WO2014129696A1 - 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판 - Google Patents

두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판 Download PDF

Info

Publication number
WO2014129696A1
WO2014129696A1 PCT/KR2013/002361 KR2013002361W WO2014129696A1 WO 2014129696 A1 WO2014129696 A1 WO 2014129696A1 KR 2013002361 W KR2013002361 W KR 2013002361W WO 2014129696 A1 WO2014129696 A1 WO 2014129696A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite powder
heat sink
manufacturing
thickness direction
metal
Prior art date
Application number
PCT/KR2013/002361
Other languages
English (en)
French (fr)
Inventor
김일호
송진헌
이종관
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Publication of WO2014129696A1 publication Critical patent/WO2014129696A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention has a method of manufacturing a heat sink having excellent thermal conductivity in the thickness direction, which can be suitably used as a heat sink for preventing deterioration of LED chips, semiconductor parts, and high-powered electronic devices, and the heat sink manufactured by the method. More specifically, the graphite coated metal powder is arranged in one direction, and then sintered to form a bulk metal-based composite material in which the graphite powder is oriented in a specific direction, and then the bulk composite material is plated. By cutting the graphite powder so as to be arranged in parallel in the thickness direction to produce a plate, it relates to a method for producing a heat sink capable of realizing excellent thermal conductivity in the thickness direction and to a heat sink produced by this method.
  • heat is radiated to the outside of an electric and electronic device by using a heat radiation material made of a metal material such as copper (Cu) and aluminum (Al) having excellent thermal conductivity.
  • a single body using a material such as AlN, SiC, which is a nonmetallic inorganic material, or a composite of two or more materials is used.
  • the example is increasing.
  • these materials are lighter in weight than aluminum (Al) or copper (Cu) and have low thermal expansion coefficients, and thus are suitable for use as substrate materials, but have a low thermal conductivity of 200 W / mk or less.
  • Korean Unexamined Patent Publication No. 2010-0135798 discloses a method for producing a carbon fiber composite material having excellent thermal conductivity in the X, Y direction, that is, in the plane direction by producing a molded article using carbon fiber.
  • This composite material has the low weight and excellent heat transfer characteristics (700W / mK) of carbon fiber and is very advantageous in terms of thermal expansion properties.
  • the thermal conductivity of the composite material in the X and Y directions after actual manufacture is about 450 to 650 W / mK.
  • the thermal conductivity of the thickness direction (that is, Z direction) that is much needed in actual electronic devices is only about 100 to 140 W / mK, which is higher than the expensive processing process.
  • the thermal conductivity of has a disadvantage of falling.
  • the present invention has been made to solve the above-mentioned problems of the prior art, the problem to be solved of the present invention is made of a composite material of metal and graphite particles, the light and the coefficient of thermal expansion is not large, the thermal conductivity of the metal matrix on the structure It is to provide a method for producing a heat sink having excellent graphite particles oriented in the thickness direction of the plate and particularly excellent in the thermal conductivity in the thickness direction.
  • another object of the present invention is to provide a heat sink made of a metal-based composite material prepared by the above-described method and the graphite particles are oriented in the thickness direction.
  • the present invention provides a method for manufacturing a plate material in which graphite powder is complexed to a metal base, comprising the steps of: (a) coating a metal on a plate-like graphite powder; (b) applying vibration to the metal-coated graphite powder so that the plate-shaped graphite powder is oriented in a horizontal direction; (c) pressing and molding the graphite powder oriented in the horizontal direction; (d) sintering the pressurized graphite powder to form a bulk material; And (e) cutting the bulk material to a predetermined thickness in a direction perpendicular to the direction oriented in the horizontal direction to provide a plate material.
  • the method of manufacturing a heat sink having excellent heat conduction characteristics in a thickness direction includes;
  • the plate-like graphite powder may include a plate-like, flake-like or scale-like.
  • the metal may include at least one selected from Cu, Au, Ni, Pd or alloys thereof.
  • the coating of the metal of step (a) may be carried out through electroplating or electroless plating.
  • the vibration may be made through ultrasonic vibration means.
  • the pressurization of the step (c) is carried out through uniaxial pressurization, rolling or extrusion, the pressing force is carried out to 80 ⁇ 110% of the compressive fracture strength of the metal coated on the graphite surface. Can be.
  • the sintering of the step (d) may be performed through spark plasma sintering or high temperature sintering.
  • the cutting of step (e) may be made of a thickness of 0.3 ⁇ 5mm.
  • the average particle size of the graphite powder may be 1 ⁇ 500 ⁇ m.
  • step (e) may be performed through diamond wire cutting, laser cutting, precision punching die cutting.
  • the volume ratio of the graphite powder in the heat sink may be 60% or less, preferably 30 to 60%, more preferably 50 to 55%.
  • the present invention provides a heat dissipation plate manufactured by the above-described methods, the graphite powder is oriented in the thickness direction of the plate.
  • the method according to the present invention by combining a metal having excellent conductivity and graphite powder having excellent conductivity and low weight in an appropriate ratio, it is possible to implement a heat sink having excellent thermal conductivity, light weight and low coefficient of thermal expansion.
  • the graphite powder having excellent thermal conductivity is vertically oriented in the thickness direction of the plate, the heat dissipation characteristic in the thickness direction of the plate is excellent. Therefore, the semiconductor and the high output which are light and have a low coefficient of thermal expansion, in particular, have excellent thermal conductivity in the thickness direction. It can be suitably used as a heat sink of a product such as a set of electrical and electronic products.
  • FIG. 1 is a flowchart illustrating a manufacturing process of a heat sink according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a state in which a plate-shaped graphite powder coated with a metal is loaded into a mold in which an ultrasonic vibrator is installed.
  • FIG. 4 is a view schematically illustrating a state in which a plate-shaped graphite powder coated with a metal is inserted into an inside of a mold in which an ultrasonic vibrator is installed, and then the plate-shaped graphite powder is oriented horizontally by applying vibration.
  • FIG. 5 is a view schematically showing a step of uniaxially pressing and shaping a plate-shaped graphite powder coated with a metal oriented horizontally.
  • FIG. 6 is a view schematically illustrating a sintered body obtained by sintering the formed body manufactured in FIG. 5.
  • FIG. 7 is a view schematically illustrating a process of making a plate by cutting the sintered body of FIG. 6 in a vertical direction of a direction in which the plate-like graphite powder is oriented.
  • FIG. 8 is a scanning electron micrograph of the tissue of the plate obtained through the cutting process of FIG.
  • 9 is a scanning electron micrograph of a plate tissue prepared without performing the ultrasonic vibration process.
  • FIG. 1 is a flowchart illustrating a manufacturing process of a heat sink according to an embodiment of the present invention.
  • the coating step (S10) for coating a metal on the plate-shaped graphite powder, applying a vibration to the metal-coated graphite powder is the plate-shaped graphite powder is horizontal Orientation step (S20) to be oriented in the direction
  • the sintering step (S40) for sintering the molded graphite powder to make a bulk material
  • It comprises a cutting step (S50) of cutting the bulk material to a predetermined thickness in a direction perpendicular to the oriented direction to make a plate.
  • Coating step (S10) of the graphite powder is a step of forming a metal layer on the surface of the graphite powder.
  • the graphite powder is formed in a 'plate', but in the present invention, the 'plate-like graphite powder' is a powder having a perfect plate shape, as well as a powder having a shape similar to a plate shape, such as flakes and scales. It may include.
