WO2014129015A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2014129015A1
WO2014129015A1 PCT/JP2013/079073 JP2013079073W WO2014129015A1 WO 2014129015 A1 WO2014129015 A1 WO 2014129015A1 JP 2013079073 W JP2013079073 W JP 2013079073W WO 2014129015 A1 WO2014129015 A1 WO 2014129015A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
inductor
ground electrode
passive element
Prior art date
Application number
PCT/JP2013/079073
Other languages
English (en)
French (fr)
Inventor
山口清
岸本健
武藤英樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014129015A1 publication Critical patent/WO2014129015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09327Special sequence of power, ground and signal layers in multilayer PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present invention relates to a high-frequency module used for an antenna front end of a wireless communication device.
  • a high frequency module provided with a filter circuit, a diplexer circuit, or the like may be used (for example, see Patent Document 1).
  • the high-frequency module includes a multilayer substrate on which internal electrodes are formed, and at least a part of passive elements constituting a filter circuit, a diplexer circuit, and the like are formed by the internal electrodes of the multilayer substrate.
  • FIG. 9 is a diagram illustrating a configuration example of a conventional high-frequency module with reference to Patent Document 1.
  • the high frequency module shown in FIG. 9 has a structure in which a plurality of insulating layers 111 to 122 are stacked. On the surface of each of the insulating layers 111 to 122, distributed electrodes, capacitor electrodes, ground electrodes, lead wires, and other internal electrodes are provided. For example, a distributed constant line 135 is provided in the insulating layer 112.
  • a capacitor electrode 131 is provided on the insulating layer 115.
  • Capacitor electrodes 132 and 133 are provided on the insulating layer 116.
  • a ground electrode 134 is provided on the insulating layer 117.
  • the capacitor electrodes 132 and 133 and the capacitor electrode 131 are opposed to each other via the insulating layer 115 to constitute a first capacitor.
  • the first capacitor is connected in parallel with the distributed constant line 135.
  • a parallel circuit of the first capacitor and the distributed constant line 135 is inserted in series with the lead-out wiring (signal line) through which the high-frequency signal is propagated.
  • the capacitor electrode 132 and the ground electrode 134 are opposed to each other via the insulating layer 116 to form a second capacitor.
  • the second capacitor is connected between one of connection points of the first capacitor and the distributed constant line 135 and the ground.
  • the capacitor electrode 133 and the ground electrode 134 are opposed to each other via the insulating layer 116 to constitute a third capacitor.
  • the third capacitor is connected between the other connection point of the first capacitor and the distributed constant line 135 and the ground.
  • the distributed constant line 135, the first capacitor, the second capacitor, and the third capacitor constitute a ⁇ -type filter, here a low-pass filter.
  • a capacitor electrode for example, capacitor electrode 131 that constitutes a capacitor connected in series to the signal line is provided on another layer only through the dielectric layer. It is opposed to the distributed constant lines and lead wires. For this reason, in the conventional high-frequency module, there is a possibility that unnecessary coupling with other elements may occur in a part of the capacitor. In order to prevent such unnecessary coupling, it is effective to dispose the capacitor electrode so as to be shifted from electrodes and lead wires constituting elements other than the capacitor electrode. However, in that case, there is a problem that the high-frequency module is enlarged in the planar direction.
  • an object of the present invention is to generate unnecessary coupling between a capacitor indirectly connected to the ground and another element and generation of unnecessary stray capacitance between the capacitor and the ground electrode. This is to realize a small high-frequency module.
  • the high-frequency module of the present invention includes a multilayer substrate, a first ground electrode, a second ground electrode, a first capacitor electrode, a second capacitor electrode, and a passive element circuit unit.
  • the first ground electrode is provided on an arbitrary layer in the multilayer substrate.
  • the second ground electrode is provided below the first ground electrode in the multilayer substrate.
  • the first capacitor electrode is provided below the first ground electrode and above the second ground electrode in the multilayer substrate.
  • the first capacitor electrode constitutes the first capacitor so as to face the first ground electrode.
  • the second capacitor electrode is provided in a lower layer than the first capacitor electrode in the multilayer substrate and in an upper layer than the second ground electrode.
  • the second capacitor electrode constitutes a second capacitor so as to face the second ground electrode.
  • the passive element circuit unit is provided below the first capacitor electrode and above the second capacitor electrode in the multilayer substrate.
  • a passive element circuit part comprises a filter with a 1st capacitor and a 2nd capacitor.
  • the passive element circuit portion is sandwiched between the first capacitor electrode and the second capacitor electrode from the substrate stacking direction.
  • the filter goes beyond the first ground electrode and the second ground electrode. It can suppress combining with the element of.
  • the passive element circuit unit is sandwiched between the first capacitor electrode and the second capacitor electrode, it is possible to suppress the generation of stray capacitance between the passive element circuit unit and the ground electrode.
  • the passive element circuit unit includes a first passive element, a second passive element, a third passive element, a first lead wiring, and a second lead wiring. Also good.
  • the first passive element is connected to the first capacitor, the second passive element is connected to the second capacitor, and the third passive element is between the first passive element and the second passive element. It is connected between them.
  • the first lead wiring is connected between the first passive element and the third passive element, and the second lead wiring is connected between the second passive element and the third passive element.
  • the first and second lead wires are preferably connected to a position sandwiched between the first passive element and the second passive element from the substrate stacking direction.
  • the first and second passive elements are inductors and the third passive element is a capacitor.
  • a high-pass filter can be configured by the passive element circuit unit, the first capacitor, and the second capacitor.
  • the above-described high-frequency module is preferably a diplexer including a plurality of first capacitor electrodes, second capacitor electrodes, and passive element circuit units.
  • each combination of the first capacitor electrode, the second capacitor electrode, and the passive element circuit unit can suppress unnecessary coupling between the capacitor and other elements and generation of unnecessary stray capacitance.
  • the filter formed by the first and second capacitor electrodes and the passive element circuit unit can perform unnecessary coupling with other elements beyond the first ground electrode and the second ground electrode. There is no longer to do.
  • unnecessary stray capacitance does not occur between the passive element circuit unit and the first ground electrode or between the passive element circuit unit and the second ground electrode. Therefore, even if the high-frequency module is downsized, it is possible to easily realize the original high-frequency characteristics according to the design value of each passive element.
  • FIG. 1 is a schematic diagram of a high-frequency module 10 according to the first embodiment.
  • the surface facing the upper side in FIG. 1 in the high-frequency module 10 is referred to as an upper surface
  • the surface facing the lower side is referred to as a lower surface.
  • the high-frequency module 10 is mounted on a top surface of a multilayer substrate 12 having a configuration in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked in the vertical direction and via electrodes are provided to connect the electrode layers.
  • Chip-type circuit element 13 is provided to connect the electrode layers.
  • the laminated substrate 12 includes laminated portions 11A, 11B, 11C, 11D, 11E, 11F, and 11G each made of a single insulating layer or a multilayer insulating layer.
  • the stacked portions 11A, 11B, 11C, 11D, 11E, 11F, and 11G are stacked in order from the upper surface to the lower surface of the stacked substrate 12.
  • the multilayer substrate 12 includes ground electrodes GND1, GND2, capacitor electrodes 14A, 14B, 14C, 14D, inductor electrodes 15A, 15B, and lead wires 17A, 17B.
  • the ground electrode GND1 is located at the interface between the stacked portion 11A and the stacked portion 11B, and is provided as a single electrode layer.
  • the capacitor electrode 14A is located at the interface between the multilayer part 11B and the multilayer part 11C, and is provided as a single electrode layer.
  • the inductor electrode 15A is located inside the multilayer part 11C, and is provided across multiple electrode layers.
  • the capacitor electrode 14B is located at the interface between the stacked portion 11C and the stacked portion 11D, and is provided as a single electrode layer.
  • the capacitor electrode 14C is located at the interface between the stacked portion 11D and the stacked portion 11E, and is provided as a single electrode layer.
  • the inductor electrode 15B is located inside the multilayer part 11E and is provided across multiple electrode layers.
  • the capacitor electrode 14D is located at the interface between the multilayer part 11E and the multilayer part 11F, and is provided as a single electrode layer.
  • the ground electrode GND2 is located at the interface between the stacked portion 11F and the stacked portion 11G, and is provided as a single electrode layer.
  • the lead wiring 17A is provided across the multilayered electrode layers from the laminated portion 11A to the interface between the laminated portion 11C and the laminated portion 11D.
  • the lead-out wiring 17B is provided across the multilayer electrode layers from the interface between the stacked portion 11D and the stacked portion 11E to the stacked portion 11G.
  • the ground electrode GND1 and the capacitor electrode 14A are opposed to each other via the stacked portion 11B to constitute the capacitor C11.
  • the capacitor electrode 14B and the capacitor electrode 14C are opposed to each other via the stacked portion 11D, thereby forming a capacitor C12.
  • the capacitor electrode 14D and the ground electrode GND2 are opposed to each other via the stacked portion 11F, thereby forming a capacitor C13.
  • the inductor electrode 15A constitutes an inductor L11.
  • the inductor electrode 15B constitutes an inductor L12.
  • the capacitors C11, C12, C13 and the inductors L11, L12 are connected in series between the ground electrode GND1 and the ground electrode GND2 in the order of the capacitor C11, the inductor L11, the capacitor C12, the inductor L12, and the capacitor C13.
  • One end of the lead wiring 17A is connected to a connection point A between the capacitor C12 and the inductor L11.
  • the other end of the lead wiring 17 ⁇ / b> A is led to a component connection electrode (port P ⁇ b> 1) provided on the upper surface of the multilayer substrate 12 and connected to the chip type circuit element 13.
  • One end of the lead wiring 17B is connected to a connection point B between the capacitor C12 and the inductor L12.
  • the other end of the lead wiring 17B is led to a mounting electrode (port P2) provided on the lower surface of the multilayer substrate 12.
  • the capacitor C12 is connected in series between the port P1 and the port P2, that is, between the connection point A and the connection point B, and the inductor C is connected between the connection point A and the ground electrode GND1.
  • L11 and the capacitor C11 are connected in series, and the inductor L12 and the capacitor C13 are connected in series between the connection point B and the ground electrode GND2.
  • the capacitors C11, C12, C13 and the inductors L11, L12 constitute a ⁇ -type filter, here a high-pass filter.
  • the port P1 constitutes an input port for inputting a high frequency signal to the high pass filter.
  • the port P2 constitutes an output port that outputs a high-frequency signal from the high-pass filter.
  • the capacitor electrodes 14A, 14B, 14C, and 14D and the inductor electrodes 15A and 15B are stacked from the stacked portion 11B to the stacked portion 11F between the ground electrode GND1 and the ground electrode GND2. It is formed in the area up to. Therefore, the capacitors C11, C12, C13 and the inductors L11, L12, which are passive elements constituting the high-pass filter, are formed in a region from the laminated portion 11B to the laminated portion 11F sandwiched between the ground electrode GND1 and the ground electrode GND2. .
  • the ground electrode GND2 is provided below the ground electrode GND1.
  • the capacitor electrode 14A is provided below the ground electrode GND1 and above the ground electrode GND2.
  • the capacitor electrode 14D is provided in a lower layer than the capacitor electrode 14A and in an upper layer than the ground electrode GND2.
  • the inductor electrode 15A, the capacitor electrodes 14B and 14C, and the inductor electrode 15B are provided below the capacitor electrode 14A and above the capacitor electrode 14D.
  • the inductor electrode 15A, the capacitor electrodes 14B and 14C, and the inductor electrode 15B are sandwiched by the capacitor electrode 14A and the capacitor electrode 14D from the vertical direction, which is the substrate stacking direction of the stacked substrate 12.
  • the ground electrode GND1 corresponds to the first ground electrode in the present embodiment.
  • the capacitor electrode 14A corresponds to the first capacitor electrode in the present embodiment.
  • the capacitor C11 formed by the capacitor electrode 14A and the ground electrode GND1 corresponds to the first capacitor in this embodiment.
  • the capacitor electrode 14D corresponds to the second capacitor electrode in the present embodiment.
  • the ground electrode GND2 corresponds to a second ground electrode in the present embodiment.
  • the capacitor C13 formed by the capacitor electrode 14D and the ground electrode GND2 corresponds to a second capacitor in this embodiment.
  • Inductor L11, capacitor C12, and inductor L12 constitute passive element circuit unit 18 in this embodiment.
