WO2014131247A1 - 合成左旋吡喹酮的方法 - Google Patents

合成左旋吡喹酮的方法 Download PDF

Info

Publication number
WO2014131247A1
WO2014131247A1 PCT/CN2013/075489 CN2013075489W WO2014131247A1 WO 2014131247 A1 WO2014131247 A1 WO 2014131247A1 CN 2013075489 W CN2013075489 W CN 2013075489W WO 2014131247 A1 WO2014131247 A1 WO 2014131247A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
compound
praziquantel
synthesizing
temperature
Prior art date
Application number
PCT/CN2013/075489
Other languages
English (en)
French (fr)
Inventor
钱明心
Original Assignee
苏州同力生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2013/072022 external-priority patent/WO2013127354A1/zh
Application filed by 苏州同力生物医药有限公司 filed Critical 苏州同力生物医药有限公司
Publication of WO2014131247A1 publication Critical patent/WO2014131247A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures

Definitions

  • the present invention relates to a method for synthesizing L-praziquantel ((R)- praziquante ).
  • Praziquantel also known as cyclic praziquantel, is a broad-spectrum antiparasitic drug. It has a wide spectrum of anti-helminths and has a killing effect on Schistosoma japonicum, Schistosoma japonicum, and Schistosoma mansoni. In addition, it also kills Paragonimus (Pneumocystis), Clonorchis sinensis, Hydatid, Cysticer, Danny, Ginger, Aphid and so on. The role of praquine is characterized by high efficacy, short course of treatment, small dose, fast metabolism, low toxicity and convenient oral administration. The advent of praziquantel is a major breakthrough in the treatment of parasitic diseases and has become the drug of choice for the treatment of various parasitic diseases.
  • Bibiquinone was first synthesized in 1975 by Seubere et al., and E- merck and Bayer, Germany, successfully opened the drug.
  • E-metc k was first listed under the trade name Cesol and is now widely used worldwide. In addition to being used outside the human body, it is also widely used for anti-parasitic treatment of animals, poultry and the like.
  • some toxic and harmful chemicals such as potassium cyanide, cyclohexamethylene chloride, etc. are needed, and its process route is long (see the following formula), and the reaction conditions are also harsh.
  • the technical problem to be solved by the present invention is to provide a method for synthesizing levoquat garden with good environmental protection, safety and high yield.
  • the present invention adopts the following technical solutions -
  • the nitrile hydratase comprises: a nitrile hydratase derived from Arabidopsis thaliana, a nitrile hydratase derived from a grass family, a cruciferous or a musa plant, a nitrile hydrate derived from a fungus of Fusarium, Aspergillus or Penicillium. Enzymes, as well as nitrile hydratase derived from bacteria of Bowman's immobility, C. faecalis, Krebs, Pseudomonas, Nocardia and Rhodococcus.
  • the nitrile hydratase is Rhodococcus erythropolis TA37, Thermophilic buds SC-J05-1 or Nocardia thermophila JCM 3095.
  • step (2) the racemate of the compound 3d is reacted in a buffer of ⁇ 7 ⁇ 11 and a co-solvent under the action of a nitrile hydratase at a temperature of 10 to 50 ° C to form the compound. 14.
  • step (2) is: adding the compound 3d, the buffer solution, the co-solvent to the reactor, stirring uniformly, and adding the nitrile hydratase to the reaction system at a temperature of 10 to 50, The reaction was started, and the reaction system was stirred at a temperature of 10 to 50 ° C, and the progress of the reaction was monitored by HPLC. When the conversion rate was 99% or more, the reaction was stopped, the pH was adjusted by hydrochloric acid, and the enzyme protein was centrifuged, and concentrated under reduced pressure to remove water. The residue was filtered through a solid of acetone, and the cake was recrystallized from ethanol and water to give a white solid product.
  • the buffer is a Tns-HCi buffer
  • the co-solvent is a combination of one or more selected from the group consisting of methanol, ethanol and dimethyl sulfoxide.
  • the temperature of the reaction in step (2) is from 20 to '40 Torr.
  • the mass of the nitrile hydratase is from i% to 10% of the mass of the compound 3d.
  • step (3) in the reactor, the compound 14, triethylamine, dichloromethane is added, and the mixture is cooled to 0t: ⁇ 2 ⁇ in an ice bath, and the mixture is added dropwise to the mixture under stirring.
  • the acid chloride is kept at a temperature of 0 ° C to 2 O.
  • the reaction is stirred at 20 to 25 ° C for 6 to 8 hours.
  • the reaction course is followed by HPLC.
  • the reaction is quenched with water and stirring is continued for 30 to 40. After a minute, the layers were separated, washed, dried, concentrated under reduced pressure to give solvent, and the residue was recrystallized from ethanol to give Compound 16.
  • step (4) adding a compound 16 and anhydrous methanol and a ruthenium-containing catalyst Ru/C in a closed vessel, and replacing the air in the vessel with hydrogen, then introducing hydrogen gas to raise the temperature to 90-95°. C, the reaction was stirred for 16 hours, and the reaction was completed, and the catalyst was recovered by filtration. The reaction solution was concentrated under reduced pressure, and the residue was crystallized from ethanol and n-hexane to give a pale yellow solid (yield of compound 17).
  • the organic solvent and the alkali solution are added to the reactor, stirred uniformly, and the chloroacetyl chloride is added dropwise to the reaction mixture, and after the addition is completed, the mixture is stirred at room temperature.
  • the reaction is carried out for 3 to 4 hours, and the reaction is completely detected by HPLC, and the next reaction is directly carried out;
  • benzyl triethylammonium chloride is added to the reaction mixture of the step (5), and the mixture is heated to 75 ° C. After the reaction was carried out at 85 ° C for 2 hours, the reaction was completed by HPLC, and the insoluble material was removed by filtration. The solvent layer was washed successively. After drying, the solvent was evaporated under reduced pressure to give a crude material.
  • step (7) is divided into the following two-
  • Nitrile hydratase (EC4.2, 1.84) is a kind of enzyme that can catalyze the conversion of nitriles to the corresponding amides. It can catalyze the hydrolysis of various nitrile compounds to form amides.
  • the nitrile hydratase catalyzed reaction has High selectivity, high efficiency, mild conditions, low environmental pollution, high yield, low by-products, low cost, high optical purity of the product, etc., in line with the direction of atomic economy and green chemistry, with unparalleled advantages in chemical methods.
  • the method is to use the highly stereo, site, and regioselectivity of nitrile hydratase to catalyze the chemical synthesis of an enantiomer in an oxime race or derivative for dynamic kinetic resolution to produce optically pure chirality.
  • L-B is a quinoline intermediate type compound 14. The process of these methods is very mature, easy to obtain raw materials, and low in cost.
  • This patent adopts the core technology of bio-enzyme catalysis, and develops a green, environmentally-friendly, high-yield chiral synthesis of L-praziquantel.
  • L-praziquantel For further preclinical and clinical drug-induced evaluation, large-scale industrial production of L-praoquine Ketones have paved the way to the international market.
  • Example 1 The following route was used to synthesize tetrahydroisoquinoline carbonitrile.
  • Example i- 1 In a closed vessel, add compound 3c (78, lg, 0.5 mol), ethanol (0.77 L) and 10% catalyst PdZC (6 g). After ffi hydrogen replaces the air in the vessel, continue to pass hydrogen. (1 Pa), the temperature was raised to the stirring reaction for 8 hours, and the reaction was confirmed to be complete. The catalyst was recovered by filtration, and the reaction mixture was concentrated under reduced pressure to give 74.82 g of a solid compound, which was compound 3d (tetrahydroisoquinolinecarbonitrile), purity 97, 6%, yield 94.6%;