  • the average particle size of the graphite powder is less than 1 ⁇ m fine powder may be suspended or uneven plating proceeds during the plating process, and if it exceeds 500 ⁇ m the large structure of the graphite powder remains on the plate of the final plate Since it has a bad influence on thickness and strength, it is preferable that it is 1-500 micrometers, and it is more preferable that it is 50-300 micrometers .
  • the metal layer to be formed on the surface of the graphite powder is a metal material having excellent conductivity, and may be made of a metal (pure metal or alloy) having excellent conductivity such as Cu, Au, Ni, Pd, or an alloy thereof.
  • the entire surface of the core particles ie, graphite powder
  • an activation method for the core particles known methods such as heating to a suitable temperature for removing volatiles and adsorption gas, etc. present on the surface of the core particles, using a PdCl 2 solution, adding a organic additive, etc. Various methods can be used.
  • a wet method using a liquid reaction solution and a dry method such as vapor deposition or solid phase deposition may be used as a method of forming a metal layer on the graphite powder.
  • a wet method an electroless plating method, an electroplating method, a hydrogen reduction method of reducing metal ions from a basic solution using hydrogen gas, a chemical precipitation method, and the like may be used.
  • a graphite powder is brought into contact with a metal containing vapor by Various methods may be used, such as a substitution method for coating, a pyrolysis method for decomposing a metal compound vapor through heat to form a coating layer, and a hydrogen reduction method for reducing metal chloride vapor to hydrogen gas.
  • the coating amount of the metal is preferably carried out so that the final composite is light and excellent in thermal conductivity and has no problem in bonding strength with other substrates.
  • the volume ratio of the graphite powder in the metal-coated composite powder is 60%. It is made to be below, Preferably it is 50 to 60%, More preferably, it is set to 50 to 55%.
  • the plate-like graphite powder is oriented in a specific direction by applying vibration to a container in which the metal-coated graphite powder is charged.
  • the container may be a mold for pressurizing and sintering graphite powder coated with a metal layer, or may be a method of sintering after performing orientation and pressure using a separate container.
  • the orientation method applies vibration to the metal-coated graphite powder using vibration means such as an ultrasonic vibrator so that the plate-shaped graphite powder is oriented in a predetermined direction (usually a horizontal direction).
  • vibration means such as an ultrasonic vibrator
  • various vibration generating means may be used according to the capacity of a mold or a container.
  • the forming step (S30) is a step of forming a precursor for subsequent sintering by molding by pressing the metal powder coated graphite powder oriented in a predetermined direction at a predetermined pressure.
  • the pressurization method for molding is preferably uniaxial pressurization in terms of maintaining the oriented structure as it is, but may also use multiaxial pressurization unless a great damage is caused to the state of the oriented graphite powder.
  • the pressurization pressure is less than 80%, the contact ratio of the surfaces of the Cu plating layers which are bonded to each other after extrusion and sintering becomes low, and when it exceeds 110%, graphite may be damaged due to excessive pressure or peeling of the Cu plating layer from the graphite may occur. Therefore, the pressurization pressure is preferably pressurized to a pressure in the range of 80 to 110% of the compressive fracture strength of the metal material coated on the surface of the graphite powder.
  • the molding of the metal-coated graphite powder may also be carried out by a method such as rolling or extrusion.
  • the sintering step (S40) is a step of making a bulk material by sintering the metal coated on the surface of the graphite powder, the sintering may be made through a known method such as energization sintering or high temperature sintering.
  • the sintering temperature is less than 80% of the melting temperature of the coated metal, there is a lack of sintering heat, so that the part cannot be sintered. If the sintering temperature is more than 95%, partial melting may occur due to the influence of the pressing force. It is preferably carried out in the range of 80-95% of the temperature. In addition, the sintering pressure is preferably in the range of 10MPa / mm 2 ⁇ 80MPa / mm 2 so that the relative density of the final sintered compact can be 95% or more.
  • the cutting step (S50) is a step of cutting the plate-like graphite powder oriented in a predetermined direction in a state arranged in parallel in the thickness direction of the plate material to make a plate material.
  • Cutting can be used in various cutting methods such as diamond wire cutting, laser cutting, precision punching die cutting.
  • the bulk material shown in FIG. 7 When the bulk material shown in FIG. 7 is cut to a predetermined thickness in the vertical direction of the direction in which the graphite powder is oriented, the bulk material shown in FIG. 7 has the structure shown in FIG. 7 in which the graphite powder is oriented in parallel in the thickness direction of the cut plate material.
  • graphite powder having an average particle size of 130 ⁇ m was heated at 300 to 400 ° C. for about 30 to 90 minutes using an electric furnace to perform an activation process of the graphite powder.
  • 2 is a scanning electron microscope of the graphite powder used in the embodiment of the present invention.
  • the shape of the graphite powder used in the embodiment of the present invention is made of a scaly shape.
  • the activated graphite powder is then coated with copper using an electroless copper plating solution.
  • the surface activation treatment is first performed by heat treatment at 380 ° C. for 1 hour.
  • 3wt% glacial acetic acid was added to the copper powder to form a copper coating layer on the surface of the heat-treated graphite powder, and the weight ratio of the graphite powder and glacial acetic acid was 20wt%, and a slurry containing 70wt% CuSO 4 and 10wt% water was used.
  • Zn, Fe and Al granules of 0.7 mm in size which have a higher electronegativity than the metal of the copper salt aqueous solution, were added to the slurry thus prepared so as to be about 20 wt% with respect to the slurry.
  • the plating process is performed by stirring at a speed of about 25 rpm.
  • the copper-coated graphite powder was distilled water, H 2 SO 4 , H 3 PO 4 , and tartaric acid in a weight ratio of 75, respectively. Immerse for 20 minutes in a solution mixed with: 10: 10: 5. Finally, after washing with water to remove the acid remaining on the surface of the graphite powder, heat-dried to 50 ⁇ 60 °C in the air to complete the plated powder production.
  • the copper powder coated graphite powder is charged into a mold as shown in FIG. 3.
  • the copper-coated graphite powder is composed of scales, and as the vibration is applied, the copper powder is oriented in a substantially horizontal direction as shown in FIG. 4.
  • a uniaxial pressing force is applied from the top using a punch to produce a molding precursor for sintering.
  • the bulk material thus obtained is cut at intervals of about 0.3 to 5 mm in thickness in a direction perpendicular to the orientation direction of the graphite powder oriented in the horizontal direction, using a diamond wire cutter, to form a plate.
  • FIG. 8 is a photograph of a cross-sectional structure of a composite plate of copper and graphite powder prepared by the above process using a scanning electron microscope.
  • the graphite powder in the heat sink manufactured according to the embodiment of the present invention was produced in a state aligned in the thickness direction.
  • the graphite powder when the graphite powder is aligned in the thickness direction, heat can be quickly discharged from the heat sink in contact with the heat source to the opposite side, and thus, the graphite powder can be suitably used in a heat sink requiring rapid heat dissipation in the thickness direction.
  • the composite plate according to the comparative example was not subjected to only the step of orienting the metal powder coated graphite powder by applying vibration, and the rest was prepared under the same conditions as in the above example.
  • FIG. 9 shows the structure of the plate material thus prepared by scanning electron microscopy. As shown in the figure, it is confirmed that the graphite powder is unevenly distributed in the composite plate material according to the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 두께 방향으로 우수한 열전도 특성을 구비하여, LED칩, 반도체부품, 고출력 전기전자기기들의 열화현상을 방지하기 위한 히트 싱크로 적합하게 사용할 수 있는 특히 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법에 관한 것이다. 본 발명에 따른 방열판의 제조방법은, (a) 판상의 흑연분말에 금속을 코팅하는 단계; (b) 금속이 코팅된 흑연분말에 진동을 가하여, 상기 판상의 흑연분말이 수평 방향으로 배향되도록 하는 단계; (c) 상기 수평 방향으로 배향된 흑연분말을 가압하여 성형하는 단계; (d) 상기 가압된 흑연분말을 소결하여 벌크재를 만드는 단계; 및 (e) 상기 수평 방향으로 배향된 방향에 수직한 방향으로 상기 벌크재를 소정 두께로 절단하여 판재를 만드는 단계;를 포함한다.