  • the lead wiring 17A corresponds to the first lead wiring in the present embodiment.
  • the lead wiring 17B corresponds to a second lead wiring in the present embodiment.
  • the region from the stacked portion 11B to the stacked portion 11F is sandwiched between the ground electrode GND1 and the ground electrode GND2, and is partitioned from the stacked portion 11A and the stacked portion 11G. ing.
  • a high-pass filter including a capacitor C11, a capacitor C12, a capacitor C13, an inductor L11, and an inductor L12 is provided. Therefore, the ground electrodes GND1 and GND2 allow the chip-type circuit element 13, other elements (not shown) provided in the stacked portion 11A, lead wires, other elements (not shown) provided in the stacked portion 11G, lead wires, etc.
  • the capacitor C12, the inductor L11, and the inductor L12 that constitute the passive element circuit unit 18 are sandwiched between the capacitor electrode 14A that constitutes the capacitor C11 and the capacitor electrode 14D that constitutes the capacitor C13 from the substrate lamination direction of the multilayer substrate 12. It is. That is, the passive element circuit unit 18 is opposed to the ground electrode GND1 via the capacitor electrode 14A constituting the capacitor C11. The passive element circuit unit 18 is opposed to the ground electrode GND2 via the capacitor electrode 14D constituting the capacitor C13.
  • capacitor electrodes 14A and 14D that are capacitively coupled to the ground electrodes GND1 and GND2 are interposed between the passive element circuit unit 18 and the ground electrode GND1 and between the passive element circuit unit 18 and the ground electrode GND2. Further, it is possible to suppress the generation of unnecessary stray capacitance between the receiving element circuit unit 18 and the ground electrodes GND1 and GND2. In particular, it is possible to suppress the generation of unnecessary stray capacitance between the capacitor electrodes 14B and 14C and the ground electrodes GND1 and GND2.
  • the capacitor electrodes 14B and 14C are provided at the interface between the multilayer part 11D provided with the inductor electrode 15A and the multilayer part 11D sandwiched between the multilayer part 11E provided with the inductor electrode 15B. As a result, it is possible to secure a large gap between the capacitor electrodes 14B and 14C and the ground electrodes GND1 and GND2, and to further suppress generation of unnecessary stray capacitance between the ground electrodes GND1 and GND2.
  • the high-frequency module 10 is arranged without shifting each passive element in the multilayer substrate 12 from the chip-type circuit element 13, and each passive element in the multilayer substrate 12.
  • the ground electrodes GND1 and GND2 are arranged at a minimum interval to reduce the size, so that unnecessary coupling and stray capacitance do not occur in the high-pass filter, and the original high frequency according to the design value of each passive element. The characteristics can be easily realized.
  • FIG. 2 is a diagram showing the high-frequency characteristics according to the example and the comparative example of the high-frequency module 10, and FIG. 2A is a frequency-power gain diagram and a Smith chart showing the high-frequency characteristics in the example.
  • (2) is a frequency-power gain diagram and a Smith chart showing high-frequency characteristics in a comparative example.
  • FIG. 3 is a schematic diagram of the high-frequency module 20 according to the second embodiment of the present invention.
  • the surface facing the upper side in FIG. 3 is referred to as the upper surface
  • the surface facing the lower side is referred to as the lower surface.
  • the high-frequency module 20 includes a laminated substrate 22 and a chip-type circuit element 23.
  • the laminated substrate 22 includes laminated portions 21A, 21B, 21C, 21D, and 21E.
  • the stacked portions 21 ⁇ / b> A, 21 ⁇ / b> B, 21 ⁇ / b> C, 21 ⁇ / b> D, and 21 ⁇ / b> E are sequentially stacked from the upper surface to the lower surface of the stacked substrate 22.
  • the multilayer substrate 22 includes ground electrodes GND1 and GND2, capacitor electrodes 24A and 24B, an inductor electrode 25A, and lead wires 27A and 27B.
  • the ground electrode GND1 is located at the interface between the stacked portion 21A and the stacked portion 21B, and is provided as a single electrode layer.
  • the capacitor electrode 24A is located at the interface between the stacked portion 21B and the stacked portion 21C, and is provided as a single electrode layer.
  • the inductor electrode 25A is located inside the multilayer portion 21C and is provided across the multilayer electrode layers.
  • the capacitor electrode 24B is located at the interface between the stacked portion 21C and the stacked portion 21D, and is provided as a single electrode layer.
  • the ground electrode GND2 is located at the interface between the stacked portion 21D and the stacked portion 21E, and is provided as a single electrode layer.
  • the lead wiring 27A is provided across the multilayer electrode layers from the laminated portion 21A to the laminated portion 21C.
  • the lead-out wiring 27B is provided across the multilayer electrode layers from the laminated portion 21C to the laminated portion 21E.
  • the ground electrode GND1 and the capacitor electrode 24A are opposed to each other via the stacked portion 21B, thereby forming a capacitor C21.
  • the capacitor electrode 24B and the ground electrode GND2 are opposed to each other via the stacked portion 21D, thereby forming a capacitor C22.
  • the inductor electrode 25A constitutes an inductor L21.
  • the capacitors C21 and C22 and the inductor L21 are connected in series between the ground electrode GND1 and the ground electrode GND2 in the order of the capacitor C21, the inductor L21, and the capacitor C22.
  • one end of the lead wiring 27A is connected to a connection point A between the inductor L21 and the capacitor C21.
  • the other end of the lead wiring 27 ⁇ / b> A is led to a component connection electrode (port P ⁇ b> 1) provided on the upper surface of the multilayer substrate 22 and connected to the chip type circuit element 23.
  • one end of the lead wiring 27B is connected to a connection point B between the inductor L21 and the capacitor C22.
  • the other end of the lead wiring 27 ⁇ / b> B is led to a mounting electrode (port P ⁇ b> 2) provided on the lower surface of the multilayer substrate 22.
  • the inductor L21 is connected between the port P1 and the port P2, that is, between the connection point A and the connection point B, and between the connection point A and the ground electrode GND1, the capacitor C21.
  • a capacitor C22 is connected between the connection point B and the ground electrode GND2.
  • the capacitors C21 and C22 and the inductor L21 constitute a ⁇ -type filter, here a low-pass filter.
  • the port P1 constitutes an input port for inputting a high frequency signal to the low pass filter.
  • the port P2 constitutes an output port that outputs a high-frequency signal from the low-pass filter.
  • the capacitor electrode 24A, the inductor electrode 25A, and the capacitor electrode 24B are from the laminated part 21B sandwiched between the ground electrode GND1 and the ground electrode GND2 to the laminated part 21D. Formed in the region. Therefore, the capacitors C21 and C22 and the inductor L21, which are passive elements constituting the low-pass filter, are formed in a region from the laminated portion 21B to the laminated portion 21D sandwiched between the ground electrode GND1 and the ground electrode GND2.
  • the ground electrode GND2 is provided below the ground electrode GND1.
  • the capacitor electrode 24A is provided below the ground electrode GND1 and above the ground electrode GND2.
  • the capacitor electrode 24B is provided in a lower layer than the capacitor electrode 24A and in an upper layer than the ground electrode GND2.
  • the inductor electrode 25A is provided below the capacitor electrode 24A and above the capacitor electrode 24B.
  • the inductor electrode 25A is sandwiched between the capacitor electrode 24A and the capacitor electrode 24B from the up-down direction, which is the substrate stacking direction of the stacked substrate 22.
  • the ground electrode GND1 corresponds to the first ground electrode.
  • the capacitor electrode 24A corresponds to a first capacitor electrode.
  • the capacitor C21 corresponds to a first capacitor.
  • the capacitor electrode 24B corresponds to a second capacitor electrode.
  • the ground electrode GND2 corresponds to a second ground electrode.
  • the capacitor C22 corresponds to a second capacitor.
  • the inductor L21 constitutes the passive element circuit unit 28.
  • the lead wiring 27A corresponds to a first lead wiring.
  • the lead wiring 27B corresponds to a second lead wiring.
  • the region from the stacked portion 21B to the stacked portion 21D is sandwiched between the ground electrode GND1 and the ground electrode GND2, and is partitioned from the stacked portion 21A and the stacked portion 21E. ing.
  • a low pass filter is provided in each of the stacked portions 21B to 21D. Therefore, the chip electrodes 23, other elements (not shown) provided in the stacked portion 21A, lead wires, other elements (not shown) provided in the stacked portion 21E, lead wires, etc. are provided by the ground electrodes GND1, GND2. Can be prevented from coupling to the low-pass filter.
  • the inductor 21 is sandwiched between the capacitor electrode 24A constituting the capacitor C21 and the capacitor electrode 24B constituting the capacitor C22 from the substrate lamination direction of the multilayer substrate 12. Therefore, capacitor electrodes 24A and 24B that are capacitively coupled to the ground electrodes GND1 and GND2 are interposed between the passive element circuit portion 28 and the ground electrode GND1 and between the passive element circuit portion 28 and the ground electrode GND2. , Generation of unnecessary stray capacitance can be suppressed. In particular, it is possible to suppress the generation of unnecessary stray capacitance between the inductor 21 and the ground electrodes GND1 and GND2.
  • the high-frequency module 20 according to the second embodiment may be provided with a low-pass filter instead of the high-pass filter as in the high-frequency module 10 according to the first embodiment.
  • the same effects as those of the high-frequency module 10 according to the first embodiment can be obtained.
  • the high-frequency module of the present invention can be employed in various filter configurations in addition to a low-pass filter and a high-pass filter.
  • FIG. 4 is a schematic diagram of the high-frequency module 30 according to the third embodiment.
  • the upper surface in FIG. 4 is referred to as the upper surface
  • the lower surface is referred to as the lower surface.
  • the high frequency module 30 includes a laminated substrate 32 and a chip type circuit element 33.
  • the laminated substrate 32 includes laminated portions 31A, 31B, 31C, 31D, 31E, 31F, 31G, and 31H.
  • the stacked portions 31A, 31B, 31C, 31D, 31E, 31F, 31G, and 31H are sequentially stacked from the upper surface to the lower surface of the stacked substrate 32.
  • the multilayer substrate 32 includes ground electrodes GND1, GND2, capacitor electrodes 34A, 34B, 34C, 34D, 44A, 44B, 44C, 44D, 44E, inductor electrodes 35A, 35B, 35C, 45A, 45B, and lead wires. 37A, 37B, 37C.
  • the ground electrode GND1 is located at the interface between the stacked portion 31A and the stacked portion 31B, and is provided as a single electrode layer.
  • the capacitor electrodes 34A and 44A are located at the interface between the multilayer part 31B and the multilayer part 31C, and are provided as a single electrode layer.
  • the inductor electrodes 35A, 35B, and 45A are located inside the multilayer portion 31C and are provided across the multilayer electrode layers.
  • the capacitor electrode 44B is located at the interface between the multilayer part 31C and the multilayer part 31D, and is provided as a single electrode layer.
  • the capacitor electrodes 34B and 44C are located at the interface between the multilayer part 31D and the multilayer part 31E, and are provided as a single electrode layer.
  • the capacitor electrodes 34C and 44D are located at the interface between the multilayer part 31E and the multilayer part 31F, and are provided as a single electrode layer.
  • the inductor electrodes 35C and 45B are located inside the multilayer portion 31F and are provided across multiple electrode layers.
  • the capacitor electrodes 34D and 44E are located at the interface between the multilayer part 31F and the multilayer part 31G, and are provided as a single electrode layer.
  • the ground electrode GND2 is located at the interface between the stacked portion 31G and the stacked portion 31H, and is provided as a single electrode layer.
  • the lead wiring 37A is provided across the multilayer electrode layers from the laminated portion 31A to the laminated portion 31E.
  • the lead wiring 37B is provided across the multilayer electrode layers from the laminated portion 31C to the laminated portion 31H.
  • the lead wiring 37C is provided across the multilayer electrode layers from the laminated portion 31F to the laminated portion 31H.
  • the ground electrode GND1 and the capacitor electrode 34A are opposed to each other via the stacked portion 31B, thereby forming a capacitor C31.
  • the ground electrode GND1 and the capacitor electrode 44A are opposed to each other via the stacked portion 31B, thereby forming a capacitor C41.
  • the capacitor electrode 34B and the capacitor electrode 34C are opposed to each other via the stacked portion 31E, thereby forming a capacitor C32.
