WO2014129572A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2014129572A1
WO2014129572A1 PCT/JP2014/054123 JP2014054123W WO2014129572A1 WO 2014129572 A1 WO2014129572 A1 WO 2014129572A1 JP 2014054123 W JP2014054123 W JP 2014054123W WO 2014129572 A1 WO2014129572 A1 WO 2014129572A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
turbulent flow
flow generation
radial direction
width direction
Prior art date
Application number
PCT/JP2014/054123
Other languages
English (en)
French (fr)
Inventor
宏之 松村
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/768,496 priority Critical patent/US10195910B2/en
Priority to EP14754214.6A priority patent/EP2960081B1/en
Priority to CN201480008741.2A priority patent/CN104995043B/zh
Priority to ES14754214.6T priority patent/ES2618303T3/es
Publication of WO2014129572A1 publication Critical patent/WO2014129572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/02Arrangement of grooves or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height

Definitions

  • the present invention relates to a tire having a tread portion that comes in contact with a road surface, a tire side portion that continues to the tread portion, and a bead portion that continues to the tire side portion.
  • the thickness of the rubber in the tire side portion is thicker than that in the tire for a passenger car.
  • a cooling effect on the outer surface of the tire side portion can be obtained.
  • the inside cannot be cooled, and as a result, the effect of suppressing the temperature rise cannot be sufficiently obtained.
  • the thickness of the rubber in the region where the circumferential recess is formed is smaller than the region other than the region where the circumferential recess is formed.
  • the carcass portion provided inside the tire may be deformed at the time of manufacturing the tire.
  • the carcass cord constituting the carcass portion may be uneven in the tire width direction due to the flow of rubber accompanying the formation of the turbulent flow generation projection.
  • the carcass portion is deformed, there is a problem that tire durability is lowered.
  • an object of the present invention is to provide a tire capable of achieving both suppression of temperature rise at the tire side portion and improvement in tire durability.
  • the inventor can enhance the effect of suppressing temperature rise when the tire thickness is within a predetermined range. At the same time, it has been found that the influence on the deformation of the carcass portion can be suppressed at the time of tire manufacture.
  • the feature of the present invention is that a tread portion (tread portion 10) in contact with a road surface, a tire side portion (tire side portion 20) continuous with the tread portion, and a bead portion (bead portion 30) continuous with the tire side portion, And a carcass part (carcass part 40) extending across the tread part, the tire side part, and the bead part, the carcass part passing from the tread part to the tire side part.
  • a carcass body part (carcass body part 41) reaching the bead core of the bead part and a folded part (folded part 42) folded back by the bead core, and the tire side part is recessed inward in the tire width direction, A circumferential recess extending in the direction (circumferential recess 100) is formed, and the circumferential recess has a tire width direction.
  • a turbulent flow generation protrusion (turbulent flow generation protrusion 110) that protrudes toward the side, and the inner side of the carcass main body in the tire width direction inside the tire cross section along the tire width direction and the tire radial direction.
  • the distance between the surface and the rim separation point in contact with the regular rim is defined as the tire reference thickness (tire reference thickness T0), the inner surface on the inner side in the tire width direction of the folded portion, and the tire outer surface of the circumferential recess Is defined as a tire thickness (tire thickness T1), the plurality of turbulent flow generation protrusions are provided in a region where the tire thickness is 20% or more and 60% or less with respect to the tire reference thickness. This is the gist.
  • FIG. 1 is a partially exploded perspective view showing a pneumatic tire 1 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the pneumatic tire 1 according to the first embodiment of the present invention.
  • FIG. 3A is a partially enlarged perspective view of the pneumatic tire 1 according to the first embodiment of the present invention.
  • FIG. 3B is a partially enlarged side view of the pneumatic tire 1 according to the first embodiment of the present invention.
  • FIG. 3C is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is an enlarged view of a circumferential recess portion of the cross-sectional view shown in FIG.
  • Fig.5 (a) is a partial expanded sectional view of the pneumatic tire which concerns on an Example.
  • FIG.5 (b) is a partial expanded sectional view of the pneumatic tire which concerns on a prior art example.
  • FIG. 5C is a partially enlarged cross-sectional view of the pneumatic tire according to the
  • FIG. 1 is a partially exploded perspective view showing a pneumatic tire 1 according to the present embodiment.
  • FIG. 2 is a partial cross-sectional view showing the pneumatic tire 1 according to the present embodiment.
  • FIG. 3 is a partially enlarged sectional view of the pneumatic tire 1 according to the present embodiment.
  • FIG. 4 is an enlarged view of the circumferential recessed portion shown in FIG.
  • the pneumatic tire 1 includes a tread portion 10 that contacts the road surface during traveling, a tire side portion 20 that continues to the tread portion 10, and a bead portion 30 that continues to the tire side portion 20.
  • the pneumatic tire 1 includes a carcass portion 40 that forms a skeleton of the pneumatic tire 1 and a belt layer 50 that is disposed outside the tire radial direction Td of the carcass portion 40 in the tread portion 10.
  • the carcass part 40 includes a carcass cord and a layer made of rubber that covers the carcass cord.
  • the carcass part 40 extends over the tread part 10, the tire side part 20, and the bead part 30.
  • the carcass portion 40 includes a main body portion 41 that extends from the tread portion 10 through the tire side portion 20 to the bead core 45 of the bead portion 30, and a folded portion 42 that is folded back by the bead core 45.
  • an end 42x outside the tire radial direction Td of the turn-up portion 42 is the most in the tire radial direction Td. It is located in the range of 40% or more and 60% or less of the tire height H from the bead end portion 31 located on the inner side toward the outer side in the tire radial direction Td.
  • the tire height H is the tread portion that contacts the road surface from the bead end portion 31 located at the lower end inside the tire radial direction Td in a state where the pneumatic tire 1 is assembled to the rim wheel 60. It is the length in the tire radial direction Td up to 10 tread surfaces.
  • the belt layer 50 is configured by impregnating a steel cord with a rubber component.
  • the belt layer 50 includes a plurality of layers, and each layer is laminated along the tire radial direction Td.
  • the bead portions 30 are disposed along the tire circumferential direction Tc, and are disposed on both sides of the tire width direction Tw via the tire equator line CL. Since the pneumatic tire 1 has a line-symmetric structure with respect to the tire equator line CL, only one side is shown in FIG.
  • the point on the outermost side in the tire radial direction Td where the pneumatic tire 1 contacts the rim flange 61 of the rim wheel 60 is defined as the rim separation point 61a. It prescribes.
  • the state in which the pneumatic tire 1 is assembled to the rim wheel 60 means that the pneumatic tire 1 is assembled to a standard rim (regular rim) defined in the standard with an air pressure corresponding to the maximum load defined in the standard. It means the state. It can be said that the pneumatic tire 1 is assembled to the rim wheel 60 in a no-load state in which normal internal pressure is filled and no load is applied.
  • the standard indicates JATMA YEAR BOOK (2010 edition, Japan Automobile Tire Association standard).
  • the TRA standard, the ETRTO standard, or the like is applied in the place of use or manufacturing, it conforms to each standard.
  • the boundary between the tread portion 10 and the tire side portion 20 is the tread end portion TE
  • the boundary between the tire side portion 20 and the bead portion 30 is the rim separation point 61a.
  • a rim side outer surface 80 is formed in a range up to the end portion 100a inside the direction Td.
  • the rim side outer surface 80 is formed along a predetermined arc curve Rc1 having a center C1 of a curvature radius R1 inside the tread width direction Tw. That is, the rim side outer surface 80 is formed in a curved shape that swells outward in the tread width direction Tw.
  • the center C1 of the radius of curvature R1 is preferably located on a virtual straight line extending in the tread width direction Tw from the position of the tire maximum width portion m.
  • an end portion 100a on the inner side in the tire radial direction Td of the circumferential recess 100 includes a tire outer surface of the circumferential recess 100 and a tire outer surface (rim side outer surface 80) formed in a curved shape in the tire cross section. It can be rephrased as a boundary point.
  • the circumferential recess 100 is formed in a range from the position of the tire maximum width portion m to the rim separation point 61a. In addition, it is preferable to determine suitably the length of the tire radial direction Td of the circumferential recessed part 100, and the depth of the tire width direction Tw according to the magnitude
  • the circumferential recess 100 includes an inner wall surface 101 located on the inner side in the tire radial direction Td of the circumferential recess 100, an outer wall surface 102 positioned on the outer side in the tire radial direction Td of the circumferential recess 100, and the inner wall surface 101 and the outer wall surface. 102 and a bottom surface 103 located between the two.
  • the circumferential recess 100 is divided into three regions in the tire radial direction Td: a region where the inner wall surface 101 is formed, a region where the outer wall surface 102 is formed, and a region where the bottom surface 103 is formed. Can do. *
  • the inner wall surface 101 extending from the inner end portion 100a in the tire radial direction Td of the circumferential recess 100 to the deepest portion of the circumferential recess 100 is along an arc curve Rc2 having a center C2 of a curvature radius R2 outside the tire width direction Tw. Formed. That is, in the circumferential recessed portion 100, the inner end portion 100a to the deepest portion in the tire radial direction Td is formed to be recessed with a curved surface shape.
  • the curvature radius of the bottom surface is larger than the curvature radius of the inner wall surface 101 and larger than the curvature radius of the outer wall surface 102.
  • the boundary between the inner wall surface 101 and the bottom surface and the boundary between the outer wall surface 102 and the bottom surface are places where the curvature of the circular arc curve changes.
  • the air flowing along the tire side portion 20 easily flows smoothly into the circumferential recess 100 along the curved side wall surface 101 due to the rotation of the tire.
  • the air inside the circumferential recess 100 is easily discharged to the outside. That is, it is possible to increase the amount of air circulating inside the circumferential recess 100 and suppress the temperature rise of the rubber.
  • the curvature radius R2 of the circular arc curve formed by the inner wall surface 101 in the cross section along the tire width direction Tw and the tire radial direction Td of the pneumatic tire 1 is 50 mm or more in a no-load state.
  • the radius of curvature R2 of the inner wall surface 101 is less than 50 mm, the distortion of the inner wall surface 101 caused by the collapse of the tire side portion 20 at the time of load is concentrated locally, and the bead portion 30 side of the tire side portion 20 is This is because the crack resistance may be deteriorated.
  • the normal inner pressure is filled, the radius of curvature Ra of the inner wall surface 101 in the no-load state in which there is no load, and the inner wall surface 101 in the normal load state in which the normal inner pressure is filled and the normal load is applied.
  • the curvature radius Rb may satisfy the relationship of (Ra ⁇ Rb) /Ra ⁇ 0.5.
  • the outer wall surface 102 may be formed along an arc curve having a center of curvature radius on the outer side in the tire width direction Tw. That is, in the circumferential recessed part 100, the outer end part 100b in the tire radial direction Td to the deepest part may be formed so as to be recessed by a curved surface shape.
  • a curve Vc1 is defined.
  • the maximum depth D of the circumferential recess 100 with respect to the virtual arc curve Vc1 is in the range of 15 mm to 35 mm.
  • the virtual arc curve Vc1 portion is indicated by a dotted line.
  • the maximum depth D is an interval from the bottom surface of the circumferential recess 100 to the virtual arc curve Vc1, as shown in FIG.
  • the depth of the circumferential recess 100 based on the virtual arc curve Vc1 is defined as a line perpendicular to the tire surface (bottom surface) of the circumferential recess 100 based on the virtual arc curve Vc1. This is the distance from the point where the orthogonal line intersects the outer surface of the tire of the circumferential recess 100 to the point where the orthogonal line intersects the virtual arc curve Vc1.
  • the end portion 100a on the inner side in the tire radial direction Td of the circumferential recess 100 is provided at a position within a predetermined range from the rim separation point 61a toward the outer side in the tire radial direction Td.
  • the end portion 100a in the normal load state in which the pneumatic tire 1 is filled with the normal internal pressure and the normal load is applied is filled with the normal internal pressure, and the tire height in the tire radial direction Td in the no-load state in which there is no load.
  • the height is H, it is located within the range of 0% or more and 25% or less of the tire height H from the rim separation point 61a toward the outside in the tire radial direction Td.
  • the tire height H is such that the tread portion 10 extends from the bead end portion 31 inside the tire radial direction Td when the pneumatic tire 1 is assembled to the rim wheel 60. It is set as the length in the tire radial direction Td to the tread surface.
  • the bead end portion 31 is a lower end located on the innermost side in the tire radial direction Td of the pneumatic tire 1 assembled to the rim wheel 60 in the tire cross section.
