission different from the true valuable medium 100 is observed, it can be determined that the valuable medium 100 is a counterfeit medium.
  • FIG. 4 is a schematic cross-sectional view showing an outline of the structure of the fluorescence / phosphorescence detection device 10.
  • the fluorescence / phosphorescence detection device 10 has an opening window 6a made of a transparent member such as glass on the upper surface side of the sensor case through which the valuable medium 100 passes, and the inner space of the sensor case is a partition plate that blocks light. 6b is divided into a light source side (right side in FIG. 4) and a light emission detection sensor side (left side in FIG. 4).
  • the valuable medium 100 is conveyed above the fluorescence / phosphorescence detection device 10 in the conveyance direction 200 by a conveyance mechanism including a roller (not shown).
  • a signal related to the conveyance timing by the conveyance mechanism is input to the fluorescence / phosphorescence detection device 10, and processing for detecting fluorescence / phosphorescence is performed on a predetermined area on the valuable medium 100 based on this signal.
  • excitation light irradiation and light emission detection are performed in accordance with the timing at which the region where fluorescence or phosphorescence is excited on the valuable medium 100 by the excitation light passes through the detection region by the fluorescence / phosphorescence detection device 10. Processing is performed.
  • omitted is abbreviate
  • a light source 1 for irradiating ultraviolet light as excitation light and a light source filter 3 for allowing only ultraviolet light irradiated from the light source 1 to pass through are provided.
  • the light source 1 is an LED 1a that irradiates ultraviolet light toward the valuable medium 100 conveyed in the conveying direction 200 above the opening window 6a, and a light source monitor for monitoring the emission intensity of the ultraviolet light emitted from the LED 1a. And a sensor 1b. Due to the partition plate 6b, the ultraviolet light emitted from the LED 1a does not directly reach the space on the light emission detection sensor side.
  • the light source filter 3 prevents this light from reaching the light source monitor sensor 1b.
  • the light emitted from the LED 1a can be accurately monitored using 1b.
  • the measurement filter 4 that blocks the ultraviolet light irradiated from the LED 1a and transmits the light emitted by the valuable medium 100, and the measurement filter 4 from the opening window 6a.
  • a light receiving unit 2 that receives incident light is provided.
  • the measurement filter 4 has a function of transmitting only fluorescence and phosphorescence excited by the valuable medium 100. For example, when the fluorescence emission is visible light and the phosphorescence emission is infrared light, the measurement filter 4 does not transmit light in the wavelength range of ultraviolet light, which is excitation light, and does not transmit visible light and infrared light. Transmits only light in the wavelength range.
  • the light receiving unit 2 includes a light emission measuring sensor 2b for measuring the light emission amount of incident light, and a condenser lens 2a for condensing the light transmitted through the measurement filter 4 on the light emission measuring sensor 2b.
  • the light emission measuring sensor 2b can detect even weak light emission by the light collecting function of the condenser lens 2a. If the emission intensity of the light excited by the valuable medium 100 is sufficiently high and can be measured accurately without the condensing lens 2a, the fluorescence / phosphorescence detection device 10 does not have the condensing lens 2a. It may be a structure.
  • the LED 1a, the light source monitoring sensor 1b, and the light emission measuring sensor 2b are connected to a common substrate 5, respectively. Based on a control signal input to the substrate 5 from the outside, the LED 1a is controlled by the light source monitoring sensor 1b. The irradiation light from the LED 1a is monitored, and the fluorescence emission and phosphorescence emission are measured by the emission measurement sensor 2b.
  • FIG. 5 is a functional block diagram for explaining the functions of the fluorescence / phosphorescence detection apparatus 10.
  • the substrate 5 of the fluorescence / phosphorescence detection device 10 controls the light source control unit 11 for controlling the LED 1a, the emission intensity and irradiation timing of the excitation light emitted from the LED 1a, and the measurement timing using the light emission measuring sensor 2b.
  • a timing control unit 12 an integrator 14 for acquiring an integrated value from the output signal of the light emission measuring sensor 2b, an integrator 15 for acquiring an integrated value from the output signal of the light source monitoring sensor 1b,
  • a light emission determining unit 13 is provided for determining whether light emitted from the valuable medium 100 upon receiving the output from the integrator 14 is fluorescent light emission or phosphorescent light emission and outputting the light emission.
  • the light emission determination unit 13 includes, for example, a CPU, a memory, a sample hold circuit, an A / D converter, and the like. Then, when the excitation light is irradiated a plurality of times from the LED 1a toward the valuable medium 100, the function of determining the type of light emission by reading and comparing the sensor output integrated value at each light irradiation obtained by the light emission measurement sensor 2b. Have The determination result by the light emission determination unit 13 is input to the authenticity determination unit 30, for example.
  • the authenticity determination unit 30 includes, for example, a CPU and a memory, and has a function of determining the authenticity of the valuable medium 100 based on the fluorescence / phosphorescence distribution information stored in the memory in advance and the determination result by the light emission determination unit 13.
  • the fluorescence / phosphorescence distribution information is information relating to the type of fluorescence / phosphorescence detected on the true valuable medium 100 and the position on the valuable medium 100.
  • the authenticity determination unit 30 specifies the position of the valuable medium 100 that is transported by the transport mechanism and passes above the fluorescence / phosphorescence detection device 10 in cooperation with a transport mechanism (not shown), and is obtained at the specified position.
  • the light emission determination unit 13 It is determined whether the result of the light emission determination by the light emission determination unit 13 matches the fluorescence / phosphorescence distribution information.
  • the valuable medium 100 is determined to be the true valuable medium 100.
  • phosphorescence emission is detected at a position where phosphorescence emission should be observed on the valuable medium 100, it is determined that the medium is a true valuable medium 100.
  • the authenticity determination device of the valuable medium 100 can be realized by adding the authenticity determination unit 30 to the fluorescence / phosphorescence detection device 10.
  • the determination result obtained by the authenticity determination device is output from the authenticity determination unit 30 to the outside.
  • the authenticity determination device including the fluorescence / phosphorescence detection device 10 and the authenticity determination unit 30 is used, for example, in a valuable medium processing apparatus that identifies and counts the valuable medium 100.
  • FIG. 6 is a circuit diagram illustrating a configuration example of the integrators 14 and 15 used in the fluorescence / phosphorescence detection device 10.
  • an integration circuit composed of a capacitor (C) and an operational amplifier (OPAMP), a reset circuit composed of a CMOS switch (SWITCH) and a resistor (R1) for discharging the capacitor charge, resistors (R2, R3) and Integrators 14 and 15 are formed by adding a drive circuit that is composed of a transistor (TR) and drives the reset circuit.
  • the integrated values obtained by receiving signals output from the light emission measuring sensor 2b and the light source monitoring sensor 1b formed using, for example, a photodiode (PD) are output as Vo and integrators 14 and 15 respectively. Is output from.
  • the integrators 14 and 15 since the output signal from the sensor is accumulated as an integrated value, the accumulated signal is reset in response to an external reset signal.
  • FIG. 7 is a diagram for explaining a method of measuring luminescence excited by the valuable medium 100 by the fluorescence / phosphorescence detection device 10. Hereinafter, details of the measurement method of light emission performed by each functional unit shown in FIG. 5 will be described.
  • the timing control unit 12 inputs a signal to the light source control unit 11 to instruct the LED 1a as the light source to be turned on with the emission intensity H and to start the irradiation of the excitation light.
  • the light source controller 11 turns on the LED 1a with the emission intensity H as shown in FIG. 7A (t10).
  • the timing control unit 12 inputs a reset signal to the integrators 14 and 15 as shown in FIG. 7B simultaneously with the lighting instruction to the light source control unit 11.
  • the integrator 15 When the integrator 15 receives the reset signal, the output value is reset to 0 (zero) at the timing (t10) when the LED 1a is turned on, as shown in FIG. Then, the integrator 15 starts outputting a signal obtained by integrating the signal from the light source monitor sensor 1b (t10). This output signal is input to the timing control unit 12.
  • the output value is reset to 0 (zero) at the timing (t10) when the LED 1a is turned on, as shown in FIG.
  • a signal is output from the light emission measuring sensor 2b in response to this light emission.
  • the integrator 14 starts outputting a signal obtained by integrating the signal from the light emission measurement sensor 2b (t10).
  • An output signal from the integrator 14 is input to the light emission determination unit 13.
  • FIG. 7E shows an output signal from the integrator 14 when the light emission excited by the valuable medium 100 is fluorescence light emission.
  • the timing controller 12 monitors the output signal of FIG. 7C obtained from the light source monitor sensor 1b via the integrator 15 as a signal for monitoring the light emission amount of the LED 1a. Then, when the value of the output signal reaches a preset trigger threshold value (t11) as shown in FIG. 7C, the timing control unit 12 sends the light source control unit 11 to the light source control unit 11 from the LED 1a. A signal for instructing stop of excitation light irradiation is input. At the same time, the timing control unit 12 inputs a trigger signal shown in FIG. 7D to the light emission determination unit 13 (t11).
  • the light source control unit 11 Upon receiving this, the light source control unit 11 turns off the LED 1a (FIG. 7 (a) t11). Moreover, the light emission determination part 13 hold
  • the trigger threshold shown in FIG. 7C is set based on the emission amount HT of excitation light.
  • the integrator 15 In the first irradiation performed at the emission intensity H as shown in FIG. 7A, as shown in FIG. 7C, when the time T has elapsed from the start of the irradiation, the integrator 15 The output value reaches the trigger threshold.
  • the output value from the integrator 15 reaches the trigger threshold when the time T / 2 has elapsed since the irradiation was started.