  • the capacitor electrode 44B and the capacitor electrode 44C constitute a capacitor C42 by facing each other with the stacked portion 31D interposed therebetween.
  • the capacitor electrode 44C and the capacitor electrode 44D are opposed to each other via the stacked portion 31E, thereby forming a capacitor C43.
  • the capacitor electrode 34D and the ground electrode GND2 are opposed to each other via the stacked portion 31G, thereby forming a capacitor C33.
  • the capacitor electrode 44E and the ground electrode GND2 are opposed to each other via the stacked portion 31G, thereby forming a capacitor C44.
  • the inductor electrode 35A constitutes an inductor L31.
  • the inductor electrode 35B constitutes an inductor L32.
  • the inductor electrode 35C constitutes an inductor L33.
  • the inductor electrode 45A constitutes an inductor L41.
  • the inductor electrode 45B constitutes an inductor L42.
  • the capacitors C31, C32, C33 and the inductors L31, L32, L33 are connected in series between the ground electrode GND1 and the ground electrode GND2 in the order of the capacitor C31, the inductor L31, the inductor L32, the capacitor C32, the inductor L33, and the capacitor C33. ing.
  • One end of the lead wiring 37B is connected to the connection point A between the inductor L32 and the inductor L31.
  • the other end of the lead wiring 37 ⁇ / b> B is led to a mounting electrode (port P ⁇ b> 2) provided on the lower surface of the multilayer substrate 32.
  • one end of the lead wiring 37A is connected to a connection point B between the capacitor C32 and the inductor L33.
  • the other end of the lead wiring 37 ⁇ / b> A is led to a component connection electrode (port P ⁇ b> 1) provided on the upper surface of the multilayer substrate 32 and connected to the chip type circuit element 33.
  • the capacitors C41, C43, and C44 and the inductors L41 and L42 are connected in series between the ground electrode GND1 and the ground electrode GND2 in the order of the capacitor C41, the inductor L41, the capacitor C43, the inductor L42, and the capacitor C44.
  • One end of the lead wiring 37A is connected to a connection point C between the capacitor C43 and the inductor L41 via the capacitor C42.
  • the lead wiring 37A is also connected to the connection point B between the capacitor C32 and the inductor L33, whereby the connection point A and the connection point C are connected to the common port P1.
  • one end of the lead wiring 37C is connected to a connection point D between the capacitor C43 and the inductor L42.
  • the other end of the lead wiring 37 ⁇ / b> C is led to a mounting electrode (port P ⁇ b> 3) provided on the lower surface of the multilayer substrate 32.
  • the capacitor C32 and the inductor L32 are connected in series between the port P1 and the port P2, that is, between the connection point B and the connection point A, and the connection point B and the ground electrode GND2 are connected.
  • the inductor L33 and the capacitor C33 are connected in series between each other, and the inductor L31 and the capacitor C31 are connected in series between the connection point A and the ground electrode GND1.
  • the capacitors C31, C32, and C33 and the inductors L31, L32, and L33 constitute a first ⁇ -type filter.
  • a capacitor C42 and a capacitor C43 are connected in series between the port P1 and the port P3, an inductor L42 and a capacitor C44 are connected in series between the connection point D and the ground electrode GND2, and the connection point C and the ground.
  • An inductor L41 and a capacitor C41 are connected in series between the electrode GND1.
  • the capacitors C41, C42, C43, C44 and the inductors L41, L42 constitute a second ⁇ -type filter.
  • first ⁇ -type filter and second ⁇ -type filter are connected to a common port P1 to constitute a diplexer.
  • the port P1 constitutes an input / output port that inputs a high frequency signal to the diplexer and outputs a high frequency signal from the diplexer.
  • One of the port P2 and the port P3 constitutes an input port for inputting a high frequency signal to the diplexer, and the other constitutes an output port for outputting a high frequency signal from the diplexer.
  • the capacitor electrodes 34A, 34B, 34C, 34D, 44A, 44B, 44C, 44D, and 44E and the inductor electrodes 35A, 35B, 35C, 45A, and 45B are grounded. It is formed in a region from the stacked portion 31B to the stacked portion 31G sandwiched between the electrode GND1 and the ground electrode GND2. Therefore, the capacitors C31, C32, C33, C41, C42, C43, C44, which are passive elements constituting the diplexer, and the inductors L31, L32, L33, L41, L42 are stacked between the ground electrode GND1 and the ground electrode GND2. It is formed in a region from the portion 31B to the stacked portion 31G.
  • the ground electrode GND2 constituting the first ⁇ -type filter is provided below the ground electrode GND1.
  • the capacitor electrode 34A is provided below the ground electrode GND1 and above the ground electrode GND2.
  • the capacitor electrode 34D is provided in a lower layer than the capacitor electrode 34A and in an upper layer than the ground electrode GND2.
  • the inductor electrodes 35A and 35B, the capacitor electrodes 34B and 34C, and the inductor electrode 35C are provided below the capacitor electrode 34A and above the capacitor electrode 34D.
  • the inductor electrodes 35A and 35B, the capacitor electrodes 34B and 34C, and the inductor electrode 35C are sandwiched between the capacitor electrode 34A and the capacitor electrode 34D from the up and down direction, which is the substrate stacking direction of the stacked substrate 32.
  • the ground electrode GND1 corresponds to the first ground electrode.
  • the capacitor electrode 34A corresponds to a first capacitor electrode.
  • the capacitor C31 corresponds to a first capacitor.
  • the capacitor electrode 34D corresponds to a second capacitor electrode.
  • the ground electrode GND2 corresponds to a second ground electrode.
  • the capacitor C33 corresponds to a second capacitor.
  • the inductors L31, L32, L33 and the capacitor C32 constitute a passive element circuit unit 38A.
  • the lead wiring 37B corresponds to a first lead wiring.
  • the lead wiring 37A corresponds to a second lead wiring.
  • the ground electrode GND2 constituting the second ⁇ -type filter is provided on the lower surface side than the ground electrode GND1.
  • the capacitor electrode 44A is provided on the lower surface side than the ground electrode GND1 and on the upper surface side than the ground electrode GND2.
  • the capacitor electrode 44E is provided on the lower surface side than the capacitor electrode 44A and on the upper surface side than the ground electrode GND2.
  • the inductor electrode 45A, the capacitor electrodes 44B, 44C, 44D, and the inductor electrode 45B are provided on the lower surface side than the capacitor electrode 44A and on the upper surface side than the capacitor electrode 44E.
  • the inductor electrode 45A, the capacitor electrodes 44B, 44C, 44D, and the inductor electrode 45B are sandwiched by the capacitor electrode 44A and the capacitor electrode 44E from the up-down direction that is the substrate stacking direction of the stacked substrate 32.
  • the ground electrode GND1 corresponds to the first ground electrode.
  • the capacitor electrode 44A corresponds to a first capacitor electrode.
  • the capacitor C41 corresponds to a first capacitor.
  • the capacitor electrode 44E corresponds to a second capacitor electrode.
  • the ground electrode GND2 corresponds to a second ground electrode.
  • the capacitor C44 corresponds to a second capacitor.
  • the inductors L41 and L42 and the capacitors C42 and C43 constitute a passive element circuit unit 38B.
  • the lead wiring 37A corresponds to a first lead wiring.
  • the lead wiring 37B corresponds to a second lead wiring.
  • the region from the stacked portion 31B to the stacked portion 31G is sandwiched between the ground electrode GND1 and the ground electrode GND2 and is partitioned from the stacked portion 31A and the stacked portion 31H. Yes.
  • a diplexer is provided in each of the stacked portions 31B to 31G. Therefore, the chip-type circuit element 33, other elements (not shown) provided in the stacked portion 31A, lead wires, and other elements (not shown) provided in the stacked portion 31H are grounded by the ground electrodes GND1 and GND2. And lead wires can be prevented from being coupled to the diplexer.
  • the passive element circuit portions 38A and 38B are sandwiched from the substrate stacking direction of the multilayer substrate 32 by the capacitor electrodes 34A and 44A that are capacitively coupled to the ground electrode GND1 and the capacitor electrodes 34D and 44E that are capacitively coupled to the ground electrode GND2. It is. Therefore, capacitor electrodes 34A, 44A, and 34D that are capacitively coupled to the ground electrodes GND1 and GND2 between the passive element circuit portions 38A and 38B and the ground electrode GND1 and between the passive element circuit portions 38A and 38B and the ground electrode GND2. , 44E are interposed, and generation of extra stray capacitance can be suppressed.
  • the capacitor electrodes 34B, 34C, 44B, 44C, and 44D that do not face the ground electrode are all connected to the capacitor electrode that faces the ground electrode via an inductor electrode.
  • a large distance can be secured between the capacitor electrodes 34B, 34C, 44B, 44C, 44D and the ground electrodes GND1, GND2, and the capacitor electrodes 34B, 34C, 44B, 44C, 44D and the ground electrodes GND1, It is possible to suppress the generation of stray capacitance with GND2.
  • the high-frequency module 30 according to the third embodiment is similar to the high-frequency module 10 according to the first embodiment or the high-frequency module 20 according to the second embodiment. Even if a plurality of filters are provided instead of providing one filter, each filter has the same effect as the high-frequency module 10 according to the first embodiment and the high-frequency module 20 according to the second embodiment. be able to.
  • the pass band between the port P1 and the port P2 is 2.40 GHz to 2.50 GHz
  • the pass band between the port P1 and the port P3 is 5
  • the frequency is set to .15 GHz to 5.85 GHz
  • a high frequency characteristic according to a comparative example in which a diplexer including similar passive elements is generated but a stray capacitance Cin is generated at the port P1 will be described.
  • FIGS. 5A and 5B are diagrams showing the high-frequency characteristics according to the embodiment of the high-frequency module 30, wherein FIG. 5A is a frequency-power gain diagram, and FIG. 5B is a Smith chart showing the characteristics between the ports P1 and P2. (C) is a Smith chart showing the characteristics between the ports P1 and P3.
  • FIGS. 6A and 6B are diagrams showing high-frequency characteristics according to a comparative example of the high-frequency module 30, wherein FIG. 6A is a frequency-power gain diagram, and FIG. 6B is a Smith chart showing characteristics between ports P1 and P2. (C) is a Smith chart showing the characteristics between the ports P1 and P3.
  • the impedance viewed from the port P1 can be close to the open state.
  • the pass characteristic (S21 characteristic) of the frequency-power gain diagram of FIG. 5A the power gain at 2.45 GHz is ⁇ 0.02 dB.
  • the passage between the ports P1 and P2 on the other side is performed.
  • the impedance viewed from the port P1 is slightly off from the open vicinity and is capacitive.
  • the pass characteristic (S31 characteristic) of the frequency-power gain diagram of FIG. 5A the power gain at 5.50 GHz was ⁇ 0.03 dB.
  • the Smith chart diagram of FIG. 6B between the ports P1 and P2 having a pass band of 2.40 GHz to 2.50 GHz.
  • the impedance viewed from the port P1 is greatly deviated from the vicinity of the open with respect to the pass band 5.15 GHz to 5.85 GHz between the ports P1 and P3 on the other side, and is capacitive.
  • the pass characteristic (S21 characteristic) of the frequency-power gain diagram of FIG. 6A the power gain at 2.45 GHz is ⁇ 0.22 dB.
  • the impedance viewed from the port P1 deviates greatly from the vicinity of the open than the embodiment shown in FIG.
  • the pass characteristic (S31 characteristic) of the frequency-power gain diagram of FIG. 6A the power gain at 5.50 GHz is ⁇ 0.74 dB.
  • the impedance is close to the open band between the port P1 and the port P2 and between the port P1 and the port P3 in the other party's passband. May change in a direction that deviates from the frequency, making it easier to pass the frequency signal of the other party and increasing the insertion loss.
  • the stray capacitance Cin is not generated, the original performance of the diplexer according to the design value of each passive element constituting the diplexer can be easily realized.
  • the high-frequency module according to the fourth embodiment includes the diplexer shown in the third embodiment and the high-pass filter shown in the first embodiment.
  • FIG. 7 and FIG. 8 are plan views (stacked views) showing the laminated structure of the high-frequency module according to the fourth embodiment.
  • FIGS. 7 (1) to (18) are diagrams showing the form of each electrode layer of the high frequency module according to the fourth embodiment in order from the first layer to the 18th layer.