  • a plurality of turbulent flow generation projections 110 protruding outward in the tire width direction Tw are formed inside the circumferential recess 100 according to the present embodiment.
  • the shape of the turbulent flow generation projection 110 is a block shape. The detailed configuration of the turbulent flow generation projection 110 will be described later.
  • FIG. 3A shows a partially enlarged perspective view of the circumferential recess 100 according to the present embodiment.
  • FIG. 3B shows a partially enlarged plan view of the circumferential recess 100 according to the first embodiment.
  • FIG. 3C shows an AA cross-sectional view in FIG.
  • a turbulent flow generation projection 110 that protrudes outward in the tire width direction Tw is formed inside the circumferential recess 100.
  • the inside of the circumferential recess 100 is between the end 100a inside the tire radial direction Td of the circumferential recess 100 and the end 100b outside the tire radial direction Td of the circumferential recess 100. Indicates the inside of the area.
  • the plurality of turbulent flow generation projections 110 include a first turbulent flow generation projection 111 and a second turbulent flow arranged with a predetermined pitch from the first turbulent flow generation projection 111 in the tire circumferential direction Tc. Generating protrusion 112. Further, both end portions 111x, 111y in the tire radial direction Td of the first turbulent flow generation projection 111 and both end portions 112x, 112y in the tire radial direction of the second turbulent flow generation projection 111 are positioned in the tire radial direction. They are arranged differently.
  • the air that has not collided with the first turbulent flow generation projection 111 is generated in the second turbulent flow adjacent to the tire circumferential direction Tc. Since it collides with the projection 112, turbulence is more likely to occur.
  • the plurality of turbulent flow generation protrusions 110 are the first turbulent flow generation protrusion 111, the second turbulent flow generation protrusion 112, and the tire diametrical direction Td of the first turbulent flow generation protrusion 111. And a third turbulent flow generation projection 113 arranged at an interval inside.
  • the tire radial direction Td outer end 112x of the second turbulent flow generation projection 112 may be positioned on the outer side in the tire radial direction Td with respect to the tire radial direction Td inner end 111y of the first turbulent flow generation projection 111.
  • the tire radial direction Td outer end 112x of the second turbulent flow generation projection 112 is the tire radial direction Td inner end 111y of the first turbulent flow generation projection 111.
  • the distance L2 may be further away from the tire radial direction Td.
  • the tire radial direction Td inner end portion 112y of the second turbulent flow generation projection 112 is located further inside the tire radial direction Td than the tire radial direction Td outer end portion 113x of the third turbulent flow generation projection 113.
  • the tire radial direction Td inner end 112y of the second turbulent flow generation projection 112 is the tire radial direction Td outer end 113x of the third turbulent flow generation projection 113.
  • the distance L3 may be further away from the inside in the tire radial direction Td.
  • the distance L1 is longer than the distance L2 and longer than the distance L3. Moreover, the distance L2 and the distance L3 are the same length as the width w which is the length of the turbulent flow generation projection in the tire circumferential direction, or longer than the distance.
  • the air flow that has passed between the first turbulent flow generation projection 111 and the third turbulent flow generation projection 113 is used for generating the second turbulent flow adjacent to the tire circumferential direction Tc. Since it collides with the protrusion 112, turbulence is more likely to occur.
  • the first turbulent flow generation projection 111, the second turbulent flow generation projection 112, and the third turbulent flow generation projection 113 are appropriately shown as the turbulent flow generation projection 110.
  • the plurality of turbulent flow generation projections 110 include three types of turbulent flow, ie, a first turbulent flow generation projection 111, a second turbulent flow generation projection 112, and a third turbulent flow generation projection 113.
  • the projection 110 for generating turbulent flow may be one type (for example, the first turbulent flow generating projection 111), two types, or four or more types. Good.
  • the third turbulent flow generation protrusion 113 positioned at the outermost side in the tire radial direction is at least in the circumferential direction. It is located on the inner wall surface 101 in the recess 100.
  • the second turbulent flow generation projection 112 and the first turbulent flow generation projection, which are located on the outer side in the tire radial direction from the third turbulent flow generation projection 113, are located on the bottom surface 103.
  • the plurality of turbulent flow generation protrusions are arranged to be biased inward in the tire radial direction with reference to the center of the circumferential recess 100 in the tire radial direction.
  • the turbulent flow generation projections biased inward in the tire radial direction of the circumferential recess, the air flowing in from the side wall surface 101 without escaping the air flowing in from the side wall surface 101 to the tire outer direction. Can be adhered and peeled between the turbulent flow generation projections.
  • the turbulent flow generation projection By disposing the turbulent flow generation projection so as to be biased toward the inner side in the tire radial direction of the circumferential recess, the turbulent flow generation projection is close to the bead portion, so that a high cooling effect can be exhibited.
  • the distance between the inner surface inside the tire width direction Tw of the carcass main body 41 and the rim separation point 61a in contact with the regular rim is defined as the tire reference thickness T0.
  • the distance between the inner surface of the folded portion 42 in the tire width direction Tw and the outer surface of the circumferential recess 100 is defined as the tire thickness T1.
  • the tire reference thickness T0 is a distance along a direction orthogonal to the inner surface of the carcass main body 41 on the inner side in the tire width direction Tw.
  • the tire thickness T1 is a distance along a direction perpendicular to the inner surface of the folded portion 42 on the inner side in the tire width direction Tw.
  • the plurality of turbulent flow generation projections 110 have a region in which the tire thickness T1 is 20% or more and 60% or less with respect to the tire reference thickness T0. Is provided. That is, the first turbulent flow generation projection 111, the second turbulent flow generation projection 112, and the third turbulent flow generation projection 113 have a tire thickness T1 of 20% or more and 60% or less with respect to the tire reference thickness T0. It is provided in the area.
  • a region 200 having a tire thickness T ⁇ b> 1 of 20% to 60% with respect to the tire reference thickness T ⁇ b> 0 is formed in the circumferential recess 100.
  • the tire thickness T1a at a point 200a on the outer surface of the circumferential recess 100 has a thickness of 20% to 60% with respect to the tire reference thickness T0.
  • the tire thickness T1b at the point 200b on the outer surface of the circumferential recess 100 has a thickness of 20% to 60% with respect to the tire reference thickness T0.
  • the turbulent flow generation projection 110 is provided in a region 200 in which the tire thickness T1 is 20% or more and 60% or less with respect to the tire reference thickness T0.
  • the tire thickness at the joint portion where the turbulent flow generation projection 110 and the circumferential recess 100 are joined is a tire thickness T1 of 20% or more and 60% or less with respect to the tire reference thickness T0.
  • the turbulent flow generation projection 110 is provided between the end portion 200a of the region 200 inside the tire radial direction Td and the end portion 200b of the region 200 outside the tire radial direction Td.
  • each of the plurality of turbulent flow generation projections 110 is formed in a substantially rectangular shape.
  • at least one of the plurality of turbulent flow generation protrusions includes a width direction outer surface located outside the tire width direction Tw, a radial inner side surface located inside the tire radial direction Td of the width direction outer surface, and a width. And a radially outer surface located outside the tire radial direction Td of the laterally outer surface.
  • the shape of the turbulent flow generation projection 110 will be described.
  • first turbulent flow generation projection 111 the second turbulent flow generation projection 112, and the third turbulent flow generation projection 113 are formed in a three-dimensional rectangular shape having substantially the same number of faces, Description will be made by paying attention to the one turbulent flow generation projection 111.
  • the first turbulent flow generation projection 111 includes a width direction outer side surface 111a, a radial direction inner side surface 111b positioned inside the tire radial direction Td of the width direction outer side surface 111a, and a tire radial direction Td outer side of the width direction outer side surface 111a.
  • the radially inner side surface 111b extends from the tire radial direction Td inner end of the widthwise outer surface 111a to the tire outer surface of the circumferential recess 100.
  • the radially outer surface 111c extends from the tire radial direction Td outer end of the widthwise outer surface 111a to the tire outer surface of the circumferential recess 100.
  • the circumferential side surface 111d extends from one end portion in the tire circumferential direction Td of the width direction outer side surface 111a to the tire outer surface of the circumferential recess 100.
  • the circumferential side surface 111e extends from the other end in the tire circumferential direction Td of the width direction outer side surface 111a to the tire outer surface of the circumferential recess 100.
  • the radially inner side surface 111b is parallel to the tire width direction Tw or outside the tire radial direction Td toward the outer side in the tire width direction Tw in the tire cross section. It extends so as to be inclined. Further, the radially outer surface 111c extends in parallel to the tire width direction Tw or inclines inward in the tire radial direction Td toward the outer side in the tire width direction Tw in the tire cross section.
  • the angle ⁇ wb of the radially inner side surface 111b with respect to the tire width direction Tw is in the range of 0 degree or more and less than 90 degrees.
  • the angle ⁇ wb of the radially inner side surface 111b with respect to the straight line WL along the tire width direction Tw is in the range of 0 degree or more and less than 90 degrees.
  • the angle ⁇ ab formed by the width direction outer side surface 111a and the radial direction inner side surface 111b is preferably an obtuse angle.
  • the radially inner side surface 111b and the radially outer side surface 111c are formed to be parallel or inclined with respect to the tire width direction Tw.
  • the radially inner side surface 111 b and the radially outer side surface 111 c are formed so as to be parallel or inclined with respect to the tire width direction Tw that is the mold drawing direction. Therefore, it is possible to prevent the radially inner side surface 111b and the radially outer side surface 111c of the first turbulent flow generation projection 111 from being caught by the mold when the mold is pulled out during tire molding. Thereby, the appearance defect etc. at the time of tire molding can be prevented.
  • angles of the radially inner side surface 111b and the radially outer side surface 111c with respect to the tire width direction Tw are preferably in the range of 0 degree or more and less than 90 degrees.
  • the width w may be the same or different.
  • the width w is preferably 2 mm or more and 10 mm or less.
  • the turbulent flow generation projection 110 may vibrate due to the air flow and is weak in strength.
  • the width w of the turbulent flow generation projection 110 exceeds 10 mm, the amount of heat stored in the turbulent flow generation projection 110 becomes excessive.
  • the heat dissipation characteristics are improved while preventing the disadvantages of providing the turbulent flow generation projection 110 on the tire side portion 20 as much as possible. Can be achieved.
  • the width w of Tc is an average value of the maximum width and the minimum width.
  • the width w of the turbulent flow generation projection 110 is the length of the turbulent flow generation projection in the tire circumferential direction.
  • the length L110 of the turbulent flow generation projection 110 in the tire radial direction Td is preferably 20 mm.
  • the first turbulent flow generation projection 111 and the third turbulent flow generation projection 113 are formed so as to be separated from each other in the tire radial direction Td.
  • the distance L1 in the tire radial direction Td between the first turbulent flow generation projection 111 and the third turbulent flow generation projection 113 is the first turbulent flow generation projection 111 (or the third turbulent flow generation projection 113), It is preferably formed so as to be 15% to 30% with respect to the pitches p1 to p2 in the tire circumferential direction Tc with the second turbulent flow generation projection 112. This is due to the following reason.
  • the pitch p1 in the tire circumferential direction Tc is adjacent to the center in the tire circumferential direction of the first turbulent flow generation projection 111 (or the third turbulent flow generation projection 113). It is the distance along one side of the tire circumferential direction to the center in the tire circumferential direction of the second turbulent flow generation projection 112.
  • the pitch p2 in the tire circumferential direction Tc is the tire circumference of the first turbulent flow generation projection 111 (or the third turbulent flow generation projection 113) from the center of the second turbulent flow generation projection 112 in the tire circumferential direction. It is the distance along one of the tire circumferential directions to the center in the direction.
  • the height h of the turbulent flow generation projection 110 in the tire width direction Tw is 7.5 mm or more and 25 mm or less.