  • the extinction timing of LED1a can be controlled based on the output value from the integrator 15, and excitation light irradiation of each time shown to Fig.7 (a) is realizable.
  • the timing controller 12 When the first excitation light irradiation is finished, the timing controller 12 then counts the time (t11) after turning off the LED 1a, and at the timing when a predetermined time has passed (t12), the emission intensity is 2H. The LED 1a is turned on, and a signal instructing to start excitation light irradiation is input to the light source control unit 11. Further, the timing control unit 12 inputs a reset signal to the integrators 14 and 15 as shown in FIG. 7B simultaneously with the lighting instruction to the light source control unit 11 (t12).
  • the light source controller 11 turns on the LED 1a again at the emission intensity of 2H and starts the second irradiation (FIG. 7 (a) t12). Further, the integrators 14 and 15 are reset in the same manner as in the first irradiation, and start output of integrated values by the second irradiation (FIG. 7 (c) t12 and FIG. 7 (e) t12).
  • the timing control unit 12 inputs a signal that instructs the light source control unit 11 to turn off the LED 1a, and simultaneously inputs a trigger signal to the light emission determination unit 13 (FIG. 7D). t13).
  • the light source control unit 11 Upon receiving this, the light source control unit 11 turns off the LED 1a (FIG. 7 (a) t13). Moreover, the light emission determination part 13 hold
  • the light emission determination unit 13 compares the sensor output integrated value obtained at the time of the first irradiation with the sensor output integrated value obtained at the time of the second irradiation. It is determined whether the emission is phosphorescence or phosphorescence, and the determination result is output to the outside. Specifically, as described with reference to the right diagrams of FIGS. 1B and 1C, the first sensor output integrated value and the second sensor output integrated value are within a predetermined error range. If they coincide with each other, it is determined that the fluorescence is emitted, and if there is a difference exceeding the error range, it is determined that the emission is phosphorescence. In FIG.
  • the output value at time t11 and the output value at time t13 shown in FIG. 7E are the same value, so that the emission emitted by the valuable medium 100 is fluorescence emission. It is determined that there is.
  • the output waveform from the integrator 14 shown in FIG. 7 (e) has a different shape. As shown in the right diagram of FIG. 1C, the output value obtained by the second irradiation is lower than the output value obtained by the first irradiation. Further, when neither fluorescence emission nor phosphorescence emission is observed in the valuable medium 100, that is, when light is not excited, the output waveform from the integrator 14 shown in FIG. 7E remains 0 (zero). .
  • an embodiment is shown in which the process of measuring the emitted light by irradiating the excitation light twice is performed only once, but the process is repeated a plurality of times. It may be a mode to be described.
  • One excitation light irradiation is executed in a short time, for example, in microseconds. Therefore, in the fluorescence / phosphorescence detection apparatus 10, as shown in FIG. 4, the process shown in FIG. 7 can be repeatedly performed while the valuable medium 100 conveyed in the conveyance direction 200 passes above the apparatus. Then, it can be determined whether fluorescence and phosphorescence are excited at each position on the valuable medium 100.
  • the authenticity of the valuable medium 100 is determined based on whether the fluorescent light emission is detected at the position where the fluorescent light emission should be detected on the valuable medium 100 or the phosphorescent light emission is detected at the position where the phosphorescent light emission should be detected. Judgment can be made.
  • the timing of turning off the LED 1a serving as the light source is controlled by monitoring the light emission amount from the LED 1a, but the method of controlling the light source is not limited to this.
  • the lighting of the LED 1a may be controlled based on the irradiation time.
  • the fluorescence / phosphorescence detection device 10 has a configuration in which the light source monitor sensor 1b and the light source filter 3 are removed from the configuration shown in FIG. 4 will be described.
  • description of the same configuration and operation as in the first embodiment will be omitted, and description will be continued focusing on differences from the first embodiment.
  • FIG. 8 is a functional block diagram for explaining functions of the fluorescence / phosphorescence detection apparatus 10 according to the present embodiment.
  • the fluorescence / phosphorescence detection apparatus 10 controls the light source control unit 11 for controlling the LED 1a, the emission intensity and irradiation timing of the irradiation light from the LED 1a, and the measurement timing using the light emission measuring sensor 2b.
  • a light emission determination unit 13 for determining and outputting the phosphorescence emission.
  • FIG. 9 is a diagram for explaining a method of measuring light emission excited by the valuable medium 100 by each functional unit shown in FIG.
  • the timing control unit 12 inputs a signal instructing to start the irradiation of excitation light with the emission intensity H to the light source control unit 11.
  • the light source control unit 11 turns on the LED 1a with the emission intensity H as shown in FIG. 9A (t10).
  • the timing control unit 12 inputs a reset signal to the integrator 14 as shown in FIG. 9B simultaneously with the lighting instruction to the light source control unit 11.
  • the integrator 14 Upon receiving the reset signal, the integrator 14 resets the output value to 0 (zero) at the timing (t10) when the LED 1a is turned on, as shown in FIG. 9 (c).
  • a signal is output from the light emission measuring sensor 2b upon receiving this light emission.
  • the integrator 14 starts outputting a signal obtained by integrating the signal from the light emission measurement sensor 2b (t10).
  • An output signal from the integrator 14 is input to the light emission determination unit 13.
  • FIG. 9C shows an output signal from the integrator 14 when the light emission in the valuable medium 100 is fluorescent light emission.
  • the timing control unit 12 counts the time after the LED 1a is turned on. When the time T elapses after the LED 1a is turned on (FIG. 9 (a) t11), a signal instructing the light source controller 11 to turn off the LED 1a is input. At the same time, the timing control unit 12 inputs the trigger signal shown in FIG. 9D to the light emission determination unit 13 (t11).
  • the light source control unit 11 Upon receiving this, the light source control unit 11 turns off the LED 1a (FIG. 9 (a) t11). Moreover, the light emission determination part 13 hold
  • the timing control unit 12 counts the time (t11) after the LED 1a is turned off, and a signal instructing to start the irradiation of the excitation light with the emission intensity 2H at the timing when the predetermined time has elapsed (t12). Is input to the light source control unit 11. Further, the timing control unit 12 inputs a reset signal to the integrator 14 as shown in FIG. 9B simultaneously with the lighting instruction to the light source control unit 11 (t12).
  • the light source controller 11 turns on the LED 1a again at the emission intensity of 2H and starts the second irradiation (FIG. 9 (a) t12). Further, the integrator 14 is reset in the same manner as at the time of the first irradiation, and starts to output an integrated value by the second irradiation (FIG. 9 (c) t12).
  • the timing controller 12 counts the time since the LED 1a is turned on, and when the time T / 2 has elapsed from the start of lighting (FIG. 9 (a) t13), the light source A signal that instructs the controller 11 to turn off the LED 1a is input. At the same time, the timing control unit 12 inputs a trigger signal to the light emission determination unit 13 (FIG. 9 (d) t13).
  • the light source control unit 11 turns off the LED 1a (FIG. 9 (a) t13), and the light emission determination unit 13 receives the trigger signal (FIG. 9 (c) t13) and outputs an output value from the integrator 14. Is held as a sensor output integrated value by the second irradiation.
  • the fluorescence is emitted. Processing for determining light emission and phosphorescence emission can be performed.
  • the valuable medium 100 can be irradiated with excitation light with different emission intensity and irradiation time for the first time and the second time. Then, the luminescence excited by the valuable medium 100 can be measured by the luminescence measurement sensor 2b, and it can be determined whether the luminescence is fluorescence emission or phosphorescence emission.
  • FIG. 10 is a diagram for explaining an example in which the irradiation of excitation light is controlled by the shutter unit.
  • a shutter unit 110a for controlling the passage and blocking of this light is arranged on the optical path where the excitation light irradiated from the LED 1a reaches the valuable medium 100.
  • the timing control unit 12 controls the light emission intensity from the LED 1 a via the light source control unit 11 and controls the shutter unit 110 a via the shutter control unit 121. If the passage and blocking of light from the LED 1a are controlled by the operation of the shutter unit 110a, the first and second irradiation times shown in FIG. 9A can be realized.
  • the installation position of the shutter unit 110a is not limited to the optical path from the LED 1a to the valuable medium 100.
  • the shutter unit 110b may be installed on the optical path where the light excited by the valuable medium 100 reaches the light emission measurement sensor 2b. . If the passage and blocking of the light excited by the valuable medium 100 is controlled, the same measurement result as that obtained when the irradiation time is controlled as shown in FIG. 9A can be obtained.
  • the shutter unit 111 when the shutter unit 111 has a function of controlling not only the passage and blocking of light but also the amount of transmitted light, the shutter unit 111 is installed as shown in FIG.
  • the emission intensity and the irradiation time of the excitation light irradiated to the valuable medium 100 from the LED 1a may be controlled.
  • the timing control unit 12 controls the shutter unit 111 via the shutter control unit 122 in a state where the LED 1 a is always lit with the same light emission intensity by the light source control unit 11. Then, if the transmitted light amount of the excitation light from the LED 1a to the valuable medium 100 is controlled by the shutter unit 111, the first and second emission intensity and irradiation time shown in FIG. 9A can be realized.
  • 10 (a) and 10 (b) show the luminescence measurement filter 4. If the luminescence measurement sensor 2b has characteristics that do not have light reception sensitivity in the excitation light band, measurement is performed. The configuration may be such that the filter 4 is omitted.
  • the valuable medium 100 on which fluorescence emission or phosphorescence emission is observed by irradiating excitation light is different in emission intensity and irradiation time but with the same emission amount.
  • the difference in the amount of luminescence excited by the valuable medium at each irradiation can identify not only the difference between fluorescence and phosphorescence but also the type of phosphorescence. Even when different phosphorescence emission is detected in the valuable medium, the authenticity of the valuable medium can be determined based on the difference in the type of phosphorescent emission between the true valuable medium and the false valuable medium.