  • FIGS. 8 (19) to (30) are diagrams showing the form of each electrode layer of the high-frequency module according to the fourth embodiment in order from the 19th layer to the 30th layer.
  • the outline of the laminated structure will be described.
  • a plurality of component connection electrodes are formed in the second electrode layer.
  • the third electrode layer is mainly formed with a ground electrode.
  • Lead wires are mainly formed in the fourth and fifth electrode layers.
  • a ground electrode is mainly formed in the sixth electrode layer.
  • capacitor electrodes and inductor electrodes are mainly formed in the seventh to 26th electrode layers.
  • capacitor electrodes and inductor electrodes are mainly formed in the 27th electrode layer.
  • a ground electrode is mainly formed.
  • Lead electrodes are mainly formed in the 28th and 29th electrode layers.
  • the 30th electrode layer is formed with a plurality of mounting electrodes.
  • the ground electrode GND1 is formed on the sixth electrode layer.
  • a ground electrode GND2 is formed on the 27th electrode layer.
  • a capacitor electrode 14A is formed on the seventh electrode layer.
  • the capacitor electrode 14A constitutes the capacitor C11 so as to face the ground electrode GND1 similarly to the high-pass filter shown in FIG.
  • An inductor electrode 15A is formed from the eleventh electrode layer to the fourteenth electrode layer.
  • the inductor electrode 15A constitutes the inductor L11 in the same manner as the high pass filter shown in FIG.
  • a capacitor electrode 14B is formed on the sixteenth electrode layer.
  • a capacitor electrode 14C is formed on the 17th electrode layer so as to face the capacitor electrode 14B.
  • the capacitor electrode 14B and the capacitor electrode 14C constitute the capacitor C12 as in the high pass filter shown in FIG.
  • An inductor electrode 15B is formed from the 20th electrode layer to the 23rd electrode layer.
  • the inductor electrode 15B constitutes the inductor L12 in the same manner as the high pass filter shown in FIG.
  • a capacitor electrode 14D is formed on the 26th electrode layer.
  • the capacitor electrode 14D constitutes the capacitor C13 so as to face the ground electrode GND2, similarly to the high-pass filter shown in FIG.
  • the capacitor C11, the inductor L11, the capacitor C12, the inductor L12, and the capacitor C13 constituting the high-pass filter are provided in electrode layers from the sixth layer to the 27th layer sandwiched between the ground electrode GND1 and the ground electrode GND2. It has been. Therefore, this high-pass filter is not coupled to other elements provided in the upper layer than the sixth layer and the lead wiring, and other elements provided in the lower layer than the 27th layer and the lead wiring. There is no binding to.
  • the inductor L11, the capacitor C12, and the inductor L12 are sandwiched by the capacitor electrode 14A and the capacitor electrode 14D from the substrate stacking direction. Therefore, in this high pass filter, unnecessary stray capacitance does not occur between the passive elements such as the inductor L11, the capacitor C12, and the inductor L12 and the ground electrodes GND1 and GND2.
  • a capacitor electrode 44A is formed on the seventh electrode layer. Similar to the diplexer shown in FIG. 4, the capacitor electrode 44A constitutes a capacitor C41 so as to face the ground electrode GND1. A capacitor electrode 34A is formed on the eighth electrode layer. Similarly to the diplexer shown in FIG. 4, the capacitor electrode 34A constitutes a capacitor C31 facing the ground electrode GND1.
  • An inductor electrode 45A is formed from the eleventh electrode layer to the thirteenth electrode layer.
  • the inductor electrode 45A constitutes the inductor L41 as in the diplexer shown in FIG.
  • An inductor electrode 35A is formed from the tenth electrode layer to the eleventh electrode layer.
  • the inductor electrode 35A constitutes the inductor L31, similarly to the diplexer shown in FIG.
  • An inductor electrode 35B is formed from the twelfth electrode layer to the fifteenth electrode layer.
  • the inductor electrode 35B constitutes the inductor L32 similarly to the diplexer shown in FIG.
  • a capacitor electrode 44B is formed on the 16th electrode layer.
  • a capacitor electrode 44C is formed on the 17th electrode layer so as to face the capacitor electrode 44B.
  • a capacitor electrode 44D is formed on the 18th electrode layer so as to face the capacitor electrode 44C.
  • the capacitor electrode 44B and the capacitor electrode 44C constitute a capacitor C42 as in the diplexer shown in FIG. Further, the capacitor electrode 44C and the capacitor electrode 44D constitute a capacitor C43, similarly to the diplexer shown in FIG.
  • a capacitor electrode 34B is formed on the 16th electrode layer.
  • a capacitor electrode 34C is formed on the 21st electrode layer.
  • the capacitor electrode 34C also serves as an inductor electrode 35C described later.
  • the capacitor electrode 34B and the capacitor electrode 34C constitute the capacitor C32 similarly to the diplexer shown in FIG.
  • the inductor electrode 45B is formed from the 20th electrode layer to the 24th electrode layer.
  • the inductor electrode 45B constitutes the inductor L42, similarly to the diplexer shown in FIG.
  • An inductor electrode 35C is formed from the 21st electrode layer to the 23rd electrode layer.
  • the inductor electrode 35C constitutes the inductor L33 as in the diplexer shown in FIG.
  • a capacitor electrode 44E is formed on the 26th electrode layer. Similar to the diplexer shown in FIG. 4, the capacitor electrode 44 ⁇ / b> E constitutes a capacitor C ⁇ b> 44 facing the ground electrode GND ⁇ b> 2.
  • a capacitor electrode 34D is formed on the 26th electrode layer. Similar to the diplexer shown in FIG. 4, the capacitor electrode 34D constitutes a capacitor C33 facing the ground electrode GND2.
  • the capacitor C31, the inductor L31, the inductor L32, the capacitor C32, the inductor L33, the capacitor C33, the capacitor C41, the inductor L41, the capacitor C42, the capacitor C43, the inductor L42, and the capacitor C44 that constitute the diplexer are ground electrodes. It is provided on the sixth to 27th electrode layers sandwiched between GND1 and the ground electrode GND2. Therefore, this diplexer is not coupled to other elements provided in the upper layer than the sixth layer and the lead wiring, and is not connected to other elements provided in the lower layer than the 27th layer and the lead wiring. There is no binding.