  • the height h of the first turbulent flow generation projection 111, the height h of the second turbulent flow generation projection 112, and the height h of the third turbulent flow generation projection 113 are 7.5 mm or more and 25 mm. It is as follows. This is due to the following reason. This is because when the height h is 7.5 mm or more and 25 mm or less, a predetermined heat dissipation characteristic can be exhibited in a tire used in any speed range in a practical speed range of a construction vehicle tire.
  • the height h of the turbulent flow generation projection 110 is such that the height of the turbulent flow generation projection 110 extends along the vertical direction from the tire outer surface of the circumferential recess 100 where the turbulent flow generation projection 110 is located. Indicates the distance to the farthest point.
  • the speed boundary layer (boundary where the air flow in the circumferential direction is fast and the boundary between the slow regions) is usually formed on the tire surface. It comes to a higher position on the outer side in the tire radial direction than the tire. In order to generate turbulent flow, it is necessary to place a protrusion at the boundary. From this point of view, for that purpose, the height h of the first turbulent flow generation projection 111, the height h of the second turbulent flow generation projection 112, and the height h of the third turbulent flow generation projection 113 are 7.5-25 mm is preferable.
  • the speed boundary layer spreads concentrically toward the outer side in the tire radial direction and / or the outer side in the tire width direction.
  • the height h of the first turbulent flow generation projection 111, the height h of the second turbulent flow generation projection 112, and the height h of the third turbulent flow generation projection 113 are the same height.
  • the height is the maximum height of each turbulent flow generation projection.
  • the height h of the first turbulent flow generation projection 111, the height h of the second turbulent flow generation projection 112, and the height h of the third turbulent flow generation projection 113 are the same. It is possible to suppress the separation between the turbulent flow generation protrusions and inhibit the flow of the adhering air, thereby improving the cooling effect.
  • the pitch P0 in the tire circumferential direction of the first turbulent flow generation projection, the pitch P0 in the tire circumferential direction of the second turbulent flow generation projection, and the pitch P0 in the tire circumferential direction of the third turbulent flow generation projection are constant. It is. In FIG. 3, only the pitch P0 in the tire circumferential direction of the first turbulent flow generation protrusion and the pitch P0 in the tire circumferential direction of the second turbulent flow generation protrusion are shown for the convenience of the drawing. With reference to the position of half the pitch P0 in the tire circumferential direction of the first turbulent flow generation protrusion (P0 / 2 in FIG. 3), the third turbulent flow generation protrusion is biased in the tire circumferential direction. Yes.
  • the pitch P1 between the third turbulent flow generation protrusion and the first turbulent flow generation protrusion located on one side in the tire circumferential direction from the third turbulent flow generation protrusion is the tire circumference of the first turbulent flow generation protrusion. Shorter than half of the pitch P0 in the direction.
  • the pitch P2 between the third turbulent flow generation protrusion and the first turbulent flow generation protrusion located on the other side in the tire circumferential direction from the third turbulent flow generation protrusion is the tire circumference of the first turbulent flow generation protrusion. Shorter than half of the pitch P0 in the direction.
  • the height h of the turbulent flow generation projection 110, the predetermined pitch p2 in the tire circumferential direction Tc of the turbulent flow generation projection 110, and the width w of the turbulent flow generation projection 110 are 1 ⁇ It is formed so as to satisfy the relationship of P2 / h ⁇ 50 and 1 ⁇ (P2-w) / w ⁇ 100. This is due to the following reason.
  • the vertical turbulent state of the air flow can be adjusted by approximately P2 / h. When P2 / h is less than 1, it is difficult to hit the groove bottom between the turbulent flow generation projections 110 as a downward flow.
  • P2 / h is greater than 50, the effect of the turbulent flow generation projection 110 is reduced.
  • all the turbulent flow generation projections 110 are formed so as to satisfy the relationship of 1 ⁇ P2 / h ⁇ 50 and 1 ⁇ (P2-w) / w ⁇ 100. That is, all of the first turbulent flow generation projection 111 to the third turbulent flow generation projection 113 satisfy the relationship of 1 ⁇ P2 / h ⁇ 50 and 1 ⁇ (P2-w) / w ⁇ 100. Preferably it is formed.
  • (P2-w) / w indicates the ratio of the width w of the turbulent flow generation projection 110 to the pitch P2.
  • (P2-w) / w is less than 1.0, the area (circumferential direction) of the outer surface of the tire side portion 20 to improve heat dissipation in a side view when the pneumatic tire 1 is viewed from the tire side portion side. This is not preferable because the area of the outer surface of the recess 100 is smaller than the area of the turbulent flow generation projection 110.
  • the turbulent flow generation projection 110 is made of rubber, and the effect of improving heat dissipation due to an increase in surface area cannot be expected, the minimum value of (P2-w) / w is defined as 1.0.
  • (P2-w) / w is larger than 100, the effect of generating turbulent flow by the turbulent flow generation projection 110 becomes low, which is not preferable.
  • the outer surface of the tire side portion 20 is formed with a circumferential recess 100 that is recessed in the tire width direction Tw and that extends in the tire circumferential direction Tc. Yes.
  • the turbulent flow generation projection 110 is formed along the direction perpendicular to the inner surface of the folded portion 42.
  • the tire thickness T1 between the inner surface and the outer surface of the circumferential recess 100 is provided in an area of 20% to 60% with respect to the tire reference thickness T0.
  • the turbulent flow generation projection 110 when the turbulent flow generation projection 110 is provided in a region where the tire thickness T1 with respect to the tire reference thickness T0 is less than 20%, the turbulent flow generation projection is formed at the time of tire manufacture (vulcanization).
  • the carcass cord constituting the carcass portion 40 may be uneven in the tire width direction due to the accompanying rubber flow.
  • the turbulent flow generation projection 110 is arranged inside the circumferential recess 100, when the boundary between the circumferential recess 100 and the outer surface of the tire in a region other than the circumferential recess 100 is molded, or When the turbulent flow generation projection 110 is formed, the carcass portion may be deformed at a plurality of locations due to the rubber flowing. As described above, when the carcass portion 40 is deformed, it is likely to cause a tire failure such as separation of the carcass portion 40 and rubber due to concentration of distortion, and as a result, tire durability is reduced. .
  • the turbulent flow generation projection 110 is provided in a region where the tire thickness T1 with respect to the tire reference thickness T0 is larger than 60%, the cooling effect on the outer surface of the tire side portion 20 is obtained, As a result, there is a possibility that the effect of suppressing the temperature rise cannot be sufficiently obtained.
  • the turbulent flow generation projection 110 is provided in a region where the tire thickness T1 with respect to the tire reference thickness T0 is 20% or more and 60% or less. It becomes possible to achieve both suppression of temperature rise and improvement of tire durability.
  • the volume of the rubber used for the tire side portion 20 is compared with the case where the circumferential recess 100 is not formed because the circumferential recess 100 is formed. Is reduced. For this reason, it is possible to suppress heat generation due to deformation of the rubber of the tire side portion 20. Furthermore, since the rubber amount for manufacturing the pneumatic tire 1 can be reduced, the manufacturing cost of the pneumatic tire 1 can be suppressed.
  • a part of the turbulent flow generation projection 110 is formed so as to protrude outward in the tire width direction Tw by a predetermined protrusion height from the virtual arc curve Vc1.
  • the air flowing along the outer surface of the tire side portion 20 collides with the protruding portion of the turbulent flow generation projection 110 and easily flows into the circumferential recess 100. That is, it is possible to increase the amount of air that flows into the circumferential recess 100 to suppress the temperature rise of the rubber.
  • the turbulent flow generation projection 110 is disposed in the circumferential recess 100 so as to be spaced from the inner end portion 100a of the circumferential recess 100 in the tire radial direction Td to the outside in the tire radial direction Td.
  • an air flow flows into the circumferential recess 100 from between the inner end 100 a of the directional recess 100 in the tire radial direction Td and the turbulent flow generation projection 110. It becomes easy. That is, it is possible to increase the amount of air that flows into the circumferential recess 100 to suppress the temperature rise of the rubber.
  • Evaluation method A test was performed using a plurality of types of pneumatic tires, and the temperature rise of the tires and tire durability were evaluated.
  • the tire size of each tire was 59 / 80R63. That is, all used heavy duty tires.
  • FIG. 5A shows an enlarged cross-sectional view of the pneumatic tire according to the first embodiment.
  • the pneumatic tire according to Example 1 the pneumatic tire shown in the above-described embodiment was used.
  • the pneumatic tire according to Example 1 used a pneumatic tire having a circumferential recess formed in the tire side portion and a turbulent flow generation projection formed in the circumferential recess.
  • the detailed configuration of Example 1 is as shown in Table 1.
  • the outer surface of the tire side portion of the tire cross section has a shape along the virtual arc curve Vc1.
  • the pneumatic tire according to Comparative Examples 2 to 3 was a pneumatic tire having a circumferential recess formed in the tire side portion.
  • tires having turbulent flow generation projections 110 formed in the circumferential recesses were used.
  • the pneumatic tires according to Comparative Examples 2 to 3 and the pneumatic tire according to Example 1 are different in the region where the turbulent flow generation protrusion is provided.
  • the details of the pneumatic tire according to Comparative Examples 2 to 3 and the pneumatic tire according to Example 1 are as shown in Table 1.
  • ⁇ Temperature evaluation test> For the temperature evaluation test, each tire was assembled on a standard rim (compliant with TRA), and after rolling on a drum testing machine under a normal internal pressure (compliant with TRA) and regular load (compliant with TRA). The temperature of the bead portion was measured. Specifically, after running for 24 hours at a speed of 15 km / h, the temperature of the tire side portion was measured. Here, as shown in FIG.
  • the tire diameter A position Z3 that is 40 mm away from the inside in the direction and a position Z2 that is a midpoint between the position Z1 and the position Z3 are defined.
  • a narrow hole was provided in each of the positions Z1 to Z3, a thermocouple was inserted, and the temperature at a position 5 mm away from the outer surface of the folded portion 42 outward in the tire width direction was measured. In each of the positions Z1 to Z3, the temperature was measured at six locations along the tire circumferential direction.
  • Each measurement result at the positions Z1 to Z3 is an average value of the measurement results at six locations.
  • the measurement results shown in Table 1 represent the difference value of each tire based on the temperature according to the conventional example. This value indicates that the larger the value in the minus ( ⁇ ) direction, the better the effect of suppressing the temperature rise.
  • ⁇ Durability evaluation test> Regarding the durability evaluation test, after the temperature evaluation test described above was performed, the load was increased to 160% of the normal internal pressure (compliant with TRA), and the test was further run for 400 hours. Thereafter, each tire was cut, and the peeled area between the carcass portion and the rubber was measured.
  • the measurement results shown in Table 1 are based on the peel area according to the conventional example as a reference (100), and the value of the peel area of each tire is represented by a percentage (%). In addition, it shows that it is excellent in the effect of durability, so that this value is small.
  • the pneumatic tire according to Example 1 has a small peel area as compared with the pneumatic tire according to the conventional example and the comparative example. That is, it was proved that the pneumatic tire according to Example 1 was excellent in tire durability.
  • the embodiment of the present invention has been described by taking as an example the case where the pneumatic tire 1 is a heavy load tire, other tires such as a passenger tire may be used.
  • the tire may be a pneumatic tire filled with air or nitrogen gas, or a solid tire not filled with air or nitrogen gas.
  • the distance in the tire circumferential direction between the first turbulent flow generation protrusion and the second turbulent flow generation protrusion, and the distance in the tire circumferential direction between the third turbulent flow generation protrusion and the second turbulent flow generation protrusion are: It may be configured to be shorter than the width of the turbulent flow generation projection. Since the distance in the tire circumferential direction of the first turbulent flow generation projection and the second turbulent flow generation projection is equal to or less than the width W of the turbulent flow generation projection 110 in the tire circumferential direction, along the tire side portion The flowing air gets over the first turbulent flow generation protrusion or the second turbulent flow generation protrusion with a high probability. That is, it is possible to further improve the heat dissipation effect of the tire side portion by overcoming the first turbulent flow generation protrusion or the second turbulent flow generation protrusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤ1は、トレッド部とタイヤサイド部とビード部とにわたって延びるカーカス部を有する。カーカス部は、カーカス本体部と、ビードコアで折り返す折返し部とを有する。タイヤサイド部の外側表面には、タイヤ幅方向内側に凹むとともに、タイヤ周方向に延びる周方向凹部が形成されており、周方向凹部には、乱流発生用突起が設けられている。タイヤ断面において、カーカス本体部の内側表面と、正規リムに接するリム離反点との距離をタイヤ基準厚みとして規定するとともに、折返し部の内側表面と、周方向凹部のタイヤ外表面との距離をタイヤ厚みとして規定した場合、複数の乱流発生用突起は、タイヤ厚みがタイヤ基準厚みに対して、20%以上60%以下の領域に設けられている。