  • the authenticity determination of the valuable medium 100 can be performed with higher accuracy by taking into account the position information on the valuable medium 100 that has been excited by fluorescence and phosphorescence by irradiating the excitation light.
  • the present invention is a technique useful for distinguishing and detecting fluorescence emission and phosphorescence emission observed on a valuable medium, and determining the authenticity of a valuable medium using the detection result of fluorescence and phosphorescence. This technique is useful when
  • Light source 1a LED DESCRIPTION OF SYMBOLS 1b
  • Light source monitor sensor 2 Light receiving part 2a Condensing lens 2b
  • Light emission measurement sensor 3 Light source filter 4 Measurement filter 5
  • Partition plate 10 Fluorescence / phosphorescence detection device 11
  • Light source control part 12 Timing control part 13
  • Light emission Determination unit 14 Authenticity determination unit 100

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

 同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知する蛍光・燐光検知方法を、第1発光強度で第1照射時間の間、有価媒体に向けて励起光を照射する第1励起光照射工程と、第1励起光照射工程で照射された励起光によって励起された有価媒体からの発光量を測定する第1発光量測定工程と、第1照射時間の時間長と異なる第2照射時間の間、第1励起光照射工程で照射された励起光と同じ光量になるように設定された第2発光強度で、有価媒体に向けて励起光を照射する第2励起光照射工程と、第2励起光照射工程で照射された励起光によって励起された有価媒体からの発光量を測定する第2発光量測定工程と、第1発光量測定工程で得られた測定結果と第2発光量測定工程で得られた測定結果とを比較して、有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する判定工程とによって構成する。

Description

蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置
 この発明は、有価媒体で観察される蛍光発光及び燐光発光を検知するための蛍光・燐光検知方法及び装置、並びに該蛍光・燐光検知方法を利用して有価媒体の真偽を判定するための真偽判定方法及び装置に関する。
 近年、紙幣や小切手等の有価媒体には様々な種類のインクが利用されている。例えば、所定波長の励起光を照射することにより蛍光発光が観察されるインクや燐光発光が観察されるインクがある。このようなインクを利用して有価媒体上にマーク等を印刷すれば、励起光の照射タイミングと励起される発光の発光状態との関係から有価媒体の真偽判定を行うことができる。
 例えば、特許文献1には、蛍光発光及び燐光発光の両方を検知する技術が開示されている。この装置では、励起光の照射タイミングと励起された光が測定されたタイミングとの関係から蛍光と燐光とを区別して検知する。具体的には、紙葉類を搬送しながら、所定位置で励起光である紫外光を照射して、この位置に設けられたセンサにより紙葉類で励起された蛍光発光の測定を行う。そして、蛍光発光が測定される位置よりも搬送方向下流側の位置で、この位置に設けられた別のセンサにより、励起光照射後に励起光が照射されていない状態で観察される燐光発光を測定する。
 また、特許文献2においても、測定対象に励起光が照射された明相で蛍光及び燐光を測定して、励起光照射後に励起光が照射されていない暗相で燐光を測定することにより、蛍光及び燐光の両方を検知する技術が開示されている。
 また、特許文献3では、蛍光発光及び燐光発光の両方が観察される測定対象から、フィルタを利用して、蛍光及び燐光の各々の発光強度を測定する技術が開示されている。具体的には、2つのセンサを利用して明相及び暗相で測定を行う際に、一方のセンサではフィルタを利用して所定波長域で発光する蛍光のみを測定して、他方のセンサでは蛍光及び燐光を含む全波長域の光を測定する。そして、全波長域の光の測定結果と蛍光の測定結果との差分から燐光を検知するものである。
 また、特許文献4では、燐光発光の発光強度の時間的な変化に基づいて燐光発光を検知する技術が開示されている。具体的には、蛍光発光が励起光照射直後から励起光照射停止までの間、略一定の発光強度を示すのに対して、燐光発光では、励起光の照射を開始してから励起光照射を停止するまでの間、発光強度が徐々に高くなる。燐光発光時のこの特性を利用して、発光強度を測定した信号の励起光照射後の所定時間内の積分値と、励起光照射を停止する直前の所定時間内の積分値とに基づいて、燐光を検知するものである。
特開2010-60524号公報 国際公開第2010/018353号 特表2001-506001号公報 特許第4048121号公報
 しかしながら、上記従来技術によれば、蛍光及び燐光を正確に検知できない場合がある。例えば、上記特許文献1に記載の技術では、異なる位置に設けた2つのセンサを利用して、一方のセンサ位置で蛍光及び燐光を検知した後、さらに紙葉類を搬送して、他方のセンサ位置で燐光の検知を行う。このため、センサ間での搬送中に生じた紙葉類の位置ずれやバタツキによる影響を受けて測定誤差が生ずる可能性がある。
 上記特許文献2及び特許文献3に記載の技術では、同一センサによる測定を行うことができるが、暗相時の測定結果を利用する必要がある。暗相時の燐光発光は発光強度が小さくノイズの影響を受けて測定誤差が生ずる可能性がある。
 上記特許文献4に記載の技術では、燐光検知に利用する信号が短時間の信号であるためノイズの影響を受ける可能性がある。例えば、上記特許文献4には励起光照射を開始してから停止するまでの時間の25%以下の時間長で積分値を求めることが示されているが、この程度の時間長では燐光の発光強度が低く、ノイズの影響を受けて測定誤差が生ずる可能性がある。
 本発明は、上述した従来技術による問題点を解消するためになされたもので、有価媒体で観察される蛍光発光及び燐光発光を正確に区別して検知すると共に、燐光の種類を区別することができる蛍光・燐光検知方法及び装置、並びに該蛍光・燐光検知方法を利用して有価媒体の真偽を判定する真偽判定方法及び装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知する蛍光・燐光検知方法であって、第1発光強度で第1照射時間の間、有価媒体に向けて励起光を照射する第1励起光照射工程と、前記第1励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第1発光量測定工程と、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1励起光照射工程で照射された励起光と同じ光量になるように設定された第2発光強度で、前記有価媒体に向けて励起光を照射する第2励起光照射工程と、前記第2励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第2発光量測定工程と、前記第1発光量測定工程で得られた測定結果と前記第2発光量測定工程で得られた測定結果を比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定工程とを含んだことを特徴とする。
 また、本発明は、上記発明において、前記発光判定工程では、前記第1発光量測定工程で測定された第1発光量と前記第2発光量測定工程で測定された第2発光量とが同じである場合には、前記有価媒体からの発光が蛍光発光であると判定して、前記第1発光量と前記第2発光量とが異なる場合には、前記有価媒体からの発光が燐光発光であると判定することを特徴とする。
 また、本発明は、上記発明において、前記発光判定工程では、前記第1発光量と前記第2発光量とが異なる場合に、前記第1発光量と前記第2発光量とを比較して燐光発光の種類を識別することを特徴とする。
 また、本発明は、同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知する蛍光・燐光検知装置であって、有価媒体に向けて励起光を照射する光源と、第1照射時間の間、第1発光強度で励起光を照射すると共に、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1照射時間及び前記第1発光強度で照射される励起と同じ光量になるように設定された第2発光強度で励起光を照射するように前記光源を制御する光源制御部と、前記有価媒体で励起された発光を測定するセンサと、前記第1発光強度及び前記第1照射時間の励起光で励起された発光を前記センサにより測定して得られた第1発光量と、前記第2発光強度及び前記第2照射時間の励起光で励起された発光を前記センサにより測定して得られた第2発光量とを比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定部とを備えることを特徴とする。
 また、本発明は、上記発明において、前記発光判定部は、前記第1発光量と前記第2発光量とが同じである場合には、前記有価媒体からの発光が蛍光発光であると判定して、前記第1発光量と前記第2発光量とが異なる場合には、前記有価媒体からの発光が燐光発光であると判定する
ことを特徴とする。
 また、本発明は、上記発明において、前記発光判定部は、前記第1発光量と前記第2発光量とが異なる場合に、前記第1発光量と前記第2発光量とを比較して燐光発光の種類を識別することを特徴とする。
 また、本発明は、上記発明において、光源側から有価媒体側へ前記励起光を透過させると共に前記有価媒体側から前記光源側への発光を遮断する光源用フィルタと、前記光源からの励起光の照射をモニタリングするために前記光源側で前記光源の近傍に設けられた光源モニタ用センサと、前記光源モニタ用センサからの出力に基づいて前記光源の制御タイミングを決定するタイミング制御部とをさらに備え、前記光源制御部は、前記タイミング制御部によって制御されることを特徴とする。