  • the capacitor C31, the inductor L31, the inductor L32, the capacitor C32, the inductor L33, and the capacitor C33 constituting one ⁇ -type filter of the diplexer are sandwiched between the capacitor electrode 34A and the capacitor electrode 34D from the substrate stacking direction. . Therefore, in this diplexer, unnecessary stray capacitance does not occur between the passive elements such as the inductor L31, the inductor L32, the capacitor C32, and the inductor L33 and the ground electrodes GND1 and GND2.
  • the capacitor C41, the inductor L41, the capacitor C42, the capacitor C43, the inductor L42, and the capacitor C44 constituting the other ⁇ -type filter of the diplexer are sandwiched between the capacitor electrode 44A and the capacitor electrode 44E from the substrate stacking direction. Yes. Therefore, in this diplexer, unnecessary stray capacitance does not occur between the passive elements such as the inductor L41, the capacitor C42, the capacitor C43, and the inductor L42 and the ground electrodes GND1 and GND2.
  • Lead wires 18, 28, 38A, 38B Passive element circuit portions L11, L12, L21, L31, L32, L33, L41, L42 ... Inductors C11, C12 C13, C21, C22, C31, C32, C33, C41, C42, C43, C44 ... capacitor Cin, Cout ... stray capacitance GND1, GND2 ... ground electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)

Abstract

グランド電極(GND1)は、積層基板(12)における任意の層に設けられる。グランド電極(GND2)は、グランド電極(GND1)よりも下層に設けられる。キャパシタ電極(14A)は、グランド電極(GND1)の下層側に対向してキャパシタ(C11)を構成する。キャパシタ電極(14D)は、グランド電極(GND2)の上層側に対向してキャパシタ(C13)を構成する。受動素子回路部(18)は、キャパシタ電極(14A)よりも下層でキャパシタ電極(14D)よりも上層に設けられ、キャパシタ(C11,C13)とともにハイパスフィルタを構成する。受動素子回路部(18)は、キャパシタ電極(14A)とキャパシタ電極(14D)とに挟まれるように配置される。

Description

高周波モジュール
 本発明は、無線通信装置のアンテナフロントエンドなどに用いられる高周波モジュールに関する。
 無線通信装置のアンテナフロントエンドでは、フィルタ回路やダイプレクサ回路などを設けた高周波モジュールが用いられることがある(例えば、特許文献1参照。)。高周波モジュールは、内部電極が形成された積層基板を備えるものであり、フィルタ回路やダイプレクサ回路などを構成する受動素子の少なくとも一部が積層基板の内部電極によって形成されている。
 図9は、特許文献1を参考にした従来の高周波モジュールの構成例を説明する図である。図9に示す高周波モジュールは、複数の絶縁層111~122を積層した構成である。絶縁層111~122それぞれの表面には、分布定数線路や、キャパシタ用電極、グランド電極、引出配線などを構成する内部電極が設けられている。例えば、絶縁層112には、分布定数線路135が設けられている。絶縁層115には、キャパシタ電極131が設けられている。絶縁層116には、キャパシタ電極132,133が設けられている。絶縁層117には、グランド電極134が設けられている。
 キャパシタ電極132,133とキャパシタ電極131とは、絶縁層115を介して対向して第1のキャパシタを構成している。第1のキャパシタは、分布定数線路135と並列接続されている。第1のキャパシタと分布定数線路135との並列回路は、高周波信号が伝搬される引出配線(信号ライン)に対して直列に挿入されている。キャパシタ電極132とグランド電極134とは、絶縁層116を介して対向して第2のキャパシタを構成している。第2のキャパシタは、第1のキャパシタと分布定数線路135との接続点の一方と、グランドとの間に接続されている。キャパシタ電極133とグランド電極134とは、絶縁層116を介して対向して第3のキャパシタを構成している。第3のキャパシタは、第1のキャパシタと分布定数線路135との接続点の他方と、グランドとの間に接続されている。そして、分布定数線路135と第1のキャパシタと第2のキャパシタと第3のキャパシタとにより、π型フィルタ、ここではローパスフィルタが構成されている。
特開2006-203946号公報
 上述した従来構成の高周波モジュールでは、複数のキャパシタのうち、信号ラインに直列に接続されるキャパシタを構成するキャパシタ電極(例えばキャパシタ電極131)が、誘電体層のみを介して、別の層に設けられている分布定数線路や引出配線と対向している。このため、従来構成の高周波モジュールでは、キャパシタの一部に他の素子との間での不要な結合が生じる恐れがある。このような不要な結合を防ぐためには、そのキャパシタ電極を、当該キャパシタ電極以外の他の素子を構成する電極や引出配線からずらすように配置することが有効である。しかしながら、その場合には高周波モジュールが平面方向に大型化する問題がある。
 そこで、信号ラインに直列に接続されるキャパシタと、別の層に設けられている他の素子や引出配線との間に、グランド電極を追加することが考えられる。しかしながら、追加のグランド電極を設ける場合には、キャパシタ電極とグランド電極との間に不要な浮遊容量が発生することがある。このような浮遊容量はフィルタ特性の劣化などを引き起こすため、浮遊容量が大きければ高周波モジュールの本来の高周波特性を実現することが難しくなってしまう。浮遊容量を小さくするためには、キャパシタ電極とグランド電極との配置間隔を広げることが有効であるが、その場合には、高周波モジュールが厚み方向に大型化する問題がある。
 そこで、本発明の目的は、グランドに間接的に接続されているキャパシタと他の素子との間での不要な結合の発生と、そのキャパシタとグランド電極との間での不要な浮遊容量の発生とを防いだ、小型の高周波モジュールを実現することにある。
 この発明の高周波モジュールは、積層基板と、第1のグランド電極と、第2のグランド電極と、第1のキャパシタ電極と、第2のキャパシタ電極と、受動素子回路部と、を備えている。第1のグランド電極は、積層基板における任意の層に設けられる。第2のグランド電極は、積層基板における第1のグランド電極よりも下層に設けられる。第1のキャパシタ電極は、積層基板における第1のグランド電極よりも下層で第2のグランド電極よりも上層に設けられる。そして、第1のキャパシタ電極は、第1のグランド電極に対向して第1のキャパシタを構成する。第2のキャパシタ電極は、積層基板における第1のキャパシタ電極よりも下層で第2のグランド電極よりも上層に設けられる。そして、第2のキャパシタ電極は、第2のグランド電極に対向して第2のキャパシタを構成する。受動素子回路部は、積層基板における第1のキャパシタ電極よりも下層で第2のキャパシタ電極よりも上層に設けられる。そして、受動素子回路部は、第1のキャパシタおよび第2のキャパシタとともにフィルタを構成する。そして、受動素子回路部は、第1のキャパシタ電極と第2のキャパシタ電極とによって基板積層方向から挟まれている。
 この構成では、第1のグランド電極と第2のグランド電極との間に、フィルタを構成する全ての受動素子が挟まれるので、フィルタが第1のグランド電極や第2のグランド電極を越えて他の素子と結合することを抑制できる。また、第1のキャパシタ電極と第2のキャパシタ電極との間に、受動素子回路部が挟まれるので、受動素子回路部とグランド電極との間に浮遊容量が生じることを抑制できる。
 上述の高周波モジュールにおいて、受動素子回路部は、第1の受動素子と、第2の受動素子と、第3の受動素子と、第1の引出配線と、第2の引出配線と、を備えてもよい。第1の受動素子は、第1のキャパシタに接続され、第2の受動素子は、第2のキャパシタに接続され、第3の受動素子は、第1の受動素子と第2の受動素子との間に接続されるものである。第1の引出配線は、第1の受動素子と第3の受動素子との間に接続され、第2の引出配線は、第2の受動素子と第3の受動素子との間に接続されるものである。第1および第2の引出配線は、第1の受動素子と第2の受動素子とによって基板積層方向から挟まれる位置に接続されていると好適である。この構成では、第1および第2の引出配線と第1および第2のグランド電極との間に、第1および第2の受動素子が介在するので、第1および第2の引出配線と第1および第2のグランド電極との間に不要な浮遊容量が生じにくくなる。
 上述の高周波モジュールにおいて、第1および第2の受動素子はインダクタであり、第3の受動素子はキャパシタであると好適である。この構成では、受動素子回路部と第1のキャパシタと第2のキャパシタとによりハイパスフィルタを構成することができる。
 上述の高周波モジュールは、第1のキャパシタ電極と第2のキャパシタ電極と受動素子回路部とを複数組備えるダイプレクサであると好適である。この構成では、第1のキャパシタ電極と第2のキャパシタ電極と受動素子回路部との各組で、キャパシタと他の素子との不要な結合や、不要な浮遊容量の発生を抑制できる。
 この発明によれば、第1および第2のキャパシタ電極と受動素子回路部とが構成するフィルタが、第1のグランド電極や第2のグランド電極を越えて、他の素子との不要な結合をすることがなくなる。また、受動素子回路部と第1のグランド電極との間や、受動素子回路部と第2のグランド電極との間に、不要な浮遊容量が生じることがなくなる。したがって、高周波モジュールを小型化しても、各受動素子の設計値に応じた本来の高周波特性を容易に実現することが可能となる。
本発明の第1の実施形態に係る高周波モジュールの模式的な断面図である。 第1の実施形態に係る高周波モジュールの高周波特性を説明する図である。 本発明の第2の実施形態に係る高周波モジュールの模式的な断面図である。 本発明の第3の実施形態に係る高周波モジュールの模式的な断面図である。 第3の実施形態の実施例に係る高周波モジュールの高周波特性を説明する図である。 第3の実施形態に対する比較例に係る高周波モジュールの高周波特性を説明する図である。 本発明の第4の実施形態に係る高周波モジュールの積層構造を示す図である。 本発明の第4の実施形態に係る高周波モジュールの各層構造を示す図である。 従来構成の高周波モジュールについて説明する図である。
 まず、本発明の第1の実施形態に係る高周波モジュールについて説明する。
 図1は、第1の実施形態に係る高周波モジュール10の模式図である。以下、高周波モジュール10における図1中の上側を向く面を上面、下側を向く面を下面と称して説明を行う。
 高周波モジュール10は、複数の絶縁層と複数の電極層とを上下方向に交互に積層し、電極層間を接続するビア電極を設けた構成の積層基板12と、積層基板12の上面に実装されたチップ型回路素子13とを備えている。
 積層基板12は、それぞれ単層の絶縁層または多層の絶縁層からなる積層部11A,11B,11C,11D,11E,11F,11Gを備えている。積層部11A,11B,11C,11D,11E,11F,11Gは、積層基板12の上面から下面に掛けて順に積層されている。
 また、積層基板12は、グランド電極GND1,GND2と、キャパシタ電極14A,14B,14C,14Dと、インダクタ電極15A,15Bと、引出配線17A,17Bと、を備えている。
 グランド電極GND1は、積層部11Aと積層部11Bとの界面に位置し、単層の電極層で設けられている。キャパシタ電極14Aは、積層部11Bと積層部11Cとの界面に位置し、単層の電極層で設けられている。インダクタ電極15Aは、積層部11Cの内部に位置し、多層の電極層に亘って設けられている。キャパシタ電極14Bは、積層部11Cと積層部11Dとの界面に位置し、単層の電極層で設けられている。キャパシタ電極14Cは、積層部11Dと積層部11Eとの界面に位置し、単層の電極層で設けられている。インダクタ電極15Bは、積層部11Eの内部に位置し、多層の電極層に亘って設けられている。キャパシタ電極14Dは、積層部11Eと積層部11Fとの界面に位置し、単層の電極層で設けられている。グランド電極GND2は、積層部11Fと積層部11Gとの界面に位置し、単層の電極層で設けられている。引出配線17Aは、積層部11Aから積層部11Cと積層部11Dとの界面に掛けて、多層の電極層に亘って設けられている。引出配線17Bは、積層部11Dと積層部11Eとの界面から積層部11Gに掛けて、多層の電極層に亘って設けられている。
 グランド電極GND1とキャパシタ電極14Aとは、積層部11Bを介して対向することにより、キャパシタC11を構成している。キャパシタ電極14Bとキャパシタ電極14Cとは、積層部11Dを介して対向することにより、キャパシタC12を構成している。キャパシタ電極14Dとグランド電極GND2とは、積層部11Fを介して対向することにより、キャパシタC13を構成している。インダクタ電極15Aは、インダクタL11を構成している。インダクタ電極15Bは、インダクタL12を構成している。
 キャパシタC11,C12,C13とインダクタL11,L12とは、キャパシタC11、インダクタL11、キャパシタC12、インダクタL12、キャパシタC13の順に、グランド電極GND1とグランド電極GND2との間に直列接続されている。そして、キャパシタC12とインダクタL11との接続点Aには、引出配線17Aの一端が接続されている。引出配線17Aの他端は、積層基板12の上面に設けられている部品接続用電極(ポートP1)まで引き出されて、チップ型回路素子13に接続されている。また、キャパシタC12とインダクタL12との接続点Bには、引出配線17Bの一端が接続されている。引出配線17Bの他端は、積層基板12の下面に設けられている実装用電極(ポートP2)まで引き出されている。
 このように高周波モジュール10においては、ポートP1とポートP2との間、即ち接続点Aと接続点Bとの間にキャパシタC12が直列接続され、接続点Aとグランド電極GND1との間に、インダクタL11とキャパシタC11とが直列接続され、接続点Bとグランド電極GND2との間に、インダクタL12とキャパシタC13とが直列接続されている。これにより、キャパシタC11,C12,C13とインダクタL11,L12とは、π型フィルタ、ここではハイパスフィルタを構成している。そして、ポートP1は、このハイパスフィルタに高周波信号を入力する入力ポートを構成している。また、ポートP2は、このハイパスフィルタから高周波信号を出力する出力ポートを構成している。