Description

タイヤ
 本発明は、路面と接地するトレッド部と、トレッド部に連なるタイヤサイド部と、タイヤサイド部に連なるビード部とを有するタイヤに関する。
 従来、オフザロードラジアル(ORR)タイヤ、トラックバスラジアル(TBR)タイヤなどの重荷重用タイヤにおいては、リムフランジとの摩擦及びリムフランジからの突き上げによって、タイヤサイド部、特にビード部側のゴムが変形しやすい。かかる変形を抑制するため、タイヤサイド部、特にビード部側のゴムの厚みを増加させる手法がとられている。しかし、ゴムの厚みを増加させると、ゴムの変形によって発熱し易くなる。タイヤサイド部における発熱は、ゴムの劣化を促進し、タイヤの耐久性を悪化させてしまうことに繋がるため、タイヤサイド部の温度上昇を抑制するタイヤが望まれている。
 このような問題を解決するため、タイヤサイド部の一部に、タイヤサイド部の外側表面からタイヤ幅方向外側に突出する乱流発生用突起を設けることによって、タイヤサイド部の外側表面に空気の乱流を発生させて、温度上昇を抑制する手法が提案されている(例えば、特許文献1参照)。
 ここで、重荷重用タイヤでは、タイヤサイド部におけるゴムの厚みが乗用車用タイヤに比べて厚いため、乱流発生用突起を設けることによって、タイヤサイド部の外側表面における冷却効果が得られるものの、タイヤ内部までを冷却できず、その結果、温度上昇を抑制する効果が十分に得られない可能性もある。
 そこで、近年では、タイヤサイド部の一部において、タイヤ周方向に沿ってタイヤ幅方向内側に凹む周方向凹部を形成するとともに、当該周方向凹部が形成されている領域に乱流発生用突起を設けて、より効率的に温度上昇を抑制することも検討されている。
国際公開番号WO2009/084634号公報
 しかしながら、周方向凹部が形成されている領域は、周方向凹部が形成されている領域以外の他の領域に比べてゴムの厚みが小さい。このようにゴムの厚みが小さい領域に乱流発生用突起を成形する場合、タイヤ製造時において、タイヤ内部に設けられているカーカス部が変形してしまう場合がある。具体的には、タイヤ製造時(加硫時)において、乱流発生用突起の成形に伴うゴムの流動によって、カーカス部を構成するカーカスコードがタイヤ幅方向に凹凸してしまう場合があった。このように、カーカス部が変形してしまうと、タイヤ耐久性の低下を引き起こすという問題があった。
 すなわち、周方向凹部が形成されている領域に乱流発生用突起を設けることで、温度上昇を効率的に抑制することが可能になるものの、タイヤの耐久性の低下を引き起こし易くなるため、対策が望まれていた。
 そこで、本発明は、タイヤサイド部の温度上昇の抑制と、タイヤ耐久性の向上とを両立することが可能なタイヤを提供することを目的とする。
 発明者は、タイヤサイド部において、温度上昇を抑制と、タイヤ耐久性の向上とを両立させる観点から鋭意研究した結果、タイヤ厚みが所定範囲内であると、温度上昇を抑制する効果が高められるとともに、タイヤ製造時において、カーカス部の変形に与える影響を抑制できるという知見を得た。
 そこで、本発明の特徴は、路面と接するトレッド部(トレッド部10)と、前記トレッド部に連なるタイヤサイド部(タイヤサイド部20)と、前記タイヤサイド部に連なるビード部(ビード部30)とを有するとともに、トレッド部とタイヤサイド部とビード部とにわたって延びるカーカス部(カーカス部40)を有するタイヤ(空気入りタイヤ1)であって、前記カーカス部は、トレッド部からタイヤサイド部をへてビード部のビードコアに至るカーカス本体部(カーカス本体部41)と、前記ビードコアで折り返す折返し部(折り返し部42)とを有し、前記タイヤサイド部には、タイヤ幅方向内側に凹むとともに、タイヤ周方向に延びる周方向凹部(周方向凹部100)が形成されるとともに、前記周方向凹部には、タイヤ幅方向外側に向かって突出する乱流発生用突起(乱流発生用突起110)が設けられており、タイヤ幅方向及びタイヤ径方向に沿ったタイヤ断面において、前記カーカス本体部のタイヤ幅方向内側における内側表面と、正規リムに接するリム離反点との距離をタイヤ基準厚み(タイヤ基準厚みT0)として規定するとともに、前記折返し部のタイヤ幅方向内側における内側表面と、前記周方向凹部のタイヤ外表面との距離をタイヤ厚み(タイヤ厚みT1)として規定した場合、前記複数の乱流発生用突起は、前記タイヤ厚みが前記タイヤ基準厚みに対して、20%以上60%以下の領域に設けられていることを要旨とする。
図1は、本発明の第1実施形態に係る空気入りタイヤ1を示す一部分解斜視図である。 図2は、本発明の第1実施形態に係る空気入りタイヤ1を示す断面図である。 図3(a)は、本発明の第1実施形態に係る空気入りタイヤ1の一部拡大斜視図である。図3(b)は、本発明の第1実施形態に係る空気入りタイヤ1の一部拡大側面図である。図3(c)は、図3(b)におけるA-A断面図である。 図4は、図2に示す断面図の周方向凹部部分の拡大図である。 図5(a)は、実施例に係る空気入りタイヤの一部拡大断面図である。図5(b)は、従来例に係る空気入りタイヤの一部拡大断面図である。図5(c)は、比較例1に係る空気入りタイヤの一部拡大断面図である。
 次に、本発明に係る実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。したがって、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ得る。
[第1実施形態]
 まず、本発明の第1実施形態について説明する。
 (1)空気入りタイヤ1の構成
 本実施形態に係る空気入りタイヤ1は、ダンプトラックなどの建設車両に装着される重荷重用の空気入りタイヤ(重荷重用タイヤ)である。空気入りタイヤ1の構成について、図面を参照しながら説明する。図1は、本実施形態に係る空気入りタイヤ1を示す一部分解斜視図である。図2は、本実施形態に係る空気入りタイヤ1を示す一部断面図である。図3は、本実施形態に係る空気入りタイヤ1の一部拡大断面図である。図4は、図2に示す周方向凹部部分の拡大図である。
 図1に示すように、空気入りタイヤ1は、走行時に路面に接地するトレッド部10と、トレッド部10に連なるタイヤサイド部20と、タイヤサイド部20に連なるビード部30とを有する。
 また、タイヤサイド部20の外側表面には、タイヤ幅方向Tw内側に凹むとともに、タイヤ周方向TCに延びる周方向凹部100が形成されている。また、空気入りタイヤ1は、空気入りタイヤ1の骨格を形成するカーカス部40と、トレッド部10においてカーカス部40のタイヤ径方向Td外側に配設されるベルト層50とを有する。
 カーカス部40は、カーカスコードと、カーカスコードを覆うゴムからなる層とにより構成される。カーカス部40は、トレッド部10とタイヤサイド部20とビード部30とにわたって延びる。カーカス部40は、トレッド部10からタイヤサイド部20をへてビード部30のビードコア45に至る本体部41と、ビードコア45で折り返す折返し部42とを有する。
 正規内圧を充填し、無荷重である無荷重状態におけるタイヤ幅方向及びタイヤ径方向Tdに沿ったタイヤ断面において、折り返し部42のタイヤ径方向Td外側の端部42xは、タイヤ径方向Tdの最も内側に位置するビード端部31から、タイヤ径方向Td外側に向かってタイヤ高さHの40%以上60%以下の範囲に位置している。なお、本実施形態では、タイヤ高さHは、空気入りタイヤ1がリムホイール60に組み付けられた状態において、タイヤ径方向Td内側の下端に位置するビード端部31から、路面に接地するトレッド部10のトレッド面までのタイヤ径方向Tdにおける長さとしている。
 ベルト層50は、スチールコードにゴム成分が含浸されることによって構成される。また、ベルト層50は、複数の層により構成され、それぞれの層は、タイヤ径方向Tdに沿って積層している。ビード部30は、タイヤ周方向Tcに沿って配設され、タイヤ赤道線CLを介して、タイヤ幅方向Twの両側に配設される。なお、空気入りタイヤ1は、タイヤ赤道線CLを基準に線対称の構造であるため、図1においては、片側のみ示している。
 なお、本実施形態では、空気入りタイヤ1がリムホイール60に組み付けられた状態において、空気入りタイヤ1がリムホイール60のリムフランジ61と接する最もタイヤ径方向Td外側の点を、リム離反点61aと規定する。また、空気入りタイヤ1がリムホイール60に組み付けられた状態とは、空気入りタイヤ1が規格に規定された標準リム(正規リム)に、規格に規定された最大荷重に対応する空気圧で組み付けられた状態を意味する。正規内圧を充填し、無荷重である無荷重状態において空気入りタイヤ1がリムホイール60に組み付けられた状態とも言える。
 ここで、規格とは、JATMA YEAR BOOK(2010年度版、日本自動車タイヤ協会規格)を示す。なお、使用地又は製造地において、TRA規格、ETRTO規格などが適用される場合は各々の規格に準ずる。また、本実施形態において、トレッド部10とタイヤサイド部20との境界は、トレッド端部TEであり、タイヤサイド部20とビード部30との境界は、リム離反点61aであることとする。
 また、本実施形態において、タイヤサイド部20の外表面には、空気入りタイヤ1のトレッド幅方向Tw及びタイヤ径方向Tdに沿ったタイヤ断面において、リム離反点61aから周方向凹部100のタイヤ径方向Td内側の端部100aまでの範囲に、リム側外表面80が形成されている。
 図2に示すように、リム側外表面80は、トレッド幅方向Tw内側に曲率半径R1の中心C1を有する所定の円弧曲線Rc1に沿って形成されている。つまり、リム側外表面80は、トレッド幅方向Tw外側に膨らむ曲面形状に形成されている。リム側外表面80をこのように形成することによって、タイヤサイド部20のビード部30側の領域において、一定の剛性が確保されている。
 なお、曲率半径R1の中心C1は、タイヤ最大幅部mの位置からトレッド幅方向Twに延びる仮想直線上に位置することが好ましい。また、周方向凹部100のタイヤ径方向Td内側の端部100aは、タイヤ断面において、周方向凹部100のタイヤ外表面と、曲面形状に形成されているタイヤ外表面(リム側外表面80)との境界点とも言い換えることができる。
 (2)周方向凹部の構成
 次に、周方向凹部100の構成について具体的に説明する。周方向凹部100は、タイヤ最大幅部mの位置からリム離反点61aまでの範囲に形成される。なお、周方向凹部100のタイヤ径方向Tdの長さと、タイヤ幅方向Twの深さとは、空気入りタイヤ1の大きさや、装着される車両の種類に応じて、適宜決定することが好ましい。