  • Example: -3 Compound 3c (78. Ig, 0.5 mol) was added to 100 mL of ethanol, sodium borohydride (9 g, O.Smol) was added in batches, and the reaction was stirred at 30-40 ° C for 16 hours. clarify. The reaction was completely stopped by HPLC, and the organic solvent was evaporated under reduced pressure. The residue was dissolved in dichloromethane, washed with saturated brine, and evaporated. The purity is 94.2%.
  • Example 2-2 Compound 3d (39.55 mg, 25 mmol) and Tris-HCl 1 buffer (10 mL, O.lmM, pH 9.5, containing 1 mM DTT), cosolvent ethanol (0.1 mL), and stirring were added to the reactor. Uniformly, the reaction system was added with nitrile hydratase (10 mg, Rhodococcus erytliropolis TA37, from ATCC strain cell) at a temperature of 37 ° C to initiate the reaction, and the reaction system was stirred at 37 ° C. The reaction was monitored by HPLC. process. The reaction was stopped when the conversion rate was greater than 99%, the pH was adjusted with hydrochloric acid, and the enzyme protein was centrifuged.
  • Tris-HCl 1 buffer 10 mL, O.lmM, pH 9.5, containing 1 mM DTT), cosolvent ethanol (0.1 mL)
  • nitrile hydratase 10 mg, Rhodococcus erytli
  • Example 2-3 Compound 3d (39.55 mg, 25 mmol) and Tris-HCl buffer (10 mL, O.lmM, pH 9.5, containing 1 mM DTT), i3 ⁇ 4 solvent DMSO (0.1 mL) were added to the reactor, and stirred. Uniform, the reaction system is added with nitrile hydratase (H) mg, Rhodococcus erythropolis TA37, Rhodococcus erytliropolis TA37, from ATCC strain library at a temperature of 18 ° C. The mixture was stirred at a temperature of 18 ° C, and the progress of the reaction was monitored by HPLC.
  • Tris-HCl buffer 10 mL, O.lmM, pH 9.5, containing 1 mM DTT
  • i3 ⁇ 4 solvent DMSO 0.1 mL
  • the reaction was stopped when the conversion rate was greater than 99%, the pH was adjusted by hydrochloric acid, and the enzyme protein was centrifuged. The mixture was concentrated under reduced pressure to dryness, and the residue was filtered and evaporated to ethyl ether. The crystals were recrystallized from ethanol and water to give the product as a white solid, 37, 7 mg, Compound 14. The yield was 85, 6% and the ee value was 99.
  • thermophilic Bacillus smithii strain SC-J05-1 purchased from the ATCC strain library of the United States, started the reaction, and the reaction system was stirred at a temperature of 25 ° C. The reaction course was monitored by HPLC. The reaction was stopped when the conversion rate was greater than 99% for 28 hours, the pH was adjusted with hydrochloric acid and the enzyme protein was centrifuged. The mixture was concentrated under reduced pressure to remove water, and the residue was filtered and evaporated to ethylamine. .
  • Example 2-5 Compound 3d (39.55 mg, 25 mmol) and Tris-HCi buffer (10 mL, O.lmM, pH 9.5, containing 1 mM DTT), cosolvent ethanol (0.1 mL), and stirring were added to the reactor. Uniform, the reaction system was added nitrile hydratase (10 mg, thermophilic Baciilus smithii strain SC-J05-1, purchased from ATCC strain cell) at a temperature of 37 ⁇ to initiate the reaction, the reaction system Stirring was carried out at a temperature of 37 ° C, and the progress of the reaction was monitored by HPLC.
  • Tris-HCi buffer 10 mL, O.lmM, pH 9.5, containing 1 mM DTT
  • cosolvent ethanol 0.1 mL
  • Example 2-6 Compound 3d (39.55 mg, 25 mmol) and Tris-HCl buffer (10 mL, O.lmM, H 8, 5, containing 1 mM DTT), cosolvent DMSO (0.1 mL), were added to the reactor. Stir well, the reaction system was added with nitrile hydratase (10 mg, thermophilic I3acillus smithii strain SC-J05-1, purchased from ATCC strain cell) at a temperature of 45 ⁇ to initiate the reaction. The system was stirred at 45 ° C and the progress of the reaction was monitored by HPLC.
  • Tris-HCl buffer 10 mL, O.lmM, H 8, 5, containing 1 mM DTT
  • cosolvent DMSO 0.1 mL
  • the reaction was stopped when the reaction was carried out for 16 hours at a conversion rate of more than 99%, and the pH was adjusted with hydrochloric acid and centrifuged to remove the enzyme protein. The mixture was concentrated under reduced pressure to dryness, and the residue was evaporated to ethyl ether. The crystals were crystallised from ethanol and water to give a white solid product 40.79 nig, Compound 14. Yield: 92.6%, ee value 89,1%.
  • Example 2-7 To the reactor was added compound 3d (158 mg, 100 mmol) and Tris-HCl buffer (10 mL, O.lmM, HIO, containing 1 mM DTT), cosolvent methanol (0.2 mL), stirred evenly, reaction system
  • the nitrile hydratase (lOnig, thermophilic pseudo-Nocard's JCM 3095, Pseudonocardia thermophila JCM 3095, purchased from the ATCC strain library) was started at a temperature of 25 C. The reaction was started, and the reaction was stirred at a temperature of 25 Torr. The reaction was monitored by HPLC. process.
  • Example 2-8 Compound 3d (39.55 mg, 25 mmol) and Tris-HCl buffer (10 mL, O.lmM, pH 9.5, containing IraM DTT), cosolvent ethanol (0.1 mL), and stirring were added to the reactor.
  • the reaction system was added with nitrile hydratase (10 mg, Pseudonocardia thermophila JCM 3095, Pseudonocardia thermophila JCM 3095, purchased from ATCC strain cell) at a temperature of 37 Torr.
  • the reaction system was at a temperature of 37 ⁇ .
  • the stirring was carried out, and the progress of the reaction was monitored by HPLC.
  • Example 2-9 To the reactor was added compound 3d (39.55 mg, 25 mmol) and Tris-HCi buffer (10 mL, O.lmM, pH 8.5, containing 1 mM DTT), cosolvent DMSO (O.imL), stirred. Evenly, the reaction system was added with nitrile hydratase (10 mg, Pseudonocardia thermophila JCM 3095, Pseudonocardia thermophila JCM 3095, purchased from ATCC strain cell) at a temperature of 45 Torr, and the reaction was stirred at a temperature of 45 Torr. The progress of the reaction was monitored by HPLC. The reaction was carried out at a rate of more than 99%.
  • the nuclear magnetic data of Compound 19 are as follows: - NR (CDC1 3 , 400 ⁇ , ⁇ ppm): 2.49-2.53 (m, IH, (::3 ⁇ 4) ⁇ , 2,74-2,70 (m, IH, CH 2 ) , 2.88-2.78 (m, 2H, CH 2 ), 3.26 (d, IH, CH 2 ), 4.21 (d, IH, C3 ⁇ 4), 437 (dd, 1H, CH 2 ), 4.82-4.76 (m, IH, C3 ⁇ 4), 4.97 (dd, IH, CH), 7.12 (d, 2H, Ar-H), 7.26-7.19 (m, 3H, Ar-H), 732 (d, 2H, Ar-H), 7,68 (d, 2H'Ar-H) MS (ESI, +ve): m/z: 307,1 [M10H] + .
  • Example 5-2 Compound 17 (2.7 g, 0 mm oi), ethyl acetate (30 mL) and potassium t-butoxide (2.58 g, 23 mm oi) were added to the reactor, stirred well, and chlorine chloride was added dropwise to the reaction mixture.
  • the acid chloride U.4g, 12mmoi) was stirred at room temperature for 3 hours after completion of the dropwise addition, and the reaction was confirmed by HPLC.
  • benzyltriethylammonium chloride 22,7 m g, 0, 1 mm 01 ), and the mixture was heated to reflux for 4 - 5 hours, and the reaction was confirmed by HPLC.
  • the nuclear magnetic data of the compound 19 are as follows: 1 H NMR (CDC1 3 , 400 ⁇ , ⁇ ppm): 2.49-2.53 (m, IH, CH 2 ), 2,742, 70 (m, IH, CH 2 ), 2.88-2.78 (m, 2H, CH 2 ), 3.26 (d, IH, CH 2 ), 4.21 (d, IH, CH 2 ), 4.37 (dd, IH, CH 2 ), 4.82-4.76 (m, IH, CH 2 ), 4, 97 (dd, IH, CH), 7.12 (d, 2H, Ar-II), 7.26-7.19 (m, 3H, Ar- H), 7.32 (d, 2H' Ar-li), 7,68 (d, 2H, Ar- H).
  • the insoluble material was removed by filtration, and the dichloroethane layer was washed with water and brine, and dried over anhydrous magnesium sulfate.
  • the ketone solid was 4.9 g, that is, the compound 19, the yield was 80%, the melting point was 128-130 ° C, and the ee value was more than 99%.
  • the nuclear magnetic data of Compound 19 are as follows: 1 H NMR (CDC1 3 , 400 MHz, ⁇ ppm) j 2.49-2.53 (m, IH, CH 2 ), 2.74-2.70 (m, IH, C3 ⁇ 4), 2, 88-2,78 (m, 2H, C3 ⁇ 4), 3.26 (d, iH, CH 2 ), 4, 21 (d, IH, CH 2 ), 4.37 (dd, IH, CH 2 ), 4,82-4,76 (m, IH, CH 2 ), 4.97 (dd, IH, CH), 7.12 (d, 2H' Ar-H), 7.26-7.19 (m, 3H, Ar-H), 7.32 (d, 2H, Ar-H), 7.68 (d, 2H, Ar-H), 'MS (ESI, +ve): m/z: 307.] [; M KH] + .
  • the yellow solid is the intermediate praziquantel, yield 93%, melting point 122-123 ° C, 99,4% intermediate R-(-)-quinoline nuclear magnetic data; -i NM:R_(CDCi 3 , 400 ⁇ , ⁇ pprn): 1.76 (bs, IH), 2.64-3.02 (m, 4H), 3,49 (d, J::: 17.6, IH), 3.61 (d, IH), 3,67 (ddd, IH), 4.69—4.85 (m, 2 H), 7.04-7, 20 (ra, 4H),

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种合成左旋吡喹酮的方法,包括使用腈水合酶来催化化学合成的外消旋体或某一对映体进行动态动力学拆分以生产光学纯手性左旋吡喹酮的中间体,并进一步通过常规有机化学反应得到左旋吡喹酮。该方法原料易得、成本较低、环保安全性好,且收率高,可以大规模生产左旋吡喹酮。

Description

合成左旋吡喹酮的方法
技术领域
本发明涉及一种左旋吡喹酮((R)- praziquante ) 的合成方法。
背景技术
吡喹酮又名环吡喹酮, 为广谱抗寄生虫病药物。 它抗蠕虫谱很广, 对 曰本血吸虫、 埃及血吸虫、 曼氏血吸虫等均有杀灭作用。 此外, 它对并殖 吸虫(肺吸虫)、 华支睾吸虫、 包虫、 囊虫、 孟氏裂头蚴、 姜片虫、 绦虫等 也有杀灭作用。 吡喹園的作用特点是疗效高、 疗程短、 剂量小、 代谢快、 毒性小以及口服方便。 吡喹酮的问世是寄生虫病化疗上的一项重大突破, 现在已成为治疗多种寄生虫病的首选药物。
比喹酮于 1975 年 ώ Seubere等人首先合成, 德国 E- merck 禾 Bayer 两药厂成功开'发出该种药品。 1 980年, E-metc k公司以商品名 Cesol率先 上市, 目前己在世界范围内广泛应用。除用于人体外, 它也广泛用于动物、 家禽等的抗寄生虫治疗。 在传统的吡喹酮生产过程中需要使用一些有毒、 有害的化学物质, 如氰化钾、 环己亚酚氯等, 而且它的工艺路线较长 (参 见下式), 反应条件也比较苛刻。
Figure imgf000002_0001
最近,科研人员从合成吡喹酮中拆分获得左旋吡喹酮和右旋 Π比喹酮光 学异构体。 并通过临床前和初期临床试验发现; 左旋吡喹酮是吡喹酮的有 效杀虫成分, 而右旋吡喹酮是无效甚至有害成分; 相同剂量下, 左旋吡喹 酮临床疗效比吡喹酮更好。尽管世界卫生组织期望用左旋吡喹酮取代吡喹 酮, 但多年来左旋吡喹酮化学合成收率低的 :1:艺难题一直悬而未解。 发明内容
本发明所要解决的技术问题是提供一种环保安全性好、收率高的合成 左旋 喹園的方法。
为解决以上技术问题, 本发明采取如下技术方案-
-种合成左旋吡喹酮的方法, 该方法釆取以下合成路线-
Figure imgf000003_0001
上式中, 腈水合酶包括: 源于拟南芥的腈水合酶, 源于禾本科、 十字 花科或芭蕉科植物的腈水合酶, 源于镰刀菌、 曲霉或青霉的真菌的腈水合 酶, 以及源于鲍曼不动、 丛毛単胞菌、 克雷伯氏、 假单胞菌、 诺卡氏菌和 红球菌的细菌的腈水合酶。
优选地, 腈水合酶为红平红球菌 TA37, 嗜热史氏芽胞杆薪 SC-J05-1 或嗜热假诺卡氏菌 JCM 3095ο
进一步地, 步骤 (2) 中, 使化合物 3d 的外消旋体在 ρΗ7〜11 的缓冲 液和助溶剂中, 在腈水合酶的作用下, 于温度 10~50°C下反应生成所述化 合物 14。
进一步地, 步骤 (2) 的具体实施过程为: 向反应器中加入化合物 3d、 缓冲液、 助溶剂, 搅拌均匀, 使反应体系在温度 10〜50 下加入腈水合酶, 启动反应, 反应体系在温度 10〜50°C下搅拌迸行, HPLC 监测反应进程, 至转化率大于等于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白, 经 减压浓缩去水, 剩余物加入丙酮析出固体过滤, 滤饼经乙醇和水重结晶得 到白色固体产物, 即为化合物 14。
优选地, 缓冲液为 Tns- HCi 缓冲液, 所述助溶剂为选自甲醇、 乙醇 及二甲基亚砜中的一种或多种的组合。
优选地, 步骤 (2) 反应的温度为 20〜'40Ό。
一般地, 歩骤 (2) 中, 腈水合酶的投加质量为所述化合物 3d 的质 量的 i%~10%。
根据本发明的一个具体方面, 步骤 (3) 中: 在反应器中, 加入化合 物 14, 三乙胺, 二氯甲烷, 冰浴冷却至 0t:〜 2Ό , 搅拌下向此混合物中滴 加苯甲酰氯, 保持温度 0°C〜2O, 滴加完毕, 于 20〜25°C下搅摔反应 6〜8 小时, HPLC跟踪反应迸程,反应完全后,用水淬灭反应,并继续搅拌 30〜40 分钟, 分离有 层, 经洗涤, 干燥, 减压浓缩去溶剂, 剩余物用乙醇重结 晶, 即得化合物 16。
在一具体实施例中, 步骤 (4) 中: 在密闭容器中, 加入化合物 16 和无水甲醇及含钌催化剂 Ru/C, 氢气置换容器内空气后, 通入氢气, 升温 至 90~95°C , 搅拌反应 16〜】8 小时, 检测反应完全, 过滤回收催化剂。 反 应液经减压浓缩, 剩余物经乙醇和正己烷按体积比 〗:2〜4组成的混合溶剂 重结晶得到淡黄色固体, 即为化合物 17。
在一特定实施例中, 歩骤 (5) 中: 将化合物 17、 有机溶剂和碱溶 液加入反应器中, 搅拌均匀, 向该反应混合物中滴加氯乙酰氯, 滴加完毕 后, 室温搅摔反应 3〜4小时, HPLC检测反应完全, 直接迸行下一步反应; 歩骤 (6) 中: 向步骤 (5) 的反应混合物中加入苄基三乙基氯化铵, 加热 至 75°C〜85°C , 反应 ]〜 2 小时, HPLC 检测反应完全, 过滤除去不溶物, 有 溶剂层依次经洗涤, 干燥后, 减压去除溶剂得粗品, 将粗品用无水乙 醇重结晶得到化合物 19。
进 ·步地, 歩骤 (7) 分如下二歩进行-
①、 使化合物 19 在 ϋ酸或盐酸作 ]¾下, 反应生成中间体 R+)—吡喹酮 胺;
Figure imgf000005_0001
吡喹丽胺
②、 使中间体 R.- )-吡喹酮胺与环己烷甲酰氯在溶剂中, —三乙胺存在 下以及温度 20〜25 'Ό下反应生成所述左旋吡喹 S。
由于以上技术方案的实施, 本发明与现有技术相比具有如下优点: 本发明通过生物酶催化的合成途径具有很多优点,更适合大规模工业 化生产。 腈水合酶(Nitrile hydratase,EC4.2 , 1 .84)是一类可以催化腈类物质 转化成相应酰胺类物质的酶, 它可催化多种腈化合物水解生成酰胺, 腈水 合酶催化的反应具有高选择性、 高效性、 条件温和、 环境污染小、 产率高、 副产物少、 成本低、 产物光学纯度高等优点, 符合原子经济和绿色化学的 发屐方向, 有着化学方法无可比拟的优越性.该方法是利用腈水合酶的高 度立体、 位点、 区域选择性来催化化学合成的夕卜消旋体或衍生物中的某一 对映体进行动态动力学拆分生产光学纯手性左旋 B比喹酮中间体 型化合 物 14。 这些方法的工艺非常成熟、 原料易得、 成本低。 便于大规模生产左 旋体 ¾喹 S , 产品纯度可达到 98%以上, 提^了质量标准, 为创制优质原 料药和制剂打下基础, 由此进一歩解决了近 30 年来悬而未解的高纯度左 旋吡喹酮分离纯化的工业难题。
本专利采 ^其生物酶催化的核心技术, 开发了绿色环保, 收率高的手 性合成左旋吡喹酮的工艺, 为进一步进行临床前和临床成药性评价, 大规 模产业化生产左旋吡喹酮并进入国际市场铺平了道路。
具体实施方式
下面结合具体实施例对本发明做进一步详细的说明,但本发明并不限 于以下实施倒。
实施例 1 采取如下路线合成四氢异喹啉甲腈
Figure imgf000005_0002
例 i- 1: 在密闭容器中, 加入化合物 3c ( 78,lg, 0.5mol)、 乙醇(0。7L) 和 10%催化剂 PdZC (6 g), ffi氢气置换容器內空气后, 继续通入氢气 ( 1 Pa), 升温至 搅拌反应 8小时, 检测反应完全, 过滤回收催化剂, 反应液经减压浓缩, 得到 74.82g 固体化合物, 即为化合物 3d (四氢异喹 啉甲腈), 纯度 97,6%, 收率 94.6%;
化合物 3d核磁数据: !H NMR(CDC13, 40ί)ΜΗζ, δ ppm): 3.06-3.10 (m, 2H, CH2), 3.43-3.63 (m, 2H, CH2), 4.95 (s, IH, CH ), 7.28-7.54 (m, 4H, ArH), MS (ESI, + ve): m/z: 159.1 [M 十 H] + (, 例 1-2: 在密闭容器中, 加入化合物 3c ( 78, ig, 0.5moi)、 甲醇 ( 0.7L) 和雷尼镍催化剂(12g), 用氢气置换容器内空气后, 继续通入氢气( i MPa), 25-30度搅拌反应 8小时, HPLC检測反应完全停止反应,过滤回收催化剂, 反应液经减压浓缩, 剩余物为 73.95g 固体化合物, 即为化合物 3d, 纯度 94.4%, 收率 93, 5%;可不经进一步纯化直接用于下一步反应。
化合物 3d核磁数据: ^;! N R(CDCI3, 400ΜΗζ, δ ppm): 3.06-3.10 (m, 2H CH2), 3.43-3.63 (m, 2H, CH2), 4.95 (s, IH, CH ), 7,28—7.54 (m, 4H, ArH)。
MS (ESL +ve): m/z: 】59.】 [M 十 H] +。
例 〗-3: 将化合物 3c ( 78. Ig, 0.5mol) 加入到 lOOOmL 乙醇中, 分批 次加入硼氢化钠(】9 g, O.Smol), 30- 40度搅拌反应 16小时, 体系变澄清。 HPLC 检测反应完全停止反应, 减压蒸馏去有机溶剂, 剩余物以二氯甲烷 溶解, 饱和食盐水洗涤, 减压浓缩去溶剂, 得到 76.0g 白色固体化合物, 即为化合物 3d, 收率 96.1%, 纯度 94.2%。
化合物 3d核磁数据: ]H NMR(CDC13, 400ΜΗζ, δ ppm): 3.06-3,10 (m, 2Η, CH2), 3.43-3,63 (m, 2H, CH2), 4,95 (s, IH, CH ), 7.28 7.54 (m, 4H, ArH), MS (ESI, rve): m/z 159.】 [M +H] +。 实施例 2 合成 R-型四氢异喹 甲酰胺 (化合物 14)
路线如下:
Figure imgf000006_0001
2-1: 利用腈水合酶 (红平红球菌 TA37, Rhodococcus erytliropolis TA37, 购自美国 ATCC菌种库) 制备化合物 14
向反应器中加入化合物 3d( 158mg, 1 OOmraol )和 Tris- HCi缓冲液( !OmL, O.lmM, pH8.5, 含〗 mM DTT), 助溶剂甲醇 (0,2m:L), 搅拌均勾, 反应体系 在温度 25TTF加入腈水合酶 ( H)mg, 红平红球菌 TA37, Rhodococcus erythropo!is TA37, 购自美国 ATCC菌种库) 启动反应, 反应体系在温度 25 "C下搅拌进行, HPLC监测反应进程。 反应进行 24小时转化率大于 99%时停 止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去水, 剩余物加入丙 酮析出固体过滤, 滤饼经乙醇和水重结晶得到白色固体产物 i23.5mg, 即化 合物 14, 收率 70。i%, ee值 91.3%。
化合物 14核磁数据: NMR(CDCi3, 400MHz, δ ppm); 2.03 (brs, 1H), 2.63—2.70 (m, 1H), 2.74-2.81(m, 1H), 2.98 (t, J = 5,9 Hz, 2H), 4.34 (s, 1H), 6,97 (brs, 2H), 7.00—7,02 (m, IH), 7.09—7.11 (m, 2H), 7,40— 7,44 (m, 1H)。
MS (ESI, +ve): m/z: 177.1 [M H] +
例 2-2: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris- HC1缓冲 液 ( 10mL, O.lmM, pH9.5, 含 ImM DTT), 助溶剂乙醇 ( O.lmL) , 搅拌均 匀, 反应体系在温度 37°C下加入腈水合酶 ( 10mg, 红平红球菌 TA37, Rhodococcus erytliropolis TA37, 来自美国 ATCC菌种库) 启动反应, 反应体 系在温度 37Ό下搅摔进行, HPLC监测反应进程。 反应进行 0小^转化率大 于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去水, 剩 余物加入丙酮析出固体过滤,滤饼经乙醇和水重结晶得到白色固体产物 39.2 mg, 即化合物 14, 收率 89.1%, ee值 96,5%。
化合物 14核磁数据: Ή NMR(CDC13, 400MHz, δ ppm): 2,03 (brs, IH), 2,63-2,70 (m, IH), 2.74-2.81 (m, IH), 2.98 (t, J - 5.9 Hz, 2H), 4,34 (s, IH), 6.97 (brs, 2H), 7,00— 7,02 (m, 1 H), 7.09-7.11 (m, 2H), 7.40—7.44 (ra, 1H)。
MS (ESI,十 ve): ra/z: 177.1 [M +H]―。
例 2-3: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris-HCl缓冲 液 ( 10mL, O.lmM, pH9.5, 含 ImM DTT), i¾溶剂 DMSO ( O.lmL) , 搅拌 均匀, 反应体系在温度 18'C下加入腈水合酶 ( H)mg, 红平红球菌 TA37, Rhodococcus erytliropolis TA37, 来自美国 ATCC菌种库) 启动反应, 反应体 系在温度 18°C下搅拌迸行, HPLC监测反应进程。 反应迸行 16小^转化率大 于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去水, 剩 余物加入丙酮析出固体过滤,滤饼经乙醇和水重结晶得到白色固体产物 37, 7 mg, 即化合物 14, 收率 85,6%, ee值 99.】%。
化合物 4核磁数据: lll NM (CDCi3, 400ΜΗζ, δ ppm): 2.03 (brs, IH), 2.63—2,70 (m, IH), 2.74— 2.81(m, 1 H), 2.98 (t, J :: 5.9 Hz, 2H), 4.34 (s, IH), 6.97 (brs, 2H), 7.00—7,02 (m, IH), 7.09- 7.11 (m, 2H), 7,40— 7,44 (m, 】H}。
MS (ESI, +ve): ni/z: 177.1 [M +H]十。
倒 2 4: 向反应器中加入化合物 3d ( 158fflg, lOOmmol) 和 Tris- HCi缓冲 液 ( 10mL, 0.1 ηιΜ, HIO, 含 ImM DTT), 助溶剂甲醇 (0.2mL) , 搅拌均 匀, 反应体系在温度 25Ό下加入腈水合酶 ( lOmg, 嗜热史氏芽胞钎菌
SC-J05-1, thermophilic Bacillus smithii strain SC-J05-1, 购自美国 ATCC菌种 库) 启动反应, 反应体系在温度 25Ό Τ搅拌迸行, HPLC监測反应迸程。 反 应进行 28小时转化率大于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去水, 剩余物加入丙園析出固体过滤, 滤饼经乙醇和水重结晶 得到白色圏体产物 46.4 mg, 即化合物 14, 收率 83. ί %, ee值 90,4'½。
化合物 14核磁数据: 1H NMR(CDC13, 400ΜΗζ, δ ppm): 2.03 (brs, IH), 2.63-2.70 (m, 1H), 2.74— 2.81(m, IH), 2.98 (t, j == 5.9 Hz, 2H), 4.34 fs, IH), 6.97 (brs, 2H), 7.00-7.02 (m, IH), 7.09—7.11 (m, 2H), 7.40— 7.44 (m, 】H}。 MS (ESI, +νε): m/z: 177.1 [M +HT。
例 2-5: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris-HCi缓冲 液 ( 10mL, O.lmM, pH9.5, 含 ImM DTT), 助溶剂乙醇 (O.lmL) , 搅拌均 匀, 反应体系在温度 37Ό下加入腈水合酶 ( lOmg, 嗜热史氏芽胞杆菌 SC-J05-1, thermophilic Baciilus smithii strain SC-J05-1, 购自美国 ATCC菌种 库) 启动反应, 反应体系在温度 37°C下搅拌进行, HPLC监溯反应进程。 反 应进行 12小时转化率大于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去水, 剩余物加入丙酮析出固体过滤, 滤饼经乙醇和水重结晶 得到白色固体产物 41.2 mg, 即化合物 14, 收率 93.5%, ee值 96.2%。
化合物 14核磁数据: !H NM (CDCI3, 400MHz, δ ppm): 2.03 (brs, 1H), 2.63—2,70 (m, IH), 2.74— 2.81(m, 1 H), 2.98 (t, J :: 5.9 Hz, 2H), 4.34 (s, IH), 6.97 (brs, 2H), 7.00—7.02 (m, IH), 7.09-7.11 (m, 2H), 7.40—7.44 (m, :iH)。 MS (ESI,十 ve): m/z: 177.1 [M +H]".。