 ここで、各部の上下の位置関係について詳述すると、キャパシタ電極14A,14B,14C,14Dとインダクタ電極15A,15Bとは、グランド電極GND1とグランド電極GND2とに挟まれる積層部11Bから積層部11Fまでの領域に形成されている。したがって、ハイパスフィルタを構成する受動素子であるキャパシタC11,C12,C13とインダクタL11,L12は、グランド電極GND1とグランド電極GND2とに挟まれる積層部11Bから積層部11Fまでの領域に形成されている。
 より具体的には、グランド電極GND2は、グランド電極GND1よりも下層に設けられている。キャパシタ電極14Aは、グランド電極GND1よりも下層で、グランド電極GND2よりも上層に設けられている。キャパシタ電極14Dは、キャパシタ電極14Aよりも下層で、グランド電極GND2よりも上層に設けられている。インダクタ電極15Aとキャパシタ電極14B,14Cとインダクタ電極15Bとは、キャパシタ電極14Aよりも下層で、キャパシタ電極14Dよりも上層に設けられている。また、インダクタ電極15Aとキャパシタ電極14B,14Cとインダクタ電極15Bとは、キャパシタ電極14Aとキャパシタ電極14Dとにより、積層基板12の基板積層方向である上下方向から挟まれている。
 したがって、グランド電極GND1は、本実施形態において第1のグランド電極に相当する。キャパシタ電極14Aは、本実施形態において第1のキャパシタ電極に相当する。そして、キャパシタ電極14Aとグランド電極GND1とが構成するキャパシタC11は、本実施形態において第1のキャパシタに相当する。また、キャパシタ電極14Dは、本実施形態において第2のキャパシタ電極に相当する。グランド電極GND2は、本実施形態において第2のグランド電極に相当する。そして、キャパシタ電極14Dとグランド電極GND2とが構成するキャパシタC13は、本実施形態において第2のキャパシタに相当する。インダクタL11とキャパシタC12とインダクタL12とは、本実施形態において受動素子回路部18を構成する。引出配線17Aは、本実施形態において第1の引出配線に相当する。引出配線17Bは、本実施形態において第2の引出配線に相当する。
 以上のように構成した本実施形態の高周波モジュール10においては、積層部11Bから積層部11Fまでの領域が、グランド電極GND1とグランド電極GND2とに挟まれ、積層部11Aや積層部11Gから区画されている。そして、積層部11B~11Fに、キャパシタC11とキャパシタC12とキャパシタC13とインダクタL11とインダクタL12とからなるハイパスフィルタが設けられている。したがって、グランド電極GND1,GND2によって、チップ型回路素子13や、積層部11Aに設けられる他の素子(不図示)や引出配線、積層部11Gに設けられる他の素子(不図示)や引出配線などが、ハイパスフィルタに結合することを防ぐことができる。
 その上、受動素子回路部18を構成するキャパシタC12とインダクタL11とインダクタL12は、キャパシタC11を構成するキャパシタ電極14AとキャパシタC13を構成するキャパシタ電極14Dとによって、積層基板12の基板積層方向から挟まれている。即ち、受動素子回路部18は、キャパシタC11を構成するキャパシタ電極14Aを介して、グランド電極GND1に対向している。また、受動素子回路部18は、キャパシタC13を構成するキャパシタ電極14Dを介して、グランド電極GND2に対向している。したがって、受動素子回路部18とグランド電極GND1との間や、受動素子回路部18とグランド電極GND2との間に、グランド電極GND1,GND2に容量結合するキャパシタ電極14A,14Dが介在することになり、受信素子回路部18とグランド電極GND1,GND2との間に不要な浮遊容量が生じることを抑制できる。特には、キャパシタ電極14B,14Cとグランド電極GND1,GND2との間に不要な浮遊容量が生じることを抑制できる。
 また、キャパシタ電極14B、14Cは、インダクタ電極15Aが設けられている積層部11Cと、インダクタ電極15Bが設けられている積層部11Eと、に挟まれる積層部11Dの界面に設けられている。このことによって、キャパシタ電極14B、14Cとグランド電極GND1,GND2とが対向する間隔を大きく確保することができ、グランド電極GND1,GND2との間に不要な浮遊容量が生じることをより抑制できる。
 以上に説明したような構成とすることにより、高周波モジュール10は、積層基板12の内部の各受動素子をチップ型回路素子13からずらすことなく配置し、また、積層基板12の内部の各受動素子とグランド電極GND1,GND2とを最小限の間隔で配置するようにして小型化しても、ハイパスフィルタに不要な結合や浮遊容量が生じることが無く、各受動素子の設計値に応じた本来の高周波特性を容易に実現することができる。
 次に、高周波モジュール10の具体的な高周波特性について、通過帯域を5.15GHz~5.85GHzとし、約2.8GHz付近に減衰極を持つハイパスフィルタを構成する場合を例に説明する。また、比較対象として、同様の受動素子からなるハイパスフィルタであるが、キャパシタC12とグランド電極GND2との間に浮遊容量Cinが発生し、キャパシタC12とグランド電極GND1との間に浮遊容量Coutが発生している比較例に係る高周波特性についても説明する。
 図2は、高周波モジュール10の実施例と比較例とに係る高周波特性を示す図であり、(A)は、実施例における高周波特性を示す周波数-電力利得図およびスミスチャート図であり、(B)は、比較例における高周波特性を示す周波数-電力利得図およびスミスチャート図である。
 図2(A)に示す実施例では、5.15GHz~5.85GHzの通過帯域において、スミスチャート図に示すように、キャパシタ12とグランド電極GND1とGND2の間に浮遊容量が発生しないため、ハイパスフィルタの入出力インピーダンスが整合した状態であり、周波数-電力利得図の反射特性(S22特性)に示すように急峻で大きな減衰量を有する極が形成された。また、周波数-電力利得図の通過特性(S21特性)に示すように、5.15GHzでの電力利得は-0.15dBとなり、5.85GHzでの電力利得は-0.20dBとなっている。
 これに対して、図2(B)に示す実施例では、浮遊容量CinおよびCoutが発生しているために、5.15GHz~5.85GHzの通過帯域において、スミスチャート図に示すように、50Ωのインピーダンスに対して不整合となり、周波数-電力利得図の反射特性(S22特性)に示すように、前述の実施例よりも緩やかで比較的小さな減衰量を有する極が形成された。また、周波数-電力利得図の通過特性(S21特性)に示すように、5.15GHzでの電力利得は-0.09dBと実施例と同等となるが、5.85GHzでの電力利得が-0.38dBであり、実施例と比較して損失が大きくなっている。
 即ち、比較例のように不要な浮遊容量Cin,Coutが発生している場合には、ハイパスフィルタの入出力インピーダンスが不整合となり、反射が大きくなり、挿入損失が増加するなどの影響を受け、フィルタを構成する各受動素子の設計値に応じた本来の高周波特性からのずれが生じる。一方、実施例では、浮遊容量Cin,Coutが発生しないために、フィルタを構成する各受動素子の設計値に応じた本来の高周波特性を容易に実現することができる。
 次に、本発明の第2の実施形態に係る高周波モジュールについて説明する。第2の実施形態に係る高周波モジュールは、ハイパスフィルタに替えてローパスフィルタを構成したものである。図3は、本発明の第2の実施形態に係る高周波モジュール20の模式図である。以下、高周波モジュール20において、図3中の上側を向く面を上面、下側を向く面を下面と称して説明を行う。
 高周波モジュール20は、積層基板22とチップ型回路素子23とを備えている。積層基板22は、積層部21A,21B,21C,21D,21Eを備えている。積層部21A,21B,21C,21D,21Eは、積層基板22の上面から下面に掛けて順に積層されている。また、積層基板22は、グランド電極GND1,GND2と、キャパシタ電極24A,24Bと、インダクタ電極25Aと、引出配線27A,27Bと、を備えている。
 グランド電極GND1は、積層部21Aと積層部21Bとの界面に位置し、単層の電極層で設けられている。キャパシタ電極24Aは、積層部21Bと積層部21Cとの界面に位置し、単層の電極層で設けられている。インダクタ電極25Aは、積層部21Cの内部に位置し、多層の電極層に亘って設けられている。キャパシタ電極24Bは、積層部21Cと積層部21Dとの界面に位置し、単層の電極層で設けられている。グランド電極GND2は、積層部21Dと積層部21Eとの界面に位置し、単層の電極層で設けられている。引出配線27Aは、積層部21Aから積層部21Cに掛けて、多層の電極層に亘って設けられている。引出配線27Bは、積層部21Cから積層部21Eに掛けて、多層の電極層に亘って設けられている。
 グランド電極GND1とキャパシタ電極24Aとは、積層部21Bを介して対向することにより、キャパシタC21を構成している。キャパシタ電極24Bとグランド電極GND2とは、積層部21Dを介して対向することにより、キャパシタC22を構成している。インダクタ電極25Aは、インダクタL21を構成している。
 キャパシタC21,C22とインダクタL21とは、キャパシタC21、インダクタL21、キャパシタC22の順に、グランド電極GND1とグランド電極GND2との間に直列接続されている。そして、インダクタL21とキャパシタC21との接続点Aには、引出配線27Aの一端が接続されている。引出配線27Aの他端は、積層基板22の上面に設けられている部品接続用電極(ポートP1)まで引き出されて、チップ型回路素子23に接続されている。また、インダクタL21とキャパシタC22との接続点Bには、引出配線27Bの一端が接続されている。引出配線27Bの他端は、積層基板22の下面に設けられている実装用電極(ポートP2)まで引き出されている。
 このように高周波モジュール20においては、ポートP1とポートP2との間、即ち接続点Aと接続点Bとの間にインダクタL21が接続され、接続点Aとグランド電極GND1との間に、キャパシタC21が接続され、接続点Bとグランド電極GND2との間に、キャパシタC22が接続されている。これにより、キャパシタC21,C22とインダクタL21とは、π型フィルタ、ここではローパスフィルタを構成している。そして、ポートP1は、このローパスフィルタに高周波信号を入力する入力ポートを構成している。また、ポートP2は、このローパスフィルタから高周波信号を出力する出力ポートを構成している。
 ここで、各部の上下の位置関係について詳述すると、キャパシタ電極24Aと、インダクタ電極25Aと、キャパシタ電極24Bとは、グランド電極GND1とグランド電極GND2とに挟まれる積層部21Bから積層部21Dまでの領域に形成されている。したがって、ローパスフィルタを構成する受動素子であるキャパシタC21,C22とインダクタL21とは、グランド電極GND1とグランド電極GND2とに挟まれる積層部21Bから積層部21Dまでの領域に形成されている。
 より具体的には、グランド電極GND2は、グランド電極GND1よりも下層に設けられている。キャパシタ電極24Aは、グランド電極GND1よりも下層で、グランド電極GND2よりも上層に設けられている。キャパシタ電極24Bは、キャパシタ電極24Aよりも下層で、グランド電極GND2よりも上層に設けられている。インダクタ電極25Aは、キャパシタ電極24Aよりも下層で、キャパシタ電極24Bよりも上層に設けられている。また、インダクタ電極25Aは、キャパシタ電極24Aとキャパシタ電極24Bとにより、積層基板22の基板積層方向である上下方向から挟まれている。
 したがって、グランド電極GND1は、第1のグランド電極に相当する。キャパシタ電極24Aは、第1のキャパシタ電極に相当する。そして、キャパシタC21は、第1のキャパシタに相当する。また、キャパシタ電極24Bは、第2のキャパシタ電極に相当する。グランド電極GND2は、第2のグランド電極に相当する。そして、キャパシタC22は、第2のキャパシタに相当する。インダクタL21は、受動素子回路部28を構成する。引出配線27Aは、第1の引出配線に相当する。引出配線27Bは、第2の引出配線に相当する。
 以上のように構成した本実施形態の高周波モジュール20においては、積層部21Bから積層部21Dまでの領域が、グランド電極GND1とグランド電極GND2とに挟まれ、積層部21Aや積層部21Eから区画されている。そして、積層部21B~21Dに、ローパスフィルタが設けられている。したがって、グランド電極GND1,GND2によって、チップ型回路素子23や、積層部21Aに設けられる他の素子(不図示)や引出配線、積層部21Eに設けられる他の素子(不図示)や引出配線などが、ローパスフィルタに結合することを防ぐことができる。
 その上、インダクタ21は、キャパシタC21を構成するキャパシタ電極24Aと、キャパシタC22を構成するキャパシタ電極24Bとによって、積層基板12の基板積層方向から挟まれている。したがって、受動素子回路部28とグランド電極GND1との間や、受動素子回路部28とグランド電極GND2との間に、グランド電極GND1,GND2に容量結合するキャパシタ電極24A,24Bが介在することになり、不要な浮遊容量が生じることを抑制できる。特に、インダクタ21とグランド電極GND1,GND2との間に不要な浮遊容量が生じることを抑制できる。
 以上に説明したような構成とすることにより、第2の実施形態に係る高周波モジュール20においては、第1の実施形態に係る高周波モジュール10のようなハイパスフィルタではなく、ローパスフィルタを設けていても、第1の実施形態に係る高周波モジュール10と同様な効果を奏することができる。
 なお、本発明の高周波モジュールは、ローパスフィルタやハイパスフィルタの他にも、様々なフィルタの構成に採用することができる。
 次に、本発明の第3の実施形態に係る高周波モジュールについて説明する。第3の実施形態に係る高周波モジュールは、2つのπ型フィルタを備えるダイプレクサを構成するものである。図4は、第3の実施形態に係る高周波モジュール30の模式図である。以下、高周波モジュール30において、図4中の上側を向く面を上面、下側を向く面を下面と称して説明を行う。
 高周波モジュール30は、積層基板32と、チップ型回路素子33とを備えている。積層基板32は、積層部31A,31B,31C,31D,31E,31F,31G,31Hを備えている。積層部31A,31B,31C,31D,31E,31F,31G,31Hは、積層基板32の上面から下面に掛けて順に積層されている。
 また、積層基板32は、グランド電極GND1,GND2と、キャパシタ電極34A,34B,34C,34D,44A,44B,44C,44D,44Eと、インダクタ電極35A,35B,35C,45A,45Bと、引出配線37A,37B,37Cと、を備えている。