 また、周方向凹部100は、周方向凹部100のタイヤ径方向Td内側に位置する内側壁面101と、周方向凹部100のタイヤ径方向Td外側に位置する外側壁面102と、内側壁面101と外側壁面102との間に位置する底面103とを有する。なお、周方向凹部100は、タイヤ径方向Tdにおいて、内側壁面101が形成される領域と、外側壁面102が形成される領域と、底面103が形成される領域との3つの領域に区分けすることができる。 
 また、周方向凹部100のタイヤ径方向Tdの内側端部100aから周方向凹部100の最深部まで延びる内側壁面101は、タイヤ幅方向Tw外側に曲率半径R2の中心C2を有する円弧曲線Rc2に沿って形成される。すなわち、周方向凹部100では、タイヤ径方向Tdの内側端部100aから最深部までが、曲面形状によって凹むように形成されている。
 底面の曲率半径は、内側壁面101の曲率半径よりも大きく、外側壁面102の曲率半径よりも大きい。内側壁面101と底面の境界、及び外側壁面102と底面の境界は、円弧曲線の曲率が変化する箇所である。
 このような空気入りタイヤ1によれば、タイヤの回転によって、タイヤサイド部20に沿って流れる空気が、曲面形状である側壁面101に沿って周方向凹部100の内部に円滑に流れ込み易くなるとともに、周方向凹部100の内部の空気が、外部に排出されやすくなる。すなわち、周方向凹部100の内部に循環する空気の量を増加させて、ゴムの温度上昇を抑制することが可能になる。
 なお、空気入りタイヤ1のタイヤ幅方向Tw及びタイヤ径方向Tdに沿った断面における内側壁面101によって形成される円弧曲線の曲率半径R2は、無荷重状態において、50mm以上であることが好ましい。内側壁面101の曲率半径R2が、50mm未満である場合、荷重時のタイヤサイド部20の倒れ込みによって生じる内側壁面101の歪が局所的に集中してしまい、タイヤサイド部20のビード部30側における耐クラック性が悪化してしまう可能性があるためである。また、空気入りタイヤ1では、正規内圧を充填し、無荷重である無荷重状態における内側壁面101の曲率半径Raと、正規内圧を充填し、正規荷重をかけた正規荷重状態における内側壁面101の曲率半径Rbとは、(Ra-Rb)/Ra≦0.5の関係を満たしてもよい。
 同様に、外側壁面102もタイヤ幅方向Tw外側に曲率半径の中心を有する円弧曲線に沿って形成されていてもよい。すなわち、周方向凹部100では、タイヤ径方向Tdの外側端部100bから最深部までが、曲面形状によって凹むように形成されていてもよい。
 図2に示すように、本実施形態では、無荷重状態のタイヤ断面において、リム側外表面80に沿った所定の円弧曲線Rc1を、周方向凹部100が形成される領域まで延長させた仮想円弧曲線Vc1を規定する。また、本実施形態では、所定の円弧曲線Rc1を延長させた仮想円弧曲線Vc1を規定した場合、仮想円弧曲線Vc1対する周方向凹部100の最大深さDは、15mm以上35mm以下の範囲内とする。ここで、図2の例では、仮想円弧曲線Vc1部分が点線で示されている。なお、最大深さDは、図2に示すように、周方向凹部100の底面から仮想円弧曲線Vc1までの間隔である。具体的には、仮想円弧曲線Vc1を基準とした周方向凹部100の深さとは、仮想円弧曲線Vc1を基準として、周方向凹部100のタイヤ表面(底面)に直交する線を規定した場合に、直交線が周方向凹部100のタイヤ外表面に交わる点から、直交線が仮想円弧曲線Vc1に交わる点までの距離である。
 また、本実施形態において、周方向凹部100のタイヤ径方向Td内側の端部100aは、リム離反点61aからタイヤ径方向Td外側に向かって所定範囲内の位置に設けられている。具体的に、空気入りタイヤ1に正規内圧を充填し、正規荷重をかけた正規荷重状態における端部100aは、正規内圧を充填し、無荷重である無荷重状態におけるタイヤ径方向Tdのタイヤ高さをHとした場合、リム離反点61aからタイヤ径方向Td外側に向かってタイヤ高さHの0%以上25%以下の範囲内に位置する。なお、本実施形態では、タイヤ高さHは、図2に示すように、空気入りタイヤ1がリムホイール60に組み付けられた状態において、タイヤ径方向Td内側のビード端部31から、トレッド部10のトレッド面までのタイヤ径方向Tdにおける長さとしている。ビード端部31は、タイヤ断面において、リムホイール60に組み付けられた空気入りタイヤ1の最もタイヤ径方向Td内側に位置する下端である。
 また、本実施形態に係る周方向凹部100の内部には、タイヤ幅方向Tw外側に向かって突出する複数の乱流発生用突起110が形成されている。乱流発生用突起110の形状は、ブロック形状である。なお、乱流発生用突起110の詳細な構成については、後述する。
(3)乱流発生用突起の構成
 次に、周方向凹部100に形成される乱流発生用突起110の構成について、図面を参照しながら説明する。ここで、図3(a)には、本実施形態に係る周方向凹部100の一部拡大斜視図が示されている。図3(b)には、第1実施形態に係る周方向凹部100の一部拡大平面図が示されている。図3(c)には、図3(b)におけるA-A断面図が示されている。
 本実施形態において、周方向凹部100の内部には、タイヤ幅方向Tw外側に向かって突出する乱流発生用突起110が形成されている。なお、周方向凹部100の内部とは、タイヤ径方向Tdにおいて、周方向凹部100のタイヤ径方向Td内側の端部100aと、周方向凹部100のタイヤ径方向Td外側の端部100bとの間の領域内を示す。
 具体的に、複数の乱流発生用突起110は、第1乱流発生用突起111と、第1乱流発生用突起111からタイヤ周方向Tcに所定ピッチを設けて配置される第2乱流発生用突起112とを含む。また、第1乱流発生用突起111のタイヤ径方向Tdにおける両端部111x,111yと、前記第2乱流発生用突起のタイヤ径方向における両端部112x,112yとは、タイヤ径方向における位置が異なるように配置されている。かかる空気入りタイヤ1によれば、周方向凹部100の内部に空気が流れる際に、第1乱流発生用突起111に衝突しなかった空気が、タイヤ周方向Tcに隣接する第2乱流発生用突起112に衝突するため、乱流が一層発生しやすくなる。
 また、本実施形態では、複数の乱流発生用突起110は、第1乱流発生用突起111と、第2乱流発生用突起112と、第1乱流発生用突起111のタイヤ径方向Td内側に間隔を設けて配置される第3乱流発生用突起113とを含む。
 第2乱流発生用突起112のタイヤ径方向Td外側端部112xは、第1乱流発生用突起111のタイヤ径方向Td内側端部111yよりもタイヤ径方向Td外側に位置してもよい。具体的に、図3(b)に示すように、第2乱流発生用突起112のタイヤ径方向Td外側端部112xは、第1乱流発生用突起111のタイヤ径方向Td内側端部111yよりもタイヤ径方向Td外側に距離L2だけ離れてもよい。
 また、第2乱流発生用突起112のタイヤ径方向Td内側端部112yは、第3乱流発生用突起113のタイヤ径方向Td外側端部113xよりもタイヤ径方向Td内側に位置してもよい。具体的に、図3(b)に示すように、第2乱流発生用突起112のタイヤ径方向Td内側端部112yは、第3乱流発生用突起113のタイヤ径方向Td外側端部113xよりもタイヤ径方向Td内側に距離L3だけ離れてもよい。
 距離L1は、距離L2よりも長く、かつ距離L3よりも長い。また、距離L2及び距離L3は、乱流発生用突起のタイヤ周方向の長さである幅wと同じ長さであるか、当該距離よりも長い。当該構成により、第一突起から第三突起までの突起全体の径方向の長さが大きくなり、突起を衝突してタイヤ表面に剥離・付着する空気量が多くなり、冷却効果が大きくなる。 
 かかる空気入りタイヤ1によれば、第1乱流発生用突起111と第3乱流発生用突起113との間を通過した空気の流れが、タイヤ周方向Tcに隣接する第2乱流発生用突起112に衝突するため、一層乱流が発生しやすくなる。
 なお、以下、第1乱流発生用突起111と第2乱流発生用突起112と第3乱流発生用突起113とを、乱流発生用突起110として適宜示す。
 また、本実施形態では、複数の乱流発生用突起110が、第1乱流発生用突起111と第2乱流発生用突起112と第3乱流発生用突起113との3種類の乱流発生用突起を含む場合を例に挙げて説明するが、乱流発生用突起110は1種類(例えば、第1乱流発生用突起111)でもよいし、2種類でもよいし、4種類以上でもよい。
 第1乱流発生用突起111、第2乱流発生用突起112及び第3乱流発生用突起113のうち、最もタイヤ径方向外側に位置する第3乱流発生用突起113は、少なくとも周方向凹部100における内側壁面101上に位置する。第3乱流発生用突起113よりもタイヤ径方向外側に位置する第2乱流発生用突起112及び第1乱流発生用突起は、底面103上に位置する。複数の乱流発生用突起は、周方向凹部100のタイヤ径方向における中心を基準として、タイヤ径方向内側に偏倚して配置されている。
 このように、周方向凹部のタイヤ径方向内側に偏らせて乱流発生用突起を配置することにより、側壁面101から流入する空気をタイヤ外方向へ逃がすことなく、側壁面101から流入する空気を乱流発生用突起間で付着・剥離させることができる。周方向凹部のタイヤ径方向内側に偏らせて乱流発生用突起を配置することにより、乱流発生用突起がビード部に近いため、高い冷却効果を発揮できる。
 本実施形態に係る空気入りタイヤ1では、タイヤ断面において、カーカス本体部41のタイヤ幅方向Tw内側における内側表面と、正規リムに接するリム離反点61aとの距離をタイヤ基準厚みT0として規定するとともに、折返し部42のタイヤ幅方向Tw内側における内側表面と、周方向凹部100のタイヤ外表面との距離をタイヤ厚みT1として規定する。なお、詳細には、タイヤ基準厚みT0は、カーカス本体部41のタイヤ幅方向Tw内側における内側表面に直交する方向に沿った距離である。また、タイヤ厚みT1は、折返し部42のタイヤ幅方向Tw内側における内側表面に直交する方向に沿った距離である。
 上記のようにして、タイヤ基準厚みT0とタイヤ厚みT1とを規定した場合、複数の乱流発生用突起110は、タイヤ厚みT1がタイヤ基準厚みT0に対して、20%以上60%以下の領域に設けられている。すなわち、第1乱流発生用突起111と第2乱流発生用突起112と第3乱流発生用突起113とは、タイヤ厚みT1がタイヤ基準厚みT0に対して、20%以上60%以下の領域に設けられている。