Description

두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판
본 발명은 두께 방향으로 우수한 열전도 특성을 구비하여, LED칩, 반도체부품, 고출력 전기전자기기들의 열화현상을 방지하기 위한 히트 싱크로 적합하게 사용할 수 있는 방열판의 제조방법과 이 방법에 의해 제조된 방열판에 관한 것으로, 보다 상세하게는 금속을 코팅한 판상의 흑연분말을 일방향으로 배향되게 배열한 후 소결함으로써 흑연분말이 특정 방향으로 배향된 벌크 타입의 금속기지 복합재료로 만든 후, 벌크 타입 복합재료를 판상의 흑연분말이 두께 방향으로 평행하게 배치되도록 절단하여 판으로 제작함으로써, 두께 방향으로 우수한 열전도도를 구현할 수 있는 방열판을 제조하는 방법과 이 방법에 의해 제조된 방열판에 관한 것이다.
기술 진보의 속도가 갈수록 빨라질 뿐 아니라 소비자의 수요가 점점 모바일화와 소형화를 지향함에 따라, 오늘날 전기기기의 주요 구성부품인 PCB 기판, 메모리, LED 모듈, 전기전자기기 등도 집적화와 고출력화가 급속하게 진행되고 있다.
상기 전기전자기기 등은 전자의 이동을 수반하므로, 집적화와 고출력화가 진행될수록, 전기전자기기로부터 발생하는 열량도 증가하기 때문에, 발생하는 열을 신속하게 전기전자기기 외부로 방출시키지 못할 경우, 열에 의한 부품의 열화가 심해져 제품의 성능과 내구 수명이 급격히 저하되어 제품의 신뢰성을 떨어뜨리게 된다.
이러한 문제를 해결하기 위해서 종래에는 열전도성이 우수한 구리(Cu), 알루미늄(Al)과 같은 금속재료로 만들어진 방열소재를 사용하여 열을 전기전자기기의 외부로 방출하였다.
그런데, 금속만을 방열재료로 사용할 경우, 금속 특유의 특성인 큰 질량과 과도하게 큰 열팽창계수로 인해, 방열소재를 부품에 접합하게 되면, 방열소재와 접합모재와의 열팽창계수의 차이에 의한 열피로 현상에 의해 쉽게 탈락되거나 제품의 특성이 현저하게 저하되는 문제점이 발생하기도 한다.
이에 따라, 최근 들어 무게가 가볍고 부품의 열을 흡수한 후 외부로 용이하게 방출하는 방법으로서, 비금속류 무기재료인 AlN, SiC와 같은 재료를 이용하는 단일체 또는 두 가지 이상의 재료를 혼용한 복합체를 사용하는 예가 늘고 있다.
그러나 이들 재료는 알루미늄(Al)이나 구리(Cu)에 비해 무게가 가볍고, 열팽창계수가 낮아 기판재료로 사용하기에는 적합한 특성을 나타내지만, 열전도도가 200W/mk이하로 낮은 단점이 있다.
질화물 탄화물과 같은 재료의 상기한 문제점을 개선하기 위한 방안으로, 탄소기반(Carbon Fiber, Carbon Nanotube, Graphite 등) 복합재료들이 제안되고 있다.
대한민국 공개특허공보 제2010-0135798호에는 탄소섬유를 이용한 성형체를 제작하여 X, Y 방향, 즉 면 방향으로 우수한 열전도율을 나타내는 탄소섬유 복합재료의 제조방법이 개시되어 있다. 이 복합재료는 탄소섬유가 가진 저중량과 우수한 열전달 특성(700W/mK)을 가져 가벼울 뿐 아니라 열팽창 특성의 측면에서도 매우 유리하다. 그런데, 상기 특허문헌에 개시된 방법의 경우, 3000℃와 같은 높은 온도에서의 열처리가 필요할 뿐 아니라, 실제 제작을 한 후 복합재료의 X, Y방향으로의 열전도 특성은 450~650W/mK 정도로 구리(Cu)나 알루미늄(Al)과 같은 금속재료보다 우수하나, 실제 전자기기에서 많이 필요한 두께 방향(즉, Z 방향)의 열전도 특성은 100~140W/mK 정도에 불과해, 고가의 가공공정에 비해 두께 방향의 열전도 특성은 떨어지는 단점이 있다.
또한, 탄소나노튜브(CNT)를 이용한 방열소재를 제작한 사례도 보고되고 있으나, 탄소나노튜브는 균일하게 분산시키기 어려워 균일한 방열특성을 얻기가 쉽지 않다는 점과 대량 생산이 어렵다는 문제점이 있고, 탄소나노튜브가 갖는 소수 특성으로 인해 금속물질과 쉽게 결합되지 않는 문제점이 있어서, 실 적용에는 한계가 있다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 해결하고자 하는 과제는, 금속과 흑연 입자의 복합재료로 이루어져 있어 가볍고 열팽창계수가 크지 않으며, 조직상 금속 기지에 열전도도가 우수한 흑연 입자가 판재의 두께방향으로 배향되어 있어 특히 두께 방향의 열전도 특성이 우수한, 방열판의 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 과제는, 상기한 방법으로 제조되어 두께 방향으로 흑연 입자가 배향된 금속기지 복합재료로 이루어진 방열판을 제공하는 것이다.