例 2-6: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris-HCl 缓冲液 ( 10mL, O.lmM, H 8,5, 含 ImM DTT), 助溶剂 DMSO ( O.lmL), 搅拌均匀, 反应体系在温度 45Ό下加入腈水合酶 ( 10mg, 嗜热史氏芽胞 杆菌 SC-J05-1 , thermophilic I3acillus smithii strain SC-J05-1 , 购自美国 ATCC菌种库) 启动反应, 反应体系在温度 45Ό下搅拌进行, HPLC监测 反应进程。 反应进行 16 小时转化率大于 99%时停止反应, 盐酸调节 pH 值并离心去酶蛋白。 经减压浓縮去水, 剩余物加入丙 S析出固体过滤, 滤饼经乙醇和水重结晶得到白色固体产物 40.79 nig, 即化合物 14, 收率 92.6%, ee值 89,1%。
化合物 14核磁数据: lH NMR(CDC13, 400ΜΗζ, δ ppm); 2.03 (brs, 1H), 2.63—2.70 (m, 1H), 2.74-2.81(m, 1H), 2.98 (t, J = 5,9 Hz, 2H), 4.34 (s, 1H), 6,97 (brs, 2H), 7.00—7.02 (m, 1H), 7.09—7.11 (m, 2H), 7.40-7.44 (ni, 1H)。
MS (ESI, +ve): m/z: 177.1 [M +H] +
例 2-7: 向反应器中加入化合物 3d ( 158mg, lOOmmol) 和 Tris- HC1缓冲 液 ( lOmL, O.lmM, HIO, 含 ImM DTT), 助溶剂甲醇 (0.2mL) , 搅拌均 匀,反应体系在温度 25 C下加入腈水合酶( lOnig,嗜热假诺卡氏薪 JCM 3095, Pseudonocardia thermophila JCM 3095, 购自美国 ATCC菌种库) 启动反应, 反应体系在温度 25Ό下搅拌进行, HPLC监测反应进程。 反应进行 28小时转 化率大于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去 水, 剩余物加入丙酮析出圏体过滤, 滤饼经乙醇和水重结晶得到白色固体 产物 120.7 mg, 即化合物 14, 收率 68.5%, ee值 81.8%。
化合物 14核磁数据: 1H NMR(CDC13, 400ΜΗζ, δ ppm); 2.03 (brs, 1H), 2,63-2,70 (ni, 1H), 2.74— 2.81(m, 1H), 2.98 (t, J = 5.9 Hz, 2H), 4,34 (s, 1H), 6.97 (brs, 2H), 7,00-7,02 (m, 1H), 7.09-7.11 (m, 2H), 7.40—7.44 (m, iH)。
MS (ESI,十 ve): m/z: 177.1 [M +H]+。
例 2-8: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris-HCl缓冲 液 ( lOmL, O.lmM, pH9.5, 含 IraM DTT), 助溶剂乙醇 (O.lmL) , 搅拌均 勾,反应体系在温度 37Ό下加入腈水合酶 (: 10mg,嗜热假诺卡氏菌 JCM 3095, Pseudonocardia thermophila JCM 3095, 购自美国 ATCC菌种库) 启动反应, 反应体系在温度 37'Ό下搅拌进行, HPLC监测反应进程。 反应进行 10小 ^转 化率大于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去 水, 剩余物加入丙酮析出固体过滤, 滤饼经乙醇和水重结晶得到白色固体 产物 36.64 mg, 即化合物 14, 收率 83 ,2%, ee值 96.4%。
化合物 14核磁数据: 1H N R(CDC13, 400ΜΗζ, δ ppm); 2.03 (brs, 1H), 2,63-2,70 (m, 1H), 2.74-2.81 (m, IH), 2.98 (t, J - 5.9 Hz, 2H), 4,34 (s, IH), 6.97 (brs, 2H), 7.00— 7.02 (m, IH), 7,09— 7,11 (m, 2H), 7.40—7.44 (m, 1H)。
MS (ESI, +ve): m/z: 177.1 [M +H]十。
例 2-9: 向反应器中加入化合物 3d ( 39.55mg, 25mmol) 和 Tris-HCi缓冲 液 ( 10mL, O.lmM, pH8.5, 含 ImM DTT), 助溶剂 DMSO ( O.imL), 搅拌均 匀,反应体系在温度 45Ό下加入腈水合酶( 10mg,嗜热假诺卡氏菌 JCM 3095, Pseudonocardia thermophila JCM 3095, 购自美国 ATCC菌种库) 启动反应, 反应体系在温度 45Ό下搅拌进行, HPLC监测反应进程。 反应进行 16小^转 化率大于 99%^停止反应, 盐酸调节 pH值并离心去酶蛋白。 经减压浓缩去 水, 剩余物加入丙酮析出圏体过滤, 滤饼经乙醇和水重结晶得到白色固体 产物 40, 2 rag, 即式 ( 10) 化合物, 收率 9〗.2%, ee值 99,0%。
化合物 4核磁数据: IH NMR(CDC13, 400 Ηζ, δ ppm): 2.03 (brs, IH), 2.63—2,70 (m, IH), 2.74— 2.81(m, 1 H), 2.98 (t, J :: 5.9 Hz, 2H), 4.34 (s, IH), 6.97 (brs, 2H), 7.00—7,02 (m, IH), 7.09- 7.11 (m, 2H), 7,40— 7,44 (m, 】H}。
MS (ESI, +ve): m/z: 177.1 [M +H]十。
实施例 3 采取如下路线合成化合物 6
Figure imgf000010_0001
在反应器中,加入化合物 14(4.4g, 25mmol, 1 eq.), 乙胺(3.78 g, 5.22 mL, 37.5 mmol, 1,5 eq.)' 二氯甲垸 ( 124 mL), 冰浴冷却至 O 。 搅拌下向 此混合物中滴加苯甲酰氯 ( 3.86 g, 27.47 mmol, 1.1 eq.), 保持温度()'Ό。 滴 加完毕,于 20-25 °C搅拌反应 6- 8小时。 HPLC跟踪反应完全。用水( 16 mL ) 淬灭反应并继续搅拌 30 分钟。 分离有机层并分别用饱和碳酸钠溶液, 0.5NHC1 溶液及食盐水洗涤, 无水硫酸铀干燥, 减压浓缩去溶剂, 剩余物 、(|om 0〖 乙 'ζ) LI 晴
Figure imgf000011_0001
°÷[H+ n] VL9Z :Z/∞ :(3Λ+ 'is 3)
'(HI? '∞)ί0'8-∑;£' '(Η£" '∞) W - 9 £'(ΗΖ'ι")
£Γ -Ϊ6'9 '(HI '{") ςγς-06'P '(Hi '∞) 1Γ1/-68 '(Hi LVi'LYi '(H£ '∞)【0't- 88'3 '(Hi '{")9£ - 89 :(""id g "ZH则 O 'fDaD)¾lAIN:-^ :土 1 凝轡 ¾ i " ¾ 。%66 ·Ι- 1} 33 ' CUn- δ ί ψ ίο/ο 8 '£〖 ί# ^jgj^ g8 暨薛 (£:【
Figure imgf000011_0002
° ^ '^¾¾Γ »稱 ' 8 w ' as6-06 w^
'(^W £) ¾Y1T 粱绿 «S ¾'(sS'0X:)/n :隱雍 解' ¥
(Ί^ΟΟΖ) Μ ώ ± (1。画 OZ '§9'S ) 9ΐ ί ΥΠ ^ φ :
Figure imgf000011_0003
°+[H+ n] r i8z :z/iu :(9Λ+ 'isa) sn
°(ΙΙΡ 6'L-- L'L '(ΒΖ '∞) P9'L~9£'L '(Η£ '∞) \g-L-0p-L '{\\Ζ 'sjq) 80'乙 '(Hi 's) ςβ'ξ '(ίΚ '∞) 20 68'£ ' (He '∞) 60'ε— L6'Z :(radd § 03) Ν ΗΕ:止 凝鞭 9ΐ f
°(33%Γ66 ' /066聽 '%96漏 '§65'9) 9ΐ '暨薛:重:顔 7 fti
L ZU iOZ OAV Immol), 加热至 80°C, 反应 1-2 小时, HPLC检测反应完全。 过滤除去 不溶物, 甲苯层依次用水和饱和食盐水洗涤后, 无水硫酸镁干燥, 减压 去除溶剂得粗品, 将粗品 ^无水乙醇重结晶得到纯品左旋苯甲酰基吡喹 酮固体 2.73g, 即化合物 〗9, 收率 89%, 熔点 128- B()°C, ee值大于 99%。 化合物 19的核磁数据如下: -Ϊ N R(CDC13, 400ΜΗζ, δ ppm): 2.49-2.53 (m, IH, (::¾)·, 2,74-2,70 (m, IH, CH2), 2.88-2.78 (m, 2H, CH2), 3.26 (d, IH, CH2), 4.21 (d, IH, C¾), 437 (dd, 1H, CH2), 4.82-4.76 (m, IH, C¾), 4.97 (dd, IH, CH), 7.12 (d, 2H, Ar-H), 7.26-7.19 (m, 3H, Ar-H), 732 (d, 2H, Ar-H), 7,68 (d, 2H' Ar- H)。 MS (ESI, +ve): m/z: 307,1 [M十 H] +
例 5-2: 将化合物 17 (2.7g, 0mmoi)、 乙酸乙酯 (30 mL) 和叔丁 醇钾(2.58g, 23mmoi)加入反应器中, 搅拌均匀, 向该反应混合物中滴加 氯乙酰氯 U.4g, 12mmoi), 滴加完毕后室温搅拌反应 3 小时, HPLC检 测反应完全。向反应混合物中加入苄基三乙基氯化铵( 22 , 7 m g , 0 , 1 mm 01 ) , 加热至回流反应 4- 5小时, HPLC检测反应完全。 过滤除去不溶物, 乙酸 乙酯层依次用水和饱和食盐水洗涤后, 无水硫酸镁干燥, 减压去除溶剂 得粗品, 将粗品用无水乙醇重结晶得到纯品左旋苯甲酰基 比喹酮固体 2.3 9g, 即化合物 19, 收率 78%, 熔点 128- 130°C , ee值大于 99%。
化合物 19的核磁数据如下:1 H NMR(CDC13, 400ΜΗζ, δ ppm): 2.49-2.53 (m, IH, CH2), 2,742,70 (m, IH, CH2), 2.88-2.78 (m, 2H, CH2), 3.26 (d, IH, CH2), 4.21 (d, IH, CH2), 4.37 (dd, IH, CH2), 4.82-4.76 (m, IH, CH2), 4,97 (dd, IH, CH), 7.12 (d, 2H, Ar-I-I), 7.26-7.19 (m, 3H, Ar- H), 7.32 (d, 2H' Ar-li), 7,68 (d, 2H, Ar- H)。 S (ESI, +ve): m/z: 307,1 [M +H] +
5-3: 将化合物 17 (5.4g, 20mmol)、 二氯乙垸 (50 m:L) 和无水碳酸 钾 (6.5g, 46mmoi) 加入反应器中, 搅拌均匀, 向该反应混合物中滴加氯 乙酰氯(2.8g, 24fflmol),滴加完毕后加热 40 45 °C搅拌反应 5-6小时, HPLC 检测反应完全。 向反应混合物中加入苄基三乙基氯化铵 ( 45,4mg, 0.2mmoi), 加热至回流反应 10- i2 小时, HPLC 检测反应完全。 过滤除去 不溶物, 二氯乙烷层依次 ffl水和饱和食盐水洗涤后, 无水硫酸镁干燥, 减 压去除溶剂得粗品, 将粗品用无水乙醇重结晶得到纯品左旋苯甲酰基吡喹 酮固体 4.9g, 即化合物 19, 收率 80%, 熔点 128- 130°C , ee值大于 99%。 化合物 19的核磁数据如下:1 H NMR(CDC13, 400MHz, δ ppm)j 2.49-2.53 (m, IH, CH2), 2.74-2.70 (m, IH, C¾), 2,88-2,78 (m, 2H, C¾), 3.26 (d, iH, CH2),4,21 (d, IH, CH2), 4.37 (dd, IH, CH2), 4,82-4,76 (m, IH, CH2), 4.97 (dd, IH, CH), 7.12 (d, 2H' Ar-H), 7.26-7.19 (m, 3H, Ar-H), 7.32 (d, 2H, Ar-H), 7.68 (d, 2H, Ar- H),' MS (ESI, +ve): m/z: 307.】 [; M KH] +
实施例 6 合成左旋吡喹酮 (化合物 12)
(a) 合成路线如下:
Figure imgf000013_0001
6-1 中间体 R- (-) -吡喹酮胺 ( R- (-) -PZQA) 的合成
在反应器中, 加入化合物 19 ( 15,32 g, 50 mmol, 1 equiv.), 磷酸 (80 m:L), 于 120Ό下搅拌反应 3小时, HPLC跟踪检测反应完全。 混合物冷却 至 Ο'Ό后倒入碎冰水 ( 300 ml.,) 中, 用水 10%氢氧化钠调节 pH值至 12。 水层用二氯甲烷 (3X50 ml.,) 萃取。 合并有机层, 千燥, 浓縮, 剩余物以 甲苯重结晶得到 8.9g淡黄色固体即为中间体 R-(+吡喹酮胺, 收率 88.1%, 瑢点 122- i23O , 99.1% ee。
中间体 R- (-) 比喹酮胺核磁数据: i:H NMR(CDCi3, 400ΜΗζ, δ ppm): 1.76 (bs, IH), 2.64-3.02 (m, 4H), 3.49 (d, J= 17,6, IH), 3.61 (d, 1H), 3.67 (ddd, IH), 4.69-4.85 (m, 2 H), 7.04—7.20 (ni, 4H).
MS (ESI, +ve): m/z: 203.1 [M +H] +„
6-2 中间体 R-(-)-B比喹酮胺的合成
在反应器中,加入化合物 19(】5,32g,50mmol, 1 equiv, ),乙醇(130m:L), 盐 酸(1M, 600mL), 加热至回流, 搅拌反应 28-30小时, HPLC跟踪检测反应 完全。 混合物冷却至 ()°C, 以乙酸乙酯 (3x50mL) 萃取后, ]¾水 10%氢氧 化钠调节 pH值至 12, 水层用二氯甲垸 (3X50 ml.,) 萃取。 合并有机层并 用食盐水洗涤, 无水硫酸钠干燥, 浓缩, 剩余物以甲苯重结晶得到 9.4 g淡 黄色固体即为中间体 吡喹酮胺, 收率 93%, 熔点 122- 123°C, 99,4% 中间体 R- (-) - 喹園胺核磁数据; -i NM:R_(CDCi3, 400ΜΗζ, δ pprn): 1.76 (bs, IH), 2.64-3.02 (m, 4H), 3,49 (d, J::: 17.6, IH), 3.61 (d, IH), 3,67 (ddd, IH), 4.69—4.85 (m, 2 H), 7.04-7,20 (ra, 4H),
MS (ESL +ve): m/z: 203.】 [M:十 H] +。
例 6-3 左旋吡喹酮的合成
在反应器中, 力 Π入中间体 R- (-) -吡喹酮胺 ( 5.()5g, 25mmo!, 1 eq,), -三 乙胺 ( 3.78 g, 5.22 mL, 37.5 mmoi, i.5 eq.), 二氯甲烷 ( i24 mL), 冰浴冷 却至 0"C。 搅拌下向此混合物中滴加环己烷甲酰氯 (4,05 g, 3,69 mL, 27.47 mmoi, 1.1 eq„), 保持温度 0°C。 滴加完毕, 于 20- 25 °C搅拌反应 i 6小时。 HPLC跟踪反应完全。 用水 ( 16 mL) 淬灭反应并继续搅拌 30分钟。 分离 有 层并分别用饱和碳酸钠溶液, 0.5NHC1溶液及食盐水洗涤, 无水硫酸 钠千燥, 减压浓缩去溶剂, 剩余物用丙酮 /正己烷混合液 (55mL, 1/1, v/v) 重结晶, 得 7.42g无色晶体即为纯品左旋吡喹酮, 收率 95%, 纯度 99,2%, ee 99.2%, 熔点 113-115。C。
左旋吡喹酮核磁数据: 1H NMR(DMSO-d6, 400ΜΗζ, δ ppm): 1.21-1.96 (m, 10H, 5xCH2), 2.45-2.50 (m, 1H,CH), 2.78-3.05 (m, 4H,CH2), 4.10 (d, IH, CH2), 4,48 (d, IH, CH2), 4.79-4.85 (ra, 2H,CH2), 5.20 (d, IH, CH), 7.12-7.30 (ni, 4H, Ar-H).
MS (ESL +ve): m/z: 313.1 [M十 H] +。 上述实施例只为说明本发明的技术构思及特点, 其目的在于让熟悉此 项技术的人士能够了解本发明的内容并据以实施, 并不能以此限制本发明 的保护范围。 根据本发明精神实质所作的等效变化或修饰, 都应涵盖在 本发明的保护范围之内。

Claims

权利要求:
一种合成左旋吡喹酮的方法, 其特征在于: 该方法采取以 Τ合成 路线-
Figure imgf000015_0001
上式中, 所述腈水合酶包括: 源于拟南芥的腈水合酶, 源于禾本科、 十字花科或芭蕉科植物的腈水合酶, 源于镰刀菌、 曲霉或青霉的真菌的 腈水合酶, 以及源于鲍曼不动、 丛毛单胞菌、 克雷 l氏、 假单胞菌、 诺 卡氏菌和红球菌的细菌的腈水合酶。
2、 根据权利要求 : 所述的合成左旋 ¾喹酮的方法, 其特征在于: 所述的腈水合酶为红平红球窗 TA37, 嗜热史氏芽胞杆菌 SC- J05-1 或嗜 热假诺卡氏菌 JCM 3095。
3、 根据权利要求 〗 所述的合成左旋 喹酮的方法, 其特征在于: 步骤 (2) 中, 使化合物 3d的夕卜消旋体在 pH 7〜11 的缓冲液和助溶剂中, 在腈水合酶的作用下, 于温度 10〜50Ό下反应生成化合物 14。
4、 根据权利要求 3 所述的合成左旋 喹酮的方法, 其特征在干: 步骤 (2) 的具体实施过程为: 向反应器中加入化合物 3d、 缓冲液、 助 溶剂, 搅拌均匀, 使反应体系在温度 10〜50t下加入腈水合酶, 启动反 应, 反应体系在温度 i0~50°C下搅拌进行, HPLC 监测反应进程, 至转 化率大于等于 99%时停止反应, 盐酸调节 pH值并离心去酶蛋白, 经减 压浓缩去水, 剩余物加入丙酮析出固体过滤, 滤饼经乙醇和水重结晶得 到白色固体产物, 即为化合物 14。
5、 根据权利要求 3或 4所述的合成左旋 B比喹酮的方法, 其特征在 于- 所述的缓冲液为 Tiris- HCi缓冲液, 所述助溶剂为选自甲醇、 乙醇及 二甲基亚砜中的一种或多种的组合。
6、 根据权利要求 4或 5所述的合成左旋 喹酮的方法, 其特征在 于: 步骤 (2) 反应的温度为 20〜40\:。
7、 根据权利要求 4或 5所述的合成左旋 Π比喹酮的方法, 其特征在 于:步骤(2)中,所述腈水合酶的投加质量为化合物 3d的质量的 1%〜10%。
8、 根据权利要求 i所述的合成左旋吡喹酮的方法, 其特征在于: 步骤 (3) 中: 在反应器中, 加入化合物 14, 三乙胺, 二氯甲烷, 冰浴 冷却至 01:〜 2Ό , 搅拌下向此混合物中滴加苯甲酰氯, 保持温度 0°C〜2 V , 滴加完毕, 于 20〜25Ό下搅拌反应 6~8小时, HPLC跟踪反应进程, 反应完全后, 用水淬灭反应, 并继续搅拌 30〜40分钟, 分离有机层, 经 洗涤, 千燥, 减压浓缩去溶剂, 剩余物用乙醇重结晶, 即得化合物 16。
9、 根据权利要求 〗 所述的合成左旋吡喹酮的方法, 其特征在于- 步骤 (4) 中: 在密闭容器中, 加入化合物 16和无水甲醇及含钌催化剂 u/C, 氢气置换容器内空气后, 通入氢气, 升温至 90〜95°C , 搅拌反应 16-48 小时, 检测反应完全, 过滤回收催化剂。 反应液经减压浓缩, 剩 余物经乙醇和正己烷按体积比 1:2〜4组成的混合溶剂重结晶得到淡黄色 固体, 即为化合物 i7。
10、根据权利要求 1所述的合成左旋吡喹酮的方法, 其特征在于: 步骤 (5) 中: 将化合物 17、 有 溶剂和碱溶液加入反应器中, 搅拌均 勾, 向该反应混合物中滴加氯乙酰氯, 滴加完毕后, 室温搅拌反应 3〜4 小时, HPLC检测反应完全, 直接进行下一歩反应: 步骤 (6) 中: 向步 骤 (5) 的反应混合物中加入苄基:三乙基氯化铵, 加热至 751〜 反 应 1~2 小时, HPLC检测反应完全, 过滤除去不溶物, 有机溶剂层依次 经洗涤, 千燥后, 减压去除溶剂得粗品, 将粗品用无水乙醇重结晶得到 化合物 19。
: 1、根据权利要求 i所述的合成左旋吡喹酮的方法, 其特征在于: 步骤 (7) 分如下二步迸行:
①、 使化合物 19 在磷酸或盐酸作用下, 反应生成中间体 R- ( +吡喹 酮胺;
Figure imgf000017_0001
R+》-吡喹酮胺
②、 使中间体 R )-吡喹酮胺与环己烷甲酰氯在溶剂中, 三乙胺存 在下以及温度 2( 25 V下反应生成所述左旋吡喹酮。
PCT/CN2013/075489 2013-02-28 2013-05-10 合成左旋吡喹酮的方法 WO2014131247A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/072022 WO2013127354A1 (zh) 2012-02-28 2013-02-28 一种合成左旋吡喹酮的方法
CN201310063057.1A CN103160562B (zh) 2013-02-28 2013-02-28 一种合成左旋吡喹酮的方法
CN201310063057.1 2013-02-28
CNPCT/CN2013/072022 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014131247A1 true WO2014131247A1 (zh) 2014-09-04

Family

ID=48584096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075489 WO2014131247A1 (zh) 2013-02-28 2013-05-10 合成左旋吡喹酮的方法

Country Status (2)

Country Link
CN (1) CN103160562B (zh)
WO (1) WO2014131247A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421007B (zh) * 2013-08-27 2016-01-20 绍兴民生医药有限公司 一种左旋吡喹酮的制备方法
WO2015055126A1 (zh) * 2013-10-17 2015-04-23 苏州同力生物医药有限公司 左旋吡喹酮晶型及其制备方法和应用
US9802934B2 (en) 2013-10-17 2017-10-31 Tongli Biomedical Co., Ltd. Process for the synthesis of (R)-praziquantel
CN103539796B (zh) * 2013-10-25 2015-05-20 田雷 一种左旋吡喹酮及其中间体的制备方法
CN105237532B (zh) * 2014-12-05 2017-05-17 苏州同力生物医药有限公司 一种左旋吡喹酮的合成方法及其中间体
CN107151245B (zh) * 2016-03-04 2019-04-05 苏州同力生物医药有限公司 一种左旋吡喹酮的制备方法
TWI650313B (zh) * 2017-09-08 2019-02-11 財團法人國家衛生研究院 雜環化合物及其用途
US10597378B2 (en) 2017-09-08 2020-03-24 National Health Research Institutes Tetrahydroisoquinolines for use as MOR/NOP dual agonists
CN117043161A (zh) * 2021-02-09 2023-11-10 苏州同力生物医药有限公司 用于治疗疾病的方法和药物组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362875A (en) * 1975-02-01 1982-12-07 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for preparing (1-acylaminomethyl)-1,2,3,4-tetrahydroisoquinolines
JPH07303491A (ja) * 1994-03-16 1995-11-21 Asahi Chem Ind Co Ltd 光学活性な酸アミドの製造法
CN102260721A (zh) * 2010-05-31 2011-11-30 尚科生物医药(上海)有限公司 一种用酶法制备(s)-2-氨基丁酰胺的方法
CN102925528A (zh) * 2011-10-26 2013-02-13 苏州同力生物医药有限公司 一种制备左旋吡喹酮的中间体及左旋吡喹酮的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362875A (en) * 1975-02-01 1982-12-07 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for preparing (1-acylaminomethyl)-1,2,3,4-tetrahydroisoquinolines
JPH07303491A (ja) * 1994-03-16 1995-11-21 Asahi Chem Ind Co Ltd 光学活性な酸アミドの製造法
CN102260721A (zh) * 2010-05-31 2011-11-30 尚科生物医药(上海)有限公司 一种用酶法制备(s)-2-氨基丁酰胺的方法
CN102925528A (zh) * 2011-10-26 2013-02-13 苏州同力生物医药有限公司 一种制备左旋吡喹酮的中间体及左旋吡喹酮的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MA, CHEN ET AL.: "Total synthesis of (-)-praziquantel: an anthelmintic drug", JOURNAL OF CHEMICAL RESEARCH., March 2004 (2004-03-01), pages 186 AND 187 *
ROSZKOWSKI, PIOTR ET AL.: "Enantioselective synthesis of (R)-(-)-praziquantel(PZQ).", TETRAHEDRON : ASYMMETRY., vol. 17, 24 May 2006 (2006-05-24), pages 1415 - 1419 *
WANG, JINYUAN ET AL.: "Nitrile Biotransformations for the Efficient Synthesis of Highly Enantiopure 1-Arylaziridine-2-carboxylic Acid Derivatives and Their Stereoselective Ring-Opening Reactions", J. ORG. CHEM., vol. 72, no. 6, 8 February 2007 (2007-02-08), pages 2040 - 2045 *

Also Published As

Publication number Publication date
CN103160562A (zh) 2013-06-19
CN103160562B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2014131247A1 (zh) 合成左旋吡喹酮的方法
WO2013127354A1 (zh) 一种合成左旋吡喹酮的方法
US9175321B2 (en) R-praziquantel preparation method
TW200846307A (en) Preparation of pregabalin and related compounds
WO2015055127A1 (zh) 一种左旋吡喹酮的制备方法
CN112645869B (zh) 一种马来酸氯苯那敏中间体的制备方法
CN114014787B (zh) 一种制备(2s,3r)-对甲砜基苯丝氨酸乙酯的不对称合成方法
JP2018008985A (ja) (5−フルオロ−2−メチル−3−キノリン−2−イルメチル−インドール−1−イル)−酢酸エステルの製造のための方法
CN111171037A (zh) 手性螺3,2’-吡咯烷氧化吲哚骨架化合物、制备方法及用途、中间体及制备方法
CN108675943A (zh) 一种沙库巴曲关键中间体的制备方法
WO2016174685A1 (en) Process for the enantiomeric resolution of apremilast intermediates
WO2016037588A2 (zh) 用于合成抗艾滋病药物增强剂cobicistat的新中间体
JP5403517B2 (ja) 光学活性3−アミノピロリジン塩及びその製造方法並びに3−アミノピロリジンの光学分割方法
WO2013190357A1 (en) A process for the preparation of gabapentin
US7632948B2 (en) Method of preparing enantiomers of indole-2,3-dione-3-oxime derivatives
CN110092726B (zh) 一种Bictegravir中间体的合成方法
CN113045468A (zh) 一种布瓦西坦中间体的制备方法
US7884243B2 (en) Process for the synthesis of eneamide derivatives
CN113372235B (zh) 1-氨基-2-苯基环丙烷羧酸的制备方法
EP2225199A2 (en) Improved process for the preparation of (s)-pregabalin
WO2007035003A1 (ja) 光学活性なピペラジン化合物の製造方法
TW200812939A (en) A process for preparing gabapentin
KR20190069941A (ko) 광학 활성을 가진 2-옥틸글리신 에스터를 제조하는 방법
JP2018529697A (ja) 光学活性を有するチエニルアラニンの製造方法
MX2008008282A (en) Preparation of gamma-amino acids having affinity for the alpha-2-delta protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876122

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13876122

Country of ref document: EP

Kind code of ref document: A1