 また、本発明は、同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知して検知結果に基づいて有価媒体の真偽を判定する有価媒体の真偽判定方法であって、第1発光強度で第1照射時間の間、有価媒体に向けて励起光を照射する第1励起光照射工程と、前記第1励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第1発光測定工程と、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1励起光照射工程で照射された励起光と同じ光量になるように設定された第2発光強度で、前記有価媒体に向けて励起光を照射する第2励起光照射工程と、前記第2励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第2発光測定工程と、前記第1発光測定工程で得られた測定結果と前記第2発光測定工程で得られた測定結果を比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する蛍光・燐光判定工程と、前記蛍光・燐光判定工程における判定結果に基づいて前記有価媒体の真偽を判定する真偽判定工程とを含んだことを特徴とする。
 また、本発明は、同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知して検知結果に基づいて有価媒体の真偽を判定する有価媒体の真偽判定装置であって、有価媒体に向けて励起光を照射する光源と、第1照射時間の間、第1発光強度で励起光を照射すると共に、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1照射時間及び前記第1発光強度で照射される励起と同じ光量になるように設定された第2発光強度で励起光を照射するように前記光源を制御する光源制御部と、前記有価媒体で励起された発光を測定するセンサと、前記第1発光強度及び前記第1照射時間の励起光で励起された発光を前記センサにより測定して得られた発光量と、前記第2発光強度及び前記第2照射時間の励起光で励起された発光を前記センサにより測定して得られた発光量とを比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定部と、前記発光判定部による判定結果に基づいて前記有価媒体の真偽を判定する真偽判定部とを備えることを特徴とする。
 本発明によれば、異なる照射時間で複数回励起光を照射するが、発光量が同じとなるように各照射の発光強度を設定するので、各照射時に有価媒体で励起される発光の発光量を比較することにより、この発光が蛍光発光及び燐光発光のいずれであるかを判定することができる。有価媒体が蛍光発光したか燐光発光したかを高精度に検知できるので、有価媒体から検知されるべき発光が検知されたか否かに基づいて、有価媒体の真偽判定を行うことができる。
 また、本発明によれば、各照射で、有価媒体で励起される発光の発光量の違いから、蛍光と燐光の違いだけではなく、燐光の種類の違いを識別することができる。これにより、例えば、有価媒体が偽造されて、該有価媒体で真の有価媒体とは異なる燐光発光が検知される場合でも、燐光発光の種類の違いに基づいて、有価媒体の真偽判定を行うことができる。
図1は、有価媒体に照射する励起光と該励起光によって励起される蛍光発光及び燐光発光との関係を説明する図である。 図2は、同じ発光量となるように照射時間及び発光強度を変更して励起光を照射した際の照射時間と蛍光、燐光A及び燐光Bの発光量との関係を示す図である。 図3は、同じ発光量となるように照射時間及び発光強度を変更して2回の励起光照射を行った際に、励起された蛍光、燐光A及び燐光Bで得られるセンサ出力積分値を示す図である。 図4は、実施例1に係る蛍光・燐光検知装置の構造概要を示す断面模式図である。 図5は、実施例1に係る蛍光・燐光検知装置の機能概要を説明するための機能ブロック図である。 図6は、積分器の回路構成の例を説明する図である。 図7は、実施例1に係る蛍光・燐光検知装置により有価媒体で励起された発光を測定する方法を説明する図である。 図8は、実施例2に係る蛍光・燐光検知装置の機能概要を説明するための機能ブロック図である。 図9は、実施例2に係る蛍光・燐光検知装置により有価媒体で励起された発光を測定する方法を説明する図である。 図10は、蛍光・燐光検知装置における励起光の照射をシャッタユニットによって制御する例を説明する図である。
 以下に添付図面を参照して、この発明に係る蛍光・燐光検知方法及び蛍光・燐光検知装置、並びに該蛍光・燐光検知方法による検知結果に基づいて有価媒体の真偽を判定する真偽判定方法及び装置の好適な実施形態を詳細に説明する。本実施形態に係る蛍光・燐光検知方法及び蛍光・燐光検知装置によれば、例えば、紫外光(UV光)等の励起光を照射して、励起光とは異なる波長で発光する蛍光・燐光を検知することができる。また、本実施形態に係る蛍光・燐光検知方法では、紙幣、小切手、商品券、カード等の有価媒体で用いられている蛍光発光インク及び燐光発光インクの有無を検知することができる。
 本実施形態に係る蛍光・燐光検知方法では、有価媒体に向けて、光源から蛍光発光及び燐光発光を励起するための励起光を異なる条件で複数回照射して、有価媒体上での発光をセンサにより測定する。そして、複数回の照射で得られた各測定結果に基づいて、有価媒体で測定された発光が蛍光発光であるか燐光発光であるかを判定する。以下では、まず、図1を参照しながら、この蛍光・燐光の検知方法について説明する。
 図1は、蛍光及び燐光を励起させるために有価媒体に照射する励起光と、該励起光によって励起される蛍光発光及び燐光発光との関係を説明する図である。図1(a)は、光源から励起光として照射される照射光の発光強度及び照射タイミングを示している。また、図1(b)の左図には、同図(a)に示す照射光によって有価媒体上で励起される蛍光発光の時間特性を示し、右図には該蛍光発光を測定した際に得られるセンサ出力の積分値(発光量)を示している。また、同様に、図1(c)の左図には、同図(a)に示す照射光によって有価媒体上で励起される燐光発光の時間特性を示し、右図には該燐光発光を測定した際に得られるセンサ出力の積分値(発光量)を示している。ここで、センサは、例えば、UV波長の励起光を発するLEDと励起された発光を測定するフォトダイオードとによって構成される。
 なお、図1(a)と、同図(b)及び(c)の左図では、縦軸が発光強度を示し、横軸が時間を示している。また、図1(b)及び(c)の右図では、1回目及び2回目の各照射時に励起された発光を測定して得られるセンサ出力の積分値を示している。
 発光強度の単位は光を測定する測定系に依存するため、本実施形態では単位を省略するが、照射光の発光強度は、例えば、印加する電流値に応じて発光強度が線形に増加するLED等の光源で、該光源に印加する電流値に相当する。また、蛍光及び燐光の発光強度は、例えば、受光した発光強度に応じて電流量が線形に増加するフォトダイオード等の素子を利用したセンサで、該センサから出力される電流値に相当する。
 図1(a)に示したように、1回目と2回目の照射では、発光強度及び照射時間を変更しながら発光量が同じとなるように励起光を照射する。具体的には、1回目は、照射時間T(t0~t1)の間、発光強度Hの励起光を照射する。そして、2回目は、照射時間T/n(t2~t3、)の間、発光強度n×Hの励起光を照射する。
 ここで、nは、例えば、2以上の自然数で、2回目の照射は、1回目の照射に比べて照射時間が1/nの短時間の照射とすることを示している。1回目に比べて2回目の照射時間を短時間とする一方で、発光強度については、2回目の発光強度を1回目の発光強度のn倍とする。これにより、図1(a)で、積分値で示される各照射光の発光量は、1回目の照射ではHT(=H×T)となり、2回目の照射でもHT(=(n×H)×(T/n))となる。すなわち、2回目の照射光の照射時間を1回目の照射時間より短時間としながら、発光強度を調整することにより、2回目の照射光と1回目の照射光の発光量を同じにするものである。
 有価媒体に蛍光発光するインクが利用されている場合に、図1(a)に示すように照射時間及び発光強度が異なる2回の励起光照射を行うと、同図(b)左図に示すように蛍光発光が観察される。1回目の照射では、励起光の照射開始と同時に蛍光が励起されて、この蛍光発光が励起光の照射を停止するまでの時間T(t0~t1)の間観察される。また、2回目の照射でも、励起光の照射開始と同時に蛍光が励起されて、照射を停止するまでの時間T/n(t2~t3)の間、この蛍光発光が観察される。このように、蛍光発光では、励起光の照射と同時に発光が始まって、励起光の照射を停止すると同時に消失する。
 蛍光発光では、図1(b)左図に示すように、励起光が照射されている間、一定の発光強度が維持される。発光強度はインクの特性等によって異なるが、励起光の発光強度に応じた強度となる。具体的には、図1(b)左図に示すように、発光強度Hの1回目の照射により発光強度Haの蛍光が観察された場合には、発光強度n×Hの2回目の照射による蛍光発光の強度はn×Haとなる。
 この結果、図1(b)左図に斜線で示したように、1回目の照射で得られる発光量はHa×Tとなり、2回目の照射で得られる発光量もHa×T(=(n×Ha)×(T/n))となる。このように、1回目の照射と2回目の照射で照射時間を変更すると共に発光量が同じ値(HT)になるように発光強度を設定して励起光を照射すると、蛍光発光では、1回目の照射で得られる蛍光の発光量と2回目の照射で得られる蛍光の発光量が同じ値(Ha×T)となる。このため、1回目の照射と2回目の照射で励起された蛍光発光を受光したセンサ出力を積分すると、図1(b)右図に示すように、同じ積分値(Sa)が得られることになる。
 有価媒体に燐光発光するインクが利用されている場合に、図1(a)に示すように照射時間及び発光強度が異なる2回の照射を行うと、同図(c)左図に示すように燐光発光が観察される。
 1回目の照射では、励起光の照射開始と同時(t0)に燐光発光が始まって、その後徐々に発光強度が高く(明るく)なり、やがて飽和状態に達する。そして、励起光の照射を停止(t1)した後も燐光発光が観察されるが、徐々に発光強度が低く(暗く)なり、やがて消失する。2回目の照射でも、照射を開始してから(t2)、徐々に燐光発光の発光強度が高くなる。照射する励起光の発光強度が強い場合、照射を停止した後も、燐光発光の発光強度が上昇する場合がある。図1(c)左図の2回目の燐光発光が、このような場合を示しており、励起光の照射を停止(t3)してからも発光強度が上昇した後(t4)、徐々に発光強度が低くなって、やがて消失する。
 燐光発光の飽和時の発光強度はインクの特性等によって異なるが、例えば、図1(c)左図に示すように、発光強度Hの1回目の照射で飽和状態に達した際(t1)の燐光の発光強度をHb、発光強度n×Hの2回目の照射後に飽和状態に達した際(t4)の燐光の発光強度をHdとすると、発光強度はHb<Hdの関係を有し、2回目の照射を停止した際の(t3)の発光強度Hcは発光強度Hdよりも低い値となる。