상기 과제를 해결하기 위한 수단으로 본 발명은, 금속기지에 흑연분말이 복합화된 판재의 제조방법으로, (a) 판상의 흑연분말에 금속을 코팅하는 단계; (b) 금속이 코팅된 흑연분말에 진동을 가하여, 상기 판상의 흑연분말이 수평 방향으로 배향되도록 하는 단계; (c) 상기 수평 방향으로 배향된 흑연분말을 가압하여 성형하는 단계; (d) 상기 가압된 흑연분말을 소결하여 벌크재를 만드는 단계; 및 (e) 상기 수평 방향으로 배향된 방향에 수직한 방향으로 상기 벌크재를 소정 두께로 절단하여 판재를 만드는 단계;를 포함하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법을 제공한다.
또한, 본 발명에 따른 방법에 있어서, 상기 판상의 흑연분말은, 판상, 플레이크상(flake) 또는 비늘상을 포함할 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 금속은 Cu, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함할 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 (a) 단계의 금속의 코팅은, 전해도금 또는 무전해도금을 통해 수행될 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 진동은, 초음파 진동수단을 통해 이루어질 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 (c) 단계의 가압은 1축 가압, 압연 또는 압출을 통해 수행되며, 가압력은 흑연 표면에 코팅된 금속의 압축파괴강도의 80~110%로 수행될 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 (d) 단계의 소결은, 통전 소결법(spark plasma sintering) 또는 고온소결법을 통해 수행될 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 (e) 단계의 절단은 0.3~5mm의 두께로 이루어질 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 흑연분말의 평균 입도는 1~500㎛일 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 (e) 단계의 절단은 다이아몬드 와이어 절단, 레이저 절단, 정밀 타발 금형 절단을 통해 수행될 수 있다.
또한, 본 발명에 따른 방법에 있어서, 상기 방열판에서 상기 흑연분말의 부피비는 60% 이하일 수 있고, 바람직하게는 30~60%, 보다 바람직하게는 50~55%일 수 있다.
상기 다른 과제를 달성하기 위한 수단으로 본 발명은 전술한 방법들에 의해 제조되어 판재의 두께 방향으로 흑연분말이 배향된 방열판을 제공한다.
본 발명에 따른 방법에 의하면, 전도성이 우수한 금속과 전도성이 우수하고 저중량인 흑연분말을 적절한 비율로 복합화하여, 우수한 열전도성, 경량화 및 저열팽창계수를 구현된 방열판을 구현할 수 있다.
또한, 금속이 코팅된 흑연분말을 간소한 방법으로 배향하고 가압 소결하는 방법을 사용하기 때문에, 연속적인 생산이 가능하여, 대량 생산에 적합하다.
또한, 열전도 특성이 우수한 흑연분말이 판재의 두께 방향으로 수직 배향되어 있어 판재의 두께 방향으로의 방열 특성이 우수하기 때문에, 가볍고 열팽창계수가 낮으며 특히 두께 방향에서 우수한 열전도 특성이 요구되는 반도체, 고출력 전기전자제품 세트와 같은 제품의 방열판으로 적합하게 사용될 수 있다.
도 1은 본 발명의 실시예에 따른 방열판의 제조과정을 도시한 흐름도이다.
도 2는 본 발명의 실시예에서 사용한 비늘상의 흑연분말의 주사전자현미경 사진이다.
도 3은 초음파 진동자가 설치된 금형의 내부에 금속이 코팅된 판상의 흑연분말을 장입한 상태를 개략적으로 도시한 도면이다.
도 4는 초음파 진동자가 설치된 금형의 내부에 금속이 코팅된 판상의 흑연분말을 장입한 후, 진동을 가하여 판상의 흑연분말이 수평으로 배향되도록 한 상태를 개략적으로 도시한 도면이다.
도 5는 수평으로 배향된 금속이 코팅된 판상의 흑연분말을 일축 가압하여 성형하는 단계를 개략적으로 도시한 도면이다.
도 6은 도 5에서 제조한 성형체를 소결한 소결체를 개략적으로 도시한 도면이다.
도 7은 도 6의 소결체를 판상의 흑연분말이 배향된 방향의 수직방향으로 절단하여 판재를 만드는 과정을 개략적으로 도시한 도면이다.
도 8은 도 7의 절단 과정을 통해 수득한 판재의 조직의 주사전자현미경 사진이다.
도 9는 초음파 진동 과정을 수행하지 않고 제작한 판재 조직의 주사전자현미경 사진이다.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.
도 1은 본 발명의 실시예에 따른 방열판의 제조과정을 도시한 흐름도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 방열판의 제조방법은, 판상의 흑연분말에 금속을 코팅하는 코팅단계(S10), 금속이 코팅된 흑연분말에 진동을 가하여 상기 판상의 흑연분말이 수평 방향으로 배향되도록 하는 배향단계(S20), 상기 수평 방향으로 배향된 흑연분말을 가압하는 성형단계(S30), 성형된 흑연분말을 소결하여 벌크재를 만드는 소결단계(S40), 및 상기 수평 방향으로 배향된 방향에 수직한 방향으로 상기 벌크재를 소정 두께로 절단하여 판재를 만드는 절단단계(S50)를 포함하여 이루어진다.
상기 흑연분말의 코팅단계(S10)는 흑연분말의 표면에 금속층을 형성하는 단계이다.
상기 흑연분말은 '판상'으로 이루어지는 것이 바람직한데, 본 발명에 있어서 '판상의 흑연분말'이란 완전한 판상 형상으로 이루어진 분말은 물론, 판상과 유사한 형상인, 플레이크(flake)상, 비늘상 등의 분말을 포함할 수 있다.
또한, 흑연분말의 평균입도는 1㎛ 미만일 경우 분말이 미세하여 도금시 교반과정에서 부유되거나 불균일한 도금이 진행될 수 있고, 500㎛를 초과할 경우 흑연 분말의 거대 조직이 판상에 그대로 남아 최종 판재의 박판화와 강도에 나쁜 영향을 미치므로, 평균입도가 1 ~ 500㎛인 것이 바람직하고, 50 ~ 300㎛인 것이 보다 바람직하다.
상기 흑연분말의 표면에 형성할 금속층은 전도성이 우수한 금속재료로서, Cu, Au, Ni, Pd 또는 이들의 합금과 같이 전도성이 우수한 금속(순금속 또는 합금)으로 이루어질 수 있다.
상기 금속층을 형성하여 복합분말을 제조함에 있어서, 연속적이고 균질한 금속층을 얻고 또한 금속의 코팅 효율을 높이기 위해서는, 코어입자(즉, 흑연분말)의 표면 전체가 활성화한 상태로 있을 필요가 있으므로, 이를 위해 금속의 코팅에 앞서 흑연분말에 대한 활성화처리를 수행하는 것이 바람직하다.
코어 입자에 대한 활성화처리 방법으로는, 코어 입자 표면에 존재하는 휘발성 물질과 흡착 가스 등을 제거할 목적으로 적당한 온도로 가열하는 방법, PdCl2 용액을 이용하는 방법, 유기첨가제를 첨가하는 방법 등 공지된 다양한 방법이 사용될 수 있다.
상기 금속을 코팅하는 방법으로는, 흑연분말에 금속층을 형성하는 방법으로는 액상의 반응용액을 이용하는 습식법과, 기상 증착이나 고상 증착과 같은 건식법이 사용될 수 있다. 습식법으로는 무전해도금법, 전해도금법, 수소가스를 이용하여 염기성 용액으로부터 금속이온을 환원시키는 수소환원법, 화학침전법 등이 사용될 수 있고, 건식법으로는 금속을 함유한 증기에 흑연분말을 접촉시켜 금속이 코팅되도록 하는 치환법, 금속화합물 증기를 열을 통해 분해시켜 코팅층을 형성하는 열분해법, 금속염화물 증기를 수소가스로 환원하는 수소환원법과 같은 방법과 같이 다양한 방법이 사용될 수 있다.
금속의 코팅량은, 최종적인 복합체의 특성이 가볍고 열전도도가 우수할 뿐 아니라 타 기판과의 접합력에 문제가 없도록 실시하는 것이 바람직한데, 금속이 코팅된 복합분말에 있어서 흑연분말의 부피비는 60% 이하가 되도록 하며, 바람직하게는 50~60%가 되도록 하며, 보다 바람직하게는 50~55%가 되도록 한다.
상기 흑연분말의 배향단계(S20)는, 금속이 코팅된 흑연분말이 장입된 용기에 진동을 가하여 상기 판상의 흑연분말이 특정한 방향으로 배향이 되도록 하는 단계이다.
상기 용기는 금속층이 코팅된 흑연분말을 가압 소결하는 금형일 수도 있고, 별개의 용기를 사용하여 배향 및 가압을 한 후, 소결을 하는 방식을 사용할 수도 있다.
상기 배향 방법은 금속이 코팅된 흑연분말에 초음파 진동자와 같은 진동수단을 사용하여 진동을 가하여, 판상의 흑연분말이 소정 방향(대개는 수평 방향)으로 배향이 되도록 한다. 본 발명의 실시예에서는 초음파 진동자를 사용하고 있으나, 금형 또는 용기의 용량에 맞추어 다양한 진동발생수단이 사용될 수 있다.
상기 성형단계(S30)는, 소정 방향으로 배향된 금속이 코팅된 흑연분말을 소정 압력으로 가압하여 성형함으로써, 후속하는 소결용 전구체를 만드는 단계이다.
성형을 위한 가압방법은 배향 조직을 그대로 유지할 수 있는 측면에서 1축 가압이 바람직하나, 배향된 흑연분말의 상태에 큰 손상을 가하지 않는다면 다축 가압을 사용할 수도 있다. 또한, 가압 압력이 80% 미만일 경우 압출 및 소결 후 상호 접합되는 Cu도금층 표면의 접촉비율이 낮아지고, 110%를 초과할 경우 과도한 압력으로 인해 흑연이 파손되거나 흑연으로부터 Cu 도금층의 박리현상이 나타날 수 있기 때문에, 가압 압력은 흑연분말의 표면에 코팅된 금속소재의 압축 파괴강도의 80~110% 범위 압력으로 가압하는 것이 바람직하다. 또한, 금속이 코팅된 흑연분말의 성형은 압연 또는 압출과 같은 방법을 통해서도 이루어질 수 있다.
상기 소결단계(S40)는, 흑연분말의 표면에 코팅된 금속 간을 소결하여 벌크재를 만드는 단계이며, 소결은 통전소결법이나 고온소결법과 같은 공지의 방법을 통해 이루어질 수 있다.