 グランド電極GND1は、積層部31Aと積層部31Bとの界面に位置し、単層の電極層で設けられている。キャパシタ電極34A,44Aは、積層部31Bと積層部31Cとの界面に位置し、単層の電極層で設けられている。インダクタ電極35A,35B,45Aは、積層部31Cの内部に位置し、多層の電極層に亘って設けられている。キャパシタ電極44Bは、積層部31Cと積層部31Dとの界面に位置し、単層の電極層で設けられている。キャパシタ電極34B,44Cは、積層部31Dと積層部31Eとの界面に位置し、単層の電極層で設けられている。キャパシタ電極34C,44Dは、積層部31Eと積層部31Fとの界面に位置し、単層の電極層で設けられている。インダクタ電極35C,45Bは、積層部31Fの内部に位置し、多層の電極層に亘って設けられている。キャパシタ電極34D,44Eは、積層部31Fと積層部31Gとの界面に位置し、単層の電極層で設けられている。グランド電極GND2は、積層部31Gと積層部31Hとの界面に位置し、単層の電極層で設けられている。引出配線37Aは、積層部31Aから積層部31Eに掛けて、多層の電極層に亘って設けられている。引出配線37Bは、積層部31Cから積層部31Hに掛けて、多層の電極層に亘って設けられている。引出配線37Cは、積層部31Fから積層部31Hに掛けて、多層の電極層に亘って設けられている。
 グランド電極GND1とキャパシタ電極34Aとは、積層部31Bを介して対向することにより、キャパシタC31を構成している。グランド電極GND1とキャパシタ電極44Aとは、積層部31Bを介して対向することにより、キャパシタC41を構成している。キャパシタ電極34Bとキャパシタ電極34Cとは、積層部31Eを介して対向することにより、キャパシタC32を構成している。キャパシタ電極44Bとキャパシタ電極44Cとは、積層部31Dを介して対向することにより、キャパシタC42を構成している。キャパシタ電極44Cとキャパシタ電極44Dとは、積層部31Eを介して対向することにより、キャパシタC43を構成している。キャパシタ電極34Dとグランド電極GND2とは、積層部31Gを介して対向することにより、キャパシタC33を構成している。キャパシタ電極44Eとグランド電極GND2とは、積層部31Gを介して対向することにより、キャパシタC44を構成している。インダクタ電極35Aは、インダクタL31を構成している。インダクタ電極35Bは、インダクタL32を構成している。インダクタ電極35Cは、インダクタL33を構成している。インダクタ電極45Aは、インダクタL41を構成している。インダクタ電極45Bは、インダクタL42を構成している。
 キャパシタC31,C32,C33とインダクタL31,L32,L33とは、キャパシタC31、インダクタL31、インダクタL32、キャパシタC32、インダクタL33、キャパシタC33の順に、グランド電極GND1とグランド電極GND2との間に直列接続されている。そして、インダクタL32とインダクタL31との接続点Aには、引出配線37Bの一端が接続されている。引出配線37Bの他端は、積層基板32の下面に設けられている実装用電極(ポートP2)まで引き出されている。また、キャパシタC32とインダクタL33との接続点Bには、引出配線37Aの一端が接続されている。引出配線37Aの他端は、積層基板32の上面に設けられている部品接続用電極(ポートP1)まで引き出されて、チップ型回路素子33に接続されている。
 また、キャパシタC41,C43,C44とインダクタL41,L42とは、キャパシタC41、インダクタL41、キャパシタC43、インダクタL42、キャパシタC44の順に、グランド電極GND1とグランド電極GND2との間に直列接続されている。そして、キャパシタC43とインダクタL41との接続点Cには、キャパシタC42を介して引出配線37Aの一端が接続されている。引出配線37Aは、先に説明したようにキャパシタC32とインダクタL33との接続点Bにも接続されており、これにより接続点Aと接続点Cとは、共通するポートP1に接続されている。また、キャパシタC43とインダクタL42との接続点Dには、引出配線37Cの一端が接続されている。引出配線37Cの他端は、積層基板32の下面に設けられている実装用電極(ポートP3)まで引き出されている。
 このように高周波モジュール30においては、ポートP1とポートP2との間、即ち接続点Bと接続点Aとの間に、キャパシタC32とインダクタL32とが直列接続され、接続点Bとグランド電極GND2との間にインダクタL33とキャパシタC33とが直列接続され、接続点Aとグランド電極GND1との間にインダクタL31とキャパシタC31とが直列接続されている。これにより、キャパシタC31,C32,C33とインダクタL31,L32,L33とは、第1のπ型フィルタを構成している。
 また、ポートP1とポートP3との間にはキャパシタC42とキャパシタC43とが直列接続され、接続点Dとグランド電極GND2との間にインダクタL42とキャパシタC44とが直列接続され、接続点Cとグランド電極GND1との間にインダクタL41とキャパシタC41とが直列接続されている。これにより、キャパシタC41,C42,C43,C44とインダクタL41,L42とは、第2のπ型フィルタを構成している。
 これらの第1のπ型フィルタと第2のπ型フィルタとは共通するポートP1に接続されて、ダイプレクサを構成している。そして、ポートP1は、このダイプレクサに高周波信号を入力するとともに、ダイプレクサから高周波信号を出力する入出力兼用ポートを構成している。また、ポートP2とポートP3とは、一方が、このダイプレクサに高周波信号を入力する入力ポートを構成し、他方が、このダイプレクサから高周波信号を出力する出力ポートを構成している。
 ここで、各部の上下の位置関係について詳述すると、キャパシタ電極34A,34B,34C,34D,44A,44B,44C,44D,44Eと、インダクタ電極35A,35B,35C,45A,45Bとは、グランド電極GND1とグランド電極GND2とに挟まれる積層部31Bから積層部31Gまでの領域に形成されている。したがって、ダイプレクサを構成する受動素子であるキャパシタC31,C32,C33,C41,C42,C43,C44とインダクタL31,L32,L33,L41,L42とは、グランド電極GND1とグランド電極GND2とに挟まれる積層部31Bから積層部31Gまでの領域に形成されている。
 より具体的には、第1のπ型フィルタを構成するグランド電極GND2は、グランド電極GND1よりも下層に設けられている。キャパシタ電極34Aは、グランド電極GND1よりも下層で、グランド電極GND2よりも上層に設けられている。キャパシタ電極34Dは、キャパシタ電極34Aよりも下層で、グランド電極GND2よりも上層に設けられている。インダクタ電極35A,35Bとキャパシタ電極34B,34Cとインダクタ電極35Cとは、キャパシタ電極34Aよりも下層で、キャパシタ電極34Dよりも上層に設けられている。また、インダクタ電極35A,35Bとキャパシタ電極34B,34Cとインダクタ電極35Cとは、キャパシタ電極34Aとキャパシタ電極34Dとにより、積層基板32の基板積層方向である上下方向から挟まれている。
 したがって、第1のπ型フィルタにおいて、グランド電極GND1は、第1のグランド電極に相当する。キャパシタ電極34Aは、第1のキャパシタ電極に相当する。そして、キャパシタC31は、第1のキャパシタに相当する。キャパシタ電極34Dは、第2のキャパシタ電極に相当する。グランド電極GND2は、第2のグランド電極に相当する。そして、キャパシタC33は、第2のキャパシタに相当する。インダクタL31,L32,L33とキャパシタC32とは、受動素子回路部38Aを構成する。引出配線37Bは、第1の引出配線に相当する。引出配線37Aは、第2の引出配線に相当する。
 また、第2のπ型フィルタを構成するグランド電極GND2は、グランド電極GND1よりも下面側に設けられている。キャパシタ電極44Aは、グランド電極GND1よりも下面側で、グランド電極GND2よりも上面側に設けられている。キャパシタ電極44Eは、キャパシタ電極44Aよりも下面側で、グランド電極GND2よりも上面側に設けられている。インダクタ電極45Aとキャパシタ電極44B,44C,44Dとインダクタ電極45Bとは、キャパシタ電極44Aよりも下面側で、キャパシタ電極44Eよりも上面側に設けられている。また、インダクタ電極45Aとキャパシタ電極44B,44C,44Dとインダクタ電極45Bとは、キャパシタ電極44Aとキャパシタ電極44Eとにより、積層基板32の基板積層方向である上下方向から挟まれている。
 したがって、第2のπ型フィルタにおいて、グランド電極GND1は、第1のグランド電極に相当する。キャパシタ電極44Aは、第1のキャパシタ電極に相当する。そして、キャパシタC41は、第1のキャパシタに相当する。キャパシタ電極44Eは、第2のキャパシタ電極に相当する。グランド電極GND2は、第2のグランド電極に相当する。そして、キャパシタC44は、第2のキャパシタに相当する。インダクタL41,L42とキャパシタC42,C43とは、受動素子回路部38Bを構成する。引出配線37Aは、第1の引出配線に相当する。引出配線37Bは、第2の引出配線に相当する。
 以上のように構成した本実施形態の高周波モジュール30においては積層部31Bから積層部31Gまでの領域が、グランド電極GND1とグランド電極GND2とに挟まれ、積層部31Aや積層部31Hから区画されている。そして、積層部31B~31Gに、ダイプレクサが設けられている。したがって、グランド電極GND1,GND2によって、チップ型回路素子33や、積層部31Aに設けられている他の素子(不図示)や引出配線、積層部31Hに設けられている他の素子(不図示)や引出配線などが、ダイプレクサに結合することを防ぐことができる。
 その上、受動素子回路部38A,38Bは、グランド電極GND1に容量結合するキャパシタ電極34A,44Aと、グランド電極GND2に容量結合するキャパシタ電極34D,44Eとによって、積層基板32の基板積層方向から挟まれている。したがって、受動素子回路部38A,38Bとグランド電極GND1との間や、受動素子回路部38A,38Bとグランド電極GND2との間に、グランド電極GND1,GND2に容量結合するキャパシタ電極34A,44A,34D,44Eが介在することになり、余計な浮遊容量が生じることを抑制できる。
 また、前述のグランド電極に対向しないキャパシタ電極34B,34C,44B,44C,44Dは、いずれも、グランド電極に対向するキャパシタ電極に対して、インダクタ電極を介して接続されている。このことによって、キャパシタ電極34B,34C,44B,44C,44Dとグランド電極GND1,GND2との対向する間隔を大きく確保することができ、キャパシタ電極34B,34C,44B,44C,44Dとグランド電極GND1,GND2との間に浮遊容量が生じることを抑制できる。
 以上に説明したような構成とすることにより、第3の実施形態に係る高周波モジュール30においては、第1の実施形態に係る高周波モジュール10や、第2の実施形態に係る高周波モジュール20のような一つのフィルタを設けるのではなく、複数のフィルタを設けていても、各フィルタにおいて、第1の実施形態に係る高周波モジュール10や、第2の実施形態に係る高周波モジュール20と同様な効果を得ることができる。
 ここで、高周波モジュール30の具体的な高周波特性について、ポートP1とポートP2との間での通過帯域を2.40GHz~2.50GHzとし、ポートP1とポートP3との間での通過帯域を5.15GHz~5.85GHzとする場合を例に説明する。また、比較対象として、同様の受動素子からなるダイプレクサであるが、ポートP1に浮遊容量Cinが発生している比較例に係る高周波特性についても説明する。
 図5は、高周波モジュール30の実施例に係る高周波特性を示す図であり、(A)は、周波数-電力利得図であり、(B)は、ポートP1-P2間の特性を示すスミスチャート図であり、(C)は、ポートP1-P3間の特性を示すスミスチャート図である。
 図6は、高周波モジュール30の比較例に係る高周波特性を示す図であり、(A)は、周波数-電力利得図であり、(B)は、ポートP1-P2間の特性を示すスミスチャート図であり、(C)は、ポートP1-P3間の特性を示すスミスチャート図である。
 実施例では、2.40GHz~2.50GHzを通過帯域とするポートP1-P2間において、図5(B)のスミスチャート図に示すように、相手側となるポートP1-P3間の通過帯域5.15GHz~5.85GHzに対して、ポートP1から視たインピーダンスをオープン付近とすることができている。そして、図5(A)の周波数-電力利得図の通過特性(S21特性)に示すように、2.45GHzでの電力利得は-0.02dBとなっている。
 また、実施例では、5.15GHz~5.85GHzを通過帯域とするポートP1-P3間において、図5(C)のスミスチャート図に示すように、相手側となるポートP1-P2間の通過帯域2.40GHz~2.50GHzに対して、ポートP1から視たインピーダンスは、オープン近傍から少し外れて容量性となっている。そして、図5(A)の周波数-電力利得図の通過特性(S31特性)に示すように、5.50GHzでの電力利得は-0.03dBであった。
 一方、キャパシタC32,C42とグランドの間に浮遊容量Cinが生じている比較例では、2.40GHz~2.50GHzを通過帯域とするポートP1-P2間において、図6(B)のスミスチャート図に示すように、相手側となるポートP1-P3間の通過帯域5.15GHz~5.85GHzに対して、ポートP1から視たインピーダンスがオープン近傍から大きく外れ、容量性となっている。そして、図6(A)の周波数-電力利得図の通過特性(S21特性)に示すように、2.45GHzでの電力利得は-0.22dBでとなっている。
 また、比較例では、5.15GHz~5.85GHzの通過帯域を有するポートP1-P3間において、図6(C)のスミスチャート図に示すように、相手側となるポートP1-P2間の通過帯域2.40GHz~2.50GHzに対して、ポートP1から視たインピーダンスがオープン近傍から図5(C)に示す実施例よりも大きく外れ、容量性となっている。そして、図6(A)の周波数-電力利得図の通過特性(S31特性)に示すように、5.50GHzでの電力利得は-0.74dBとなっている。
 即ち、比較例のように不要な浮遊容量Cinが発生している場合には、ポートP1-ポートP2間、および、ポートP1-ポートP3間のいずれも、相手側の通過帯域においてインピーダンスがオープン近傍から外れる方向に変化し、相手側の周波数信号を通過し易くなってしまうことや挿入損失の増大が生じてしまうことがある。一方、実施例では、浮遊容量Cinが発生しないために、ダイプレクサを構成する各受動素子の設計値に応じた本来のダイプレクサの性能を容易に実現することができる。
 次に、本発明の第4の実施形態に係る高周波モジュールについて説明する。第4の実施形態に係る高周波モジュールは、第3の実施形態で示したダイプレクサと、第1の実施形態で示したハイパスフィルタとを含んで構成されるものである。図7および図8は、第4の実施形態に係る高周波モジュールの積層構造を示す平面図(積み図)である。図7(1)~(18)は、第4の実施形態に係る高周波モジュールの各電極層の形態を1層目から18層目まで順に示す図である。図8(19)~(30)は、第4の実施形態に係る高周波モジュールの各電極層の形態を19層目から30層目まで順に示す図である。