 具体的に、図2及び図4に示すように、周方向凹部100には、タイヤ基準厚みT0に対して20%以上60%以下のタイヤ厚みT1となる領域200が形成される。図2の例では、周方向凹部100のタイヤ外表面上の点200aにおけるタイヤ厚みT1aが、タイヤ基準厚みT0に対して20%以上60%以下の厚みを有している。また、周方向凹部100の外側表面上の点200bにおけるタイヤ厚みT1bが、タイヤ基準厚みT0に対して20%以上60%以下の厚みを有している。
 図2及び図4に示すように、乱流発生用突起110は、タイヤ厚みT1がタイヤ基準厚みT0に対して、20%以上60%以下の領域200内に設けられている。言い換えると、乱流発生用突起110と周方向凹部100とが接合する接合部分では、タイヤ厚みは、タイヤ基準厚みT0に対して20%以上60%以下のタイヤ厚みT1であるといえる。あるいは、乱流発生用突起110は、領域200のタイヤ径方向Td内側の端部200aと、領域200のタイヤ径方向Td外側の端部200bとの間に設けられているともいえる。
 図3(a)乃至(b)に示すように、複数の乱流発生用突起110のそれぞれは、概ね立体長方形状に形成されている。ここで、複数の乱流発生用突起の少なくとも一つは、タイヤ幅方向Tw外側に位置する幅方向外側面と、幅方向外側面のタイヤ径方向Td内側に位置する径方向内側面と、幅方向外側面のタイヤ径方向Td外側に位置する径方向外側面とを備える。なお、以下において、乱流発生用突起110の形状について説明する。また、第1乱流発生用突起111と第2乱流発生用突起112と第3乱流発生用突起113とは、概ね同一の面数を持つ立体長方形状に形成されていることから、第1乱流発生用突起111に着目して、説明する。
 第1乱流発生用突起111は、幅方向外側面111aと、幅方向外側面111aのタイヤ径方向Td内側に位置する径方向内側面111bと、幅方向外側面111aのタイヤ径方向Td外側に位置する径方向外側面111cと、幅方向外側面111aのタイヤ周方向Tcの一方に位置する周方向側面111dと、幅方向外側面111aのタイヤ周方向Tcの他方に位置する周方向側面111eとを有する。
 具体的に、径方向内側面111bは、幅方向外側面111aのタイヤ径方向Td内側端部から周方向凹部100のタイヤ外表面に延びる。径方向外側面111cは、幅方向外側面111aのタイヤ径方向Td外側端部から周方向凹部100のタイヤ外表面に延びる。周方向側面111dは、幅方向外側面111aのタイヤ周方向Tdの一方の端部から周方向凹部100のタイヤ外表面に延びる。周方向側面111eは、幅方向外側面111aのタイヤ周方向Tdの他方の端部から周方向凹部100のタイヤ外表面に延びる。
 図3(c)に示すように、本実施形態では、径方向内側面111bは、タイヤ断面において、タイヤ幅方向Twに対して平行、又は、タイヤ幅方向Tw外側に向かってタイヤ径方向Td外側に傾斜するように延びている。また、径方向外側面111cは、タイヤ断面において、タイヤ幅方向Twに対して平行、又は、タイヤ幅方向Tw外側に向かってタイヤ径方向Td内側に傾斜するように延びている。
 すなわち、タイヤ断面において、径方向内側面111bのタイヤ幅方向Twに対する角度θwbは、0度以上90度未満の範囲内である。具体的に、図3(c)に示すように、径方向内側面111bのタイヤ幅方向Twに沿った直線WLに対する角度θwbは、0度以上90度未満の範囲内である。更に、図3(c)に示すように、タイヤ断面において、幅方向外側面111aと、径方向内側面111bとの成す角度θabは、鈍角であることが好ましい。
 このように、径方向内側面111b及び径方向外側面111cは、タイヤ幅方向Twに対して、平行、又は、傾斜するように形成されている。かかる空気入りタイヤ1によれば、径方向内側面111b及び径方向外側面111cが、モールドの引き抜き方向であるタイヤ幅方向Twに対して、平行、又は、傾斜するように形成されている。よって、タイヤ成形時におけるモールドを引き抜く際に、第1乱流発生用突起111の径方向内側面111b及び径方向外側面111cがモールドに引っかかることを防止できる。これにより、タイヤ成型時の外観不良等を防止することができる。
 なお、複数の乱流発生用突起の全てにおいて、径方向内側面111b及び径方向外側面111cのタイヤ幅方向Twに対する角度が、0度以上90度未満の範囲内であることが好ましい。
 また、第1乱流発生用突起111のタイヤ周方向Tcの幅wと第2乱流発生用突起112のタイヤ周方向Tcの幅wと第3乱流発生用突起113のタイヤ周方向Tcの幅wとは、同一であってもよいし、異なっても良い。また、第1乱流発生用突起111のタイヤ周方向Tcの幅wと第2乱流発生用突起112のタイヤ周方向Tcの幅wと第3乱流発生用突起113のタイヤ周方向Tcの幅wとは、2mm以上10mm以下であることが好ましい。
 これは、次の理由による。幅wが2mm未満であると、乱流発生用突起110は、空気流によって振動する恐れがあり、且つ、強度的にも弱いためである。一方、乱流発生用突起110の幅wが10mmを超えると、乱流発生用突起110内の蓄熱量が多くなり過ぎるためである。本実施形態では、乱流発生用突起110の幅wを2mm~10mmの範囲とすることにより、タイヤサイド部20に乱流発生用突起110を設けることによるデメリットを極力防止しつつ放熱特性の向上を図ることができる。なお、乱流発生用突起110(第1乱流発生用突起111又は第2乱流発生用突起112)の側壁が傾斜し、タイヤ周方向Tcの幅wが変化する場合には、タイヤ周方向Tcの幅wは、最大幅と最小幅との平均値とする。乱流発生用突起110の幅wとは、乱流発生用突起のタイヤ周方向における長さである。
 また、同様の理由により、乱流発生用突起110のタイヤ径方向Tdにおける長さL110は、20mmであることが好ましい。
 第1乱流発生用突起111と、第3乱流発生用突起113とは、タイヤ径方向Tdに離間するように形成されている。第1乱流発生用突起111と、第3乱流発生用突起113とのタイヤ径方向Tdにおける距離L1は、第1乱流発生用突起111(又は第3乱流発生用突起113)と、第2乱流発生用突起112とのタイヤ周方向Tcのピッチp1乃至p2に対して15%~30%となるように形成されていることが好ましい。これは、次の理由による。すなわち、距離L1が、ピッチpに対して15%未満の場合、周方向凹部100に入り込んだ空気の流れが阻害され、周方向凹部100内において空気が滞留する部分(領域)が多く発生してしまうためである。一方、距離L1が、ピッチpに対して30%よりも大きい場合、底面103に対して付着と剥離を繰り返すという空気の流れが発生し難くなってしまうためである。
 なお、図3(b)に示すように、タイヤ周方向Tcのピッチp1とは、第1乱流発生用突起111(または第3乱流発生用突起113)のタイヤ周方向における中心から、隣接する第2乱流発生用突起112のタイヤ周方向における中心までのタイヤ周方向の一方に沿った距離のことである。また、タイヤ周方向Tcのピッチp2とは、第2乱流発生用突起112のタイヤ周方向における中心から、第1乱流発生用突起111(または第3乱流発生用突起113)のタイヤ周方向における中心までのタイヤ周方向の一方に沿った距離のことである。
 また、本実施形態において、乱流発生用突起110のタイヤ幅方向Twにおける高さhは、7.5mm以上25mm以下である。具体的に、第1乱流発生用突起111の高さhと第2乱流発生用突起112の高さhと第3乱流発生用突起113の高さhとが、7.5mm以上25mm以下である。これは、次の理由による。高さhが7.5mm以上25mm以下であると、建設車輌用タイヤの実用速度域において、どの速度域で使用されるタイヤにおいても所定の放熱特性を発揮させることができるからである。なお、本実施形態において、乱流発生用突起110の高さhは、乱流発生用突起110が位置する周方向凹部100のタイヤ外表面から垂直方向に沿って、乱流発生用突起110の最も離れた点までの距離を示す。
 更に、重荷重用タイヤの場合、時速30-60kmで走行する事が多く、この場合、タイヤ表面に形成される速度境界層(周方向の空気の流れが速い境界と、遅い領域の境界)が通常のタイヤよりもタイヤ径方向外側において、高い位置にくる。乱流発生をさせるためには、当該境界に突起を位置させることが必要である。このような観点から、そのためには、第1乱流発生用突起111の高さhと第2乱流発生用突起112の高さhと第3乱流発生用突起113の高さhとは、7.5-25mmが好ましい。なお、速度境界層は、タイヤ径方向外側及び/又はタイヤ幅方向外側に向かって同心円状に広がっていく。
 第1乱流発生用突起111の高さhと第2乱流発生用突起112の高さhと第3乱流発生用突起113の高さhとは、同じ高さである。当該高さは、各乱流発生用突起の最大高さである。このように、第1乱流発生用突起111の高さhと第2乱流発生用突起112の高さhと第3乱流発生用突起113の高さhが同じであることにより、各乱流発生用突起間を剥離し、かつ付着する空気の流れを阻害することを抑制し、冷却効果を向上できる。
 第1乱流発生用突起のタイヤ周方向におけるピッチP0と、第2乱流発生用突起のタイヤ周方向におけるピッチP0と、第3乱流発生用突起のタイヤ周方向におけるピッチP0とは、一定である。図3においては、図面の便宜上、第1乱流発生用突起のタイヤ周方向におけるピッチP0と、第2乱流発生用突起のタイヤ周方向におけるピッチP0とのみ示す。第1乱流発生用突起のタイヤ周方向におけるピッチP0の半分の位置(図3におけるP0/2)を基準とすると、第3乱流発生用突起は、タイヤ周方向において偏倚して配置されている。よって、第3乱流発生用突起と、第3乱流発生用突起からタイヤ周方向一方側に位置する第1乱流発生用突起とのピッチP1は、第1乱流発生用突起のタイヤ周方向におけるピッチP0の半分よりも短い。また、第3乱流発生用突起と、第3乱流発生用突起からタイヤ周方向他方側に位置する第1乱流発生用突起とのピッチP2は、第1乱流発生用突起のタイヤ周方向におけるピッチP0の半分よりも短い。
また、本実施形態において、乱流発生用突起110の高さhと、乱流発生用突起110のタイヤ周方向Tcにおける所定ピッチp2と、乱流発生用突起110の幅wとは、1≦P2/h≦50、且つ、1≦(P2-w)/w≦100の関係を満たすように形成されている。これは、次の理由による。まず空気流の上下乱流状態は、おおよそP2/hで調整できるためであり、P2/hが1未満であると乱流発生用突起110の間の溝底に下降流として突き当たりにくくなる。一方、P2/hが50よりも大きくなると乱流発生用突起110による効果が低くなってしまう。
 なお、全ての乱流発生用突起110が、1≦P2/h≦50、且つ、1≦(P2-w)/w≦100の関係を満たすように形成されていることが好ましい。すなわち、第1乱流発生用突起111乃至第3乱流発生用突起113の全てが、1≦P2/h≦50、且つ、1≦(P2-w)/w≦100の関係を満たすように形成されていることが好ましい。
 また、(P2-w)/wは、ピッチP2に対する乱流発生用突起110の幅wの割合を示すものである。(P2-w)/wが、1.0未満であると、空気入りタイヤ1をタイヤサイド部側から見た側面視において、放熱を向上させたいタイヤサイド部20の外側表面の面積(周方向凹部100の外側表面の面積)が、乱流発生用突起110の面積よりも小さくなってしまうため、好ましくない。また、乱流発生用突起110はゴムからなり、表面積増加による放熱向上効果が期待できないため、(P2-w)/wの最小値は1.0に規定している。一方、(P2-w)/wが、100よりも大きいと乱流発生用突起110によって乱流を発生させる効果が低くなるため、好ましくない。
(5)作用・効果
 本実施形態に係る空気入りタイヤ1では、タイヤサイド部20の外側表面には、タイヤ幅方向Tw内側に凹むとともに、タイヤ周方向Tcに延びる周方向凹部100が形成されている。
 本実施形態に係る空気入りタイヤ1では、タイヤ断面において、タイヤ基準厚みT0を規定した場合、乱流発生用突起110は、折返し部42の内側表面に直交する方向に沿って、折返し部42の内側表面と周方向凹部100の外側表面とのタイヤ厚みT1が、タイヤ基準厚みT0に対して、20%以上60%以下の領域に設けられている。
 ここで、乱流発生用突起110が、タイヤ基準厚みT0に対するタイヤ厚みT1が20%未満の領域に設けられている場合、タイヤ製造時(加硫時)において、乱流発生用突起の成形に伴うゴムの流動によって、カーカス部40を構成するカーカスコードがタイヤ幅方向に凹凸してしまう場合がある。具体的に、周方向凹部100の内部に乱流発生用突起110を配置しているため、周方向凹部100と周方向凹部100以外の領域におけるタイヤ外表面との境界が成形される際、又は、乱流発生用突起110が成形される際に、ゴムが流動することによって、複数箇所でカーカス部が変形するおそれがある。このように、カーカス部40が変形してしまうと、歪みの集中を受けて、カーカス部40とゴムとが剥離するなどのタイヤ故障を引き起こしやすくなり、その結果、タイヤ耐久性が低下してしまう。
 一方、乱流発生用突起110が、タイヤ基準厚みT0に対するタイヤ厚みT1が60%よりも大きい領域に設けられている場合、タイヤサイド部20の外側表面における冷却効果が得られるものの、タイヤ内部までを冷却できず、その結果、温度上昇を抑制する効果が十分に得られない可能性もある。
 本実施形態に係る空気入りタイヤ1によれば、乱流発生用突起110は、タイヤ基準厚みT0に対するタイヤ厚みT1が20%以上60%以下の領域に設けられているため、タイヤサイド部20の温度上昇の抑制と、タイヤ耐久性の向上とを両立することが可能になる。
 また、本実施形態に係る空気入りタイヤ1には、周方向凹部100が形成されていることによって、周方向凹部100が形成されていない場合に比べて、タイヤサイド部20に用いられるゴムの体積を低減させている。このため、タイヤサイド部20のゴムの変形による発熱を抑制することが可能となる。さらに、空気入りタイヤ1を製造するためのゴム量を低減することができるため、空気入りタイヤ1の製造コストを抑制することが可能となる。
 また、乱流発生用突起110の一部は、仮想円弧曲線Vc1よりも、所定突出高さだけタイヤ幅方向Tw外側に突出するように形成されていることが好ましい。かかる空気入りタイヤ1によれば、タイヤサイド部20の外側表面に沿って流れる空気が、乱流発生用突起110の突出部分に衝突して、周方向凹部100の内部に向かって流れ込み易くなる。すなわち、周方向凹部100の内部に流れ込む空気の量を増加させて、ゴムの温度上昇を抑制することが可能になる。
 なお、乱流発生用突起110は、周方向凹部100の内部において、周方向凹部100のタイヤ径方向Tdにおける内側端部100aから、タイヤ径方向Td外側に離間して配置されている。かかる空気入りタイヤ1によれば、方向凹部100のタイヤ径方向Tdにおける内側端部100aと、乱流発生用突起110との間から、周方向凹部100の内部に向かって、空気流が流入しやすくなる。すなわち、周方向凹部100の内部に流れ込む空気の量を増加させて、ゴムの温度上昇を抑制することが可能になる。
 [比較評価]
 次に、本発明の効果を更に明確にするために、以下の従来例、比較例及び実施例に係る空気入りタイヤを用いて行った比較評価について説明する。なお、本発明はこれらの例によって何ら限定されるものではない。
(1)評価方法
 複数種類の空気入りタイヤを用いて試験を行い、タイヤの温度上昇とタイヤ耐久性とについて評価をした。各タイヤのタイヤサイズは、何れも59/80R63とした。すなわち、いずれも重荷重用タイヤを用いた。
 図5(a)には、実施例1に係る空気入りタイヤの拡大断面図が示されている。実施例1に係る空気入りタイヤには、上述した実施形態に示される空気入りタイヤを用いた。具体的に、実施例1に係る空気入りタイヤは、タイヤサイド部に周方向凹部が形成されているとともに、周方向凹部に乱流発生用突起が形成されている空気入りタイヤを使用した。なお、実施例1の詳細な構成は、表1に示すとおりである。
 従来例に係る空気入りタイヤは、図5(b)に示すように、タイヤサイド部に周方向凹部が設けられていない空気入りタイヤを使用した。なお、従来例に係る空気入りタイヤでは、タイヤ断面のタイヤサイド部の外側表面が、仮想円弧曲線Vc1に沿った形状である。
 比較例1に係る空気入りタイヤは、図5(c)に示すように、タイヤサイド部に周方向凹部が設けられていない空気入りタイヤを使用した。なお、比較例1に係る空気入りタイヤでは、タイヤサイド部に乱流発生用突起110が形成されているものを用いた。
 比較例2~3に係る空気入りタイヤは、タイヤサイド部に周方向凹部が形成されている空気入りタイヤを使用した。比較例2~3に係る空気入りタイヤでは、周方向凹部に乱流発生用突起110が形成されているものを用いた。なお、比較例2~3に係る空気入りタイヤと、実施例1に係る空気入りタイヤとは、乱流発生用突起の設けられている領域が異なる。比較例2~3に係る空気入りタイヤと、実施例1に係る空気入りタイヤとの詳細は、表1に示すとおりである。
<温度評価試験>
 温度評価試験については、各タイヤを標準リム(TRAに準拠)に組み付け、正規内圧(TRAに準拠)、正規荷重(TRAに準拠)を与えた状態において、ドラム試験機上で転動させた後に、ビード部の温度を測定した。具体的に、速度15km/hによって、24時間走行させた後に、タイヤサイド部の温度を測定した。ここで、図5(a)に示すように、リム離反点61aからタイヤ径方向Td外側に向かって40mm離れた位置Z1と、周方向凹部100のタイヤ径方向外側の端部100bから、タイヤ径方向内側に向かって40mm離れた位置Z3と、位置Z1と位置Z3との中点である位置Z2とを規定した。位置Z1~Z3のそれぞれに細穴を設けて、熱電対を挿入して折り返し部42の外側表面からタイヤ幅方向外側に5mm離れた位置の温度を測定した。なお、位置Z1~Z3のそれぞれでは、タイヤ周方向に沿って、6か所において温度を測定した。位置Z1~Z3のそれぞれの測定結果は、6か所の測定結果の平均値である。表1に示される測定結果は、従来例に係る温度を基準にし、各タイヤの差の値を表している。なお、この値は、マイナス(-)方向における値が大きいほど、温度上昇を抑制する効果に優れていることを示す。
<耐久性評価試験>
 耐久性評価試験については、上述した温度評価試験を実施した後、正規内圧(TRAに準拠)の160%に荷重を高めて、更に400時間走行させた。この後に、各タイヤを切断し、カーカス部とゴムとの剥離面積を測定した。表1に示される測定結果は、従来例に係る剥離面積を基準(100)にし、各タイヤの剥離面積の値を割合(%)によって表している。なお、この値は、小さいほど、耐久性の効果に優れていることを示す。
(2)評価結果
 各空気入りタイヤの評価結果について、表1を参照しながら説明する。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1に係る空気入りタイヤは、従来例及び比較例に係る空気入りタイヤと比較して、タイヤサイド部20の温度上昇を抑制する効果が大きいことが証明された。
 また、実施例1に係る空気入りタイヤは、従来例及び比較例に係る空気入りタイヤと比較して、剥離面積が小さいことが確認された。すなわち、実施例1に係る空気入りタイヤは、タイヤ耐久性に優れていることが証明された。
[その他の実施形態]
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなる。
 例えば、本発明の実施形態は、空気入りタイヤ1が重荷重用タイヤである場合を例に挙げて説明したが、乗用車用タイヤなどの他のタイヤであってもよい。
 また、タイヤとして、空気や窒素ガスなどが充填される空気入りタイヤであってもよく、空気や窒素ガスなどが充填されないソリッドタイヤでもあってもよい。
 変形例として、第1乱流発生用突起と第2乱流発生用突起のタイヤ周方向における距離、及び第3乱流発生用突起と第2乱流発生用突起のタイヤ周方向における距離は、乱流発生用突起の幅よりも短く構成されていてもよい。第1乱流発生用突起と第2乱流発生用突起のタイヤ周方向における距離等が、乱流発生用突起110のタイヤ周方向に沿った幅W以下であるため、タイヤサイド部に沿って流れる空気は、第1乱流発生用突起又は第2乱流発生用突起を高い確率で乗り越えることになる。つまり、第1乱流発生用突起又は第2乱流発生用突起を乗り越えることによるタイヤサイド部の放熱効果を更に向上できる。
 また、上述した実施形態のそれぞれの特徴は、発明を損なわない範囲において、組み合わせ可能である。なお、各実施形態及び変更例において、同様の構成については、詳細な説明を適宜省略している。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第特願2013-033446号(2013年2月22日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、タイヤサイド部の温度上昇の抑制と、タイヤ耐久性の向上とを両立することが可能なタイヤを提供することができる。

Claims (8)

  1.  路面と接するトレッド部と、前記トレッド部に連なるタイヤサイド部と、前記タイヤサイド部に連なるビード部とを有するとともに、前記トレッド部と前記タイヤサイド部と前記ビード部とにわたって延びるカーカス部を有するタイヤであって、
     前記カーカス部は、前記トレッド部から前記タイヤサイド部をへて前記ビード部のビードコアに至るカーカス本体部と、前記ビードコアで折り返す折返し部とを有し、
     前記タイヤサイド部には、タイヤ幅方向内側に凹むとともに、タイヤ周方向に延びる周方向凹部が形成されるとともに、前記周方向凹部には、タイヤ幅方向外側に向かって突出する複数の乱流発生用突起が設けられており、
     タイヤ幅方向及びタイヤ径方向に沿ったタイヤ断面において、前記カーカス本体部のタイヤ幅方向内側における内側表面と、正規リムに接するリム離反点との距離をタイヤ基準厚みとして規定するとともに、前記折返し部のタイヤ幅方向内側における内側表面と、前記周方向凹部のタイヤ外表面との距離をタイヤ厚みとして規定した場合、
     前記複数の乱流発生用突起は、前記タイヤ厚みが前記タイヤ基準厚みに対して、20%以上60%以下の領域に設けられている
    ことを特徴とするタイヤ。
  2.  前記タイヤ断面において、前記折り返し部のタイヤ径方向外側の端部は、タイヤ径方向の最も内側に位置するビード端部から、タイヤ径方向外側に向かってタイヤ高さの40%以上60%以下の範囲に位置する
    ことを特徴とする請求項1に記載のタイヤ。
  3.  前記複数の乱流発生用突起は、第1乱流発生用突起と、前記第1乱流発生用突起からタイヤ周方向に所定ピッチを設けて配置される第2乱流発生用突起とを含み、
     前記第1乱流発生用突起のタイヤ径方向における両端部と、前記第2乱流発生用突起のタイヤ径方向における両端部とは、タイヤ径方向における位置が異なるように配置されている
    ことを特徴とする請求項1又は2に記載のタイヤ。
  4.  前記複数の乱流発生用突起は、前記第1乱流発生用突起のタイヤ径方向内側に間隔を設けて配置される第3乱流発生用突起を含み、
     前記第2乱流発生用突起のタイヤ径方向外側端部は、前記第1乱流発生用突起のタイヤ径方向内側端部よりもタイヤ径方向外側に位置し、
     前記第2乱流発生用突起のタイヤ径方向内側端部は、前記第3乱流発生用突起のタイヤ径方向外側端部よりもタイヤ径方向内側に位置する
    ことを特徴とする請求項3に記載のタイヤ。
  5.  前記複数の乱流発生用突起の少なくとも一つは、タイヤ幅方向外側に位置する幅方向外側面と、前記幅方向外側面のタイヤ径方向内側端部から前記周方向凹部100のタイヤ外表面に延びる径方向内側面と、前記幅方向外側面のタイヤ径方向外側端部から前記周方向凹部100のタイヤ外表面に延びる径方向外側面と、を備え、
     前記径方向内側面は、タイヤ断面において、タイヤ幅方向に対して平行、又は、タイヤ幅方向外側に向かってタイヤ径方向外側に傾斜するように延びており、
     前記径方向外側面は、タイヤ断面において、タイヤ幅方向に対して平行、又は、タイヤ幅方向外側に向かってタイヤ径方向内側に傾斜するように延びる
    ことを特徴とする請求項1乃至4のいずれか一項に記載のタイヤ。
  6.  前記乱流発生用突起の高さhは、7.5mm以上25mm以下の範囲内である
    ことを特徴とする請求項1乃至5のいずれか一項に記載のタイヤ。
  7.  前記乱流発生用突起の幅wは、2mm以上10mm以下の範囲内である
    ことを特徴とする請求項1乃至6のいずれか一項に記載のタイヤ。
  8.  前記乱流発生用突起の高さhと、前記乱流発生用突起のタイヤ周方向における所定ピッチpと、前記乱流発生用突起の平均幅wとは、1.0≦p/h≦50.0、且つ、1.0≦(p-w)/w≦100.0の関係を満たす
    ことを特徴とする請求項1乃至7のいずれか一項に記載のタイヤ。
PCT/JP2014/054123 2013-02-22 2014-02-21 タイヤ WO2014129572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/768,496 US10195910B2 (en) 2013-02-22 2014-02-21 Tire
EP14754214.6A EP2960081B1 (en) 2013-02-22 2014-02-21 Tire
CN201480008741.2A CN104995043B (zh) 2013-02-22 2014-02-21 轮胎
ES14754214.6T ES2618303T3 (es) 2013-02-22 2014-02-21 Neumático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-033446 2013-02-22
JP2013033446A JP5956942B2 (ja) 2013-02-22 2013-02-22 タイヤ

Publications (1)

Publication Number Publication Date
WO2014129572A1 true WO2014129572A1 (ja) 2014-08-28

Family

ID=51391353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054123 WO2014129572A1 (ja) 2013-02-22 2014-02-21 タイヤ

Country Status (6)

Country Link
US (1) US10195910B2 (ja)
EP (1) EP2960081B1 (ja)
JP (1) JP5956942B2 (ja)
CN (1) CN104995043B (ja)
ES (1) ES2618303T3 (ja)
WO (1) WO2014129572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066180A1 (ja) * 2016-10-06 2018-04-12 株式会社ブリヂストン タイヤ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868303B2 (ja) * 2012-10-16 2016-02-24 横浜ゴム株式会社 空気入りタイヤ
DE112017006307T5 (de) * 2016-12-15 2019-08-29 The Yokohama Rubber Co., Ltd. Luftreifen
US11225112B2 (en) 2017-07-24 2022-01-18 Bridgestone Americas Tire Operations, Llc Sidewall treatment for cooling and aerodynamics
JP7000788B2 (ja) * 2017-10-13 2022-01-19 住友ゴム工業株式会社 空気入りタイヤ
JP6935365B2 (ja) * 2018-06-21 2021-09-15 株式会社ブリヂストン 建設車両用タイヤ
JP7119634B2 (ja) * 2018-06-21 2022-08-17 住友ゴム工業株式会社 空気入りタイヤ
CN110843426B (zh) * 2019-11-29 2021-12-31 安徽佳通乘用子午线轮胎有限公司 一种高负荷全钢子午线轮胎
JP7519974B2 (ja) 2021-10-19 2024-07-22 Toyo Tire株式会社 空気入りタイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083769A (ja) * 2007-10-02 2009-04-23 Bridgestone Corp 空気入りタイヤ
WO2009084634A1 (ja) 2007-12-28 2009-07-09 Bridgestone Corporation 空気入りタイヤ
JP2012030557A (ja) * 2010-08-02 2012-02-16 Bridgestone Corp タイヤ成型用金型

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621605A (ja) 1985-06-27 1987-01-07 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP3155357B2 (ja) * 1992-07-17 2001-04-09 株式会社ブリヂストン 空気入りタイヤ
EP2644409B1 (en) 2007-02-09 2014-12-24 Bridgestone Corporation Pneumatic tire
DE102007052577A1 (de) * 2007-11-03 2009-05-07 Continental Aktiengesellschaft Fahrzeugluftreifen
JP5222551B2 (ja) 2007-12-28 2013-06-26 株式会社ブリヂストン 空気入りタイヤ
CN102458885B (zh) 2009-04-28 2016-01-06 株式会社普利司通 充气轮胎
JP5613246B2 (ja) * 2010-08-05 2014-10-22 株式会社ブリヂストン タイヤ
JP2012040769A (ja) * 2010-08-19 2012-03-01 Bridgestone Corp タイヤ成型用金型

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083769A (ja) * 2007-10-02 2009-04-23 Bridgestone Corp 空気入りタイヤ
WO2009084634A1 (ja) 2007-12-28 2009-07-09 Bridgestone Corporation 空気入りタイヤ
JP2012030557A (ja) * 2010-08-02 2012-02-16 Bridgestone Corp タイヤ成型用金型

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JATMA YEAR BOOK", 2010, JAPAN AUTOMOBILE TYRE MANUFACTURERS ASSOCIATION STANDARDS
See also references of EP2960081A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066180A1 (ja) * 2016-10-06 2018-04-12 株式会社ブリヂストン タイヤ
US11331959B2 (en) 2016-10-06 2022-05-17 Bridgestone Corporation Tire

Also Published As

Publication number Publication date
US10195910B2 (en) 2019-02-05
JP5956942B2 (ja) 2016-07-27
EP2960081A1 (en) 2015-12-30
ES2618303T3 (es) 2017-06-21
CN104995043B (zh) 2018-10-12
JP2014162298A (ja) 2014-09-08
EP2960081B1 (en) 2017-01-04
EP2960081A4 (en) 2016-02-24
US20160016440A1 (en) 2016-01-21
CN104995043A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5956942B2 (ja) タイヤ
JP4984013B1 (ja) 空気入りタイヤ
JP5775007B2 (ja) タイヤ
WO2009084634A1 (ja) 空気入りタイヤ
WO2009084633A1 (ja) 空気入りタイヤ
JP5545901B1 (ja) タイヤ
US20150151590A1 (en) Pneumatic tire
JP5262204B2 (ja) 空気入りタイヤ
JP5687222B2 (ja) タイヤ
JP2010023760A (ja) タイヤ
US9643458B2 (en) Tire
WO2015019975A1 (ja) タイヤ
WO2015019995A1 (ja) 空気入りタイヤ
JP5760704B2 (ja) 空気入りタイヤ
JP2009262888A (ja) 重荷重用空気入りタイヤ
WO2017090136A1 (ja) 空気入りタイヤ
JP6287299B2 (ja) 空気入りタイヤ
WO2017090101A1 (ja) 空気入りタイヤ
JP2020131919A (ja) 空気入りタイヤ
JP2018058535A (ja) 空気入りタイヤ
JP2014136444A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768496

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014754214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014754214

Country of ref document: EP