소결온도는 코팅된 금속 용융온도의 80% 미만일 경우 소결 열량이 부족하여 부분적으로 소결이 되지 않는 부분이 나타나고 95%를 초과할 경우 가압력의 영향 에 의해 부분적인 용융이 발생할 수 있으므로, 코팅된 금속 용융온도의 80~95% 범위로 수행되는 것이 바람직하다. 또한, 소결압력은 최종 소결체의 상대밀도가 95% 이상이 될 수 있도록 10MPa/㎟ ~ 80MPa/㎟의 범위에서 진행하는 것이 바람직하다.
이와 같은 소결 공정을 수행하게 되면, 도 4에 도시된 바와 같이, 금속 기지 조직에 대략 수평 방향으로 배향된 흑연분말이 포함된 복합체가 형성된다.
상기 절단단계(S50)는, 소정 방향으로 배향된 판상의 흑연분말이 판재의 두께 방향으로 평행하게 배열된 상태가 되도록 절단하여 판재로 만드는 단계이다. 절단은 다이아몬드 와이어 절단, 레이저 절단, 정밀 타발금형 절단과 같은 다양한 절단 방법에 사용될 수 있다. 도 7에 도시된 벌크재를 흑연분말이 배향된 방향의 수직방향으로 소정 두께로 절단하게 되면, 절단된 판재의 두께 방향으로 흑연분말이 평행하게 배향된 도 7에 도시된 조직을 갖게 된다.
[실시예]
평균 입도 130㎛인 흑연분말 500g을 전기로를 사용하여, 300~400℃에서 30~90분 정도 가열하여, 흑연분말의 활성화 처리를 수행한다. 도 2는 본 발명의 실시예에서 사용한 흑연분말의 주사전자현미경이다. 도 2에 나타난 바와 같이, 본 발명의 실시예에서 사용한 흑연분말의 형상은 비늘상 형상으로 이루어진 것이다.
이어서, 활성화된 흑연분말을 무전해 구리도금액을 사용하여 구리를 코팅한다. 구체적으로, 먼저 380℃에서 1시간 동안 열처리를 통해 표면활성화 처리를 진행한다. 그리고 열처리한 흑연분말 표면에 구리 코팅층이 잘 형성될 수 있게 3wt% 빙초산을 첨가하여 처리하였으며, 상기 흑연분말과 빙초산의 중량비가 20wt%가 되고, CuSO4 70wt%, 물 10wt%를 포함하는 슬러리를 제조한다. 이와 같이 제조한 제조된 슬러리에 치환 용제로서 구리염 수용액의 금속보다 전기 음성도가 큰 0.7mm 크기의 Zn, Fe, Al 과립물을 상기 슬러리에 대해 약 20wt% 정도가 되도록 첨가한 후, 상온에서 25rpm 정도의 속도로 교반을 진행하여 도금공정을 진행한다.
그리고 무전해 도금이 완료된 구리 코팅 흑연분말이 대기 중에서 부식되는 것을 방지하기 위해 부동태화를 실시하였는데, 이를 위해 구리 코팅 흑연분말을 증류수, H2SO4, H3PO4, 타르타르산이 무게비로 각각 75:10:10:5로 혼합된 용액에서 20분간 침지한다. 마지막으로, 흑연분말 표면에 잔존하는 산을 제거하기 위해 수세한 후 대기 중에서 50~60℃로 가열 건조하여 도금된 분말제조를 완료한다.
이러한 과정을 통해, 구리가 약 50부피% 정도 코팅된 흑연분말을 제조한다.
이와 같이 구리가 코팅된 흑연분말을 도 3에 도시된 바와 같이, 금형에 장입한다.
그리고, 초음파 진동자를 사용하여 금형에 10 분간 진동을 가한다. 이 경우 구리가 코팅된 흑연분말은 비늘상으로 이루어져 있어, 진동을 가함에 따라 도 4에 도시된 바와 같이 대략 수평 방향으로 배향이 이루어진다.
배향이 어느 정도 이루어진 후에는, 도 5에 도시된 바와 같이, 펀치를 사용하여 상부로부터 일축 가압력을 가하여 소결용 성형 전구체를 제작한다.
이와 같이 제작한 성형 전구체를 930℃, 80MPa 소결조건으로 20분간 통전소결장치를 이용하여 소결하게 되면, 도 6에 도시된 바와 같이, 구리 기지에 흑연분말이 대략 수평하게 배향된 조직을 갖는 벌크재를 얻는다.
이와 같이 얻은 벌크재를 다이아몬드 와이어 절단기를 사용하여, 도 7에 도시된 바와 같이, 수평 방향으로 배향된 흑연분말의 배향 방향에 수직한 방향으로 두께 약 0.3 ~ 5mm 간격으로 절단하여 판재를 만든다.
도 8은 상기한 공정을 통해 제조한 구리와 흑연분말의 복합체 판재의 단면 조직을 주사전자현미경으로 관찰한 사진이다. 도 8에 나타난 바와 같이, 본 발명의 실시예에 따라 제조한 방열판에서 흑연분말은 두께 방향으로 정렬된 상태로 제작되었다. 이와 같이 두께 방향으로 흑연분말이 정렬될 경우, 열원에 접한 방열판으로부터 반대편으로 신속하게 열을 배출할 수 있어, 특히 두께 방향으로 신속한 방열이 요구되는 방열판에 적합하게 사용될 수 있다.
[비교예]
비교예에 따른 복합판재는, 진동을 가하여 금속이 코팅된 흑연분말의 배향하는 공정만을 수행하지 않고, 나머지는 상기 실시예와 동일한 조건으로 제조하였다.
도 9는 이와 같이 제조한 판재의 조직을 주사전자현미경으로 조사한 것으로, 도면에 나타난 바와 같이, 비교예에 따른 복합판재의 경우, 흑연분말이 불균일하게 분포되어 있는 것이 확인된다.

Claims (12)

  1. 금속기지에 흑연분말이 복합화된 판재의 제조방법으로,
    (a) 판상의 흑연분말에 금속을 코팅하는 단계;
    (b) 금속이 코팅된 흑연분말에 진동을 가하여, 상기 판상의 흑연분말이 수평 방향으로 배향되도록 하는 단계;
    (c) 상기 수평 방향으로 배향된 흑연분말을 가압하여 성형하는 단계;
    (d) 상기 가압된 흑연분말을 소결하여 벌크재를 만드는 단계; 및
    (e) 상기 수평 방향으로 배향된 방향에 수직한 방향으로 상기 벌크재를 소정 두께로 절단하여 판재를 만드는 단계;를 포함하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  2. 제 1 항에 있어서,
    상기 판상의 흑연분말은, 판상, 플레이크상 또는 비늘상을 포함하는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  3. 제 1 항에 있어서,
    상기 금속은 Cu, Au, Ni, Pd 또는 이들의 합금 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  4. 제 1 항에 있어서,
    상기 (a) 단계의 금속의 코팅은, 전해도금 또는 무전해도금을 통해 수행되는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  5. 제 1 항에 있어서,
    상기 진동은, 초음파 진동수단을 통해 이루어지는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  6. 제 1 항에 있어서,
    상기 (c) 단계의 가압은 1축 가압, 압연 또는 압출을 통해 수행되며, 가압력은 흑연 표면에 코팅된 금속의 압축파괴강도의 80 ~ 110%로 수행되는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  7. 제 1 항에 있어서,
    상기 (d) 단계의 소결은, 통전 소결법(spark plasma sintering) 또는 고온소결법을 통해 수행되는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  8. 제 1 항에 있어서,
    상기 (e) 단계의 절단은 0.3 ~ 5mm의 두께로 이루어지는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  9. 제 1 항에 있어서,
    상기 흑연분말의 평균 입도는 1~ 500㎛인 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  10. 제 1 항에 있어서,
    상기 (e) 단계의 절단은 다이아몬드 와이어 절단, 레이저 절단, 정밀 타발 금형 절단을 통해 수행되는 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  11. 제 1 항에 있어서,
    상기 방열판에서 상기 흑연분말의 부피비는 60% 이하인 것을 특징으로 하는 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법.
  12. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 방법으로 제조된 방열판.
PCT/KR2013/002361 2013-02-21 2013-03-21 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판 WO2014129696A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130018550A KR101473708B1 (ko) 2013-02-21 2013-02-21 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판
KR10-2013-0018550 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129696A1 true WO2014129696A1 (ko) 2014-08-28