 まず、積層構造の概要を説明すると、1層目の電極層は、複数の部品接続用電極が形成されている。2層目の電極層は、引出配線が主に形成されている。3層目の電極層は、グランド電極が主に形成されている。4層目および5層目の電極層は、引出配線が主に形成されている。6層目の電極層は、グランド電極が主に形成されている。7層目から26層目の電極層は、キャパシタ電極とインダクタ電極とが主に形成されている。27層目の電極層は、グランド電極が主に形成されている。28層目および29層目の電極層は、引出配線が主に形成されている。30層目の電極層は、複数の実装用電極が形成されている。
 ここで、第1の実施形態で示したハイパスフィルタと同様の構成について説明する。
 6層目の電極層には、グランド電極GND1が形成されている。27層目の電極層には、グランド電極GND2が形成されている。7層目の電極層には、キャパシタ電極14Aが形成されている。キャパシタ電極14Aは、図1に示したハイパスフィルタと同様に、グランド電極GND1に対向してキャパシタC11を構成するものである。11層目の電極層から14層目の電極層に掛けて、インダクタ電極15Aが形成されている。インダクタ電極15Aは、図1に示したハイパスフィルタと同様に、インダクタL11を構成するものである。16層目の電極層には、キャパシタ電極14Bが形成されている。また、17層目の電極層には、キャパシタ電極14Bに対向してキャパシタ電極14Cが形成されている。キャパシタ電極14Bとキャパシタ電極14Cとは、図1に示したハイパスフィルタと同様に、キャパシタC12を構成するものである。20層目の電極層から23層目の電極層に掛けて、インダクタ電極15Bが形成されている。インダクタ電極15Bは、図1に示したハイパスフィルタと同様に、インダクタL12を構成するものである。26層目の電極層には、キャパシタ電極14Dが形成されている。キャパシタ電極14Dは、図1に示したハイパスフィルタと同様に、グランド電極GND2に対向してキャパシタC13を構成するものである。
 このように、ハイパスフィルタを構成するキャパシタC11、インダクタL11、キャパシタC12、インダクタL12、およびキャパシタC13は、グランド電極GND1とグランド電極GND2とに挟まれる6層目から27層目までの電極層に設けられている。したがって、このハイパスフィルタは、6層目よりも上層に設けられた他の素子や、引出配線に結合することが無く、また、27層目よりも下層に設けられた他の素子や、引出配線に結合することも無い。
 その上、インダクタL11とキャパシタC12とインダクタL12とは、キャパシタ電極14Aとキャパシタ電極14Dとにより、基板積層方向から挟まれている。したがって、このハイパスフィルタでは、インダクタL11、キャパシタC12、インダクタL12などの受動素子と、グランド電極GND1,GND2との間に、不要な浮遊容量が生じることが無い。
 次に、第3の実施形態で示したダイプレクサと同様の構成について説明する。
 7層目の電極層には、キャパシタ電極44Aが形成されている。キャパシタ電極44Aは、図4に示したダイプレクサと同様に、グランド電極GND1に対向してキャパシタC41を構成するものである。8層目の電極層には、キャパシタ電極34Aが形成されている。キャパシタ電極34Aは、図4に示したダイプレクサと同様に、グランド電極GND1に対向してキャパシタC31を構成するものである。
 11層目の電極層から13層目の電極層に掛けて、インダクタ電極45Aが形成されている。インダクタ電極45Aは、図4に示したダイプレクサと同様に、インダクタL41を構成するものである。10層目の電極層から11層目の電極層に掛けて、インダクタ電極35Aが形成されている。インダクタ電極35Aは、図4に示したダイプレクサと同様に、インダクタL31を構成するものである。12層目の電極層から15層目の電極層に掛けて、インダクタ電極35Bが形成されている。インダクタ電極35Bは、図4に示したダイプレクサと同様に、インダクタL32を構成するものである。
 16層目の電極層には、キャパシタ電極44Bが形成されている。また、17層目の電極層には、キャパシタ電極44Bに対向してキャパシタ電極44Cが形成されている。また、18層目の電極層には、キャパシタ電極44Cに対向してキャパシタ電極44Dが形成されている。キャパシタ電極44Bとキャパシタ電極44Cとは、図4に示したダイプレクサと同様に、キャパシタC42を構成するものである。また、キャパシタ電極44Cとキャパシタ電極44Dとは、図4に示したダイプレクサと同様に、キャパシタC43を構成するものである。
 16層目の電極層には、キャパシタ電極34Bが形成されている。また、21層目の電極層には、キャパシタ電極34Cが形成されている。なお、キャパシタ電極34Cは、後述するインダクタ電極35Cを兼ねるものである。キャパシタ電極34Bとキャパシタ電極34Cとは、図4に示したダイプレクサと同様に、キャパシタC32を構成するものである。
 20層目の電極層から24層目の電極層に掛けて、インダクタ電極45Bが形成されている。インダクタ電極45Bは、図4に示したダイプレクサと同様に、インダクタL42を構成するものである。また、21層目の電極層から23層目の電極層に掛けて、インダクタ電極35Cが形成されている。インダクタ電極35Cは、図4に示したダイプレクサと同様に、インダクタL33を構成するものである。
 26層目の電極層には、キャパシタ電極44Eが形成されている。キャパシタ電極44Eは、図4に示したダイプレクサと同様に、グランド電極GND2に対向してキャパシタC44を構成するものである。26層目の電極層には、キャパシタ電極34Dが形成されている。キャパシタ電極34Dは、図4に示したダイプレクサと同様に、グランド電極GND2に対向してキャパシタC33を構成するものである。
 このように、ダイプレクサを構成するキャパシタC31、インダクタL31、インダクタL32、キャパシタC32、インダクタL33、キャパシタC33、キャパシタC41、インダクタL41、キャパシタC42、キャパシタC43、インダクタL42、および、キャパシタC44、は、グランド電極GND1とグランド電極GND2とに挟まれる6層目から27層目までの電極層に設けられている。したがって、このダイプレクサは、6層目よりも上層に設けられた他の素子や、引出配線に結合することが無く、また、27層目よりも下層に設けられた他の素子や、引出配線に結合することも無い。
 その上、ダイプレクサの一方のπ型フィルタを構成するキャパシタC31、インダクタL31、インダクタL32、キャパシタC32、インダクタL33、キャパシタC33は、キャパシタ電極34Aとキャパシタ電極34Dとによって、基板積層方向から挟まれている。したがって、このダイプレクサでは、インダクタL31、インダクタL32、キャパシタC32、インダクタL33などの受動素子と、グランド電極GND1,GND2との間に、不要な浮遊容量が生じることが無い。
 また、ダイプレクサの他方のπ型フィルタを構成するキャパシタC41、インダクタL41、キャパシタC42、キャパシタC43、インダクタL42、および、キャパシタC44は、キャパシタ電極44Aとキャパシタ電極44Eとにより、基板積層方向から挟まれている。したがって、このダイプレクサでは、インダクタL41、キャパシタC42、キャパシタC43、インダクタL42などの受動素子と、グランド電極GND1,GND2との間にも、不要な浮遊容量が生じることが無い。
10,20,30…高周波モジュール
11A,11B,11C,11D,11E,11F,11G,21A,21B,21C,21D,21E,31A,31B,31C,31D,31E,31F,31G,31H…積層部
12,22,32…積層基板
13,23,33…チップ型回路素子
14A,14B,14C,14D,24A,24B,34A,34B,34C,34D,44A,44B,44C,44D,44E…キャパシタ電極
15A,15B,25A,35A,35B,35C,45A,45B…インダクタ電極
17A,17B,27A,27B,37A,37B,37C…引出配線
18,28,38A,38B…受動素子回路部
L11,L12,L21,L31,L32,L33,L41,L42…インダクタ
C11,C12,C13,C21,C22,C31,C32,C33,C41,C42,C43,C44…キャパシタ
Cin,Cout…浮遊容量
GND1,GND2…グランド電極

Claims (4)

  1.  積層基板と、
     前記積層基板における任意の層に設けられる第1のグランド電極と、
     前記積層基板における前記第1のグランド電極よりも下層に設けられる第2のグランド電極と、
     前記積層基板における前記第1のグランド電極よりも下層で前記第2のグランド電極よりも上層に設けられ、前記第1のグランド電極に対向して第1のキャパシタを構成する第1のキャパシタ電極と、
     前記積層基板における前記第1のキャパシタ電極よりも下層で前記第2のグランド電極よりも上層に設けられ、前記第2のグランド電極に対向して第2のキャパシタを構成する第2のキャパシタ電極と、
     前記積層基板における前記第1のキャパシタ電極よりも下層で前記第2のキャパシタ電極よりも上層に設けられ、前記第1のキャパシタおよび前記第2のキャパシタとともにフィルタを構成する受動素子回路部と、
     を備え、
     前記受動素子回路部は、前記第1のキャパシタ電極と前記第2のキャパシタ電極とによって基板積層方向から挟まれていることを特徴とする、高周波モジュール。
  2.  前記受動素子回路部は、
      前記第1のキャパシタに接続される第1の受動素子と、
      前記第2のキャパシタに接続される第2の受動素子と、
      前記第1の受動素子と前記第2の受動素子との間に接続される第3の受動素子と、
      前記第1の受動素子と前記第3の受動素子との間に接続される第1の引出配線と、
      前記第2の受動素子と前記第3の受動素子との間に接続される第2の引出配線と、を備え、
     前記第1および第2の引出配線は、前記第1の受動素子と前記第2の受動素子とによって基板積層方向から挟まれる位置に接続されている、請求項1に記載の高周波モジュール。
  3.  前記第1および第2の受動素子はインダクタであり、前記第3の受動素子はキャパシタである、請求項2に記載の高周波モジュール。
  4.  前記第1のキャパシタ電極と前記第2のキャパシタ電極と前記受動素子回路部とを複数組備えるダイプレクサである、請求項1~3のいずれかに記載の高周波モジュール。
PCT/JP2013/079073 2013-02-22 2013-10-28 高周波モジュール WO2014129015A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013033625 2013-02-22
JP2013-033625 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129015A1 true WO2014129015A1 (ja) 2014-08-28

Family

ID=51390832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079073 WO2014129015A1 (ja) 2013-02-22 2013-10-28 高周波モジュール

Country Status (1)

Country Link
WO (1) WO2014129015A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015161A (ja) * 2002-06-04 2004-01-15 Hitachi Metals Ltd 高周波スイッチ回路およびマルチバンド用高周波スイッチモジュール
JP2010124018A (ja) * 2008-11-17 2010-06-03 Tdk Corp 平衡出力型トリプレクサ
JP2011077723A (ja) * 2009-09-29 2011-04-14 Murata Mfg Co Ltd 高周波スイッチモジュール
WO2012070540A1 (ja) * 2010-11-24 2012-05-31 日立金属株式会社 電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015161A (ja) * 2002-06-04 2004-01-15 Hitachi Metals Ltd 高周波スイッチ回路およびマルチバンド用高周波スイッチモジュール
JP2010124018A (ja) * 2008-11-17 2010-06-03 Tdk Corp 平衡出力型トリプレクサ
JP2011077723A (ja) * 2009-09-29 2011-04-14 Murata Mfg Co Ltd 高周波スイッチモジュール
WO2012070540A1 (ja) * 2010-11-24 2012-05-31 日立金属株式会社 電子部品

Similar Documents

Publication Publication Date Title
TWI442622B (zh) Laminated bandpass filter
JP6183456B2 (ja) 高周波モジュール
US7612634B2 (en) High frequency module utilizing a plurality of parallel signal paths
US7982557B2 (en) Layered low-pass filter capable of producing a plurality of attenuation poles
JP5946024B2 (ja) 方向性結合器
US7859364B2 (en) Layered low-pass filter
JP5751265B2 (ja) 高周波モジュール
US7999634B2 (en) Layered low-pass filter having a conducting portion that connects a grounding conductor layer to a grounding terminal
WO2012011526A1 (ja) バンドパスフィルタモジュール及びモジュール基板
TWI484753B (zh) High frequency module
WO2016092903A1 (ja) 電子部品
JP3223848B2 (ja) 高周波部品
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
WO2015059963A1 (ja) 複合lc共振器および帯域通過フィルタ
JP2004312065A (ja) 受動部品
JP5123937B2 (ja) 平面基板上のフィルタのグランド方法
JP6314861B2 (ja) 電子部品
US7782157B2 (en) Resonant circuit, filter circuit, and multilayered substrate
TWI738428B (zh) 雙工器
JP5725158B2 (ja) 電子部品
US20080238805A1 (en) High frequency module
WO2014129015A1 (ja) 高周波モジュール
US20050046512A1 (en) Demultiplexer
JP4012923B2 (ja) 受動部品
JP4086154B2 (ja) 高周波複合部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP