WO2014127602A1 - 一种气相色谱/质谱大体积进样装置系统及分析方法 - Google Patents

一种气相色谱/质谱大体积进样装置系统及分析方法 Download PDF

Info

Publication number
WO2014127602A1
WO2014127602A1 PCT/CN2013/079214 CN2013079214W WO2014127602A1 WO 2014127602 A1 WO2014127602 A1 WO 2014127602A1 CN 2013079214 W CN2013079214 W CN 2013079214W WO 2014127602 A1 WO2014127602 A1 WO 2014127602A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
gas
switching valve
way switching
valve
Prior art date
Application number
PCT/CN2013/079214
Other languages
English (en)
French (fr)
Inventor
刘百战
谢雯燕
郭亚勤
Original Assignee
上海烟草集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海烟草集团有限责任公司 filed Critical 上海烟草集团有限责任公司
Publication of WO2014127602A1 publication Critical patent/WO2014127602A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/468Flow patterns using more than one column involving switching between different column configurations

Definitions

  • the invention relates to a gas chromatography/mass spectrometry (GC/MS) large-volume sampling device system and an analysis method, which are suitable for large-volume injection of ordinary gas chromatography, and liquid chromatography-gas chromatography on-line system, especially suitable for Liquid chromatography-gas chromatography/mass spectrometry online combination system.
  • GC/MS gas chromatography/mass spectrometry
  • GC/MS is one of the most commonly used methods for chemical analysis of complex systems, and is widely used in the fields of food, tobacco, spices, environment, petrochemicals, and criminal investigation.
  • Large volume injection can greatly improve the sensitivity of GC/MS detection, simplify pre-treatment operations such as sample concentration, speed up testing, reduce operator contact with harmful chemical reagents, and reduce the health hazards of chemical analysis to technicians. The repeatability and reliability of the analysis results.
  • Existing GC/MS large volume injections are generally available in two modes. One is the use of a temperature-programmed gasification inlet (PTV). This technique has many disadvantages.
  • the injection volume generally does not exceed 1000 microliters, and most of them are less than 100 microliters, preferably less than 20 microliters.
  • the object of the present invention is to provide a gas chromatography/mass spectrometry (GC/MS) large-volume sampling device system and an analysis method, so as to completely evacuate the injection mobile phase solvent, and almost no solvent enters the GC separation column and the MS detector. , effectively protect the gas chromatograph detector from the influence of solvents.
  • GC/MS gas chromatography/mass spectrometry
  • a gas chromatography/mass spectrometry (GC/MS) large volume sampling device system including a gas chromatography system and a mass spectrometer coupled thereto, the gas chromatography system including sequential connections An on-column inlet, a deactivated pre-column, a pre-column and a gas chromatographic separation column; a solvent evacuation device is connected between the pre-retained pre-column and the gas chromatographic separation column.
  • the solvent evacuation device includes two three-way joints and a two-position switching valve connected between the two three-way joints.
  • the on-column inlet is also coupled to a gas chromatograph carrier gas channel for providing a carrier gas to the gas chromatography system.
  • the two three-way joints, one of the three-way joints of the straight-through end are respectively connected to the gas chromatographic retention pre-column and the two-way switching valve joint I, the side end is provided with a damper tube; the other three-way The two ends of the through-connection of the joint are respectively connected to the gas chromatographic separation column and the other joint II of the two-way switching valve adjacent to the joint I, and a damping tube is arranged in the side end; the function of the three-way joint is to provide low flow
  • the splitting reduces the dead volume of the capillary column to the two-way switching valve and makes it easier to connect the capillary column to the two-way switching valve.
  • the other joint III of the two-way switching valve adjacent to the joint I is connected to the vapor outlet of the gas chromatograph for discharging the carrier gas and the solvent; the other joint of the two-way switching valve adjacent to the joint II It is connected to the gas chromatograph assisted carrier gas channel to provide an auxiliary carrier gas to the GC separation column.
  • the material of the three-way joint is glass, quartz or metal.
  • the two-position switching valve is a two-position four-way valve, a two-position six-way valve, a two-position eight-way valve or a two-way switching valve of more channels.
  • the two-way switching valve When the liquid chromatographic fraction enters the deactivation precolumn of the gas chromatograph, the two-way switching valve is opened, the gas chromatographic retention pre-column and the gas chromatographic separation column are completely disconnected, and the gas chromatograph carrier gas and the liquid chromatography mobile phase are all passed.
  • the two-way switching valve is evaporated from the steam outlet, and the component to be tested in the liquid chromatographic fraction is retained in the pre-column due to the solvent effect; meanwhile, the auxiliary carrier gas channel is passed through the two-way switching valve to the gas chromatographic separation column. Providing an auxiliary carrier gas;
  • the two-way switching valve is opened again, and the pre-column and the gas chromatographic separation column are completely disconnected again, thereby avoiding retaining the high-boiling component in the pre-column.
  • the on-column inlet is connected to the injector, and an injection valve is connected between the on-column inlet and the injector.
  • the injector can be a liquid chromatograph or a syringe.
  • the injection valve is a two-position four-way valve or a two-way two-way switching valve; the A-position of the injection valve is connected to the on-column inlet, and the injection valve is connected to the A-position
  • the adjacent B-bit is connected to the injector, and the C-position adjacent to the B-position on the injection valve is connected to the waste liquid pipe, and the D-position and the current limit adjacent to the A-position on the injection valve Pipe connection. Excessive injection is discharged from the waste pipe and the carrier gas is discharged from the restriction tube, thereby reducing the memory effect.
  • the device system is fully automated and all operational actions are controlled by the GC/MS software.
  • An analytical method utilizing the gas chromatography/mass spectrometry (GC/MS) large volume sampling device system, including the following operational flow:
  • the gas chromatograph carrier gas and the solvent are all evaporated from the steam outlet through the two-way switching valve, and the component to be tested in the sample of the liquid sample is retained in the pre-column due to the solvent effect; since the vapor outlet is at atmospheric pressure, the solvent is made The evaporation rate is greatly accelerated; at the same time, the auxiliary carrier gas supplies the auxiliary carrier gas to the gas chromatographic separation column through the two switching valves; after the injection is finished, the injection valve is switched, and the inlet port of the column is connected to the current limiting tube, The injector is connected to the waste tube, and the injection valve is backflushed by the gas chromatograph carrier gas from the on-column inlet to minimize memory effects;
  • the two-way switching valve is switched, the pre-column and the gas chromatographic separation column are turned on, and the oven of the gas chromatograph starts to be programmed, and the component to be tested passes through
  • the two switching valves are transferred to a gas chromatographic separation column for separation, and the mass spectrometer is used for detection;
  • the gas chromatographic carrier gas flow rate is increased, the deactivation of the pre-column and the pre-column aging process are accelerated; the deactivating pre-column and the retained high-boiling components in the pre-column are discharged from the steam outlet through the two-way switching valve, thereby avoiding the retention of the pre-column
  • the high boiling component enters the gas chromatographic separation column; the auxiliary carrier gas continues to provide an auxiliary carrier gas to the gas chromatographic separation column through the two-way switching valve.
  • the injection valve and the two-way switching valve are switched, and the pre-column and steam are kept on.
  • the outlet, as well as the inlet and column inlets, the pre-column and the GC separation column are completely disconnected.
  • the solvent is injected directly through the injector to deactivate the precolumn and retain The precolumn cleans the deactivated precolumn and the retained precolumn with a liquid solvent.
  • the aging process of step (3) can be carried out at a maximum tolerated temperature of deactivating the precolumn and retaining the precolumn, and the high temperature condition can accelerate the aging process.
  • the technical effects and advantages of the present invention are as follows:
  • the separation of the pre-column and the gas chromatographic separation column is preserved by gas chromatography, and almost no injection solvent phase enters the gas chromatographic separation column and the detector, thereby avoiding a large amount of solvent to the gas chromatograph and the detector (especially It is the effect of the mass spectrometer vacuum system.
  • FIG. 1 A gas chromatography/mass spectrometry (GC/MS) large volume sampler system
  • FIG. 1 Schematic diagram of solvent evacuation device
  • FIG. 3 Schematic diagram of the injection valve
  • FIG. 5 Schematic diagram of the connection of the high temperature aging process control valve
  • FIG. 6 Schematic diagram of low temperature liquid solvent washing deactivation pre-column and retention pre-column process control valve connection
  • Figure 8 Comparative Example Conventional GC/MS method for analysis of fatty acid methyl ester mixed stock samples
  • the numbering of the method steps is merely a convenient means of identifying the various method steps, and is not intended to limit the order of the various method steps or to limit the scope of the invention, the relative In the case where the technical content is not substantially changed, it is also considered to be an area in which the present invention can be implemented.
  • a gas chromatography/mass spectrometry large volume sampling device system includes a gas chromatography system and a mass spectrometer detector 11 connected thereto, the gas chromatography system including an on-column inlet 1 connected in series Deactivating the precolumn 3, retaining the precolumn 4 and the gas chromatographic separation column 10; a solvent evacuation device is connected between the preserving precolumn 4 and the gas chromatographic separation column 10; the solvent evacuation device comprises two tees The joints 5, 8 and a two-position switching valve 7 connected between the two three-way joints 5, 8; the on-column inlet 2 is also connected to the gas chromatograph carrier gas channel 2.
  • the two three-way joints 5, 8 are connected to the gas chromatographic retaining pre-column 4 and the two-way switching valve 7 joint 1 and 15 respectively.
  • the other end of the other three-way joint 8 is connected to the gas chromatographic separation column 10 and the other two ends of the two-way switching valve ⁇ adjacent to the joint I 15 , and a damping is arranged in the side end.
  • the two-position switching valve 7 is a two-position six-way valve, and may also be a two-position four-way valve, a two-position eight-way valve or a two-way two-way switching valve.
  • the other joint III14 of the two-way switching valve 7 adjacent to the joint I 15 is connected to the vapor outlet 12 of the gas chromatograph; the other joint IV17 of the two-way switching valve 7 adjacent to the joint II 16 and the gas chromatograph Auxiliary carrier gas 13 channel connection.
  • the on-column inlet 1 is connected to the injector 18, and an injection valve 19 is connected between the on-column inlet 1 and the injector 18.
  • the injector 18 is a liquid chromatograph or a syringe.
  • the injection valve 19 is a two-position four-way valve or a two-way two-way switching valve; the A position of the injection valve 19 is connected to the on-column inlet 1, and the injection valve 19 is The adjacent B position of the A bit is connected to the injector 18, and the C position adjacent to the B position on the injection valve 19 is connected to the waste liquid pipe, and the injection valve 19 is in phase with the A phase.
  • the adjacent D position is connected to the restrictor.
  • Example 1 The device system is fully automated and all actions are controlled by GC/MS software.
  • Example 1 The device system is fully automated and all actions are controlled by GC/MS software.
  • Both the gas chromatograph carrier gas and the auxiliary carrier gas are high purity helium;
  • Deactivated precolumn 3 is an uncoated deactivated quartz capillary with an inner diameter of 0.32-0.53 mm and a length of 5-15 m;
  • the length is 3-5 m;
  • the GC separation column 10 is a general-purpose GC/MS column, which is the same as the retained pre-column 4 model;
  • the two switching valves 7 are two-position six-way valves, as shown in Figure 2.
  • the damper tubes 6, 9 are quartz capillaries with an inner diameter of 50-100 micrometers and a length of 0.5-1 meters.
  • the split flow rate is 0.05-0.2 ml/min.
  • the injection valve 19 is a two-position four-way valve, as shown in Figure 3;
  • Automated injection by liquid chromatography Take the above standard 2 ( ⁇ L into liquid chromatography (silica gel column: 5 ⁇ particle size, 2.1 X 150 mm; liquid chromatography pump: Agilent 1260; UV detector wavelength 210 nm, The column temperature was 30 ° C), the mobile phase was diethyl ether and pentane, and the gradient was eluted. The diethyl ether was linearly increased from the initial 5% (volume percent) to 95% over 5 minutes for 45 minutes.
  • the UV detector detected the target fraction ( After the liquid chromatography peaks, the LC fraction cutting valve rotates, the liquid chromatography starts to be injected into the gas chromatograph, the flow rate is 0.15 ml/min, the total injection time is 2.2 min, and all the components to be tested in the liquid chromatography are transferred to the gas phase. Chromatography, the total amount of injection is 330 ⁇ In fact, there is no limit to the total amount of injection, and it can also be a larger total amount of injection, such as 780 ⁇ , ⁇ , etc.
  • Gas chromatographic conditions The initial temperature of the inlet on the column was 40 ° C for 11 min. Both carrier gases were set to constant flow mode with a flow rate of 2 mL/min.
  • Gas chromatographic separation column DB-5MS (60 mx 0.32) Mm ID, film thickness 0.25 ⁇ ); Furnace oven: Hold at 42 °C for 11 minutes, heat up to 280 °C at 5 °C /min for 15 min.
  • the liquid sample enters the gas chromatograph to deactivate the pre-column 3 and the pre-column 4 through the on-column inlet 1, and the liquid chromatography mobile phase solvent and the gas chromatograph carrier gas are discharged from the steam outlet 12 through the two-way switching valve 7, and the sample is injected.
  • the component to be tested in the liquid sample is retained in the pre-column 4 due to the solvent effect; since the vapor outlet 12 is at atmospheric pressure, the evaporation rate of the solvent is greatly accelerated;
  • the injection valve 19 is switched, as shown in Fig. 4, the on-column inlet 1 is connected to the restriction tube, the injector 18 is connected to the waste tube, and the injection port 1 is used.
  • the gas chromatograph carrier gas is backflushed to the injection valve 19 to minimize memory effects;
  • the two-way switching valve 7 is switched, as shown in FIG. 5, the pre-column 4 and the gas chromatographic separation column 10 are turned on, and the oven of the gas chromatograph starts to be programmed.
  • the component to be tested is separated into the gas chromatographic separation column 10 by the two-way switching valve 7 for separation, and the mass spectrometer detector 1 performs detection;
  • Mass spectrometry conditions mass spectrometer ionization mode: EI, electron energy 70 eV, ion source temperature 180 ° C, scanning range 33-350 amu;
  • the two-way switching valve 7 is switched again, as shown in FIG. 4, the pre-column 4 and the steam outlet 12 are turned on, and the pre-column is retained. 4 and the gas chromatographic separation column 10 is completely broken again, at which time the furnace temperature is at a high temperature state, the aging process of deactivating the precolumn 3 and retaining the precolumn 4 is performed; the auxiliary carrier gas passage 13 continues to pass through the two-way switching valve
  • the gas chromatographic separation column 10 provides an auxiliary carrier gas;
  • the high temperature aging process can discharge the high boiling component in the deactivated precolumn 3 and the retained precolumn 4 through the two-way switching valve 7 from the steam outlet 12, thereby avoiding the pre-column retention.
  • the high-boiling component enters the gas chromatographic separation column 10, and accelerates the deactivation of the pre-column 3 and the pre-column 4 purification process; when the high temperature aging still fails to completely degrade the deactivated pre-column 3 and the pre-column 4, the switchable
  • the injection wide 19 and two control valves 7, the pre-retained pre-column 4 and the steam outlet 12, and the injector 18 and the on-column inlet 1 are kept, leaving the pre-column 4 and the gas chromatographic separation column 10 completely broken again.
  • the solvent is directly injected into the deactivated pre-column 3 and the pre-column 4 by the injector 18, and the deactivated pre-column 3 and the pre-retained pre-column 4 are cleaned and purified by the liquid solvent.
  • Figure 1 shows.
  • the gas chromatography/mass spectrometry (GC/MS) large volume sampling device system and analytical method designed by the present invention can be detected from methyl hexanoate to methyl behenate, and the peak shape is symmetric.
  • the high degree of separation indicates that the analysis method of the GC/MS large-volume sampling device system designed and installed by the present invention does not cause loss of low-boiling components or peak broadening, and is suitable for determination of components from low boiling point to high boiling point in complex systems. , has a wide range of applications and good use.
  • Comparative Example - The fatty acid methyl ester stock solution prepared in Example I (i.e., the concentration of each component was about 0.1 mg/mL) was analyzed by a conventional GC/MS method.
  • GC/MS instrument (Agilent 5975C): Split/splitless sample, 2 ⁇ splitless injection, inlet temperature 250. C; DB-5MS analytical column, 30 m ⁇ ⁇ 0.32 mm, film thickness 0.25 ⁇ ; carrier gas is high purity helium, constant current mode, flow rate is l ml/min; GC/MS furnace temperature box heating program is: Starting temperature 40 V, hold for 2 min, program temperature to 28 CTC at 5 °C /min for 15 min; electron bombardment source EI, voltage 70 eV; ion source temperature: 230 V; transmission line temperature: 280 °C, scan Range 33-350 amu.
  • EI electron bombardment source
  • ion source temperature 230 V
  • transmission line temperature 280 °C, scan Range 33-350 amu.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

一种气相色谱/质谱(GC/MS)大体积进样系统及分析方法,为在气相色谱仪的保留预柱(4)和气相色谱分离柱(10)之间连接一溶剂排空装置;所述溶剂排空装置,包括两个三通接头(5,8),和连接于所述两个三通接头(5,8)之间的两位切换阀(7);利用所述的装置系统进行分析,进样液体体积没有限制,通过两位切换阀(7),使保留预柱(4)和气相色谱分离柱(10)自动连接或者隔离,几乎没有溶剂进入气相色谱分离柱(10)和检测器(11);且采用三通接头(5,8),使毛细管色谱柱与切换阀(7)的连接更方便,限流管分流克服了死体积;所述装置系统及分析方法既适用于GC/MS大体积进样,也适用于普通气相色谱大体积进样,还适用于液相色谱——气相色谱在线联用系统,尤其是用于液相色谱——气相色谱/质谱在线联用分析。

Description

一种气相色谱 /质谱大体积进样装置系统及分析方法 技术领域
本发明涉及一种气相色谱 /质谱 (GC/MS ) 大体积进样装置系统及分析方法, 适用于普通 气相色谱的大体积进样, 以及液相色谱 -气相色谱在线联用系统, 尤其适用于是液相色谱-气 相色谱 /质谱在线联用系统。 背景技术
GC/MS是复杂体系化学分析最常用的手段之一, 在食品、 烟草、 香料、 环境、 石化、 刑 侦等领域中广泛应用。 采用大体积进样, 可大幅度提高 GC/MS检测灵敏度, 简化样品浓縮等 前处理操作, 加快测试速度, 减少操作人员与有害化学试剂的接触, 降低化学分析对技术人 员健康的危害, 提高分析结果的重复性和可靠性。 现有的 GC/MS大体积进样, 一般有两种模 式。 一是采用程序升温气化进样口 (PTV), 这种技术存在很多缺点, 进样体积一般不超过 1000微升, 多数低于 100微升, 最好在 20微升以下。 在进样过程中, 部分溶剂不可避免地进 入分析柱和质谱仪, 严重影响质谱的高真空系统, 甚至造成质谱仪报警和停机。 此外, 进样 体积超过 20微升时, 挥发物损失严重。 另一种大体积进样方法是柱上进样 -溶剂放空口 (On- column and solvent venting exit) 模式, 这种技术也存在很多缺点, 进样体积一般不超过 100 微升, 溶剂蒸发速度慢。 对于质谱检测器, 因为真空作用, 部分溶剂不可避免被吸入分析柱 和质谱系统, 从而引起质谱真空度显著下降, 大大加快离子源污染。 此外, 高沸点成分极易 污染预柱, 色谱分离效果下降很快, 甚至导致柱系统很快报废。 因此, 就气相色谱 /质谱大 体积进样技术来说, 目前还没有完善的方案。 发明内容
本发明的目的在于提供一种气相色谱 /质谱 (GC/MS ) 大体积进样装置系统及分析方 法, 以达到将进样流动相溶剂全部排空, 几乎没有溶剂进入 GC分离柱和 MS检测器, 有效 保护气相色谱检测器免受溶剂的影响的目的。 本发明是通过以下技术方案实现的: 一种气相色谱 /质谱 (GC/MS ) 大体积进样装置系统, 包括气相色谱系统和与之连接的 质谱检测器, 所述气相色谱系统包括依次连接的柱上进样口、 去活预柱、 保留预柱和气相色 谱分离柱; 所述保留预柱和气相色谱分离柱之间连接有一溶剂排空装置。 所述溶剂排空装置, 包括两个三通接头和连接于所述两个三通接头之间的两位切换阀。 所述柱上进样口还与气相色谱载气通道连接, 用于给气相色谱系统提供载气。 所述的两个三通接头, 其中一个三通接头直通的两端分别连接于气相色谱的保留预柱和 所述两位切换阀的接头 I, 侧端内设一阻尼管; 另一个三通接头直通的两端分别连接于气相 色谱分离柱和所述两位切换阀上与前述接头 I相邻的另一接头 II, 侧端内设一阻尼管; 三通 接头的作用是, 提供低流量的分流以减小毛细柱与两位切换阀连接的死体积, 并且使毛细柱 与两位切换阀相连更为简便。 所述两位切换阀上与接头 I相邻的另一接头 III与气相色谱的蒸汽出口连接, 用于排放载 气和溶剂; 所述两位切换阀上与接头 II相邻的另一接头 IV与气相色谱辅助载气通道连接, 用 于给气相色谱分离柱提供辅助载气。 所述三通接头的材质为玻璃、 石英或金属等。 所述两位切换阀为两位四通阀、 两位六通阀、 两位八通阀或更多通道的两位切换阀。 一种利用所述一种气相色谱 /质谱 (GC/MS) 大体积进样装置系统的液相色谱-气相色谱 / 质谱联用分析方法, 包括以下操作流程:
( 1 ) 当液相色谱馏分进入气相色谱的去活预柱时, 两位切换阀打开, 气相色谱保留预 柱和气相色谱分离柱完全断开, 气相色谱载气与液相色谱流动相全部经过所述两 位切换阀从蒸汽出口蒸发排出, 而液相色谱馏分中的待测组分因为溶剂效应被保 留在保留预柱内; 同时, 辅助载气通道经过两位切换阀给气相色谱分离柱提供辅 助载气;
(2) 待保留预柱内的液相色谱流动相完全蒸发后, 所述两位切换阀关闭, 保留预柱和 气相色谱分离柱连接, 炉温箱开始程序升温, 来自液相色谱馏分中的待测组分通 过所述两位切换阀转入气相色谱分离柱进行分离;
(3) 待所述待测组分完全转移到气相色谱分离柱之后, 所述两位切换阀再次打开, 保 留预柱和气相色谱分离柱再次完全断开, 避免了保留预柱内高沸点成分进入气相 色谱分离柱, 并加快保留预柱的净化过程。 优选的, 所述柱上进样口与进样器连接, 所述柱上进样口和进样器之间连接有一进样 阀。 所述进样器可采用液相色谱仪或注射器。 所述进样阀为两位四通阀或更多通道的两位切换阀; 所述进样阀的 A位与所述柱上进 样口连接, 所述进样阀上与所述 A位相邻的 B位与进样器连接, 所述进样阀上与所述 B位 相邻的 C位与废液管连接, 所述进样阀上与 A位相邻的 D位与限流管连接。 过多的进样从 废液管排出、 载气从限流管出去, 从而可减小记忆效应。
所述装置系统为全自动, 所有操作动作均由 GC/MS软件控制。 一种利用所述一种气相色谱 /质谱 (GC/MS ) 大体积进样装置系统的分析方法, 包括以 下操作流程:
( 1 ) 切换进样阀, 接通进样器和柱上进样口, 进样器开始进样, 液体样品经柱上进样口进 入气相色谱去活预柱; 同时切换两位切换阀, 使保留预柱和蒸汽出口连通、 辅助载气 与气相色谱分离柱接通、 并使保留预柱和气相色谱分离柱完全断开; 蒸发温度控制在 进样液体样品中的溶剂的校正沸点之下, 气相色谱载气与溶剂全部经过所述两位切换 阀从蒸汽出口蒸发排出, 进样液体样品中的待测组分因为溶剂效应被保留在保留预柱 内; 由于蒸汽出口为大气压, 使溶剂蒸发速度大大加快; 同时, 辅助载气经过所述两 位切换阀给气相色谱分离柱提供辅助载气; 进样结束后, 切换进样阀, 将柱上进样口 与限流管接通、 进样器与废液管接通, 利用来自柱上进样口的气相色谱载气对进样阀 进行反吹, 将记忆效应减至最小;
(2) 待保留预柱内的溶剂完全蒸发后, 切换所述两位切换阀, 接通保留预柱和气相色谱分 离柱, 气相色谱仪的炉温箱开始程序升温, 待测组分通过所述两位切换阀转入气相色 谱分离柱进行分离, 质谱检测器进行检测;
(3 ) 待所述待测组分完全转移到气相色谱分离柱之后, 再次切换所述两位切换阀, 接通保 留预柱和蒸汽出口, 保留预柱和气相色谱分离柱再次完全断开, 气相色谱载气流速加 快, 加快去活预柱和保留预柱的老化过程; 去活预柱和保留预柱内高沸点成分经过所 述两位切换阀从蒸汽出口排出, 避免了保留预柱内高沸点成分进入气相色谱分离柱; 辅助载气继续经过所述两位切换阀给气相色谱分离柱提供辅助载气。 优选的, 步骤 (3 ) 中, 当所述老化过程仍不能将所述去活预柱和保留预柱完全老化 时, 切换所述进样阀和两位切换阀, 接通保留预柱和蒸汽出口、 以及进样器和柱上进样口, 保留预柱和气相色谱分离柱完全断开, 在低于溶剂校正沸点的炉温下, 将溶剂直接通过进样 器注入去活预柱和保留预柱, 利用液态溶剂对去活预柱和保留预柱进行清洗。 优选的, 步骤 (3 ) 所述老化过程可在去活预柱和保留预柱的最大耐受温度下进行, 高 温条件可加快老化过程。 本发明的技术效果及优点在于:
应用本发明的溶剂排空装置, 通过气相色谱保留预柱和气相色谱分离柱的隔离, 几乎没 有进样溶剂相进入气相色谱分离柱和检测器, 避免了大量溶剂对气相色谱及检测器 (尤其是 质谱的真空系统) 造成的影响, 对进样体积没有限制, 而且可以避免高沸点成分进入气相色 谱分离柱, 降低柱上进样方式对色谱柱系统的污染, 并加快保留预柱的净化过程。 彻底解决 GC 大体积进样对检测器特别是质谱检测器真空度的影响, 且溶剂蒸发速度快, 挥发性分析 物损失低, 具有预柱使用寿命长, 灵敏度高, 全自动, 操作简便, 重复性好, 结果可靠, 分 析效果好和效率高等特点, 既适用于 LC-GC在线联用, 也适用于普通 GC大体积进样, 尤 其适用于大体积进样 GC/MS 联用分析。 此外, 同现有的柱上进样-溶剂放空 (On-column and solvent venting exit) 技术相比, 本专利技术的投资成本基本不增加, 毛细管色谱柱与切 换阀的连接十分方便, 预柱消耗大大下降。 附图说明
图 1一种气相色谱 /质谱 (GC/MS ) 大体积进样装置系统
图 2溶剂排空装置示意图
图 3 进样阀示意图
图 4 目标物分析检测过程控制阀 (进样阀和两位切换阀) 连接示意图
图 5 高温老化过程控制阀连接示意图
图 6低温利用液体溶剂洗涤去活预柱和保留预柱过程控制阀连接示意图
图 Ί 实施例 1脂肪酸甲酯混合标样的大体积进样 GC/MS联用分析色谱图
图 8 对比实施例常规 GC/MS方法对脂肪酸甲酯混合储备样进行分析色谱图
附图标记:
1 柱上进样口; 2气相色谱载气通道; 3 去活预柱; 4保留预柱; 5三通接头; 6 阻尼管; 7 两位切换阀; 8三通接头; 9 阻尼管; 10气相色谱分离柱; 11 质谱检测器; 12蒸汽出口; 13辅助载气通道; 14接头 III; 15接头 I; 16接头 II ; 17接头 IV; 18进样器; 19进样阀。 具体实施方式 以下通过特定的具体实例说明本发明的技术方案。 应理解, 这些实施例仅用于说明本发 明而不用于限制本发明的范围。 而且, 除非另有说明, 各方法步骤的编号仅为鉴别各方法步 骤的便利工具, 而非为限制各方法步骤的排列次序或限定本发明可实施的范围, 其相对关系 的改变或调整, 在无实质变更技术内容的情况下, 当亦视为本发明可实施的范畴。
一种气相色谱 /质谱大体积进样装置系统, 如图 1-3所示, 包括气相色谱系统和与之连接 的质谱检测器 11, 所述气相色谱系统包括依次连接的柱上进样口 1、 去活预柱 3、 保留预柱 4 和气相色谱分离柱 10; 所述保留预柱 4 和气相色谱分离柱 10 之间连接有一溶剂排空装 置; 所述溶剂排空装置包括两个三通接头 5、 8和连接于所述两个三通接头 5、 8之间的两位 切换阀 7; 所述柱上进样口 2还与气相色谱载气通道 2连接。
所述两个三通接头 5、 8, 其中一个三通接头 5 直通的两端分别连接于气相色谱的保留 预柱 4和所述两位切换阀 7的接头 1 15, 侧端内设一阻尼管 6; 另一个三通接头 8直通的两 端分别连接于气相色谱分离柱 10和所述两位切换阀 Ί上与前述接头 I 15相邻的另一接头 II 16, 侧端内设一阻尼管 9。
所述两位切换阀 7为两位六通阀, 也可以是两位四通阀、 两位八通阀或更多通道的两位 切换阀。
所述两位切换阀 7上与接头 I 15相邻的另一接头 III14与气相色谱的蒸汽出口 12连接; 所述两位切换阀 7上与接头 II 16相邻的另一接头 IV17与气相色谱辅助载气 13通道连接。
所述柱上进样口 1与进样器 18连接, 所述柱上进样口 1和进样器 18之间连接有一进样 阀 19。
所述进样器 18采用液相色谱仪, 也可以为注射器。
所述进样阀 19为两位四通阀或更多通道的两位切换阀; 所述进样阀 19 的 A位与所述 柱上进样口 1连接, 所述进样阀 19上与所述 A位相邻的 B位与进样器 18连接, 所述进样 阀 19上与所述 B位相邻的 C位与废液管连接, 所述进样阀 19上与 A位相邻的 D位与限流 管连接。
所述装置系统为全自动, 所有动作均由 GC/MS软件控制。 实施例 1
将所述的一种气相色谱 /质谱大体积进样装置系统运用于脂肪酸甲酯混合标样的 LC- GC/MS在线分析:
气相色谱载气和辅助载气均为高纯氦气;
去活预柱 3为未涂渍的去活石英毛细管, 内径 0.32-0.53 mm, 长度 5-15 m; 保留预柱 4 为一段 GC分析柱, 长度 3-5 m; 气相色谱分离柱 10为通用 GC/MS色谱柱, 与保留预柱 4 型号相同;
两位切换阀 7为两位六通阀, 如图 2所示; 阻尼管 6、 9为石英毛细管, 内径 50-100微 米, 长度 0.5-1米, 分流流量为 0.05-0.2毫升 /分钟。
进样阀 19为两位四通阀, 如图 3所示; 采用液相色谱进样。
具体操作流程如下:
( 1 ) 配制脂肪酸甲酯混合标样: 己酸甲酯到十四酸甲酯各取 5mg 置于 50mL容量瓶中, 十 六酸甲酯 5 mg、 十八酸甲酯 4.5 mg、 二十酸甲酯 5 mg、 二十二酸甲酯 5.3 mg也置于 50mL容量瓶中, 用正己烷定容摇匀配制成标样储备液 (己酸甲酯到十四酸甲酯、 十六酸 甲酯、 二十酸甲酯的浓度为 0.1 mg/mL, 十八酸甲酯浓度为 0.09 mg/mL, 二十二酸甲酯 浓度为 0.106 mg/mL) o 移液枪准确移取 1 mL储备液于试剂瓶中, 加 9 mL正己浣, 摇 匀, 配制成标样待用;
(2) 进样时切换进样阀 19和两位控制阀 7, 进样阀 19的 A位点和 B位点接通, 两位控制 阀 7的接头 I和接头 III接通; 保留预柱 4和蒸汽出口 12接通; 保留预柱 4与气相色谱 分离柱 10 完全隔离; 同时接通辅助载气通道 13 和气相色谱分离柱 10, 通入辅助载 气; 气相色谱载气通道 2给去活预柱 3和保留预柱 4提供载气, 如图 1所示;
采用液相色谱自动进样: 取前述标样 2(^L 打入液相色谱 (硅胶柱: 5 μηι粒径, 2.1 X 150 mm; 液相色谱泵: Agilent 1260; 紫外检测器波长 210 nm, 柱温 30°C ) , 流 动相为乙醚和戊烷, 梯度洗脱, 乙醚由初始的 5% (体积百分比) 经过 5 分钟线性升为 95%, 保持 45分钟, 紫外检测器检测到目标馏分 (液相色谱出峰) 后, LC馏分切割阀 转动, 液相色谱开始给气相色谱进样, 流量为 0.15ml/min, 总进样时间 2.2min, 液相色 谱中待测组分全部转入气相色谱, 进样总量 330μΙ^ 实际上, 对进样总量是没有限制 的, 也可以是更大的进样总量, 如 780μΙ^、 ΙΟΟΟμΙ^等;
气相色谱条件: 柱上进样口初始温度 40°C, 保持 11 min, 两路载气均设定为恒流 模式, 流量为 2 mL/min; 气相色谱分离柱: DB-5MS (60 m x 0.32 mm I.D, 膜厚 0.25 μηι); 炉温箱: 42 °C保持 11分钟, 以 5 °C /min升温至 280 °C保持 15 min。
液体样品经柱上进样口 1进入气相色谱去活预柱 3和保留预柱 4, 液相色谱流动相 溶剂和气相色谱载气经过两位切换阀 7 —起从蒸汽出口 12排出, 进样液体样品中的待 测组分因为溶剂效应被保留在保留预柱 4 内; 由于蒸汽出口 12为大气压, 使溶剂蒸发 速度大大加快; 进样结束后, 切换进样阀 19, 如图 4所示, 将柱上进样口 1 与限流管接通、 进样 器 18与废液管接通, 利用来自柱上进样口 1的气相色谱载气对进样阀 19进行反吹, 将 记忆效应减至最小;
( 4 ) 液相色谱流动相溶剂蒸发完全后, 切换两位切换阀 7, 如图 5 所示, 接通保留预柱 4 和气相色谱分离柱 10, 气相色谱仪的炉温箱开始程序升温, 待测组分通过所述两位切 换阀 7转入气相色谱分离柱 10进行分离, 质谱检测器 1 1进行检测;
质谱条件: 质谱仪电离模式: EI, 电子能量 70 eV, 离子源温度 180°C, 扫描范围 33- 350 amu;
( 4 ) 待所述待测组分完全转移到气相色谱分离柱 10 之后, 再次切换所述两位切换阀 7, 同图 4所示, 接通保留预柱 4和蒸汽出口 12, 保留预柱 4和气相色谱分离柱 10再次 完全断丌, 此时炉温为高温状态, 进行去活预柱 3和保留预柱 4的老化过程; 辅助载 气通道 13继续经过所述两位切换阀 Ί给气相色谱分离柱 10提供辅助载气;
当样品中有高沸点成分存在时, 高温老化过程可以将去活预柱 3和保留预柱 4内 的高沸点成分经过所述两位切换阀 7从蒸汽出口 12排出, 从而避免了保留预柱 4内 高沸点成分进入气相色谱分离柱 10, 并加快去活预柱 3和保留预柱 4的净化过程; 当高温老化仍不能对去活预柱 3和保留预柱 4完全老化时, 可切换进样阔 19和 两位控制阀 7, 接通保留预柱 4和蒸汽出口 12、 以及进样器 18和柱上进样口 1, 保 留预柱 4和气相色谱分离柱 10再次完全断丌, 在低于溶剂校正沸点的炉温下, 将溶 剂直接通过进样器 18注入去活预柱 3和保留预柱 4, 利用液态溶剂对去活预柱 3和 保留预柱 4进行清洗净化, 同图 1所示。
两位六通阀 7 ώ PerkinElmer Clarus 600 T气相色谱上的 Valve 控制模块控制, 仅有 ON/OFF 两个模式。 所以, 本发明的气相色谱 /质谱 (GC/MS ) 大体积进样技术和装置不但避 免了大量液相色谱流动相对气相色谱检测器 (尤其是 MS真空系统) 造成的影响, 还可以灵 活进行保留预柱 4和气相色谱分离柱 10的隔离及相连。
脂肪酸甲酯混合标样的 LC-GC/MS检测结果如图 6和表 1所示:
表 1 脂肪酸甲酯标样 LC-GC/MS检测结果
Figure imgf000009_0001
更正页 (细则第 91条) 29.34 壬酸甲酯 172
32.12 癸酸甲酯 186
34.75 十一酸甲酯 200
37.20 十二酸甲酯 214
39.52 十三酸甲酯 228
41 .73 十四酸甲酯 242
45.83 十六酸甲酯 270
49.55 十八酸甲酯 298
52.87 二十酸甲酯 326
55.96 二十二酸甲酯 354
从中可以看出, 运用本发明设计的气相色谱 /质谱 (GC/MS ) 大体积进样装置系统和分 析方法, 从己酸甲酯到二十二酸甲酯均可检测到, 且峰形对称, 分离度较高, 说明利用本发 明设计安装的 GC/MS 大体积进样装置系统的分析方法没有引起低沸点成分的损失或峰展 宽, 适用于复杂体系中从低沸点到高沸点成分的测定, 具有广泛的适用范围和良好的使用效 果。 对比实施例- 采用常规 GC/MS 方法, 对实施例 I 中配制的脂肪酸甲酯储备液 (即各组分浓度约 0.1 mg/mL ) 进行分析。
气相色谱 -质谱条件:
GC/MS联用仪: (Agilent5975C ) : 分流 /不分流迸样口, 2 μΐ不分流进样, 进样口温度为 250 。C ; DB-5MS分析柱, 30 m χ Φ 0.32 mm , 膜厚为 0.25 μηι; 载气为高纯氦气, 恒流模 式, 流量为 l ml/min ; GC/MS 炉温箱升温程序为: 起始温度 40 V, 保持 2 min, 以 5 °C /min 程序升温至 28CTC , 保持 15 min; 电子轰击源 EI, 电压为 70 eV ; 离子源温度: 230 V; 传输线温度: 280°C , 扫描范围 33- 350 amu。
检测结果如图 7和表 2所示:
表 2 脂肪酸甲酯混合样常规 GC/MS检测结果
Figure imgf000010_0001
更正页 (细则第 91条) 4 壬酸甲酯 Nonanoic acid, methyl ester Ci0 o02 172
5 癸酸甲酯 Decanoic acid, methyl ester CnH2202 186
6 十一酸甲酯 Undecanoic acid, methyl ester Ci2H2402 200
7 十二酸甲酯 Dodecanoic acid, methyl ester C】3H2602 214
8 十三酸甲酯 Tridecanoic acid, methyl ester Ci4H2802 228
9 肉豆蔻酸甲酯 Tetradecanoic acid, methyl ester C15H30O2 242
10 棕榈酸甲酯 Hexadecanoic acid, methyl ester Ci7H3402 270
1 1 硬脂酸甲酯 Octanoic acid, methyl ester C19H38O2 298
12 二十酸甲酯 Arachidic acid, methyl ester C2.H4202 326
13 二十二酸甲酯 Docosanoic acid, methyl ester C23H4 02 354 比较图 6和图 7, 可以发现, 本发明方法的分析结果与常规方法具有较好的一致性。 果表明, 运用本发明建立的大体积进样装置系统及分析方法, 进样量 330微升, 从己酸甲酯 到二十二酸甲酯均可定量检测, 峰形尖锐对称, 分离度较高, 说明充分利用了溶剂效应, 有 效抑制了挥发性组分的损失。
更正页 (细则第 91条)

Claims

权利要求书 、 一种气相色谱 /质谱大体积进样装置系统, 包括气相色谱系统和与之连接的质谱检测器
(11), 所述气相色谱系统包括依次连接的柱上进样口 (1)、 去活预柱 (3)、 保留预柱 (4) 和气相色谱分离柱 (10); 所述保留预柱 (4) 和气相色谱分离柱 (10) 之间连接有 一溶剂排空装置; 所述溶剂排空装置包括两个三通接头 (5、 8) 和连接于所述两个三通 接头 (5、 8) 之间的两位切换阀 (7); 所述柱上进样口 (1) 还与气相色谱载气通道 (2) 连接。
、 如权利要求 1 所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 其中一个三 通接头 (5) 直通的两端分别连接于气相色谱的保留预柱 (4) 和所述两位切换阀 (7) 的 接头 I (15), 侧端内设一阻尼管 (6); 另一个三通接头 (8) 直通的两端分别连接于气 相色谱分离柱 (10) 和所述两位切换阀 (7) 上与前述接头 I (15) 相邻的另一接头 II
(16), 侧端内设一阻尼管 (9)。
、 如权利要求 2所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 所述两位切 换阀 (7) 上与接头 I (15) 相邻的另一接头 III (14) 与气相色谱的蒸汽出口 (12) 连 接; 所述两位切换阀 (7) 上与接头 II (16) 相邻的另一接头 IV (17) 与气相色谱辅助载 气通道 (13) 连接。
、 如权利要求 3所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 所述两位切 换阀 (7) 为两位四通阀、 两位六通阀、 两位八通阀或更多通道的两位切换阀。
、 如权利要求 1 所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 所述柱上进 样口 (1) 与进样器 (18) 连接, 所述柱上进样口 (1) 和进样器 (18) 之间连接有一进 样阀 (19)。
、 如权利要求 5所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 所述进样器
(18) 采用液相色谱仪或注射器。
、 如权利要求 Ί所述的一种气相色谱 /质谱大体积进样装置系统, 其特征在于, 所述进样阀
(19) 为两位四通阀或更多通道的两位切换阀; 所述进样阀 (19) 的 A位与所述柱上进 样口 (1) 连接, 所述进样阀 (19) 上与所述 A位相邻的 B位与进样器 (18) 连接, 所 述进样阀 (19) 上与所述 B位相邻的 C位与废液管连接, 所述进样阀 (19) 上与 A位相 邻的 D位与限流管连接。 、 一种利用权利要求 3 所述气相色谱 /质谱大体积进样装置系统的液相色谱-气相色谱 /质谱 联用分析方法, 包括以下操作流程:
(1) 当液相色谱馏分进入气相色谱的去活预柱 (3) 时, 两位切换阀 (7) 打开, 气相 色谱保留预柱 (4) 和气相色谱分离柱 (10) 完全断开, 气相色谱载气与液相色 谱流动相全部经过所述两位切换阀 (7) 从蒸汽出口 (12) 蒸发排出, 而液相色 谱馏分中的待测组分因为溶剂效应被保留在保留预柱 (4) 内; 同时, 辅助载气 通道 (13) 经过所述两位切换阀 (7) 给气相色谱分离柱 (10) 提供辅助载气;
(2) 待保留预柱 (4) 内的液相色谱流动相完全蒸发后, 所述两位切换阀 (7) 关闭, 保留预柱 (4) 和气相色谱分离柱 (10) 连接, 炉温箱开始程序升温, 来自液相 色谱馏分中的待测组分通过所述两位切换阀 (7) 转入气相色谱分离柱 (10) 进 行分离;
(3) 待所述待测组分完全转移到气相色谱分离柱 (10) 之后, 所述两位切换阀 (7) 再次打开, 保留预柱 (4) 和气相色谱分离柱 (10) 再次完全断开, 避免了保留 预柱 (4) 内高沸点成分进入气相色谱分离柱 (10), 并加快保留预柱 (4) 的净 化过程。
、 一种利用权利要求 Ί所述一种气相色谱 /质谱大体积进样装置系统的分析方法, 包括以下 操作流程:
(1) 切换进样阀 (19), 接通进样器 (18) 和柱上进样口 (1), 进样器 (18) 开始进样, 液体样品经柱上进样口 (1) 进入气相色谱去活预柱 (3); 同时切换两位切换阀
(7), 使保留预柱 (4) 和蒸汽出口 (12) 连通、 辅助载气通道 (13) 与气相色谱分 离柱 (10) 接通、 并使保留预柱 (4) 和气相色谱分离柱 (10) 完全断开; 蒸发温度 控制在进样液体样品中的溶剂的校正沸点之下, 气相色谱载气与溶剂全部经过所述两 位切换阀 (7) 从蒸汽出口 (12) 蒸发排出, 进样液体样品中的待测组分因为溶剂效 应被保留在保留预柱 (4) 内; 由于蒸汽出口 (12) 为大气压, 使溶剂蒸发速度大大 加快; 同时, 辅助载气通道 (13) 经过所述两位切换阀 (7) 给气相色谱分离柱
(10) 提供辅助载气; 进样结束后, 切换进样阀 (19), 将柱上进样口 (1) 与限流管 接通、 进样器 (18) 与废液管接通, 利用来自柱上进样口 (1) 的气相色谱载气对进 样阀 (15) 进行反吹, 将记忆效应减至最小;
(2) 待保留预柱 (4) 内的溶剂完全蒸发后, 切换所述两位切换阀 (7), 接通保留预柱
(4) 和气相色谱分离柱 (10), 气相色谱仪的炉温箱开始程序升温, 待测组分通过所 述两位切换阀 (7) 转入气相色谱分离柱 (10) 进行分离, 质谱检测器 (11) 进行检
(3) 待所述待测组分完全转移到气相色谱分离柱 (10) 之后, 再次切换所述两位切换阀 (7), 接通保留预柱 (4) 和蒸汽出口 (12), 保留预柱 (4) 和气相色谱分离柱 (10) 再次完全断开, 气相色谱载气流速加快, 加快去活预柱 (3) 和保留预柱 (4) 的老化过程; 去活预柱 (3) 和保留预柱 (4) 内高沸点成分经过所述两位切换阀 (7) 从蒸汽出口 (12) 排出, 避免了保留预柱 (4) 内高沸点成分进入气相色谱分离 柱 (10); 辅助载气通道 (13) 继续经过所述两位切换阀 (7) 给气相色谱分离柱 (10) 提供辅助载气。 0、 如权利要求 9所述的分析方法, 其特征在于, 步骤 (3) 中, 当所述老化过程仍不能 将所述去活预柱 (3) 和保留预柱 (4) 完全老化时, 切换所述进样阀 (19) 和两位切换 阀 (7), 接通保留预柱 (4) 和蒸汽出口 (12)、 以及进样器 (18) 和柱上进样口 (1), 保留预柱 (4) 和气相色谱分离柱 (10) 再次完全断开, 在低于溶剂校正沸点的炉温下, 将溶剂直接通过进样器 (18) 注入去活预柱 (3) 和保留预柱 (4), 利用液态溶剂对去活 预柱 (3) 和保留预柱 (4) 进行清洗。
PCT/CN2013/079214 2013-02-20 2013-07-11 一种气相色谱/质谱大体积进样装置系统及分析方法 WO2014127602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310054741.3 2013-02-20
CN201310054741.3A CN103091430B (zh) 2013-02-20 2013-02-20 一种液相色谱-气相色谱在线联用接口的溶剂排空装置及方法

Publications (1)

Publication Number Publication Date
WO2014127602A1 true WO2014127602A1 (zh) 2014-08-28

Family

ID=48204257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079214 WO2014127602A1 (zh) 2013-02-20 2013-07-11 一种气相色谱/质谱大体积进样装置系统及分析方法

Country Status (2)

Country Link
CN (1) CN103091430B (zh)
WO (1) WO2014127602A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020447A (zh) * 2018-02-01 2018-05-11 安徽理工大学 一种气相色谱流量恒定采进样系统装置
CN111272921A (zh) * 2020-03-28 2020-06-12 中国烟草总公司郑州烟草研究院 一种检测烟叶、烟丝中新植二烯的快速恒压反吹gc-fid方法
CN113063874A (zh) * 2021-04-02 2021-07-02 中国神华煤制油化工有限公司 用于分析空分液氧中杂质的装置和方法
CN113295784A (zh) * 2021-05-08 2021-08-24 湖南新程检测有限公司 一种基于气相色谱电离质谱法的食品检测装置及其方法
CN113960209A (zh) * 2021-10-28 2022-01-21 中国石油天然气股份有限公司 一种重-稠油气相色谱进样辅助装置及检测方法
CN114755349A (zh) * 2022-06-14 2022-07-15 四川晟实科技有限公司 一种大气挥发性有机物低温双柱色谱自动分析系统及方法
CN114965743A (zh) * 2022-04-24 2022-08-30 中国科学院微生物研究所 代谢物二维中心切割气质联用分离方法
CN115308348A (zh) * 2022-09-02 2022-11-08 中国石油化工股份有限公司 一种汽油中非常规添加物的全二维气相色谱分析方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091430B (zh) * 2013-02-20 2015-05-20 上海烟草集团有限责任公司 一种液相色谱-气相色谱在线联用接口的溶剂排空装置及方法
CN105158380B (zh) * 2015-05-13 2020-03-31 上海烟草集团有限责任公司 高效液相色谱与气相色谱/质谱联用的接口装置
CN105510465A (zh) * 2015-12-14 2016-04-20 云南中烟工业有限责任公司 一种能大幅度提高分析灵敏度的气相色谱分析装置和分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151950A (ja) * 1997-08-04 1999-02-26 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
CN1628889A (zh) * 2003-12-18 2005-06-22 中国科学院大连化学物理研究所 一种在线毛细管柱内固相微萃取方法和装置
CN101776649A (zh) * 2009-12-29 2010-07-14 聚光科技(杭州)股份有限公司 一种色谱分析方法和装置
CN201673144U (zh) * 2009-12-29 2010-12-15 聚光科技(杭州)股份有限公司 一种色谱分析装置
CN102235949A (zh) * 2010-04-30 2011-11-09 中国科学院大连化学物理研究所 气相-液相在线联用的二噁英类样品净化装置
CN102818871A (zh) * 2012-05-29 2012-12-12 上海烟草集团有限责任公司 液相色谱-气相色谱/质谱在线联用接口装置及方法
CN103091430A (zh) * 2013-02-20 2013-05-08 上海烟草集团有限责任公司 一种液相色谱-气相色谱在线联用接口的溶剂排空方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338514A (en) * 1993-08-25 1994-08-16 The Dow Chemical Company Vented capillary gas chromatography apparatus
FR2787576B1 (fr) * 1998-12-22 2001-01-12 Inst Francais Du Petrole Procede et dispositif d'analyse integree pour la caracterisation d'hydrocarbures, par simulation de distillation
JP2007024781A (ja) * 2005-07-20 2007-02-01 Shimadzu Corp ガスクロマトグラフ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151950A (ja) * 1997-08-04 1999-02-26 Nippon Seiko Kk 回転速度検出装置付転がり軸受ユニット
CN1628889A (zh) * 2003-12-18 2005-06-22 中国科学院大连化学物理研究所 一种在线毛细管柱内固相微萃取方法和装置
CN101776649A (zh) * 2009-12-29 2010-07-14 聚光科技(杭州)股份有限公司 一种色谱分析方法和装置
CN201673144U (zh) * 2009-12-29 2010-12-15 聚光科技(杭州)股份有限公司 一种色谱分析装置
CN102235949A (zh) * 2010-04-30 2011-11-09 中国科学院大连化学物理研究所 气相-液相在线联用的二噁英类样品净化装置
CN102818871A (zh) * 2012-05-29 2012-12-12 上海烟草集团有限责任公司 液相色谱-气相色谱/质谱在线联用接口装置及方法
CN103091430A (zh) * 2013-02-20 2013-05-08 上海烟草集团有限责任公司 一种液相色谱-气相色谱在线联用接口的溶剂排空方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020447B (zh) * 2018-02-01 2024-04-05 安徽理工大学 一种气相色谱流量恒定采进样系统装置
CN108020447A (zh) * 2018-02-01 2018-05-11 安徽理工大学 一种气相色谱流量恒定采进样系统装置
CN111272921A (zh) * 2020-03-28 2020-06-12 中国烟草总公司郑州烟草研究院 一种检测烟叶、烟丝中新植二烯的快速恒压反吹gc-fid方法
CN111272921B (zh) * 2020-03-28 2023-04-25 中国烟草总公司郑州烟草研究院 一种检测烟叶、烟丝中新植二烯的快速恒压反吹gc-fid方法
CN113063874A (zh) * 2021-04-02 2021-07-02 中国神华煤制油化工有限公司 用于分析空分液氧中杂质的装置和方法
CN113295784A (zh) * 2021-05-08 2021-08-24 湖南新程检测有限公司 一种基于气相色谱电离质谱法的食品检测装置及其方法
CN113960209B (zh) * 2021-10-28 2022-09-16 中国石油天然气股份有限公司 一种重-稠油气相色谱进样辅助装置及检测方法
CN113960209A (zh) * 2021-10-28 2022-01-21 中国石油天然气股份有限公司 一种重-稠油气相色谱进样辅助装置及检测方法
CN114965743A (zh) * 2022-04-24 2022-08-30 中国科学院微生物研究所 代谢物二维中心切割气质联用分离方法
CN114755349B (zh) * 2022-06-14 2022-09-02 四川晟实科技有限公司 一种大气挥发性有机物低温双柱色谱自动分析系统及方法
CN114755349A (zh) * 2022-06-14 2022-07-15 四川晟实科技有限公司 一种大气挥发性有机物低温双柱色谱自动分析系统及方法
CN115308348A (zh) * 2022-09-02 2022-11-08 中国石油化工股份有限公司 一种汽油中非常规添加物的全二维气相色谱分析方法
CN115308348B (zh) * 2022-09-02 2024-05-28 中国石油化工股份有限公司 一种汽油中非常规添加物的全二维气相色谱分析方法

Also Published As

Publication number Publication date
CN103091430B (zh) 2015-05-20
CN103091430A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2014127602A1 (zh) 一种气相色谱/质谱大体积进样装置系统及分析方法
Majchrzak et al. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review
CN110187037B (zh) 环境空气中57种挥发性有机物含量的测定系统及方法
US11067548B2 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS)
Chai et al. Analysis of environmental air samples by solid-phase microextraction and gas chromatography/ion trap mass spectrometry
US11162925B2 (en) High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
Lord Strategies for interfacing solid-phase microextraction with liquid chromatography
US11247204B2 (en) Sample preconcentration system and method for use with gas chromatography
Hopkins et al. A two-column method for long-term monitoring of non-methane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (o-VOCs)
US11435326B2 (en) Recovery of organic compounds in liquid samples using full evaporative vacuum extraction, thermal desorption, and GCMS analysis
US20220082538A1 (en) Large Volume Gas Chromatography Injection Port
US20210364483A1 (en) Chromatographic apparatus for online enrichment of trace and ultra-trace components and method for analyzing trace and ultra-trace components using same
CN111323523A (zh) 一种家具材料挥发性有机物的检测分析方法
US10648955B2 (en) Online chemical derivatization using a cooled programmed temperature vaporization inlet
Yasuhara et al. Automated analysis of salivary stress-related steroid hormones by online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
CN112834675A (zh) 在线分析VOCs和SVOCs的装置及方法
Laaks et al. Fingerprinting of red wine by headspace solid-phase dynamic extraction of volatile constituents
Schomburg et al. Quantitation in capillary gas chromatography with emphasis on the problems of sample introduction
Apps et al. Trace analysis of complex organic mixtures using capillary gas‐liquid chromatography and the dynamic solvent effect
Gómez-Ariza et al. Simultaneous separation, clean-up and analysis of musty odorous compounds in wines by on-line coupling of a pervaporation unit to gas chromatography–tandem mass spectrometry
JP7142374B2 (ja) 気相成分分析装置及び気相成分分析方法
US11946912B2 (en) System and method of trace-level analysis of chemical compounds
Kornacki et al. Chemical transformations of alcohols sampled with the use of adsorptive enrichment on the carbon adsorbent traps followed by thermal desorption
Fu-hua et al. Development of New Online Monitoring System of Adsorption and Concentration for Atmospheric Volatile Organic Compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875673

Country of ref document: EP

Kind code of ref document: A1