Family

ID=51391465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002361 WO2014129696A1 (ko) 2013-02-21 2013-03-21 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판

Country Status (3)

Country Link
KR (1) KR101473708B1 (ko)
TW (1) TWI565795B (ko)
WO (1) WO2014129696A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962803B2 (ja) * 2017-12-11 2021-11-05 Dowaホールディングス株式会社 クラッド材およびその製造方法
KR102229179B1 (ko) * 2018-12-19 2021-03-18 더원씨엔티 주식회사 탄소나노튜브가 코팅된 흑연분말 제조방법 및 탄소나노튜브가 코팅된 흑연분말을 포함한 열전도성 복합재
KR102257877B1 (ko) * 2019-01-15 2021-05-28 주식회사 더굿시스템 방열판재
KR20230122445A (ko) 2022-02-14 2023-08-22 재단법인대구경북과학기술원 두께방향의 열전도도가 향상된 열전도성 시트 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080004518A (ko) * 2005-04-29 2008-01-09 호르트 코팅 센터 에스에이 코팅된 물품 본체 및 그 제조 방법
KR20080088531A (ko) * 2007-03-29 2008-10-02 폴리마테크 컴퍼니 리미티드 열전도성 시트 및 이의 제조방법
KR20100051124A (ko) * 2007-10-18 2010-05-14 시마네켄 높은 열전도성을 갖는 금속-그라파이트 복합재료 및 그 제조방법
JP2012015273A (ja) * 2010-06-30 2012-01-19 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP2012109311A (ja) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd 伝熱シート、伝熱シートの作製方法、及び放熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282265B2 (en) * 2003-05-16 2007-10-16 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
CN101151384B (zh) * 2005-03-29 2011-07-06 日立金属株式会社 高热导性石墨粒子分散型复合体及其制造方法
JP5707810B2 (ja) 2010-09-22 2015-04-30 サンケン電気株式会社 半導体モジュールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080004518A (ko) * 2005-04-29 2008-01-09 호르트 코팅 센터 에스에이 코팅된 물품 본체 및 그 제조 방법
KR20080088531A (ko) * 2007-03-29 2008-10-02 폴리마테크 컴퍼니 리미티드 열전도성 시트 및 이의 제조방법
KR20100051124A (ko) * 2007-10-18 2010-05-14 시마네켄 높은 열전도성을 갖는 금속-그라파이트 복합재료 및 그 제조방법
JP2012015273A (ja) * 2010-06-30 2012-01-19 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP2012109311A (ja) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd 伝熱シート、伝熱シートの作製方法、及び放熱装置

Also Published As

Publication number Publication date
KR101473708B1 (ko) 2014-12-19
KR20140105069A (ko) 2014-09-01
TWI565795B (zh) 2017-01-11
TW201433630A (zh) 2014-09-01

Similar Documents

Publication Publication Date Title
JP6189822B2 (ja) 窒化ホウ素樹脂複合体回路基板
JP2018501633A (ja) 電磁波吸収消滅および遮蔽用ならびに電子機器高放熱用融合シート、および、その製造方法
JP5042829B2 (ja) セラミックシートの製造方法
KR20160042883A (ko) 질화 붕소-수지 복합체 회로 기판, 질화 붕소-수지 복합체 방열판 일체형 회로 기판
JP6262522B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
WO2018047988A1 (ko) 고출력 소자용 방열판재
WO2014129696A1 (ko) 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판
WO2018074493A1 (ja) 黒鉛/グラフェン複合材、集熱体、伝熱体、放熱体および放熱システム
TWI787554B (zh) 附有金屬層之碳質構件,及熱傳導板
KR20140068769A (ko) 전자 부품 장착 기판 및 전자 부품 장착 기판을 제조하는 방법
CN114507510B (zh) 一种泡沫铜-石墨烯-膨胀石墨-石墨复合散热材料及其制备方法
KR20170131930A (ko) 방열 및 전자파 차폐 조성물 및 복합 시트
CN109791918A (zh) 电路装置的散热结构
US11876030B2 (en) Clad material and method for producing same
CN113939167A (zh) 一种厚度方向高导热的石墨膜及其制备方法
JP2022130766A (ja) 成形体及びその製造方法
CN113122189A (zh) 导热复合材料、其制备方法及应用
JP2004160549A (ja) セラミックス−金属複合体およびこれを用いた高熱伝導放熱用基板
JP2016180185A (ja) アルミニウム合金−セラミックス複合体、この複合体の製造方法、及びこの複合体からなる応力緩衝材
WO2017099493A1 (ko) 탄소나노소재가 복합된 메탈 pcb용 방열재의 제조방법
KR102047435B1 (ko) 고열전도 성능을 갖는 금속 매트릭스 복합재 히트 스프레더
WO2015008922A1 (ko) 두께 방향으로 우수한 열전도 특성을 갖는 기판과 이 기판을 구비한 led 소자, 그 기판의 제조방법
JP7259933B2 (ja) 放熱部材
JP2010258458A (ja) セラミックス絶縁基板一体型金属−セラミックス複合体放熱板及びその製造方法
JP6263324B2 (ja) アルミニウム合金−セラミックス複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875616

Country of ref document: EP

Kind code of ref document: A1