 この結果、図1(c)左図に斜線部で示した領域の面積から明らかであるように、1回目の照射で得られる発光量に比べて、2回目の照射で得られる発光量が低い値となる。このように、燐光発光では、1回目の照射と2回目の照射とで照射時間を変更すると共に発光量が同じ値(HT)になるように発光強度を設定して励起光を照射すると、1回目の照射で得られる燐光の発光量と2回目の照射で得られる燐光の発光量が異なる値となる。このため、1回目の照射と2回目の照射で励起された燐光発光を受光したセンサ出力を積分すると、図1(c)右図に示すように、異なる積分値(Sb及びSc)が得られることになる。
 図1(a)に示すように、照射時間及び発光強度を変更しながら発光量が同じになるように複数回に分けて励起光を照射することにより、同図(b)及び(c)の右図に示すように、蛍光発光では各回照射でセンサ出力の積分値(発光量)が同じ値となり、燐光発光ではセンサ出力の積分値(発光量)が異なる値となる。このため、励起された発光を測定して得られるセンサの出力値に基づいて、蛍光発光であるか燐光発光であるかを正確に判定することができる。
 具体的には、本実施形態に係る蛍光・燐光検知方法では、図1(a)に示す2回の照射光を照射して、センサから出力される信号の積分値が所定の誤差範囲内で一致すれば同図(b)右図に示す蛍光発光であると判定し、積分値が所定の誤差範囲を超えて異なる値を示せば同図(c)右図に示す燐光発光であると判定する。
 なお、1回目の照射時間(T)及び2回目の照射時間(T/n)は、燐光発光の発光特性に応じて、1回目と2回目の照射で燐光発光の発光量が異なるように、すなわち燐光を測定したセンサ出力の積分値が異なるように設定される。
 また、図1(a)に示す1回目の励起光の照射を終えてから2回目の照射を開始するまでの時間(t1~t2)は、例えば、1回目の照射により励起された燐光発光が消失する時間に合わせて設定される。具体的には、図1(c)に示すように、1回目の照射を停止(t1)した後、燐光が減衰して0(ゼロ)となったタイミング(t2)、又はその後に、2回目の照射を開始する。ただし、1回目の照射と2回目の照射で燐光発光を測定して、各回で異なるセンサ出力積分値を得ることができれば、1回目の照射後に燐光の消失を待たずに2回目の照射を開始してもよい。
 図1では、蛍光発光と燐光発光とで発光強度の時間特性が異なることに基づいて、蛍光発光及び燐光発光のいずれであるかを判定する方法を示したが、本実施形態に係る蛍光・燐光検知方法によれば、異なる種類の燐光発光の間でこれらを識別することも可能である。具体的には、図1(c)右図に示すセンサ出力積分値は、同図左図に示す燐光発光の時間特性によって異なる値を示すので、1回目及び2回目のセンサ出力積分値、該積分値の差又は割合等に基づいて、燐光発光の種類の違いを識別することができる。以下では、燐光発光の種類を識別する方法について説明する。
 図2は、励起光の照射時間を変更すると共に同じ発光量となるように発光強度を設定した場合に、該励起光によって励起される蛍光、燐光A及び燐光Bの発光量と、励起光の照射時間との関係を示す図である。また、図3は、図2に示す特性を有する蛍光、燐光A及び燐光Bについて、励起光の照射時間を変更すると共に同じ発光量となるように発光強度を設定して2回の照射を行った場合に、各回の照射で励起された光を測定して得られるセンサ出力の積分値を示す図である。
 なお、図2及び図3では、蛍光の発光量に基づいて、燐光A及び燐光Bの発光量を正規化した結果を示している。また、図2と図3との間で対応する値に同じ符号Pn(n=1~7)を付している。
 励起光を2回照射する際に、1回目の照射時間を200μ秒、2回目の照射時間を100μ秒に設定すると、各回の照射で励起される蛍光、燐光A及び燐光Bについて、図3(a)に示すセンサ出力積分値が得られる。また、1回目の照射時間を500μ秒、2回目の照射時間を100μ秒に設定すると、図3(b)に示すセンサ出力積分値が得られる。
 図3(a)に示す結果が得られると、1回目の照射と2回目の照射で得られたセンサ出力値を比較して、センサ出力積分値が略同一となる発光を蛍光、センサ出力積分値の差が値d1である発光を燐光A、センサ出力積分値の差が値d2となる発光を燐光Bと発光の種類を識別することができる。また、この他、各回照射で得られたセンサ出力積分値の値や、1回目と2回目のセンサ出力積分値の割合から、蛍光、燐光A及び燐光Bを識別することもできる。
 また、図3(b)に示す結果が得られた場合も、各回照射で得られたセンサ出力積分値や、1回目と2回目のセンサ出力積分値の差又は割合から、蛍光、燐光A及び燐光Bを識別することができる。さらに、図3(b)の例では、蛍光、燐光A及び燐光Bで、1回目のセンサ出力積分値が略同一となるように照射時間が設定されているので、2回目のセンサ出力積分値を比較した結果に基づいて、蛍光、燐光A及び燐光Bを識別することもできる。
 このように、本実施形態に係る蛍光・燐光検知方法によれば、蛍光発光と燐光発光を区別するだけでなく、燐光発光の種類を識別することもできるので、例えば、偽造された有価媒体100で、真の有価媒体100とは異なる燐光発光が観察される場合に、この有価媒体100を偽造媒体であると判定することができる。
 次に、このような蛍光・燐光検知方法を実現する蛍光・燐光検知装置の具体例について説明する。図4は、蛍光・燐光検知装置10の構造概要を示す断面模式図である。蛍光・燐光検知装置10は、有価媒体100が通過するセンサケースの上面側にガラス等の透明部材から成る開口窓部6aを有しており、センサケースの内部空間は、光を遮断する仕切板6bによって、光源側(図4右側)と発光検出センサ側(図4左側)とに分割されている。
 有価媒体100は、蛍光・燐光検知装置10の上方を、図示しないローラ等から成る搬送機構によって搬送方向200へ搬送される。例えば、搬送機構による搬送タイミングに係る信号が蛍光・燐光検知装置10に入力され、この信号に基づいて、有価媒体100上の所定領域を対象に蛍光・燐光を検知する処理が行われる。具体的には、励起光により、有価媒体100上で蛍光発光又は燐光発光が励起される領域が、蛍光・燐光検知装置10による検知領域を通過するタイミングに合わせて、励起光照射及び発光検知の処理が行われる。なお、搬送機構の詳細及び搬送機構による搬送タイミングに合わせて処理を行う方法については、紙幣処理装置等で利用されている従来技術を利用することができるので詳細な説明は省略する。
 光源側の空間には、励起光として紫外光を照射するための光源1と、光源1から照射された紫外光のみを通過させる光源用フィルタ3とが設けられている。光源1は、開口窓部6aの上方を搬送方向200に搬送される有価媒体100に向けて紫外光を照射するLED1aと、LED1aから照射される紫外光の発光強度をモニタリングするための光源モニタ用センサ1bとを有している。仕切板6bにより、LED1aから照射される紫外光が、直接、発光検出センサ側の空間に至ることはない。LED1aからの紫外光により、有価媒体100で可視光や赤外光の発光があった場合も、光源用フィルタ3により、この光が光源モニタ用センサ1bに達することがないので、光源モニタ用センサ1bを利用してLED1aから照射される光を正確にモニタリングすることができる。
 一方、発光検出センサ側の空間には、LED1aから照射された紫外光を遮断すると共に有価媒体100で励起された発光を透過させる測定用フィルタ4と、開口窓部6aから測定用フィルタ4を経て入射する光を受光する受光部2とが設けられている。測定用フィルタ4は、有価媒体100で励起される蛍光及び燐光のみを透過させる機能を有する。例えば、蛍光発光が可視光で、燐光発光が赤外光である場合には、測定用フィルタ4は、励起光である紫外光の波長域の光を透過せず、可視光及び赤外光の波長域の光のみを透過する。
 また、受光部2は、入射光の発光量を測定するための発光測定用センサ2bと、測定用フィルタ4を透過した光を発光測定用センサ2bに集光するための集光レンズ2aとを有している。発光測定用センサ2bでは、集光レンズ2aの集光機能により、微弱な発光でも検出することができる。なお、有価媒体100で励起される発光の発光強度が十分に高く、集光レンズ2aがなくても正確に測定できる場合には、蛍光・燐光検知装置10が、集光レンズ2aを有さない構造であっても構わない。
 LED1a、光源モニタ用センサ1b及び発光測定用センサ2bは、それぞれ共通の基板5に接続されており、外部から基板5に入力される制御信号に基づいて、LED1aの制御、光源モニタ用センサ1bによるLED1aからの照射光のモニタリング及び発光測定用センサ2bによる蛍光発光及び燐光発光の測定が行われる。
 図5は、蛍光・燐光検知装置10の機能を説明するための機能ブロック図である。蛍光・燐光検知装置10の基板5には、LED1aを制御するための光源制御部11と、LED1aから照射する励起光の発光強度及び照射タイミング並びに発光測定用センサ2bを利用した測定タイミングを制御するためのタイミング制御部12と、発光測定用センサ2bの出力信号から積分値を取得するための積分器14と、光源モニタ用センサ1bの出力信号から積分値を取得するための積分器15と、積分器14からの出力を受けて有価媒体100で励起された発光が蛍光発光及び燐光発光のいずれであるかを判定して出力するための発光判定部13とを有している。
 発光判定部13は、例えば、CPU、メモリ、サンプルホールド回路及びA/Dコンバータ等を有する。そして、LED1aから有価媒体100に向けて励起光を複数回照射したときに、発光測定用センサ2bで得られる各回照射時のセンサ出力積分値を読み取って比較することにより発光の種類を判定する機能を有する。発光判定部13による判定結果は、例えば、真偽判定部30に入力される。
 真偽判定部30は、例えば、CPU及びメモリを含み、予めメモリに格納された蛍光・燐光分布情報及び発光判定部13による判定結果に基づいて有価媒体100の真偽を判定する機能を有する。ここで、蛍光・燐光分布情報とは、真の有価媒体100上で検知される蛍光・燐光の種類と有価媒体100上での位置に係る情報である。真偽判定部30は、図示しない搬送機構と連携して、該搬送機構によって搬送されて蛍光・燐光検知装置10の上方を通過する有価媒体100の位置を特定すると共に、特定した位置で得られた発光判定部13による発光判定の結果が、蛍光・燐光分布情報と一致するか否かを判定する。そして、有価媒体100上の蛍光発光が観察されるべき位置で蛍光発光が検知された場合に、この有価媒体100は真の有価媒体100であると判定する。また、同様に、有価媒体100上の燐光発光が観察されるべき位置で燐光発光が検知された場合に真の有価媒体100であると判定する。
 このように、蛍光・燐光検知装置10に、真偽判定部30を加えた構成とすることで、有価媒体100の真偽判定装置を実現することができる。この場合、例えば、真偽判定装置で得られた判定結果は、真偽判定部30から外部へ出力される。蛍光・燐光検知装置10及び真偽判定部30を含む真偽判定装置は、例えば、有価媒体100を識別して計数する有価媒体処理装置の内部で利用される。
 図6は、蛍光・燐光検知装置10で利用される積分器14、15の構成例を説明する回路図である。このように、例えば、コンデンサ(C)とオペアンプ(OPAMP)から成る積分回路に、コンデンサの電荷を放電するCMOSスイッチ(SWITCH)及び抵抗(R1)から成るリセット回路と、抵抗(R2、R3)及びトランジスタ(TR)から成りリセット回路を駆動するための駆動回路とを加えて積分器14、15が形成される。そして、例えばフォトダイオード(PD)を利用して形成される発光測定用センサ2b及び光源モニタ用センサ1bから出力される信号を受けて、得られた積分値が、出力Voとして積分器14、15から出力される。積分器14、15では、センサからの出力信号が積分値として蓄積されるため、外部からのリセット信号を受けて蓄積された信号をリセットするようになっている。
 図7は、蛍光・燐光検知装置10により有価媒体100で励起される発光を測定する方法を説明する図である。以下では、図5に示す各機能部によって行われる発光の測定方法について詳細を説明する。
 まず、タイミング制御部12が、光源であるLED1aを発光強度Hで点灯して励起光の照射を開始するよう指示する信号を光源制御部11に入力する。これを受けて、光源制御部11は、図7(a)に示すように、発光強度HでLED1aを点灯する(t10)。また、タイミング制御部12は、光源制御部11への点灯指示と同時に、積分器14、15に対して、図7(b)に示すようにリセット信号を入力する。
 リセット信号を受けた積分器15では、図7(c)に示すように、LED1aが点灯するタイミング(t10)で出力値が0(ゼロ)にリセットされる。そして、積分器15からは、光源モニタ用センサ1bからの信号を積分した信号の出力が開始される(t10)。この出力信号は、タイミング制御部12に入力される。
 一方、リセット信号を受けた積分器14でも、図7(e)に示すように、LED1aが点灯するタイミング(t10)で出力値が0(ゼロ)にリセットされる。LED1aからの励起光を受けて有価媒体100が発光すると、この発光を受けて発光測定用センサ2bから信号が出力される。そして、積分器14からは、発光測定用センサ2bからの信号を積分した信号の出力が開始される(t10)。積分器14からの出力信号は、発光判定部13に入力される。なお、図7(e)では、有価媒体100で励起された発光が蛍光発光である場合の積分器14からの出力信号を示している。
 タイミング制御部12では、光源モニタ用センサ1bから積分器15を経て得られた図7(c)の出力信号を、LED1aの発光量をモニタリングする信号として監視する。そして、タイミング制御部12は、この出力信号の値が、図7(c)に示すように、予め設定されたトリガ用しきい値に達すると(t11)、光源制御部11へ、LED1aからの励起光照射の停止を指示する信号を入力する。また、これと同時に、タイミング制御部12は、発光判定部13へ、図7(d)に示すトリガ信号を入力する(t11)。
 これを受けた光源制御部11は、LED1aを消灯する(図7(a)t11)。また、発光判定部13は、トリガ信号を受けたタイミングで(図7(e)t11)、積分器14からの出力値を1回目の照射によるセンサ出力積分値として保持する。
 なお、図7(c)に示すトリガ用しきい値は、励起光の発光量HTに基づいて設定されている。図7(a)に示すように発光強度Hで行われる1回目の照射では、同図(c)に示すように、照射を開始してから時間Tが経過した所で、積分器15からの出力値がトリガ用しきい値に達する。これに対して、発光強度2Hで行われる2回目の照射では、照射を開始してから時間T/2が経過した所で、積分器15からの出力値がトリガ用しきい値に達する。これにより、積分器15からの出力値に基づいてLED1aの消灯タイミングを制御して、図7(a)に示す各回の励起光照射を実現することができる。
 1回目の励起光の照射を終えると、続いて、タイミング制御部12は、LED1aを消灯してから(t11)の時間をカウントして、所定時間経過したタイミングで(t12)、発光強度2HでLED1aを点灯して、励起光照射を開始するよう指示する信号を光源制御部11へ入力する。また、タイミング制御部12は、光源制御部11への点灯指示と同時に、図7(b)に示すように積分器14、15にリセット信号を入力する(t12)。
 これを受けて、光源制御部11は、発光強度2Hで再びLED1aを点灯して、2回目の照射を開始する(図7(a)t12)。また、積分器14、15は、1回目の照射時と同様にリセットされて、2回目の照射による積分値の出力を開始する(図7(c)t12及び図7(e)t12)。
 2回目の照射では、LED1aの発光強度が1回目の発光強度の2倍であるため、光源モニタ用センサ1bから積分器15を経て得られる出力信号は、1回目の半分の時間(T/2)でトリガ用しきい値に達する(図7(c)t13)。そして、トリガ用しきい値に達すると、タイミング制御部12は、光源制御部11へLED1aの消灯を指示する信号を入力すると同時に、発光判定部13へトリガ信号を入力する(図7(d)t13)。
 これを受けた光源制御部11はLED1aを消灯する(図7(a)t13)。また、発光判定部13は、トリガ信号を受けたタイミングで(図7(e)t13)、積分器14からの出力値を2回目の照射によるセンサ出力積分値として保持する。
 そして、発光判定部13は、1回目の照射時に得られたセンサ出力積分値と、2回目の照射時に得られたセンサ出力積分値を比較して、有価媒体100で励起された発光が、蛍光発光及び燐光発光のいずれであるかを判定して、この判定結果を外部へ出力する。具体的には、図1(b)及び(c)の右図を参照しながら説明したように、1回目のセンサ出力積分値と2回目のセンサ出力積分値とが、所定の誤差範囲内で一致すれば蛍光発光であると判定して、誤差範囲を超える差を有する場合には燐光発光であると判定する。蛍光発光の場合を例示した図7では、同図(e)に示す時間t11の出力値と時間t13の出力値とが同じ値となることから、有価媒体100で励起された発光は蛍光発光であると判定される。
 なお、図7では、有価媒体100で蛍光発光が検知される例を示したが、燐光発光が検知される場合には、図7(e)に示す積分器14からの出力波形が異なる形状となり、図1(c)右図に示すように、1回目の照射で得られる出力値よりも、2回目の照射で得られる出力値の方が低い値となる。また、有価媒体100で蛍光発光及び燐光発光のいずれも観察されない場合、すなわち光が励起されない場合には、図7(e)に示す積分器14からの出力波形が0(ゼロ)のままとなる。
 また、本実施例では、説明を簡単にするため、励起光を2回照射して励起された発光を測定する処理を、1回だけ行う態様を示しているが、該処理が繰り返し複数回行われる態様であっても構わない。1回の励起光照射は、例えば、マイクロ秒単位の短時間で実行される。このため、蛍光・燐光検知装置10では、図4に示すように搬送方向200へ搬送される有価媒体100が装置上方を通過する間に、図7に示す処理を繰り返し行うことができる。そして、有価媒体100上の各位置で、蛍光及び燐光が励起されたか否かを判定することができる。これにより、有価媒体100上で、蛍光発光が検知されるべき位置で蛍光発光が検知されたか、燐光発光が検知されるべき位置で燐光発光が検知されたかに基づいて、有価媒体100の真偽判定を行うことができる。
 実施例1では、光源となるLED1aを消灯するタイミングを、LED1aからの発光量をモニタリングして制御する態様を示したが、光源制御の方法がこれに限定されるものではない。例えば、LED1aの点灯を、照射時間に基づいて制御する態様であっても構わない。
 本実施例では、蛍光・燐光検知装置10が、図4に示す構成から光源モニタ用センサ1b及び光源用フィルタ3を除いた構成を有する場合について説明する。なお、以下では、実施例1と同様の構成及び動作についての説明は省略して、実施例1と異なる点を中心に説明を続ける。
 図8は、本実施例に係る蛍光・燐光検知装置10の機能を説明するための機能ブロック図である。本実施例に係る蛍光・燐光検知装置10は、LED1aを制御するための光源制御部11と、LED1aからの照射光の発光強度及び照射タイミング並びに発光測定用センサ2bを利用した測定タイミングを制御するためのタイミング制御部12と、発光測定用センサ2bの出力信号から積分値を取得するための積分器14と、積分器14からの出力を受けて有価媒体100で励起された発光が蛍光発光及び燐光発光のいずれであるかを判定して出力するための発光判定部13とを有している。
 図9は、図8に示す各機能部により、有価媒体100で励起された発光を測定する方法を説明する図である。まず、タイミング制御部12が、発光強度Hで励起光の照射を開始するよう指示する信号を光源制御部11に入力する。これを受けて、光源制御部11は、図9(a)に示すように、発光強度HでLED1aを点灯する(t10)。また、タイミング制御部12は、光源制御部11への点灯指示と同時に、積分器14に対して、図9(b)に示すようにリセット信号を入力する。
 リセット信号を受けた積分器14では、図9(c)に示すように、LED1aが点灯するタイミング(t10)で出力値が0(ゼロ)にリセットされる。LED1aからの光を受けて有価媒体100が発光すると、この発光を受けて発光測定用センサ2bから信号が出力される。そして、積分器14からは、発光測定用センサ2bからの信号を積分した信号の出力が開始される(t10)。積分器14からの出力信号は、発光判定部13に入力される。なお、図9(c)では、有価媒体100における発光が蛍光発光である場合の積分器14からの出力信号を示している。
 タイミング制御部12では、LED1aを点灯してからの時間をカウントする。そして、LED1aを点灯してから時間Tが経過すると(図9(a)t11)、光源制御部11へLED1aを消灯するよう指示する信号を入力する。また、これと同時に、タイミング制御部12は、発光判定部13へ、図9(d)に示すトリガ信号を入力する(t11)。
 これを受けた光源制御部11は、LED1aを消灯する(図9(a)t11)。また、発光判定部13は、トリガ信号を受けたタイミングで(図9(c)t11)、積分器14からの出力値を1回目の照射によるセンサ出力積分値として保持する。
 続いて、タイミング制御部12は、LED1aを消灯してから(t11)の時間をカウントして、所定時間経過したタイミングで(t12)、発光強度2Hで励起光の照射を開始するよう指示する信号を光源制御部11へ入力する。また、タイミング制御部12は、光源制御部11への点灯指示と同時に、図9(b)に示すように積分器14にリセット信号を入力する(t12)。
 これを受けて、光源制御部11は、発光強度2Hで再びLED1aを点灯して、2回目の照射を開始する(図9(a)t12)。また、積分器14は、1回目の照射時と同様にリセットされて、2回目の照射による積分値の出力を開始する(図9(c)t12)。
 そして、タイミング制御部12は、1回目の照射時と同様に、LED1aを点灯してからの時間をカウントして、点灯開始から時間T/2が経過すると(図9(a)t13)、光源制御部11へLED1aの消灯を指示する信号を入力する。また、これと同時に、タイミング制御部12は、発光判定部13へトリガ信号を入力する(図9(d)t13)。
 これを受けた光源制御部11はLED1aを消灯し(図9(a)t13)、発光判定部13はトリガ信号を受けたタイミングで(図9(c)t13)、積分器14からの出力値を2回目の照射によるセンサ出力積分値として保持する。
 こうして、発光判定部13により、1回目の照射時に得られたセンサ出力積分値と、2回目の照射時に得られたセンサ出力積分値とが得られると、実施例1の場合と同様に、蛍光発光及び燐光発光を判定する処理を行うことができる。
 このように、タイミング制御部12及び光源制御部11により、励起光を照射するLED1aの発光強度及び照射時間を制御すれば、実施例1のようにLED1aの発光量をモニタリングすることなく、実施例1と同様に、1回目と2回目とで異なる発光強度及び照射時間で有価媒体100へ励起光を照射することができる。そして、有価媒体100で励起された発光を発光測定用センサ2bで測定して、この発光が蛍光発光及び燐光発光のいずれであるかを判定することができる。
 なお、本実施例では、励起光を照射するLED1aの発光強度及び点灯時間を直接制御する態様を示したが、励起光の制御方法がこれに限定されるものではない。図10は、励起光の照射をシャッタユニットによって制御する例を説明する図である。
 例えば、図10(a)に示すように、LED1aから照射された励起光が有価媒体100へ至る光路上に、この光の通過及び遮断を制御するシャッタユニット110aを配置する。そして、タイミング制御部12が、光源制御部11を介してLED1aからの発光強度を制御すると共に、シャッタ制御部121を介してシャッタユニット110aを制御する。シャッタユニット110aの動作によりにLED1aからの光の通過及び遮断を制御すれば、図9(a)に示す1回目及び2回目の照射時間を実現することができる。
 なお、シャッタユニット110aの設置位置は、LED1aから有価媒体100へ至る光路上に限定されるものではない。具体的には、図10(a)に破線で示したように、有価媒体100で励起された光が発光測定用センサ2bへ至る光路上にシャッタユニット110bを設置する態様であっても構わない。有価媒体100で励起された光の通過及び遮断を制御すれば、図9(a)に示すように照射時間を制御した場合と、同様の測定結果を得ることができる。
 また、シャッタユニット111が、光の通過及び遮断を制御するだけではなく、光の透過光量を制御する機能を有する場合には、このシャッタユニット111を図10(b)に示すように設置して、LED1aから有価媒体100に照射される励起光の発光強度及び照射時間を制御する態様であっても構わない。光源制御部11によりLED1aを常に同じ発光強度で点灯させた状態で、タイミング制御部12が、シャッタ制御部122を介しシャッタユニット111を制御する。そして、シャッタユニット111により、LED1aから有価媒体100へ至る励起光の透過光量を制御すれば、図9(a)に示す1回目及び2回目の発光強度及び照射時間を実現することができる。なお、図10(a)及び(b)には発光測定用フィルタ4を示しているが、発光測定用センサ2bが、励起光の帯域に受光感度を有さない特性である場合には、測定用フィルタ4を省略した構成であっても構わない。
 上述してきたように、本実施形態によれば、励起光を照射することにより蛍光発光や燐光発光が観察される有価媒体100に、発光強度及び照射時間が異なるが発光量が同一となるように設定した複数回の励起光照射を行って、各照射で励起された発光の発光量を測定して比較することにより、この発光が蛍光発光及び燐光発光のいずれであるかを判定することができる。
 また、各回照射時に有価媒体で励起される発光の発光量の違いから、蛍光と燐光の違いだけではなく、燐光の種類の違いを識別することができるので、例えば、有価媒体が偽造されて該有価媒体で異なる燐光発光が検知される場合でも、真の有価媒体と偽の有価媒体の燐光発光の種類の違いに基づいて、有価媒体の真偽判定を行うことができる。
 また、励起光を照射して蛍光・燐光が励起された有価媒体100上の位置情報を加味することにより、有価媒体100の真偽判定をより高精度に行うことができる。
 以上のように、本発明は、有価媒体上で観察される蛍光発光及び燐光発光を区別して検知するために有用な技術であり、蛍光及び燐光の検知結果を利用して有価媒体の真偽判定を行う場合に有用な技術である。
1 光源
1a LED
1b 光源モニタ用センサ
2 受光部
2a 集光レンズ
2b 発光測定用センサ
3 光源用フィルタ
4 測定用フィルタ
5 基板
6a 開口窓部
6b 仕切板
10 蛍光・燐光検知装置
11 光源制御部
12 タイミング制御部
13 発光判定部
14、15 積分器
30 真偽判定部
100 有価媒体
110a、110b、111 シャッタユニット
121、122 シャッタ制御部

Claims (9)

  1.  同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知する蛍光・燐光検知方法であって、
     第1発光強度で第1照射時間の間、有価媒体に向けて励起光を照射する第1励起光照射工程と、
     前記第1励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第1発光量測定工程と、
     前記第1照射時間の時間長と異なる第2照射時間の間、前記第1励起光照射工程で照射された励起光と同じ光量になるように設定された第2発光強度で、前記有価媒体に向けて励起光を照射する第2励起光照射工程と、
     前記第2励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第2発光量測定工程と、
     前記第1発光量測定工程で得られた測定結果と前記第2発光量測定工程で得られた測定結果を比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定工程と
    を含んだことを特徴とする蛍光・燐光検知方法。
  2.  前記発光判定工程では、
     前記第1発光量測定工程で測定された第1発光量と前記第2発光量測定工程で測定された第2発光量とが同じである場合には、前記有価媒体からの発光が蛍光発光であると判定して、
     前記第1発光量と前記第2発光量とが異なる場合には、前記有価媒体からの発光が燐光発光であると判定する
    ことを特徴とする請求項1に記載の蛍光・燐光検知方法。
  3.  前記発光判定工程では、前記第1発光量と前記第2発光量とが異なる場合に、前記第1発光量と前記第2発光量とを比較して燐光発光の種類を識別することを特徴とする請求項1又は2に記載の蛍光・燐光検知方法。
  4.  同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知する蛍光・燐光検知装置であって、
     有価媒体に向けて励起光を照射する光源と、
     第1照射時間の間、第1発光強度で励起光を照射すると共に、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1照射時間及び前記第1発光強度で照射される励起と同じ光量になるように設定された第2発光強度で励起光を照射するように前記光源を制御する光源制御部と、
     前記有価媒体で励起された発光を測定するセンサと、
     前記第1発光強度及び前記第1照射時間の励起光で励起された発光を前記センサにより測定して得られた第1発光量と、前記第2発光強度及び前記第2照射時間の励起光で励起された発光を前記センサにより測定して得られた第2発光量とを比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定部と
    を備えることを特徴とする蛍光・燐光検知装置。
  5.  前記発光判定部は、
     前記第1発光量と前記第2発光量とが同じである場合には、前記有価媒体からの発光が蛍光発光であると判定して、
     前記第1発光量と前記第2発光量とが異なる場合には、前記有価媒体からの発光が燐光発光であると判定する
    ことを特徴とする請求項4に記載の蛍光・燐光検知装置。
  6.  前記発光判定部は、前記第1発光量と前記第2発光量とが異なる場合に、前記第1発光量と前記第2発光量とを比較して燐光発光の種類を識別することを特徴とする請求項4又は5に記載の蛍光・燐光検知装置。
  7.  光源側から有価媒体側へ前記励起光を透過させると共に前記有価媒体側から前記光源側への発光を遮断する光源用フィルタと、
     前記光源からの励起光の照射をモニタリングするために前記光源側で前記光源の近傍に設けられた光源モニタ用センサと、
     前記光源モニタ用センサからの出力に基づいて前記光源の制御タイミングを決定するタイミング制御部と
    をさらに備え、
     前記光源制御部は、前記タイミング制御部によって制御されることを特徴とする請求項4に記載の蛍光・燐光検知装置。
  8.  同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知して検知結果に基づいて有価媒体の真偽を判定する有価媒体の真偽判定方法であって、
     第1発光強度で第1照射時間の間、有価媒体に向けて励起光を照射する第1励起光照射工程と、
     前記第1励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第1発光測定工程と、
     前記第1照射時間の時間長と異なる第2照射時間の間、前記第1励起光照射工程で照射された励起光と同じ光量になるように設定された第2発光強度で、前記有価媒体に向けて励起光を照射する第2励起光照射工程と、
     前記第2励起光照射工程で照射された励起光によって励起された前記有価媒体からの発光量を測定する第2発光測定工程と、
     前記第1発光測定工程で得られた測定結果と前記第2発光測定工程で得られた測定結果とを比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する蛍光・燐光判定工程と、
     前記蛍光・燐光判定工程における判定結果に基づいて前記有価媒体の真偽を判定する真偽判定工程と
    を含んだことを特徴とする有価媒体の真偽判定方法。
  9.  同一の励起光を照射した際の発光強度の時間特性が異なる蛍光発光及び燐光発光を検知して検知結果に基づいて有価媒体の真偽を判定する有価媒体の真偽判定装置であって、
     有価媒体に向けて励起光を照射する光源と、
     第1照射時間の間、第1発光強度で励起光を照射すると共に、前記第1照射時間の時間長と異なる第2照射時間の間、前記第1照射時間及び前記第1発光強度で照射される励起と同じ光量になるように設定された第2発光強度で励起光を照射するように前記光源を制御する光源制御部と、
     前記有価媒体で励起された発光を測定するセンサと、
     前記第1発光強度及び前記第1照射時間の励起光で励起された発光を前記センサにより測定して得られた発光量と、前記第2発光強度及び前記第2照射時間の励起光で励起された発光を前記センサにより測定して得られた発光量とを比較して、前記有価媒体からの発光が蛍光発光及び燐光発光のいずれであるかを判定する発光判定部と、
     前記発光判定部による判定結果に基づいて前記有価媒体の真偽を判定する真偽判定部と
    を備えることを特徴とする有価媒体の真偽判定装置。
PCT/JP2013/055553 2013-02-28 2013-02-28 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置 WO2014132415A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055553 WO2014132415A1 (ja) 2013-02-28 2013-02-28 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055553 WO2014132415A1 (ja) 2013-02-28 2013-02-28 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置

Publications (1)

Publication Number Publication Date
WO2014132415A1 true WO2014132415A1 (ja) 2014-09-04

Family

ID=51427716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055553 WO2014132415A1 (ja) 2013-02-28 2013-02-28 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置

Country Status (1)

Country Link
WO (1) WO2014132415A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913545A (zh) * 2015-02-18 2016-08-31 光荣株式会社 荧光磷光探测装置、荧光磷光探测方法以及纸张处理装置
WO2017057014A1 (ja) * 2015-09-29 2017-04-06 ソニー株式会社 光学計測装置および方法
WO2017211456A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Verfahren zur absicherung von wertdokumenten mit speicherleuchtstoffen
WO2017211457A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Verfahren zur absicherung von wertdokumenten mit speicherleuchtstoffen
WO2024009953A1 (ja) * 2022-07-06 2024-01-11 グローリー株式会社 紙葉類識別装置及び紙葉類処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155478A (ja) * 1982-03-10 1983-09-16 Toshiba Corp 印刷物の判別装置
JP2001506001A (ja) * 1996-12-09 2001-05-08 ギーゼッケ ウント デフリエント ゲーエムベーハー 蛍光及び燐光検出装置及び方法
JP2001516012A (ja) * 1997-08-13 2001-09-25 ドゥ ラ リュ インターナショナル リミティド 検出方法及び装置
WO2010018353A1 (en) * 2008-08-14 2010-02-18 Talaris Limited Monitoring phosphorescence
JP2010191887A (ja) * 2009-02-20 2010-09-02 Toshiba Corp 光検出装置、及びこの光検出装置を備える紙葉類処理装置
JP2013024570A (ja) * 2011-07-15 2013-02-04 Semiconductor Energy Lab Co Ltd 燐光測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155478A (ja) * 1982-03-10 1983-09-16 Toshiba Corp 印刷物の判別装置
JP2001506001A (ja) * 1996-12-09 2001-05-08 ギーゼッケ ウント デフリエント ゲーエムベーハー 蛍光及び燐光検出装置及び方法
JP2001516012A (ja) * 1997-08-13 2001-09-25 ドゥ ラ リュ インターナショナル リミティド 検出方法及び装置
WO2010018353A1 (en) * 2008-08-14 2010-02-18 Talaris Limited Monitoring phosphorescence
JP2010191887A (ja) * 2009-02-20 2010-09-02 Toshiba Corp 光検出装置、及びこの光検出装置を備える紙葉類処理装置
JP2013024570A (ja) * 2011-07-15 2013-02-04 Semiconductor Energy Lab Co Ltd 燐光測定方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897545B2 (en) 2015-02-18 2018-02-20 Glory Ltd. Fluorescence and phosphorescence detection device, fluorescence and phosphorescence detection method, and paper-sheet processing device
EP3064939A1 (en) * 2015-02-18 2016-09-07 Glory Ltd. Fluorescence and phosphorescence detection device and method, and paper-sheet processing device
CN105913545A (zh) * 2015-02-18 2016-08-31 光荣株式会社 荧光磷光探测装置、荧光磷光探测方法以及纸张处理装置
WO2017057014A1 (ja) * 2015-09-29 2017-04-06 ソニー株式会社 光学計測装置および方法
CN109313831A (zh) * 2016-06-08 2019-02-05 捷德货币技术有限责任公司 使用存储磷光体保护有价文件的方法
WO2017211457A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Verfahren zur absicherung von wertdokumenten mit speicherleuchtstoffen
WO2017211456A1 (de) * 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Verfahren zur absicherung von wertdokumenten mit speicherleuchtstoffen
CN109313830A (zh) * 2016-06-08 2019-02-05 捷德货币技术有限责任公司 使用存储磷光体保护有价文件的方法
CN109313830B (zh) * 2016-06-08 2021-08-10 捷德货币技术有限责任公司 使用存储磷光体保护有价文件的方法
CN109313831B (zh) * 2016-06-08 2021-08-24 捷德货币技术有限责任公司 使用存储磷光体保护有价文件的方法
US11113918B2 (en) 2016-06-08 2021-09-07 Giesecke+Devrient Currency Technology Gmbh Method for securing value documents using storage phosphors
US11254159B2 (en) 2016-06-08 2022-02-22 Giesecke+Devrient Currency Technology Gmbh Method for securing value documents using storage phosphors
WO2024009953A1 (ja) * 2022-07-06 2024-01-11 グローリー株式会社 紙葉類識別装置及び紙葉類処理装置

Similar Documents

Publication Publication Date Title
JP6474633B2 (ja) 蛍光燐光検知装置、蛍光燐光検知方法及び紙葉類処理装置
WO2014132415A1 (ja) 蛍光・燐光検知方法及び装置並びに有価媒体の真偽判定方法及び装置
RU2579976C2 (ru) Сканирующее устройство для измерения времени затухания на поточной линии
JP5208801B2 (ja) 光検出装置、及びこの光検出装置を備える紙葉類処理装置
JP4703403B2 (ja) 検査装置
US10176659B2 (en) Paper sheet authentication apparatus
JP6247747B2 (ja) 紙葉類真偽判別装置及び紙葉類真偽判別方法
JP2010243363A (ja) 蛍光検知装置
CN1402862A (zh) 钞票真伪检验设备和方法
JP2010072933A (ja) 蛍光検知装置
JP2010101835A (ja) 蛍光基準部材、及び蛍光基準部材を備える蛍光検知装置
US20210116370A1 (en) Optical sensor, light detection apparatus, sheet processing apparatus, light detection method, and phosphorescence detection apparatus
JP2017102046A (ja) 画像形成装置及び記録媒体厚さ判別方法
WO2019035376A1 (ja) 蛍光燐光検知装置及び蛍光燐光検知方法
RU2530276C2 (ru) Устройство аутентификации, способ аутентификации и датчик флуоресценции
US11756362B2 (en) Method and sensor for testing documents
JP3960282B2 (ja) 紙幣識別装置
JP2014206438A (ja) 蛍光残光検出装置、及び紙葉類処理装置
JP2001074659A (ja) 紙葉類用の蛍光検出装置
JP7111494B2 (ja) 光検出センサ、光検出装置、シート類処理装置および光検出方法
JP2012093987A (ja) 光検出装置、及び光検出装置を備える紙葉類処理装置
JP2008299639A (ja) 紙葉類識別装置
JP2008059113A (ja) 紙葉類識別装置
JP3720995B2 (ja) 媒体枚数検知方法及び装置
JP2004334329A (ja) 紙葉類判別装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP