WO2014126238A1 - 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材 - Google Patents

金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材 Download PDF

Info

Publication number
WO2014126238A1
WO2014126238A1 PCT/JP2014/053635 JP2014053635W WO2014126238A1 WO 2014126238 A1 WO2014126238 A1 WO 2014126238A1 JP 2014053635 W JP2014053635 W JP 2014053635W WO 2014126238 A1 WO2014126238 A1 WO 2014126238A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
ions
metal
acid compound
ion
Prior art date
Application number
PCT/JP2014/053635
Other languages
English (en)
French (fr)
Inventor
知嘉子 宮内
康貴 犬伏
啓之 小西
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2015500328A priority Critical patent/JPWO2014126238A1/ja
Publication of WO2014126238A1 publication Critical patent/WO2014126238A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • C07C63/28Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4525Gas separation or purification devices adapted for specific applications for storage and dispensing systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a metal complex, and an adsorbent, an occlusion material, and a separation material comprising the same. More specifically, a polyvalent carboxylic acid compound, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms in the mother skeleton Relates to a metal complex consisting of
  • Activated carbon is a representative example, and is widely used in various industries such as air purification, desulfurization, denitration, and removal of harmful substances by utilizing the excellent adsorption performance of activated carbon.
  • the demand for nitrogen has increased for semiconductor manufacturing processes, etc., and as a method for producing such nitrogen, a method of producing nitrogen from air by pressure swing adsorption method or temperature swing adsorption method using molecular sieve charcoal is used.
  • Molecular sieve charcoal is also applied to various gas separation and purification such as hydrogen purification from methanol cracked gas.
  • polymer metal complexes have been developed as adsorbents that give better adsorption performance.
  • the polymer metal complex has features such as (1) a large surface area and high porosity, (2) high designability, and (3) dynamic structural changes due to external stimuli. Expected characteristics.
  • Non-Patent Document 1 In practical use, not only further improvement of adsorption performance, storage performance and separation performance but also improvement of durability against water contained in actual gas is required (for example, see Non-Patent Document 1).
  • An object of the present invention is to provide a metal complex that can be used as a gas adsorbent, gas occlusion material, or gas separation material, which is superior in durability and particularly in water resistance than before.
  • the present inventors have intensively studied and have found that a polyvalent carboxylic acid compound, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aromatic having 4 to 14 carbon atoms in the mother skeleton.
  • the present inventors have found that the above object can be achieved by a metal complex composed of an aromatic monocarboxylic acid compound, and have reached the present invention.
  • a polyvalent carboxylic acid compound at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, an organic ligand capable of multidentate coordination with the metal ion,
  • a metal complex comprising an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms in the mother skeleton.
  • the composition ratio between the polyvalent carboxylic acid compound constituting the metal complex and the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton is a polyvalent carboxylic acid compound: 4 to 14 carbon atoms of the mother skeleton.
  • the at least one metal ion includes at least one divalent metal ion selected from ions of metals belonging to groups 2 to 12 of the periodic table, and metals belonging to groups 9 to 11 of the periodic table.
  • the metal complex is in any shape selected from pellets, films, sheets, plates, pipes, tubes, rods, granules, heterogeneous shapes, fibers, hollow fibers, woven fabrics, knitted fabrics and non-woven fabrics.
  • An adsorbent comprising the metal complex according to any one of items (1) to (6).
  • the adsorbent is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or
  • the adsorbent according to item (7) which is an adsorbent for adsorbing organic vapor.
  • An occlusion material comprising the metal complex according to any one of items (1) to (6).
  • the storage material is a storage material for storing carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, water vapor or organic vapor.
  • a gas storage device in which a gas storage space is provided on the inner side of a pressure vessel that can be kept airtight and has a gas inlet / outlet, and the gas storage space includes the storage material according to item (9). Gas storage device.
  • a separating material comprising the metal complex according to any one of (1) to (6).
  • the separator is carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxide, nitrogen oxide, siloxane, water vapor or Item 15.
  • the separation material according to Item (12) which is a separation material for separating organic vapor.
  • a polyvalent carboxylic acid compound, at least one metal ion, an organic ligand capable of multidentate coordination with the metal ion, and an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms in the mother skeleton The metal complex which consists of can be provided.
  • the metal complex of the present invention is excellent in durability, particularly water resistance, is stably present even under high temperature and high humidity, and can maintain high adsorption performance.
  • the metal complex of the present invention is excellent in the adsorption performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, sulfur oxidation It can be used as an adsorbent for adsorbing substances, nitrogen oxides, siloxanes, water vapor, organic vapors and the like.
  • the metal complex of the present invention is excellent in the occlusion performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbon having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, It can also be used as a storage material for storing water vapor or organic vapor.
  • the metal complex of the present invention is excellent in the separation performance of various gases, carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, hydrocarbons having 1 to 4 carbon atoms, rare gas, hydrogen sulfide, ammonia, It can also be used as a separating material for separating sulfur oxides, nitrogen oxides, siloxanes, water vapor or organic vapors.
  • FIG. 3 is a schematic diagram of a jungle gym skeleton formed by coordination of 4,4′-bipyridyl at an axial position of a metal ion in a paddle wheel skeleton composed of a carboxylate group of terephthalic acid and a copper ion. It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. It is a schematic diagram of a three-dimensional jungle gym structure formed by coordination of pyrazine at the axial position of metal ions in a paddle wheel skeleton consisting of four carboxylate groups of fumaric acid and two copper (II) ions. is there.
  • FIG. 3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 1.
  • FIG. 3 is a crystal structure of the metal complex obtained in Synthesis Example 1.
  • 3 is a 1 H-NMR spectrum measured by dissolving the metal complex obtained in Synthesis Example 1 in deuterated aqueous ammonia.
  • FIG. 4 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 2.
  • FIG. 3 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 3.
  • FIG. 3 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 1.
  • FIG. 2 is an adsorption isotherm of carbon dioxide at 273 K of the metal complexes obtained in Synthesis Example 2 and Synthesis Example 3.
  • 2 is an adsorption / desorption isotherm of carbon dioxide at 293 K of the metal complex obtained in Synthesis Example 2.
  • FIG. 2 is an adsorption / desorption isotherm of carbon dioxide and hydrogen at 313 K of the metal complex obtained in Synthesis Example 1.
  • FIG. 6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 4.
  • FIG. 6 is a powder X-ray diffraction pattern of the metal complex obtained in Synthesis Example 5.
  • FIG. 4 is a powder X-ray diffraction pattern of the metal complex obtained in Comparative Synthesis Example 2.
  • FIG. 2 is an adsorption isotherm of carbon dioxide at 273 K of the metal complexes obtained in Synthesis Example 4 and Synthesis Example 5.
  • the horizontal axis represents the diffraction angle (2 ⁇ ) and the vertical axis represents the diffraction intensity (Intensity) indicated by cps (Counts per Second).
  • the horizontal axis represents the equilibrium pressure (Pressure) expressed in MPa
  • the vertical axis represents the equilibrium adsorption amount (Amount Adsorbed) expressed in mL (STP) / g.
  • the adsorption amount (ads.) Of the gas (that is, carbon dioxide) at each pressure when the pressure is increased is plotted.
  • the metal complex of the present invention includes a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and an organic configuration capable of multidentate coordination with the metal ion. It consists of a ligand and an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton.
  • the polyvalent carboxylic acid compound used in the present invention is not particularly limited, and dicarboxylic acid compounds, tricarboxylic acid compounds, tetracarboxylic acid compounds, and the like can be used.
  • Examples of the polyvalent carboxylic acid compound used in the present invention include saturated aliphatic dicarboxylic acids such as succinic acid, adipic acid, and trans-1,4-cyclohexanedicarboxylic acid; fumaric acid, trans, trans-1,4-butadiene Unsaturated aliphatic dicarboxylic acids such as dicarboxylic acids; isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, etc.
  • saturated aliphatic dicarboxylic acids such as succinic acid, adipic acid, and trans-1,4-cyclohexanedicarboxylic acid
  • fumaric acid trans, trans-1,4-butadiene
  • Unsaturated aliphatic dicarboxylic acids such as dicarboxy
  • Heteroaromatic dicarboxylic acids 1,3,5-benzenetricarboxylic acid, 1,3,4-benzene Aromatic tricarboxylic acids such as zentricarboxylic acid and biphenyl-3,4 ', 5-tricarboxylic acid; 1,2,4,5-benzenetetracarboxylic acid, [1,1': 4 ', 1' '] terphenyl And aromatic tetracarboxylic acids such as ⁇ 3,3 ′′, 5,5 ′′ -tetracarboxylic acid and 5,5 ′-(9,10-anthracenediyl) diisophthalic acid.
  • dicarboxylic acid compounds are preferable, and aromatic dicarboxylic acid compounds are more preferable.
  • the polyvalent carboxylic acid compound may further have a substituent in addition to the carboxyl group.
  • the polyvalent carboxylic acid having a substituent is preferably an aromatic polyvalent carboxylic acid, and the substituent is preferably bonded to the aromatic ring of the aromatic polyvalent carboxylic acid.
  • the terephthalic acid may be 2-nitroterephthalic acid.
  • the number of substituents may be 1, 2 or 3.
  • an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group or the like having 1 to 5 alkyl group), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert- Butoxy group and the like), amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), nitro group, cyano group, hydroxyl group, and trifluoromethyl group.
  • alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso
  • the polyvalent carboxylic acid compound used in the present invention may be used singly or as a mixture of two or more polyvalent carboxylic acid compounds.
  • the metal complex of this invention may mix and use 2 or more types of metal complexes which consist of a single polyvalent carboxylic acid compound.
  • the polyvalent carboxylic acid compound may be used in the form of an acid anhydride or an alkali metal salt.
  • the metal ion used in the present invention is at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table.
  • Metal ions belonging to Group 2 of the periodic table are beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, and radium ions.
  • Metal ions belonging to Group 3 of the periodic table are scandium ions, yttrium ions, lanthanoid ions, and actinide ions.
  • Metal ions belonging to Group 4 of the periodic table are titanium ions, zirconium ions, hafnium ions, and rutherfordium ions.
  • Metal ions belonging to Group 5 of the periodic table are vanadium ions, niobium ions, tantalum ions, and dobnium ions.
  • Metal ions belonging to Group 6 of the periodic table are chromium ions, molybdenum ions, tungsten ions, and seaborgium ions.
  • Metal ions belonging to Group 7 of the periodic table are manganese ions, technetium ions, rhenium ions, and bolium ions.
  • Metal ions belonging to Group 8 of the periodic table are iron ions, ruthenium ions, osmium ions, and hash ions.
  • Metal ions belonging to Group 9 of the periodic table are cobalt ions, rhodium ions, iridium ions, and mitnerium ions.
  • Metal ions belonging to Group 10 of the periodic table are nickel ions, palladium ions, platinum ions, and dermisstatium ions.
  • Metal ions belonging to Group 11 of the periodic table are copper ions, silver ions, gold ions, and roentgenium ions.
  • Metal ions belonging to Group 12 of the periodic table are zinc ions, cadmium ions, mercury ions, and ununbium ions.
  • the metal ions belonging to Group 13 of the periodic table are boron ions, aluminum ions, gallium ions, indium ions, thallium ions, and unium ions.
  • Examples of ions of metals belonging to Groups 2 to 13 of the periodic table used in the present invention include magnesium ions, calcium ions, scandium ions, lanthanoid ions (such as lanthanum ions, terbium ions, and lutetium ions), actinide ions (actinium ions). ), Zirconium ion, vanadium ion, chromium ion, molybdenum ion, manganese ion, iron ion, cobalt ion, nickel ion, copper ion, zinc ion, cadmium ion, aluminum ion, etc. Manganese ions, cobalt ions, nickel ions, copper ions and zinc ions are preferred, and copper ions are more preferred.
  • the metal ion used in the present invention may be a single metal ion or a mixture of two or more metal ions.
  • the metal complex of this invention may mix and use 2 or more types of metal complexes which consist of a single metal ion.
  • the metal ion may be used in the form of a metal salt.
  • metal salts include magnesium salts, calcium salts, scandium salts, lanthanoid salts (such as lanthanum salts, terbium salts, and lutetium salts), actinoid salts (such as actinium salts and lauren salts), zirconium salts, vanadium salts, chromium salts, Molybdenum salt, manganese salt, iron salt, cobalt salt, nickel salt, copper salt, zinc salt, cadmium salt, aluminum salt, etc. can be used, among which manganese salt, cobalt salt, nickel salt, copper salt and zinc salt are Preferably, a copper salt is more preferable.
  • the metal salt may be a single metal salt or a mixture of two or more metal salts.
  • organic acid salts such as acetates and formates
  • inorganic acid salts such as sulfates, nitrates, hydrochlorides, hydrobromides and carbonates can be used.
  • the metal ions belonging to groups 2 to 13 of the periodic table are composed of at least one divalent metal ion selected from metal ions belonging to groups 2 to 12 of the periodic table.
  • the metal ions belonging to groups 2 to 13 of the periodic table include at least one divalent metal ion selected from metal ions belonging to groups 2 to 12 of the periodic table; It consists of at least one monovalent metal ion selected from ions of metals belonging to Groups 9-11.
  • divalent metal ions belonging to Groups 2 to 12 of the periodic table include vanadium (II) ions, chromium (II) ions, molybdenum (II) ions, tungsten (II) ions, manganese (II) ions, Iron (II) ion, cobalt (II) ion, nickel (II) ion, copper (II) ion, zinc (II) ion, cadmium (II) ion, etc.
  • manganese (II) ion can be used, among which manganese (II) ion, Cobalt (II) ions, nickel (II) ions, copper (II) ions and zinc (II) ions are preferred, and copper (II) ions are more preferred.
  • the divalent metal ion may be a single divalent metal ion or a mixture of two or more types of divalent metal ions.
  • the divalent metal ion may be used in the form of a metal salt.
  • the metal salt include vanadium (II) salt, chromium (II) salt, molybdenum (II) salt, manganese (II) salt, iron (II) salt, cobalt (II) salt, nickel (II) salt, copper (II) salt, zinc (II) salt, cadmium (II) salt and the like can be used, among which manganese (II) salt, cobalt (II) salt, nickel (II) salt, copper (II) salt and zinc (II) salt is preferable, and copper (II) salt is more preferable.
  • the divalent metal salt may be a single metal salt or a mixture of two or more divalent metal salts.
  • organic acid salts such as acetates and formates
  • inorganic acid salts such as sulfates, nitrates, hydrochlorides, hydrobromides and carbonates can be used.
  • valence of the metal ion is divalent can be confirmed by, for example, magnetic susceptibility, electron spin resonance, absorptiometry, etc., but is not limited thereto.
  • Examples of monovalent metal ions belonging to Groups 9 to 11 of the periodic table include copper (I) ions, silver (I) ions, gold (I) ions, rhodium (I) ions, iridium (I) ions, and the like. Of these, copper (I) ions are preferred.
  • the monovalent metal ion may be a single monovalent metal ion or a mixture of two or more types of monovalent metal ions.
  • the monovalent metal ion may be used in the form of a metal salt.
  • a metal salt for example, a copper (I) salt, a silver (I) salt, a gold (I) salt, a rhodium (I) salt, an iridium (I) salt and the like can be used. Is preferred.
  • the monovalent metal salt may be a single metal salt or a mixture of two or more monovalent metal salts.
  • organic acid salts such as acetates and formates
  • inorganic acid salts such as sulfates, nitrates, hydrochlorides, hydrobromides and carbonates can be used.
  • valence of the metal ion is monovalent can be confirmed by, for example, magnetic susceptibility, electron spin resonance, absorptiometry, etc., but is not limited thereto.
  • the content of monovalent metal ions with respect to the total amount of metal ions in the metal complex of the present invention is preferably in the range of 3.5 to 20 mol%, and in the range of 3.5 to 10 mol%. Is more preferable, and it is particularly preferably in the range of 4.0 to 10 mol%.
  • the metal complex of the present invention exhibits high durability, particularly high water resistance, although the details are not clear by containing a specific amount of monovalent metal ions.
  • the durability of the metal complex of the present invention can be evaluated by, for example, performing a water vapor exposure test in which the metal complex is exposed to high temperature and high humidity, and comparing the amount of change in adsorption amount before and after the test.
  • the content of monovalent metal ions relative to the total amount of metal ions in the metal complex of the present invention should be confirmed, for example, by elemental analysis in the case where the divalent metal ions are different from the monovalent metal ions. However, it is not limited to these.
  • the ratio of the divalent metal ion and the monovalent metal ion is analyzed using, for example, absorptiometry or X-ray photoelectron spectroscopy.
  • the present invention is not limited to these.
  • the divalent metal ion is a copper (II) ion and the monovalent metal ion is a copper (I) ion.
  • the total amount of copper ions constituting the metal complex was determined by reacting the metal complex with an aqueous solution of disodium salt of bathocuproin disulfonate, and then adding all the released copper ions by adding sodium ascorbate as a reducing agent. (I) It converts into an ion, The light absorbency is measured and calculated about the sample which the copper (I) ion and bathocuproine formed a complex using a spectrophotometer.
  • the amount of copper (I) ions contained in the metal complex is decomposed by reacting the metal complex with an aqueous solution of disodium salt of bathocuproine disulfonate that specifically reacts with copper (I) ions, and released copper.
  • the absorbance of a sample in which ions and bathocuproine are complexed is measured and calculated using a spectrophotometer. From the amount of copper (I) ions thus obtained and the amount of total copper ions, the amount of copper (I) ions contained in the metal complex can be determined.
  • the organic ligand capable of multidentate coordination to the metal ion used in the present invention means a neutral ligand having two or more sites coordinated to the metal ion by a lone pair of electrons.
  • a bidentate organic ligand is a neutral organic ligand capable of multidentate coordination having two sites that coordinate to a metal ion with a lone pair;
  • a tridentate organic ligand is a lone electron
  • tetradentate organic ligands are sites coordinated to metal ions by unshared electron pairs. It is a neutral organic ligand capable of multidentate coordination having 4 positions.
  • Examples of the site coordinated to the metal ion by the lone pair include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom.
  • the organic ligand capable of multidentate coordination is preferably a heteroaromatic ring compound, and more preferably a heteroaromatic ring compound having a nitrogen atom at a coordination site.
  • the heteroaromatic ring compound may have a substituent and may be bonded with a divalent hydrocarbon group (for example, a divalent group obtained by removing two hydrogen atoms from ethyne).
  • bidentate organic ligands include 1,4-diazabicyclo [2.2.2] octane, pyrazine, 4,4′-bipyridyl, and 1,2-bis. (4-pyridyl) ethyne, 1,4-bis (4-pyridyl) butadiyne, 1,4-bis (4-pyridyl) benzene, 3,6-di (4-pyridyl) -1,2,4,5- Tetrazine, 2,2'-bi-1,6-naphthyridine, phenazine, diazapyrene, 2,6-di (4-pyridyl) -benzo [1,2-c: 4,5-c '] dipyrrole-1,3 , 5,7 (2H, 6H) -tetron, N, N'-di (4-pyridyl) -1,4,5,8-naphthalenetetracarboxyd
  • tridentate organic ligand examples include 1,3,5-tris (2-pyridyl) benzene, 1,3,5-tris (3-pyridyl) benzene, 1,3,5-tris (4-pyridyl) benzene, 1,3,5-tris (1-imidazolyl) benzene, 2,4,6-tris (2-pyridyl) -1,3,5-triazine, 2 , 4,6-Tris (3-pyridyl) -1,3,5-triazine, 2,4,6-tri (4-pyridyl) -1,3,5-triazine, 2,4,6-tris (1 -Imidazolyl) -1,3,5-triazine and the like.
  • tetradentate organic ligands examples include 1,2,4,5-tetrakis (2-pyridyl) benzene and 1,2,4,5-tetrakis (3-pyridyl).
  • an organic ligand capable of bidentate coordination is preferable.
  • the multidentate organic ligand used in the present invention may have a substituent.
  • an organic ligand capable of multidentate coordination having a substituent such as 2-methylpyrazine, 2,5-dimethylpyrazine, 2,2'-dimethyl-4,4'-bipyridine, and the like can be given.
  • the organic ligand capable of multidentate coordination may be used alone, or two or more organic ligands capable of multidentate coordination may be used in combination.
  • the metal complex obtained by the production method of the present invention may be used by mixing two or more metal complexes composed of a single multidentate organic ligand.
  • bidentate coordination is possible with a point cloud of D ⁇ h and a length in the major axis direction of 7.0 to 16.0 cm. More preferred are organic ligands.
  • the point group of the organic ligand capable of bidentate coordination can be determined according to the method described in Reference 1 below.
  • Reference 1 Masao Nakazaki, Molecular symmetry and group theory, 39-40 (1973, Tokyo Chemical Doujin)
  • the point group of the organic ligand capable of bidentate coordination is D ⁇ h , since the symmetry is high, there are few wasted voids and high adsorption performance can be exhibited.
  • the length in the major axis direction of the organic ligand capable of bidentate coordination is 7.0 to 16.0 mm, the distance between metal ions in the complex becomes appropriate, and gas molecules are adsorbed and desorbed. It is possible to form a metal complex having voids that are optimal for the purpose. Even when an organic ligand capable of bidentate coordination with a major axis length outside this range is used, a metal complex can be obtained, but the occlusion performance and separation performance tend to decrease.
  • the length of the long axis direction of the bidentate organic ligand can be measured by using the Siggress Explorer Professional Version 7.6.0.52 manufactured by Fujitsu Limited and the conformational analysis by the molecular dynamics method MM3. After that, in the most stable structure obtained by optimizing the structure by the semi-empirical molecular orbital method PM5, among the atoms coordinated to the metal ion, the two atoms at the most distant positions in the structural formula Is defined as the distance.
  • the distance between nitrogen atoms of 1,4-diazabicyclo [2.2.2] octane is 2.609 mm
  • the distance between nitrogen atoms of pyrazine is 2.810 mm
  • the distance between nitrogen atoms of 4,4′-bipyridyl is 7.
  • the distance between nitrogen atoms of 061 ⁇ , 1,2-bis (4-pyridyl) ethyne is 9.583 ⁇
  • the distance between nitrogen atoms of 1,4-bis (4-pyridyl) benzene is 11.315 ⁇ , 3,6-di
  • the distance between nitrogen atoms of 4-pyridyl) -1,2,4,5-tetrazine is 11.204 ⁇ , 2,6-di (4-pyridyl) -benzo [1,2-c: 4,5-c ′]
  • the distance between nitrogen atoms of dipyrrole-1,3,5,7 (2H, 6H) -tetron is 15.309 mm
  • the distance between nitrogen atoms of 4,4′-bis (4-pyridyl) biphenyl is 15.570 mm
  • N, N'-di (4-pyridyl) -1,4,5,8 Nitrogen interatomic distance naphthalene tetracarboxylic diimide becomes 15.533A.
  • the number of carbon atoms in the mother skeleton of the aromatic monocarboxylic acid compound used in the present invention is preferably 4 to 14, more preferably 4 to 10, and particularly preferably 4 to 6.
  • the aromatic monocarboxylic acid compound may be a heteroaromatic monocarboxylic acid compound.
  • the “carbon number of the mother skeleton” means the carbon number of only the ring structure excluding the carbon number of the substituent.
  • the substituent includes a carboxyl group.
  • 2-thiophenecarboxylic acid (4 carbon atoms in the mother skeleton), 3-thiophenecarboxylic acid (4 carbon atoms in the mother skeleton), 3-pyridinecarboxylic acid (5 carbon atoms in the mother skeleton), 4-pyridinecarboxylic acid ( Use 5) carbon of the mother skeleton, benzoic acid (6 carbon of the mother skeleton), 2-naphthalenecarboxylic acid (10 carbon of the mother skeleton), 9-anthracene carboxylic acid (14 carbon of the mother skeleton), etc. be able to.
  • benzoic acid is particularly preferable from the viewpoint of obtaining a highly durable metal complex.
  • the aromatic monocarboxylic acid compound may be used alone, or two or more aromatic monocarboxylic acid compounds may be mixed and used.
  • the metal complex of this invention may mix and use 2 or more types of metal complexes which consist of a single aromatic monocarboxylic acid compound.
  • the aromatic monocarboxylic acid compound preferably further has a substituent in addition to the carboxyl group.
  • the number of substituents may be 1, 2 or 3.
  • an alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group or the like having 1 to 5 alkyl group
  • aryl group phenyl group etc.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • alkoxy group methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- Butoxy, isobutoxy, tert-butoxy, etc.
  • alkoxycarbonyl methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, etc.
  • nitro nitro
  • aromatic monocarboxylic acid having an alkoxycarbonyl group examples include 4-methoxycarbonylbenzoic acid, 4-ethoxycarbonylbenzoic acid, 4-isopropoxycarbonylbenzoic acid, 3,5-dimethoxycarbonylbenzoic acid, 3,5- Examples include diethoxycarbonylbenzoic acid and 3,5-diisopropoxycarbonylbenzoic acid.
  • composition ratio between the polyvalent carboxylic acid compound constituting the metal complex of the present invention and the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton can be determined, for example, by decomposing the metal complex into a uniform solution, although it can determine by analyzing using chromatography, a high performance liquid chromatography, NMR, etc., it is not limited to these.
  • the metal complex of the present invention comprises a polyvalent carboxylic acid compound, at least one metal salt selected from salts of metals belonging to Groups 2 to 13 of the periodic table, and an organic configuration capable of multidentate coordination with the metal ion. It can be produced by reacting a ligand with an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton in either the gas phase, the liquid phase or the solid phase. The reaction is preferably carried out by reacting for several hours to several days. At this time, the reaction may be performed under ultrasonic wave or microwave irradiation. Further, the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton may be present at the beginning of the reaction or may be added at the later stage of the reaction, but is preferably present at the beginning of the reaction.
  • the monovalent metal ion can be added to the reaction system in addition to the method of adding it to the reaction system. It may be synthesized in and included in the metal complex.
  • the monovalent metal ion can be generated by oxidation-reduction reaction of a divalent metal ion and a reducing agent.
  • copper (I) ions are generated by reacting copper (II) ions with formic acid in the reaction system.
  • the copper (I) ion can be incorporated into the metal complex.
  • a reducing agent may coexist in the reaction system.
  • formic acid or the like present in the reaction system may be incorporated into the metal complex as long as the effects of the present invention are not impaired.
  • reducing agent for example, formaldehyde, formic acid, acetaldehyde, propionaldehyde, benzaldehyde, cinnamaldehyde, ascorbic acid, oxalic acid and the like can be used.
  • the content of monovalent metal ions in the metal complex can be controlled by changing the amount to be added when adding divalent metal ions and monovalent metal ions to the reaction system.
  • it when synthesizing a monovalent metal ion from a divalent metal ion in a reaction system, it can be controlled by changing the amount of the reducing agent added to the reaction system.
  • an additive When consumed by the reaction, an additive may be further added to suppress the side reaction. For example, when formic acid is used as the reducing agent and methanol is used as the solvent, formic acid can be consumed by the esterification side reaction. At this time, you may suppress progress of a side reaction by adding water, for example.
  • a polyvalent carboxylic acid compound In the production of the metal complex of the present invention, a polyvalent carboxylic acid compound, at least one metal ion selected from ions of metals belonging to Groups 2 to 13 of the periodic table, and a parent skeleton having 4 to 14 carbon atoms.
  • first step an aromatic monocarboxylic acid compound
  • second step an organic ligand capable of multidentate coordination with the metal ion
  • the mixed solution in which the polyvalent carboxylic acid compound is dispersed may be sequentially mixed with the mixed solution in which the metal ions are dispersed, or vice versa.
  • the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton may be added to either mixed solution.
  • the mixed solution in which the intermediate is dispersed may be sequentially mixed with the mixed solution in which the organic ligand capable of multidentate coordination is dispersed, or vice versa.
  • a solvent used for producing the metal complex a single organic solvent or a mixed organic solvent can be used. Specifically, methanol, ethanol, propanol, isopropanol, diethyl ether, butanol, ethylene glycol, formamide, N-methylformamide, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, Examples thereof include ethyl acetate, acetonitrile, N, N-dimethylformamide, and among these, a protic solvent is preferable.
  • protic solvents examples include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, formamide, N-methylformamide and the like.
  • alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and ethylene glycol are more preferable.
  • a mixed solvent of these alcohol solvents and water is also preferable.
  • the reaction temperature may be appropriately selected according to the solvent to be used, but is preferably 253 to 463 K, more preferably 298 to 423 K.
  • the molar ratio is preferably in the range of 1: 100 to 1,000: 1.
  • a range of 2 to 2: 1 molar ratio is more preferred.
  • a monovalent metal ion may be synthesized from a divalent metal ion in the reaction system as described above.
  • the molar concentration of the polyvalent carboxylic acid compound in the mixed solution for producing the metal complex is preferably 0.01 to 5.0 mol / L.
  • the molar concentration of the metal salt in the mixed solution is preferably 0.01 to 5.0 mol / L, and the molar concentration of the organic ligand capable of multidentate coordination in the mixed solution is 0.005 to 2.5 mol / L.
  • the molar concentration of the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton in the mixed solution is preferably 0.01 to 150 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases.
  • the aromatic monocarboxylic acid compound having 4 to 14 carbon atoms of the mother skeleton may be synthesized in the reaction system and included in the metal complex other than the method of adding it to the reaction system.
  • the aromatic monocarboxylic acid compound can be generated by an esterification reaction between an aromatic polycarboxylic acid compound and an alcohol.
  • terephthalic acid (1,4-benzenedicarboxylic acid) is used as the aromatic polyvalent carboxylic acid compound and a methanol solvent is used as the alcohol
  • 4-methoxy is obtained by reacting terephthalic acid and methanol in the reaction system.
  • Carbonyl benzoic acid can be generated and the 4-methoxycarbonyl benzoic acid can be incorporated into the metal complex.
  • an acid such as formic acid or acetic acid may coexist in the reaction system as a catalyst.
  • formic acid, acetic acid and the like present in the reaction system may be incorporated into the metal complex as long as the effects of the present invention are not impaired.
  • 1,4-dimethoxycarbonylbenzene may be generated as a by-product in the esterification reaction, but since this compound does not have a coordination site for metal ions, it does not participate in the synthesis of metal complexes.
  • trimesic acid is used as the polyvalent carboxylic acid compound, 3,5-dimethoxycarbonylbenzoic acid produced by reaction with a methanol solvent can be incorporated into the metal complex.
  • the completion of the reaction can be confirmed by, for example, quantifying the remaining amount of the raw material by absorptiometry, gas chromatography, high performance liquid chromatography, etc., but is not limited thereto.
  • the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum dried at about 373 K for several hours to obtain the metal complex of the present invention.
  • the metal complex of the present invention has a one-dimensional, two-dimensional, or three-dimensional integrated structure depending on the polyvalent carboxylic acid compound used, the metal ion, and the type of organic ligand that can be multidentately coordinated with the metal ion.
  • the metal complex has a double jungle gym skeleton formed by coordination of 4,4′-bipyridyl at the axial position of the copper ion in the paddle wheel skeleton composed of the carboxylate group of terephthalic acid and the copper ion. It has an intrusive three-dimensional structure.
  • a schematic diagram of a jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG.
  • the above “jungle gym skeleton” is an organic compound capable of multidentate coordination such as 4,4′-bipyridyl at the axial position of a metal ion in a paddle wheel skeleton composed of a polyvalent carboxylic acid compound such as terephthalic acid and a metal ion. It means a jungle-gym-like three-dimensional structure formed by linking ligands and connecting two-dimensional lattice sheets composed of polyvalent carboxylic acid compounds and metal ions.
  • “A structure in which multiple jungle gym skeletons interpenetrate” is a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores.
  • the metal complex has a structure in which the jungle gym skeleton is multiple interpenetrated can be confirmed by, for example, single crystal X-ray structure analysis, powder X-ray crystal structure analysis, but is not limited thereto.
  • FIG. 3 shows a schematic diagram of the three-dimensional structure of the metal complex
  • FIG. 4 shows a structure around two copper (II) ions. From FIG. 4, in this complex, the copper (II) ion forms a quadrangular pyramid pentacoordination complex.
  • Four carboxylate groups of fumaric acid are coordinated in the bottom quadrangular portion of the quadrangular pyramid, and pyrazine is coordinated at the apex portion of the quadrangular pyramid.
  • FIG. 5 shows the structure around the copper ion when one of the two copper (II) ions constituting the paddle wheel skeleton is a copper (I) ion. Since the charge is neutralized by the copper (II) ion and the copper (I) ion and the three carboxylate groups of fumaric acid, in the schematic diagram of FIG. 5, it is clear which copper ion is monovalent. Cannot be specified. Further, in the metal complex of the present invention, the amount of monovalent metal ions contained is smaller than the amount of divalent metal ions, so that the three-dimensional structure formed when divalent metal ions are used. Is considered to be given priority. Therefore, as shown in FIG. 5, the structure of FIG. 4 composed of two copper (II) ions is taken, and the whole metal complex has a three-dimensional structure as shown in FIG. .
  • the reaction between the metal ion and the polyvalent carboxylic acid compound and the reaction between the metal ion and the aromatic monocarboxylic acid compound are allowed to coexist with the aromatic monocarboxylic acid compound.
  • the reaction will be competitive.
  • the aromatic monocarboxylic acid compound is coordinated to a metal ion, since there is only one coordination site of the aromatic monocarboxylic acid compound, crystal growth stops at that coordination site, so the aromatic monocarboxylic acid The compound can be regarded as a terminator in the crystal growth reaction.
  • the reaction between the metal ion and the aromatic monocarboxylic acid compound is reversible, the crystal nucleation rate and the crystal growth rate are controlled, and a metal complex with few crystal defects can be obtained. Since the crystal defect can be a starting point for the decomposition of the metal complex, the metal complex of the present invention having few crystal defects is excellent in durability against water vapor, for example.
  • the durability of the metal complex of the present invention can be evaluated by comparing the amount of change in adsorption amount before and after repeated adsorption measurement.
  • the metal complex of the present invention does not adsorb gas when the solvent is adsorbed. Therefore, when used as the adsorbent, occlusion material, or separation material of the present invention, it is necessary to vacuum dry the previously obtained metal complex to remove the solvent in the pores. Usually, vacuum drying may be performed at a temperature at which the metal complex is not decomposed (for example, 298 K to 523 K or less), but the temperature is preferably lower (for example, 298 K to 393 K or less). This operation can be replaced by cleaning with supercritical carbon dioxide, and is more effective.
  • the metal complex of the present invention is excellent in adsorption performance, occlusion performance, and separation performance of various gases. Therefore, the metal complex of the present invention is useful as an adsorbent, adsorbent and separator for various gases, and these are also included in the scope of the present invention.
  • Examples of the adsorbent, occlusion material, and separation material of the present invention include carbon dioxide, hydrogen, carbon monoxide, oxygen, nitrogen, and hydrocarbons having 1 to 4 carbon atoms (methane, ethane, ethylene, acetylene, propane, propene, methyl Acetylene, propadiene, butane, 1-butene, isobutene, 1-butyne, 2-butyne, 1,3-butadiene, methylallene, etc.), noble gases (such as helium, neon, argon, krypton, xenon), hydrogen sulfide, ammonia , Sulfur oxide, nitrogen oxide, siloxane (hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), water vapor, organic vapor, etc., can be suitably used for adsorption, occlusion, and separation.
  • carbon dioxide methane, ethane,
  • methane and carbon dioxide, hydrogen and carbon dioxide, nitrogen and carbon dioxide, methane and ethane, ethylene and ethane, nitrogen and oxygen, oxygen and argon, nitrogen and methane, air and methane are suitable for separation by a pressure swing adsorption method or a temperature swing adsorption method.
  • Organic vapor means vaporized organic substance that is liquid at room temperature and pressure.
  • organic substances include alcohols such as methanol and ethanol; amines such as trimethylamine; aldehydes such as formaldehyde and acetaldehyde; pentane, isoprene, hexane, cyclohexane, heptane, methylcyclohexane, octane, 1-octene, cyclohexane Hydrocarbons having 5 to 16 carbon atoms such as octane, cyclooctene, 1,5-cyclooctadiene, 4-vinyl-1-cyclohexene, 1,5,9-cyclododecatriene; aromatic hydrocarbons such as benzene and toluene Ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; halogenated hydrocarbons such as
  • cellulose acetate, polyvinyl alcohol, polyamide, polyester, polycarbonate, polysulfone, polyethersulfone, polyolefin, polytetrafluoroethylene derivative or It may be combined with natural or synthetic fibers such as paper, or inorganic fibers such as glass or alumina.
  • the composite may be used as the adsorbent, occlusion material and separation material of the present invention.
  • the metal complex of the present invention is formed into pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc., as necessary. May be used.
  • the usage form of the adsorbent, occlusion material, and separation material of the present invention is not particularly limited, and the metal complex of the present invention may be used as a powder or may be formed.
  • the method for producing the pellet is not particularly limited, and any conventionally known pelletizing method can be adopted, but a tableting method that can increase the density of the pellet is preferable.
  • the method for producing the sheet is not particularly limited, and any conventionally known sheeting method can be adopted, but a wet papermaking method capable of increasing the density of the sheet is preferable.
  • the wet papermaking method is a manufacturing method in which raw materials are dispersed in water, filtered through a net, and dried.
  • a honeycomb shape can be given. Any conventionally known processing method can be adopted as the method for forming the sheet into a honeycomb shape.
  • the honeycomb shape refers to a continuous hollow column body such as a square, sinusoidal, or roll-shaped hollow polygonal column or a cylinder in addition to a hexagonal cross section.
  • the metal complex of the present invention (or the storage material of the present invention) can also be used in a gas storage device taking advantage of its storage performance.
  • a gas storage device in which a gas storage space is provided inside a pressure-resistant container that can be kept airtight and has a gas inlet / outlet, and the storage space includes the storage material made of the metal complex of the present invention. .
  • the gas By press-fitting a desired gas into the gas storage device, the gas can be adsorbed and stored in the internal storage material.
  • the gas can be desorbed by opening the pressure valve and reducing the internal pressure in the pressure vessel.
  • the metal complex of the present invention may be embedded in powder form, but from the viewpoint of handleability, etc., a pellet-shaped product obtained by molding the metal complex of the present invention is used. May be.
  • Such a gas storage device can store fuel gas in a storage space, and can be suitably used as a fuel tank 2 of a gas vehicle 1 or the like as shown in FIG.
  • a gas vehicle 1 obtains an internal combustion engine (engine) 3 that obtains natural gas stored in a tank from a fuel tank 2 and mixes it with a combustion oxygen-containing gas (for example, air) to obtain a driving force by combustion.
  • engine internal combustion engine
  • the fuel tank 2 includes a storage material 5 made of the metal complex of the present invention, and this storage material adsorbs natural gas (such as a gas containing methane as a main component) at normal temperature and in a pressurized state.
  • the gas in the adsorbed state is desorbed from the occlusion material 5 and sent to the engine 3 side for combustion to obtain a driving force. Since the occlusion material 5 made of the metal complex of the present invention is incorporated, the fuel tank 2 can have a higher gas compressibility against the apparent pressure than a fuel tank not filled with the occlusion material. Since the thickness of the gas storage device can be reduced and the weight of the entire gas storage device can be reduced, the gas vehicle 1 is useful.
  • the separation method includes a step of bringing the gas into contact with the metal complex of the present invention (or the separation material of the present invention) under conditions that allow the gas to be adsorbed to the metal complex.
  • the adsorption pressure and the adsorption temperature which are conditions under which the gas can be adsorbed on the metal complex, can be appropriately set according to the type of substance to be adsorbed.
  • the adsorption pressure is preferably from 0.01 to 10 MPa, more preferably from 0.1 to 3.5 MPa.
  • the adsorption temperature is preferably 195K to 343K, and more preferably 273 to 313K.
  • the separation method can be a pressure swing adsorption method or a temperature swing adsorption method.
  • the separation method further includes a step of increasing the pressure from the adsorption pressure to a pressure at which gas can be desorbed from the metal complex.
  • the desorption pressure can be appropriately set according to the type of substance to be adsorbed.
  • the desorption pressure is preferably 0.005 to 2 MPa, more preferably 0.01 to 0.1 MPa.
  • the separation method is a temperature swing adsorption method
  • the separation method further includes a step of raising the temperature from the adsorption temperature to a temperature at which the gas can be desorbed from the metal complex.
  • the desorption temperature can be appropriately set according to the type of substance to be adsorbed.
  • the desorption temperature is preferably 303 to 473K, and more preferably 313 to 373K.
  • the separation method is a pressure swing adsorption method or a temperature swing adsorption method
  • the step of bringing the gas into contact with the metal complex and the step of changing the pressure to a temperature or a temperature at which the gas can be desorbed from the metal complex are repeated as appropriate. Can do.
  • FIG. 7 shows a powder X-ray diffraction pattern of the obtained metal complex.
  • the powder X-ray crystal structure analysis results are shown below.
  • the crystal structure is shown in FIG.
  • R wp 2.30%
  • R I 4.96%
  • n means an arbitrary natural number.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated like the metal complex obtained in Synthesis Example 1.
  • FIG. 11 shows a powder X-ray diffraction pattern of the obtained metal complex.
  • the light absorbency was measured using the spectrophotometer about the sample which mixed solution A 5mL, 3g / L ethylenediaminetetraacetic acid disodium salt aqueous solution 5mL, and the quantity of the copper (I) ion contained in a metal complex was computed. From the calculated amount of total copper ions and the amount of copper (I) ions, it was found that the amount of copper (I) ions contained in the metal complex was 4.6 mol%.
  • the isolated intermediate was dispersed in 2,000 mL of methanol under a nitrogen atmosphere, 1.83 g (11.7 mmol) of 4,4′-bipyridyl was added, and the mixture was stirred at 298 K for 3 hours. At this time, the reaction solution remained suspended.
  • the metal complex was recovered by suction filtration, and then washed with methanol three times. Then, it dried at 373 K and 50 Pa for 8 hours, and obtained 1.79 g of the target metal complexes.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated like the metal complex obtained in Synthesis Example 1.
  • Example 1 The metal complex obtained in Synthesis Example 1 was subjected to a water vapor exposure test by placing it in an atmosphere of 353 K and a relative humidity of 80% using a low temperature and humidity chamber PL-2KP manufactured by Espec Corporation. Sampling was performed after 48 hours, and the amount of carbon dioxide adsorbed at 273 K was measured by a volumetric method to prepare an adsorption isotherm. Table 1 shows the results of calculating the equilibrium adsorption amount of carbon dioxide at 0.92 MPa from the adsorption isotherm and calculating the retention rate.
  • Example 2 The metal complex obtained in Synthesis Example 2 was subjected to a water vapor exposure test in the same manner as in Example 1, and the results were measured. Table 1 shows the result of calculating the equilibrium adsorption amount of carbon dioxide at 0.92 MPa and calculating the retention rate.
  • Example 3 The metal complex obtained in Synthesis Example 3 was subjected to a water vapor exposure test in the same manner as in Example 1, and the results were measured. Table 1 shows the result of calculating the equilibrium adsorption amount of carbon dioxide at 0.92 MPa and calculating the retention rate.
  • Example 4 About the metal complex obtained by the synthesis example 2, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG. ⁇ Example 5> About the metal complex obtained by the synthesis example 3, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG.
  • FIG. 13 clearly shows that the metal complexes obtained in Synthesis Example 2 and Synthesis Example 3 that satisfy the constituent requirements of the present invention have a large amount of carbon dioxide adsorption, so that the metal complex of the present invention can be used as an adsorbent for carbon dioxide. is there.
  • the metal complex obtained in Synthesis Example 2 that satisfies the constituent requirements of the present invention adsorbs carbon dioxide as the pressure increases and releases carbon dioxide as the pressure decreases. Obviously, it can be used as a storage material for carbon.
  • Example 7 For the metal complex obtained in Synthesis Example 1, the adsorption amounts of carbon dioxide and hydrogen at 313 K were measured by a volumetric method, and an adsorption / desorption isotherm was created. The results are shown in FIG.
  • the metal complex obtained in Synthesis Example 1 that satisfies the constituent requirements of the present invention selectively adsorbs carbon dioxide as the pressure increases, and releases it as the pressure decreases. Obviously, it can be used as a hydrogen separator.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated like the metal complex obtained in Synthesis Example 1.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the obtained metal complex had a structure in which the jungle gym skeleton was double interpenetrated like the metal complex obtained in Synthesis Example 1.
  • the powder X-ray diffraction pattern of the obtained metal complex is shown in FIG.
  • the yield of the obtained metal complex was 84%.
  • Example 8 The metal complex obtained in Synthesis Example 4 was subjected to a water vapor exposure test in the same manner as in Example 1, and the results were measured. Table 2 shows the result of calculating the equilibrium adsorption amount of carbon dioxide at 0.92 MPa and calculating the retention rate.
  • Example 9 The metal complex obtained in Synthesis Example 5 was subjected to a water vapor exposure test in the same manner as in Example 1, and the results were measured. Table 2 shows the results of calculating the equilibrium adsorption amount of carbon dioxide at 0.92 MPa and calculating the retention rate.
  • the metal complexes obtained in Synthesis Examples 4 and 5 that satisfy the constituent requirements of the present invention and have an aromatic monocarboxylic acid compound having 4 to 14 carbon atoms in the mother skeleton have four to four carbon atoms in the mother skeleton.
  • the equilibrium adsorption amount retention rate of carbon dioxide is high even at high temperature and high humidity, and the retention rate decreases with time. From the fact that there are few, it is clear that the metal complex of the present invention is excellent in water resistance.
  • Example 10 About the metal complex obtained by the synthesis example 4, the adsorption amount of the carbon dioxide in 273K was measured by the capacitance method, and the adsorption isotherm was created. The results are shown in FIG.
  • FIG. 19 clearly shows that the metal complexes obtained in Synthesis Example 4 and Synthesis Example 5 that satisfy the constituent requirements of the present invention have a large amount of carbon dioxide adsorption, and therefore the metal complex of the present invention can be used as an adsorbent for carbon dioxide. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pyridine Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体を提供する。当該金属錯体は、ガスの吸着・吸蔵・分離能に優れ、かつ耐久性にも優れ、高温・高湿度下においても安定に存在し、高い吸着性能を保持することができる。

Description

金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
(関連分野の相互参照)
 本願は、2013年2月18日に出願した特願2013-028719号明細書及び2013年3月18日に出願した特願2013-054486号明細書(それらの全体が参照により本明細書中に援用される)の優先権の利益を主張するものである。
(技術分野)
 本発明は、金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材に関する。さらに詳しくは、多価カルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体に関する。
 これまで、脱臭、排ガス処理などの分野で種々の吸着材が開発されている。活性炭はその代表例であり、活性炭の優れた吸着性能を利用して、空気浄化、脱硫、脱硝、有害物質除去など各種工業において広く使用されている。近年は半導体製造プロセスなどへ窒素の需要が増大しており、かかる窒素を製造する方法として、分子ふるい炭を使用して圧力スイング吸着法や温度スイング吸着法により空気から窒素を製造する方法が使用されている。また、分子ふるい炭は、メタノール分解ガスからの水素精製など各種ガス分離精製にも応用されている。
 圧力スイング吸着法や温度スイング吸着法により混合ガスを分離する際には、一般に、分離吸着材として分子ふるい炭やゼオライトなどを使用し、その平衡吸着量または吸着速度の差により分離を行っている。しかしながら、平衡吸着量の差によって混合ガスを分離する場合、これまでの吸着材では除去したいガスのみを選択的に吸着することができないため分離係数が小さくなり、装置の大型化は不可避であった。また、吸着速度の差によって混合ガスを分離する場合、ガスの種類によっては除去したいガスのみを吸着できるが、吸着と脱着を交互に行う必要があり、この場合も装置は依然として大型にならざるを得なかった。
 一方、より優れた吸着性能を与える吸着材として、高分子金属錯体が開発されている。高分子金属錯体は、(1)広い表面積と高い空隙率、(2)高い設計性、(3)外部刺激による動的構造変化、といった特徴を有しており、既存の吸着材にはない吸着特性が期待される。
 しかしながら、実用化に際しては、吸着性能、吸蔵性能及び分離性能のさらなる向上のみならず、実ガス中に含まれる水に対する耐久性の向上が求められている(例えば、非特許文献1参照)。
J.J.Low、A.I.Benin、P.Jakubczak、  J.F.Abrahamian、S.A.Faheem、R.R.Willis、Journal of the American Chemical Society、第131巻、15834~15842頁(2009年)
 本発明の目的は、従来よりも耐久性、特に耐水性に優れるガス吸着材、ガス吸蔵材或いはガス分離材として使用できる金属錯体を提供することにある。
 本発明者らは鋭意検討し、多価カルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体により、上記目的を達成できることを見出し、本発明に至った。
 すなわち、本発明によれば、以下のものが提供される。
(1)多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体。
(2)該金属錯体を構成する多価カルボン酸化合物と母骨格の炭素数4~14の芳香族モノカルボン酸化合物との組成比が、多価カルボン酸化合物:母骨格の炭素数4~14の芳香族モノカルボン酸化合物=5:1~5,000:1の範囲内である項(1)に記載の金属錯体。
(3)前記少なくとも1種の金属イオンが、周期表の2~12族に属する金属のイオンから選択される少なくとも1種の二価の金属イオンと、周期表の9~11族に属する金属のイオンから選択される少なくとも1種の一価の金属イオンとからなり、金属錯体中の全金属イオンの量に対する一価の金属イオンの含有量が3.5~20mol%である項(1)または(2)に記載の金属錯体。
(4)該二価の金属イオン及び一価の金属イオンが、共に銅イオンである項(1)~(3)のいずれか一項に記載の金属錯体。
(5)該芳香族モノカルボン酸化合物が、アルコキシカルボニル基を有する芳香族モノカルボン酸化合物である項(1)~(4)のいずれか一項に記載の金属錯体。
(6)該金属錯体が、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、異形成形体、繊維、中空糸、織布、編布及び不織布から選ばれるいずれかの形状である項(1)~(5)のいずれか一項に記載の金属錯体。
(7)項(1)~(6)のいずれか一項に記載の金属錯体からなる吸着材。
(8)該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を吸着するための吸着材である項(7)に記載の吸着材。
(9)項(1)~(6)のいずれか一項に記載の金属錯体からなる吸蔵材。
(10)該吸蔵材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、水蒸気または有機蒸気を吸蔵するための吸蔵材である項(9)に記載の吸蔵材。
(11)気密保持可能でガスの出入口を備えた耐圧容器の内方側にガス吸蔵空間を設けたガス貯蔵装置であって、前記ガス吸蔵空間に項(9)に記載の吸蔵材を内装してあるガス貯蔵装置。
(12)項(1)~(6)のいずれか一項に記載の金属錯体からなる分離材。
(13)該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を分離するための分離材である項(12)に記載の分離材。
(14)金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含むことを特徴とする項(12)に記載の分離材を用いる分離方法。
(15)該分離方法が圧力スイング吸着法または温度スイング吸着法である項(14)に記載の分離方法。
 本発明により、多価カルボン酸化合物と、少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体を提供することができる。本発明の金属錯体は、耐久性、特に耐水性に優れ、高温・高湿度下においても安定に存在し、高い吸着性能を保持することができる。
 本発明の金属錯体は、各種ガスの吸着性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気などを吸着するための吸着材として使用することができる。
 また、本発明の金属錯体は、各種ガスの吸蔵性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、水蒸気または有機蒸気などを吸蔵するための吸蔵材としても使用することができる。
 さらに、本発明の金属錯体は、各種ガスの分離性能に優れているので、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気などを分離するための分離材としても使用することができる。
テレフタル酸のカルボキシレート基と銅イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に4,4’-ビピリジルが配位して形成されるジャングルジム骨格の模式図である。 ジャングルジム骨格が二重に相互貫入した三次元構造の模式図である。 フマル酸のカルボキシレート基4個と銅(II)イオン2個とからなるパドルホイール骨格中の金属イオンのアキシャル位にピラジンが配位して形成されるジャングルジム状の三次元構造の模式図である。 4個のカルボキシレート基と2個の銅(II)イオンとからなるパドルホイール骨格中の銅イオン周りの構造である。 パドルホイール骨格を構成する2個の銅(II)イオンのうちの1個が銅(I)イオンである場合の銅イオン周りの構造である。 ガス貯蔵装置を備えたガス自動車の概念図である。 合成例1で得た金属錯体の粉末X線回折パターンである。 合成例1で得た金属錯体の結晶構造である。 合成例1で得た金属錯体を重アンモニア水に溶解させて測定したH-NMRスペクトルである。 合成例2で得た金属錯体の粉末X線回折パターンである。 合成例3で得た金属錯体の粉末X線回折パターンである。 比較合成例1で得た金属錯体の粉末X線回折パターンである。 合成例2及び合成例3で得た金属錯体の273Kにおける二酸化炭素の吸着等温線である。 合成例2で得た金属錯体の293Kにおける二酸化炭素の吸脱着等温線である。 合成例1で得た金属錯体の313Kにおける二酸化炭素及び水素の吸脱着等温線である。 合成例4で得た金属錯体の粉末X線回折パターンである。 合成例5で得た金属錯体の粉末X線回折パターンである。 比較合成例2で得た金属錯体の粉末X線回折パターンである。 合成例4及び合成例5で得た金属錯体の273Kにおける二酸化炭素の吸着等温線である。
 粉末X線回折パターンの測定結果において、横軸は回折角(2θ)及び縦軸はcps(Counts per Second)で示す回折強度(Intensity)である。
 吸着等温線及び吸脱着等温線の測定結果において、横軸はMPaで示す平衡圧(Pressure)及び縦軸はmL(STP)/gで示す平衡吸着量(Amount Adsorbed)である。 吸着等温線の測定結果において、昇圧した際の各圧力におけるガス(すなわち二酸化炭素)の吸着量(ads.)がプロットされている。吸脱着等温線の測定結果において、昇圧した際の各圧力におけるガス(すなわち二酸化炭素または水素)の吸着量(ads.)及び減圧した際の各圧力におけるガスの吸着量(des.)がそれぞれプロットされている。STP(標準状態、Standard Temperature and Pressure)は、温度273.15K及び圧力1bar(10Pa)の状態を示す。
 本発明の金属錯体は、多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる。
 本発明に用いられる多価カルボン酸化合物としては、特に限定されるものではないが、ジカルボン酸化合物、トリカルボン酸化合物、テトラカルボン酸化合物などを使用することができる。
 本発明に用いられる多価カルボン酸化合物としては、例えば、コハク酸、アジピン酸、トランス-1,4-シクロヘキサンジカルボン酸などの飽和脂肪族ジカルボン酸;フマル酸、トランス,トランス-1,4-ブタジエンジカルボン酸などの不飽和脂肪族ジカルボン酸;イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸などの芳香族ジカルボン酸;2,5-チオフェンジカルボン酸、2,2’-ジチオフェンジカルボン酸、2,3-ピラジンジカルボキン酸、2,5-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸などの複素芳香族ジカルボン酸;1,3,5-ベンゼントリカルボン酸、1,3,4-ベンゼントリカルボン酸、ビフェニル-3,4’,5-トリカルボン酸などの芳香族トリカルボン酸;1,2,4,5-ベンゼンテトラカルボン酸、[1,1’:4’,1’’]ターフェニル-3,3’’,5,5’’-テトラカルボン酸、5,5’-(9,10-アントラセンジイル)ジイソフタル酸などの芳香族テトラカルボン酸などが挙げられる。これらの中でもジカルボン酸化合物が好ましく、芳香族ジカルボン酸化合物がより好ましい。
 該多価カルボン酸化合物は、カルボキシル基以外に置換基をさらに有していてもよい。置換基を有する多価カルボン酸は、芳香族多価カルボン酸が好ましく、置換基は芳香族多価カルボン酸の芳香環に結合したものが好ましい。例えば、テレフタル酸は2-ニトロテレフタル酸であってもよい。置換基の数は1、2または3個が挙げられる。置換基としては、例えばアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基などの直鎖または分岐を有する炭素数1~5のアルキル基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ニトロ基、シアノ基、水酸基、トリフルオロメチル基などが挙げられる。
 本発明に用いられる多価カルボン酸化合物は、単独で用いてもよく、2種以上の多価カルボン酸化合物を混合して用いてもよい。また、本発明の金属錯体は、単一の多価カルボン酸化合物からなる金属錯体を2種以上混合して用いてもよい。
 該多価カルボン酸化合物は、酸無水物やアルカリ金属塩の形で用いてもよい。
 本発明に用いられる金属イオンは、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンである。周期表2族に属する金属のイオンとはベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン及びラジウムイオンである。周期表3族に属する金属のイオンとは、スカンジウムイオン、イットリウムイオン、ランタノイドのイオン及びアクチノイドのイオンである。周期表4族に属する金属のイオンとは、チタンイオン、ジルコニウムイオン、ハフニウムイオン及びラザホージウムイオンである。周期表5族に属する金属のイオンとは、バナジウムイオン、ニオブイオン、タンタルイオン及びドブニウムイオンである。周期表6族に属する金属のイオンとは、クロムイオン、モリブデンイオン、タングステンイオン及びシーボーギウムイオンである。周期表7族に属する金属のイオンとは、マンガンイオン、テクネチウムイオン、レニウムイオン及びボーリウムイオンである。周期表8族に属する金属のイオンとは、鉄イオン、ルテニウムイオン、オスミウムイオン及びハッシウムイオンである。周期表9族に属する金属のイオンとは、コバルトイオン、ロジウムイオン、イリジウムイオン及びマイトネリウムイオンである。周期表10族に属する金属のイオンとは、ニッケルイオン、パラジウムイオン、白金イオン及びダームスタチウムイオンである。周期表11族に属する金属のイオンとは、銅イオン、銀イオン、金イオン及びレントゲニウムイオンである。周期表12族に属する金属のイオンとは、亜鉛イオン、カドミウムイオン、水銀イオン及びウンウンビウムイオンである。周期表13族に属する金属のイオンとは、ホウ素イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、タリウムイオン及びウンウントリウムイオンである。
 本発明に用いられる周期表の2~13族に属する金属のイオンとしては、例えば、マグネシウムイオン、カルシウムイオン、スカンジウムイオン、ランタノイドイオン(ランタンイオン、テルビウムイオン、ルテチウムイオンなど)、アクチノイドイオン(アクチニウムイオン、ローレンシウムイオンなど)、ジルコニウムイオン、バナジウムイオン、クロムイオン、モリブデンイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、カドミウムイオン、アルミニウムイオンなどを使用することができ、中でもマンガンイオン、コバルトイオン、ニッケルイオン、銅イオン及び亜鉛イオンが好ましく、銅イオンがより好ましい。
 本発明に用いられる金属イオンは、単一の金属イオンを用いても、2種類以上の金属イオンを混合して用いてもよい。また、本発明の金属錯体は、単一の金属イオンからなる金属錯体を2種以上混合して用いてもよい。
 該金属イオンは金属塩の形で用いてもよい。金属塩としては、例えば、マグネシウム塩、カルシウム塩、スカンジウム塩、ランタノイド塩(ランタン塩、テルビウム塩、ルテチウム塩など)、アクチノイド塩(アクチニウム塩、ローレンシウム塩など)、ジルコニウム塩、バナジウム塩、クロム塩、モリブデン塩、マンガン塩、鉄塩、コバルト塩、ニッケル塩、銅塩、亜鉛塩、カドミウム塩、アルミニウム塩などを使用することができ、中でもマンガン塩、コバルト塩、ニッケル塩、銅塩及び亜鉛塩が好ましく、銅塩がより好ましい。
 金属塩は、単一の金属塩を用いても、2種以上の金属塩を混合して用いてもよい。
 これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、塩酸塩、臭化水素酸塩、炭酸塩などの無機酸塩を使用することができる。
 一つの実施形態では、周期表の2~13族に属する金属のイオンは、周期表の2~12族に属する金属のイオンから選択される少なくとも1種の二価の金属イオンからなる。別の実施形態では、周期表の2~13族に属する金属のイオンは、周期表の2~12族に属する金属のイオンから選択される少なくとも1種の二価の金属イオンと、周期表の9~11族に属する金属のイオンから選択される少なくとも1種の一価の金属イオンとからなる。
 周期表の2~12族に属する二価の金属のイオンとしては、例えば、バナジウム(II)イオン、クロム(II)イオン、モリブデン(II)イオン、タングステン(II)イオン、マンガン(II)イオン、鉄(II)イオン、コバルト(II)イオン、ニッケル(II)イオン、銅(II)イオン、亜鉛(II)イオン、カドミウム(II)イオンなどを使用することができ、中でもマンガン(II)イオン、コバルト(II)イオン、ニッケル(II)イオン、銅(II)イオン及び亜鉛(II)イオンが好ましく、銅(II)イオンがより好ましい。
 二価の金属イオンは、単一の二価の金属イオンを用いても、2種類以上の二価の金属イオンを混合して用いてもよい。
 該二価の金属イオンは金属塩の形で用いてもよい。金属塩としては、例えば、バナジウム(II)塩、クロム(II)塩、モリブデン(II)塩、マンガン(II)塩、鉄(II)塩、コバルト(II)塩、ニッケル(II)塩、銅(II)塩、亜鉛(II)塩、カドミウム(II)塩などを使用することができ、中でもマンガン(II)塩、コバルト(II)塩、ニッケル(II)塩、銅(II)塩及び亜鉛(II)塩が好ましく、銅(II)塩がより好ましい。
 二価の金属塩は、単一の金属塩を用いても、2種以上の二価の金属塩を混合して用いてもよい。
 これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、塩酸塩、臭化水素酸塩、炭酸塩などの無機酸塩を使用することができる。
 該金属イオンの価数が二価であることは、例えば、磁化率、電子スピン共鳴、吸光光度法などにより確認することができるが、これらに限定されるものではない。
 周期表の9~11族に属する一価の金属のイオンとしては、例えば、銅(I)イオン、銀(I)イオン、金(I)イオン、ロジウム(I)イオン、イリジウム(I)イオンなどを使用することができ、中でも銅(I)イオンが好ましい。
 一価の金属イオンは、単一の一価の金属イオンを用いても、2種類以上の一価の金属イオンを混合して用いてもよい。
 該一価の金属イオンは金属塩の形で用いてもよい。金属塩としては、例えば、銅(I)塩、銀(I)塩、金(I)塩、ロジウム(I)塩、イリジウム(I)塩などを使用することができ、中でも銅(I)塩が好ましい。
 一価の金属塩は、単一の金属塩を用いても、2種以上の一価の金属塩を混合して用いてもよい。
 これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、硫酸塩、硝酸塩、塩酸塩、臭化水素酸塩、炭酸塩などの無機酸塩を使用することができる。
 該金属イオンの価数が一価であることは、例えば、磁化率、電子スピン共鳴、吸光光度法などにより確認することができるが、これらに限定されるものではない。
 本発明の金属錯体中の全金属イオンの量に対する一価の金属イオンの含有量は、3.5~20mol%の範囲内であることが好ましく、3.5~10mol%の範囲内であることがより好ましく、4.0~10mol%の範囲内であることが特に好ましい。本発明の金属錯体は、一価の金属イオンを特定量含有することにより、詳細は定かではないが、高い耐久性、特に高い耐水性を示す。本発明の金属錯体の耐久性は、例えば、金属錯体を高温・高湿下にさらす水蒸気曝露試験を行い、その前後における吸着量の変化量を比較することにより評価できる。
 本発明の金属錯体中の全金属イオンの量に対する一価の金属イオンの含有量は、二価の金属イオンと一価の金属イオンが異なる金属の場合は、例えば、元素分析などにより確認することができるが、これらに限定されるものではない。また、二価の金属イオンと一価の金属イオンが同じ金属の場合、二価の金属イオンと一価の金属イオンの割合は、例えば、吸光光度法、X線光電子分光法などを用いて分析することで決定することができるが、これらに限定されるものではない。
 二価の金属イオンが銅(II)イオン、一価の金属イオンが銅(I)イオンである場合を例に、具体的な分析方法を以下に示す。金属錯体を構成する全銅イオンの量は、金属錯体をバソクプロインジスルホン酸二ナトリウム塩水溶液と反応させて分解した後に、還元剤であるアスコルビン酸ナトリウムを加えて遊離した銅イオン全てを銅(I)イオンに変換し、その銅(I)イオンとバソクプロインとが錯形成したサンプルについて分光光度計を用いて吸光度を測定して算出する。一方、金属錯体に含まれる銅(I)イオンの量は、金属錯体を銅(I)イオンと特異的に反応するバソクプロインジスルホン酸二ナトリウム塩水溶液と反応させて分解し、遊離した銅(I)イオンとバソクプロインとが錯形成したサンプルについて分光光度計を用いて吸光度を測定して算出する。このようにして求められる銅(I)イオンの量と全銅イオンの量から、金属錯体に含まれる銅(I)イオンの量を決定することができる。
 本発明に用いられる金属イオンに多座配位可能な有機配位子とは、非共有電子対で金属イオンに対して配位する部位を2箇所以上持つ中性配位子を意味する。二座有機配位子は、非共有電子対で金属イオンに対して配位する部位を2箇所有する多座配位可能な中性有機配位子;三座有機配位子は、非共有電子対で金属イオンに対して配位する部位を3箇所有する多座配位可能な中性有機配位子;四座有機配位子は、非共有電子対で金属イオンに対して配位する部位を4箇所有する多座配位可能な中性有機配位子である。
 非共有電子対で金属イオンに対して配位する部位としては、窒素原子、酸素原子、リン原子、硫黄原子などが挙げられる。該多座配位可能な有機配位子は、複素芳香環化合物であることが好ましく、中でも窒素原子を配位部位に有する複素芳香環化合物であることが好ましい。複素芳香環化合物は置換基を有していてもよく、2価の炭化水素基(例えば、エチンから水素原子を2個取り除いた形である2価の基)などで結合されていてもよい。
 二座配位可能な有機配位子(二座配位子)としては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン、ピラジン、4,4’-ビピリジル、1,2-ビス(4-ピリジル)エチン、1,4-ビス(4-ピリジル)ブタジイン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,2’-ビ-1,6-ナフチリジン、フェナジン、ジアザピレン、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミド、トランス-1,2-ビス(4-ピリジル)エテン、4,4’-アゾピリジン、1,2-ビス(4-ピリジル)エタン、4,4’-ジピリジルスルフィド、1,3-ビス(4-ピリジル)プロパン、1,2-ビス(4-ピリジル)グリコール、N-(4-ピリジル)イソニコチンアミド、1,2-ビス(1-イミダゾリル)エタン、1,2-ビス(1,2,4-トリアゾリル)エタン、1,2-ビス(1,2,3,4-テトラゾリル)エタン、1,3-ビス(1-イミダゾリル)プロパン、1,3-ビス(1,2,4-トリアゾリル)プロパン、1,3-ビス(1,2,3,4-テトラゾリル)プロパン、1,4-ビス(4-ピリジル)ブタン、1,4-ビス(1-イミダゾリル)ブタン、1,4-ビス(1,2,4-トリアゾリル)ブタン、1,4-ビス(1,2,3,4-テトラゾリル)ブタン、1,4-ビス(ベンゾイミダゾール-1-イルメチル)-2,4,5,6-テトラメチルベンゼン、1,4-ビス(4-ピリジルメチル)-2,3,5,6-テトラメチルベンゼン、1,3-ビス(イミダゾール-1-イルメチル)-2,4,6-トリメチルベンゼン、1,3-ビス(4-ピリジルメチル)-2,4,6-トリメチルベンゼンなどが挙げられる。三座配位可能な有機配位子(三座配位子)としては、例えば、1,3,5-トリス(2-ピリジル)ベンゼン、1,3,5-トリス(3-ピリジル)ベンゼン、1,3,5-トリス(4-ピリジル)ベンゼン、1,3,5-トリス(1-イミダゾリル)ベンゼン、2,4,6-トリス(2-ピリジル)-1,3,5-トリアジン、2,4,6-トリス(3-ピリジル)-1,3,5-トリアジン、2,4,6-トリ(4-ピリジル)-1,3,5-トリアジン、2,4,6-トリス(1-イミダゾリル)-1,3,5-トリアジンなどが挙げられる。四座配位可能な有機配位子(四座配位子)としては、例えば、1,2,4,5-テトラキス(2-ピリジル)ベンゼン、1,2,4,5-テトラキス(3-ピリジル)ベンゼン、1,2,4,5-テトラキス(4-ピリジル)ベンゼン、1,2,4,5-テトラキス(1-イミダゾリル)ベンゼン、テトラキス(3-ピリジルオキシメチレン)メタン及びテトラキス(4-ピリジルオキシメチレン)メタン、テトラキス(1-イミダゾリルメチル)メタンなどが挙げられる。これらの中でも二座配位可能な有機配位子が好ましい。
 本発明に用いられる多座配位可能な有機配位子は置換基を有していてもよい。具体的には、2-メチルピラジン、2,5-ジメチルピラジン、2,2’-ジメチル-4,4’-ビピリジンなどの置換基を有する多座配位可能な有機配位子が挙げられる。
 多座配位可能な有機配位子は、単独で用いてもよく、2種以上の多座配位可能な有機配位子を混合して用いてもよい。また、本発明の製造方法により得られた金属錯体は、単一の多座配位可能な有機配位子からなる金属錯体を2種以上混合して用いてもよい。
 本発明に用いられる多座配位可能な有機配位子としては、点群がD∞hであり、かつ長軸方向の長さが7.0Å以上16.0Å以下である二座配位可能な有機配位子がより好ましい。
 該二座配位可能な有機配位子の点群は、下記参考文献1に記載の方法に従って決定することができる。
 参考文献1:中崎昌雄、分子の対称と群論、39~40頁(1973年、東京化学同人) 
 例えば、4,4’-ビピリジル、1,2-ビス(4-ピリジル)エチン、2,7-ジアザピレン、1,4-ビス(4-ピリジル)ベンゼン、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジン、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロン、4,4’-ビス(4-ピリジル)ビフェニル、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミドなどは左右対称な直線分子であり、かつ対称心を有するので、点群はD∞hとなる。また、1,2-ビス(4-ピリジル)エテンは2回回転軸とその軸に垂直な対称面を有するので、その点群はC2hとなる。
 該二座配位可能な有機配位子の点群がD∞hの場合、対称性が高いために無駄な空隙が少なく、高い吸着性能を発揮することができる。また、該二座配位可能な有機配位子の長軸方向の長さが7.0Å以上16.0Å以下であると、錯体中の金属イオン間距離が適度になり、ガス分子を吸脱着するのに最適な空隙を有する金属錯体を形成することができる。長軸方向の長さがこの範囲外の二座配位可能な有機配位子を用いても金属錯体は得られるが、吸蔵性能及び分離性能が低下する傾向がある。
 本明細書における二座配位可能な有機配位子の長軸方向の長さは、富士通株式会社製Scigress Explorer Professional Version 7.6.0.52を用い、分子力学法MM3で配座解析を行った後、半経験的分子軌道法PM5で構造最適化を行うことで求めた最安定構造における、金属イオンに対して配位する原子のうち構造式内で最も離れた位置にある2原子間の距離と定義する。
 例えば、1,4-ジアザビシクロ[2.2.2]オクタンの窒素原子間距離は2.609Å、ピラジンの窒素原子間距離は2.810Å、4,4’-ビピリジルの窒素原子間距離は7.061Å、1,2-ビス(4-ピリジル)エチンの窒素原子間距離は9.583Å、1,4-ビス(4-ピリジル)ベンゼンの窒素原子間距離は11.315Å、3,6-ジ(4-ピリジル)-1,2,4,5-テトラジンの窒素原子間距離は11.204Å、2,6-ジ(4-ピリジル)-ベンゾ[1,2-c:4,5-c’]ジピロール-1,3,5,7(2H,6H)-テトロンの窒素原子間距離は15.309Å、4,4’-ビス(4-ピリジル)ビフェニルの窒素原子間距離は15.570Å、N,N’-ジ(4-ピリジル)-1,4,5,8-ナフタレンテトラカルボキシジイミドの窒素原子間距離は15.533Åとなる。
 本発明に用いられる芳香族モノカルボン酸化合物の母骨格の炭素数は4~14個が好ましく、4~10個がより好ましく、4~6個が特に好ましい。該芳香族モノカルボン酸化合物は、複素芳香族モノカルボン酸化合物であってもよい。ここで、「母骨格の炭素数」とは、置換基の炭素数を除いた環構造のみの炭素数を意味する。該置換基には、カルボキシル基も含まれる。例えば、2-チオフェンカルボン酸(母骨格の炭素数4)、3-チオフェンカルボン酸(母骨格の炭素数4)、3-ピリジンカルボン酸(母骨格の炭素数5)、4-ピリジンカルボン酸(母骨格の炭素数5)、安息香酸(母骨格の炭素数6)、2-ナフタレンカルボン酸(母骨格の炭素数10)、9-アントラセンカルボン酸(母骨格の炭素数14)などを使用することができる。これらの中でも、安息香酸が、耐久性の高い金属錯体が得られる観点から特に好ましい。
 芳香族モノカルボン酸化合物は単独で用いてもよく、2種以上の芳香族モノカルボン酸化合物を混合して用いてもよい。また、本発明の金属錯体は、単一の芳香族モノカルボン酸化合物からなる金属錯体を2種以上混合して用いてもよい。
 該芳香族モノカルボン酸化合物は、カルボキシル基以外に置換基をさらに有するものが好ましい。置換基の数は1、2または3個が挙げられる。置換基としては、例えばアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基などの直鎖または分岐を有する炭素数1~5のアルキル基)、アリール基(フェニル基など)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基(メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基,n-ブトキシ基、イソブトキシ基、tert-ブトキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基など)、ニトロ基、シアノ基、水酸基、アセチル基、トリフルオロメチル基などが挙げられる。これらの中でも、アルコキシカルボニル基を有するものが特に好ましい。アルコキシカルボニル基を有する芳香族モノカルボン酸としては、例えば、4-メトキシカルボニル安息香酸、4-エトキシカルボニル安息香酸、4-イソプロポキシカルボニル安息香酸、3,5-ジメトキシカルボニル安息香酸、3,5-ジエトキシカルボニル安息香酸、3,5-ジイソプロポキシカルボニル安息香酸などが挙げられる。
 本発明の金属錯体を構成する多価カルボン酸化合物と母骨格の炭素数4~14の芳香族モノカルボン酸化合物の組成比は、特に限定されるものではないが、多価カルボン酸化合物:芳香族モノカルボン酸化合物=5:1~5,000:1の範囲内であることが好ましく、多価カルボン酸化合物:芳香族モノカルボン酸化合物=8:1~1,000:1の範囲内であることがより好ましく、10:1~500:1の範囲内であることが特に好ましい。
 本発明の金属錯体を構成する多価カルボン酸化合物と母骨格の炭素数4~14の芳香族モノカルボン酸化合物の組成比は、例えば、金属錯体を分解して均一な溶液とした後に、ガスクロマトグラフィー、高速液体クロマトグラフィー、NMRなどを用いて分析することで決定することができるが、これらに限定されるものではない。
 本発明の金属錯体は、多価カルボン酸化合物と、周期表の2~13族に属する金属の塩から選択される少なくとも1種の金属塩と、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とを、気相、液相または固相のいずれかで反応させることで製造することができるが、常圧下、溶媒中で数時間から数日間反応させ、析出させて製造することが好ましい。このとき、超音波またはマイクロウェーブ照射下で反応を行ってもよい。また、母骨格の炭素数4~14の芳香族モノカルボン酸化合物は、反応初期から共存させても、反応後期に添加してもよいが、反応初期から共存させるのが好ましい。
 周期表の2~13族に属する金属の塩から選択される少なくとも1種の金属塩が周期表の2~12族に属する金属のイオンから選択される少なくとも1種の二価の金属イオンと、周期表の9~11族に属する金属のイオンから選択される少なくとも1種の一価の金属イオンとからなる場合、該一価の金属イオンは、反応系中に添加する方法以外に、反応系中で合成し、金属錯体に含ませてもよい。例えば、二価の金属イオンと還元剤とを酸化還元反応させることによって、前記一価の金属イオンを発生させることができる。一例として、二価の金属イオンとしてギ酸銅(II)を、還元剤としてギ酸を用いた場合、反応系中で銅(II)イオンとギ酸とを反応させることで銅(I)イオンを発生させ、該銅(I)イオンを金属錯体中に組み込ませることができる。前記酸化還元反応においては、還元剤を反応系中に共存させてもよい。このとき、反応系中に存在するギ酸などは、本発明の効果を損なわない範囲で金属錯体に取り込まれてもよい。
 前記還元剤としては、例えば、ホルムアルデヒド、ギ酸、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、シンナムアルデヒド、アスコルビン酸、シュウ酸などを使用することができる。
 金属錯体中における一価の金属イオンの含有量は、二価の金属イオンと一価の金属イオンを反応系中に添加する場合には添加する量を変えることなどにより制御することができる。また、二価の金属イオンから一価の金属イオンを反応系中で合成する場合には、反応系中に添加する還元剤の量を変えることなどにより制御することができるが、還元剤が副反応により消費される場合には、その副反応を抑制するためにさらに添加剤を加えてもよい。例えば、還元剤としてギ酸を、溶媒としてメタノールをそれぞれ用いる場合にはエステル化副反応によりギ酸が消費されうる。このとき、例えば水を加えることで副反応の進行を抑制してもよい。
 本発明の金属錯体の製造においては、多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とを反応させて、多価カルボン酸化合物と、金属イオンと、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる中間体を得る工程(第一工程)と、その中間体と前記金属イオンに多座配位可能な有機配位子とを反応させて、目的とする金属錯体を得る工程(第二工程)とに分割して反応を行ってもよい。また、第一工程において、多価カルボン酸化合物を分散させた混合溶液を、金属イオンを分散させた混合溶液に逐次的に混合してもよく、またその逆でもよい。その場合は、母骨格の炭素数4~14の芳香族モノカルボン酸化合物はどちらの混合溶液に加えてもよい。さらに第二工程において、中間体を分散させた混合溶液を、多座配位可能な有機配位子を分散させた混合溶液に逐次的に混合してもよく、またその逆でもよい。
 金属錯体の製造に用いる溶媒としては、単一の有機溶媒または混合した有機溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ジエチルエーテル、ブタノール、エチレングリコール、ホルムアミド、N-メチルホルムアミド、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N-ジメチルホルムアミドなどが挙げられるが、中でもプロトン性溶媒が好ましい。プロトン性溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、ホルムアミド、N-メチルホルムアミドなどが挙げられる。特にアルコール溶媒であるメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコールなどがより好ましい。また、これらのアルコール溶媒と水との混合溶媒も好ましい。
 反応温度としては、使用する溶媒に応じて適宜に選択すればよいが、253~463Kが好ましく、298~423Kがより好ましい。
 金属錯体を製造するときの金属塩と多価カルボン酸化合物の混合比率は、金属塩:多価カルボン酸化合物=1:5~8:1のモル比の範囲内が好ましく、1:3~6:1のモル比の範囲内がより好ましい。金属塩と多座配位可能な有機配位子の混合比率は、金属塩:多座配位可能な有機配位子=1:3~3:1のモル比の範囲内が好ましく、1:2~2:1のモル比の範囲内がより好ましい。多価カルボン酸化合物と母骨格の炭素数4~14の芳香族モノカルボン酸化合物の混合比率は、多価カルボン酸化合物:芳香族モノカルボン酸化合物=1:1,000~5,000:1のモル比の範囲内が好ましく、1:100~1,000:1のモル比の範囲内がより好ましい。
 金属塩が二価の金属塩と一価の金属塩からなる場合、金属塩[二価の金属塩及び一価の金属塩のモル数の合計]と多価カルボン酸化合物の混合比率は、金属塩:多価カルボン酸化合物=1:5~8:1のモル比の範囲内が好ましく、1:3~6:1のモル比の範囲内がより好ましい。金属塩と多座配位可能な有機配位子の混合比率は、金属塩:多座配位可能な有機配位子=1:3~3:1のモル比の範囲内が好ましく、1:2~2:1のモル比の範囲内がより好ましい。
 金属錯体を製造するときの二価の金属塩及び一価の金属塩の混合比率は、二価の金属イオン:一価の金属イオン=100:0~50:50の範囲内が好ましく、100:0~80:20の範囲内がより好ましい。金属錯体を製造するときに二価の金属イオンのみ添加する場合は、前記のとおり、反応系中で二価の金属イオンから一価の金属イオンを合成すればよい。
 金属錯体を製造するための混合溶液における多価カルボン酸化合物のモル濃度は0.01~5.0mol/Lが好ましい。また、混合溶液における金属塩のモル濃度は0.01~5.0mol/Lが好ましく、混合溶液における多座配位可能な有機配位子のモル濃度は0.005~2.5mol/Lが好ましく、混合溶液における母骨格の炭素数4~14の芳香族モノカルボン酸化合物のモル濃度は0.01~150mol/Lが好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。
 該母骨格の炭素数4~14の芳香族モノカルボン酸化合物は、反応系中に添加する方法以外に、反応系中で合成し、金属錯体に含ませてもよい。例えば、芳香族多価カルボン酸化合物とアルコールとをエステル化反応させることによって、前記芳香族モノカルボン酸化合物を発生させることができる。一例として、芳香族多価カルボン酸化合物としてテレフタル酸(1,4-ベンゼンジカルボン酸)を、アルコールとしてメタノール溶媒を用いた場合、反応系中でテレフタル酸とメタノールとを反応させることで4-メトキシカルボニル安息香酸を発生させ、該4-メトキシカルボニル安息香酸を金属錯体中に組み込ませることができる。前記エステル化反応においては、触媒として、ギ酸や酢酸などの酸を反応系中に共存させてもよい。このとき、反応系中に存在するギ酸や酢酸などは、本発明の効果を損ねない範囲で金属錯体に取り込まれてもよい。また、前記エステル化反応において副生成物として、1,4-ジメトキシカルボニルベンゼンも発生しうるが、この化合物は金属イオンに対する配位部位をもたないため、金属錯体の合成には関与しない。また、多価カルボン酸化合物としてトリメシン酸を用いた場合、メタノール溶媒と反応してできる3,5-ジメトキシカルボニル安息香酸を金属錯体中に組み込ませることができる。
 反応が終了したことは、例えば、吸光光度法、ガスクロマトグラフィー、高速液体クロマトグラフィーなどにより原料の残存量を定量することにより確認することができるが、これらに限定されるものではない。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、373K程度で数時間真空乾燥することにより、本発明の金属錯体を得ることができる。
 本発明の金属錯体は、用いる多価カルボン酸化合物、金属イオン及び該金属イオンに多座配位可能な有機配位子の種類により、一次元、二次元、或いは三次元の集積構造をとる。
 一例として、多価カルボン酸化合物としてテレフタル酸を、金属イオンとして銅イオンを、多座配位可能な有機配位子として4,4’-ビピリジルを有する金属錯体について詳しく述べる。該金属錯体は、テレフタル酸のカルボキシレート基と銅イオンとからなるパドルホイール骨格中の銅イオンのアキシャル位に4,4’-ビピリジルが配位して形成されるジャングルジム骨格が二重に相互貫入した三次元構造を有する。ジャングルジム骨格の模式図を図1に、ジャングルジム骨格が二重に相互貫入した三次元構造の模式図を図2に示す。
 上記「ジャングルジム骨格」とは、テレフタル酸などの多価カルボン酸化合物と金属イオンとからなるパドルホイール骨格中の金属イオンのアキシャル位に4,4’-ビピリジルなどの多座配位可能な有機配位子が配位し、多価カルボン酸化合物と金属イオンとからなる二次元格子状シート間を連結することで形成されるジャングルジム様の三次元構造を意味する。「ジャングルジム骨格が多重に相互貫入した構造」とは、複数のジャングルジム骨格が互いの細孔を埋める形で貫入し合った三次元集積構造である。
 該金属錯体がジャングルジム骨格が多重に相互貫入した構造を有することは、例えば、単結晶X線構造解析、粉末X線結晶構造解析などにより確認できるが、これらに限定されるものではない。
 別の一例として、多価カルボン酸化合物としてフマル酸を、金属イオンとして二価の金属イオンである銅(II)イオン及び一価の金属イオンである銅(I)イオンを、多座配位可能な有機配位子としてピラジンを有する金属錯体について詳しく述べる。該金属錯体は、4個のフマル酸のカルボキシレート基と2個の銅(II)イオンとからなるパドルホイール骨格中の銅(II)イオンのアキシャル位にピラジンが配位したジャングルジム状の三次元構造を有する。該金属錯体の三次元構造の模式図を図3に、2つの銅(II)イオン周りの構造を図4に示す。図4より、この錯体においては、銅(II)イオンは四角錐型の5配位錯体を形成している。四角錐の底面四角形部分において、フマル酸のカルボキシレート基が4つ配位しており、四角錐の頂点部分にピラジンが配位している。
 また、パドルホイール骨格を構成する2個の銅(II)イオンのうちの1個が銅(I)イオンである場合の銅イオン周りの構造を図5に示す。銅(II)イオン及び銅(I)イオンと、フマル酸のカルボキシレート基3個により電荷が中性となるため、図5の模式図においては、どちらの銅イオンが一価であるかを明確に特定することはできない。また、本発明の金属錯体においては、含有される一価の金属イオンの量は、二価の金属イオンの量に比べ少ないため、二価の金属イオンを用いた場合に構成される三次元構造を優先的に取ると考えられる。そのため、図5に示されるように、2つの銅(II)イオンにより構成される図4の構造とよく似た構造をとり、金属錯体全体としては、図3に示すような三次元構造を有する。
 多価カルボン酸化合物と金属イオンとを反応させる際に、芳香族モノカルボン酸化合物を共存させることで、金属イオンと多価カルボン酸化合物との反応と金属イオンと芳香族モノカルボン酸化合物との反応が競争することになる。芳香族モノカルボン酸化合物が金属イオンに配位した場合、芳香族モノカルボン酸化合物の配位部位は1箇所しかないので、その配位箇所における結晶の成長は停止するため、芳香族モノカルボン酸化合物は、結晶生長反応における停止剤と見なすことができる。一方で、金属イオンと芳香族モノカルボン酸化合物との反応は可逆であるので、結晶核生成速度及び結晶成長速度が制御され、結晶欠陥が少ない金属錯体を得ることが可能となる。結晶欠陥は金属錯体の分解の起点となりえるため、結晶欠陥が少ない本発明の金属錯体は、例えば水蒸気に対する耐久性に優れる。
 前記の耐水性向上メカニズムは推定ではあるが、例え前記メカニズムに従っていない場合でも、本発明で規定する要件を満足するのであれば、本発明の技術的範囲に包含される。
 本発明の金属錯体の耐久性は、繰り返し吸着測定前後の吸着量の変化量を比較することにより評価できる。
 本発明の金属錯体は、溶媒が吸着した状態ではガスを吸着しない。そのため、本発明の吸着材、吸蔵材、或いは分離材として使用する際には、予め得られた金属錯体について真空乾燥を行い、細孔内の溶媒を取り除くことが必要である。通常は金属錯体が分解しない程度の温度(例えば298K~523K以下)で真空乾燥を行えばよいが、その温度はより低温(例えば298K~393K以下)であることが好ましい。この操作は、超臨界二酸化炭素による洗浄によっても代えることができ、より効果的である。
 本発明の金属錯体は、各種ガスの吸着性能、吸蔵性能及び分離性能に優れている。従って、本発明の金属錯体は、各種ガスの吸着材、吸着材及び分離材として有用であり、これらも本発明の権利範囲に含まれる。
 本発明の吸着材、吸蔵材及び分離材は、例えば、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素(メタン、エタン、エチレン、アセチレン、プロパン、プロペン、メチルアセチレン、プロパジエン、ブタン、1-ブテン、イソブテン、1-ブチン、2-ブチン、1,3-ブタジエン、メチルアレンなど)、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノンなど)、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン(ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)、水蒸気または有機蒸気などを吸着するための吸着、吸蔵、分離するために好適に使用できる。
 本発明の分離材にあっては、特に、メタンと二酸化炭素、水素と二酸化炭素、窒素と二酸化炭素、メタンとエタン、エチレンとエタン、窒素と酸素、酸素とアルゴン、窒素とメタン、空気とメタンなどを、圧力スイング吸着法や温度スイング吸着法により分離するのに適している。
 有機蒸気とは、常温、常圧で液体状の有機物質の気化ガスを意味する。このような有機物質としては、メタノール、エタノールなどのアルコール類;トリメチルアミンなどのアミン類;ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類;ペンタン、イソプレン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、オクタン、1-オクテン、シクロオクタン、シクロオクテン、1,5-シクロオクタジエン、4-ビニル-1-シクロヘキセン、1,5,9-シクロドデカトリエンなどの炭素数5~16の炭化水素;ベンゼン、トルエンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類、塩化メチル、クロロホルムなどのハロゲン化炭化水素などが挙げられる。
 本発明の金属錯体は、本発明の効果を損なわない範囲であれば、必要に応じて、酢酸セルロース、ポリビニルアルコール、ポリアミド、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリオレフィン、ポリテトラフルオロエチレン誘導体または紙などの天然もしくは合成繊維、或いはガラスもしくはアルミナなどの無機繊維と組み合わせて複合化してもよい。複合化したものを、本発明の吸着材、吸蔵材及び分離材として用いてもよい。
 本発明の金属錯体は、必要に応じて、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、各種異形成形体、繊維、中空糸、織布、編布、不織布などに成形して用いてもよい。また、本発明の吸着材、吸蔵材及び分離材の使用形態は特に限定されず、本発明の金属錯体を粉末のまま用いてもよいし、成形したものを用いてもよい。
 前記ペレットの作製方法としては、特に限定はなく、従来から知られているペレット化方法のいずれもが採用できるが、よりペレットの高密度化が行える打錠成型法が好ましい。
 前記シートの作製方法としては、特に限定はなく、従来から知られているシート化方法のいずれもが採用できるが、よりシートの高密度化が行える湿式抄紙法が好ましい。湿式抄紙法は、水に原材料を分散させて、網で濾過し、乾燥する製造方法である。
 前記異形成形体の例として、ハニカム形状を挙げることができる。前記シートをハニカム形状とする方法としては、従来から知られている加工方法のいずれもが採用できる。なお、本発明においてハニカム形状とは、断面が六画形状のものの他、四角、正弦波形、ロール形のものなど中空多角柱、円柱などの中空柱体が連続したものをいう。
 本発明の金属錯体(または本発明の吸蔵材)は、その吸蔵性能を活かしてガス貯蔵装置に用いることもできる。ガス貯蔵装置の例としては、気密保持可能でガスの出入口を備えた耐圧容器の内部にガス吸蔵空間を設け、該貯蔵空間に本発明の金属錯体からなる吸蔵材を内装したガス貯蔵装置がある。当該ガス貯蔵装置に所望のガスを圧入することにより、内装した吸蔵材に当該ガスを吸着させ貯蔵することができる。ガス貯蔵装置からガスを取り出すときは、圧力弁を開放し、耐圧容器内の内圧を低下させることでガスを脱着させることができる。ガス貯蔵空間に吸蔵材を内装するにあたっては、本発明の金属錯体を粉末状で内装してもよいが、取り扱い性などの観点から、本発明の金属錯体を成形加工したペレット状のものを用いてもよい。
 このようなガス貯蔵装置は、燃料ガスを貯蔵空間に貯蔵することができ、図6に示すように、ガス自動車1などの燃料タンク2として好適に用いることができる。ガス自動車1は、燃料タンク2からタンク内に貯蔵される天然ガスを得て、燃焼用酸素含有ガス(例えば空気)と混合して、その燃焼により走行駆動力を得る内燃機関(エンジン)3を備えている。該燃料タンク2には、本発明の金属錯体からなる吸蔵材5が内装されており、この吸蔵材が、天然ガス(メタンを主成分とするガスなど)を常温、加圧状態で吸着する。そして、圧力調整弁4を開放すると、吸着状態にあるガスは吸蔵材5から脱着され、エンジン3の側まで送られて燃焼して走行駆動力を得ることができる。本発明の金属錯体からなる吸蔵材5が内装されていることにより、該燃料タンク2は吸蔵材を充填しない燃料タンクに比べ、見掛けの圧力に対してガスの圧縮率を高くできるため、タンク2の肉厚を薄くすることができ、ガス貯蔵装置全体の軽量化が図れるためガス自動車1などに有用である。
 分離方法は、ガスが金属錯体に吸着できる条件で該ガスと本発明の金属錯体(または本発明の分離材)とを接触させる工程を含む。ガスが金属錯体に吸着できる条件である吸着圧力及び吸着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、吸着圧力は0.01~10MPaが好ましく、0.1~3.5MPaがより好ましい。また、吸着温度は195K~343Kが好ましく、273~313Kがより好ましい。
 分離方法は、圧力スイング吸着法または温度スイング吸着法とすることができる。分離方法が圧力スイング吸着法である場合は、分離方法はさらに、圧力を、吸着圧力からガスを金属錯体から脱着させることができる圧力まで昇圧させる工程を含む。脱着圧力は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着圧力は0.005~2MPaが好ましく、0.01~0.1MPaがより好ましい。分離方法が温度スイング吸着法である場合は、分離方法はさらに、温度を、吸着温度からガスを金属錯体から脱着させることができる温度まで昇温させる工程を含む。脱着温度は、吸着される物質の種類に応じて適宜設定することができる。例えば、脱着温度は303~473Kが好ましく、313~373Kがより好ましい。
 分離方法は、圧力スイング吸着法または温度スイング吸着法である場合、ガスと金属錯体とを接触させる工程と、ガスを金属錯体から脱着させることができる圧力または温度まで変化させる工程を、適宜繰り返すことができる。
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の合成例、実施例及び比較例における分析及び評価は次のようにして行った。
(1)粉末X線回折パターンの測定
 X線回折装置を用いて、回折角(2θ)=5~50°の範囲を走査速度1°/分で走査し、対称反射法で測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社リガク製SmartLab
X線源:CuKα(λ=1.5418Å) 45kV 200mA
ゴニオメーター:横型ゴニオメーター
検出器:D/teX Ultra
ステップ幅:0.02°
スリット:発散スリット=2/3°
     受光スリット=0.3mm
     散乱スリット=2/3°
(2)反応系中の母骨格の炭素数4~14の芳香族モノカルボン酸化合物の定量
 液体クロマトグラフィーを用いて、反応系中の母骨格の炭素数4~14の芳香族モノカルボン酸化合物を定量した。
カラム:TSKgel ODS-100v 5μm(長さ15cm、内径4.6mm)
移動相溶媒:A液 アセトニトリル
      B液 リン酸0.1%水溶液
溶媒条件:B液を100%の状態で5分保持した後、A液:B液=50:50の状態で12.5分保持した。その後、さらにB液を100%の状態に戻し、2.5分保持した。
ポンプ:1mL/分
オーブン:40℃
検出器:UV
波長:242nm
注入量:20μL
(3)金属錯体に含まれる母骨格の炭素数4~14の芳香族モノカルボン酸化合物の定量
 金属錯体を重アンモニア水に溶解させたサンプルについてH-NMR測定を行い、得られたスペクトルの積分比から算出した。分析条件の詳細を以下に記す。
<分析条件>
装置:日本電子株式会社製JNM-LA500
共鳴周波数:500MHz
溶媒:重アンモニア水
基準物質:3-(トリメチルシリル)プロパン酸ナトリウム-d
温度:298K
フリップ角:30°
パルス繰返し時間:7.0秒
積算回数:2,048回
(4)吸着等温線または吸脱着等温線の測定
 高圧ガス吸着量測定装置を用いて、容量法によりガス吸脱着量の測定を行い、吸脱着等温線を作成した(JIS Z8831-2に準拠)。このとき、測定に先立って試料を373K、0.5Paで5時間乾燥し、吸着水などを除去した。分析条件の詳細を以下に示す。
<分析条件>
装置:日本ベル株式会社製BELSORP-HP
平衡待ち時間:500秒
<合成例1>
[第一工程]
 窒素雰囲気下、ギ酸銅四水和物24.7g(109mmol)、テレフタル酸16.4g(98.5mmol)、4-メトキシカルボニル安息香酸1.97g(10.9mmol)及びギ酸5.04g(109mmol)をメタノール200mLに分散させ、懸濁状態で333Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール133mL中に分散させ、4,4’-ビピリジル8.54g(54.7mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体27.1gを得た。
 得られた金属錯体の粉末X線回折パターンを図7に示す。粉末X線結晶構造解析の結果、得られた金属錯体はジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。粉末X線結晶構造解析結果を以下に示す。また、結晶構造を図8に示す。
Triclinic(P-1)
a=7.87355Å
b=8.94070Å
c=10.79101Å
α=67.14528°
β=80.73986°
γ=79.31579°
wp=2.30%
=4.96%
 得られた金属錯体10mgを重アンモニア水700mg(基準物質として3-(トリメチルシリル)プロパン酸ナトリウム-d4を0.4wt%含有)に溶解させ、H-NMR測定を行った。得られたスペクトルを図9に示す。スペクトルを解析した結果、テレフタル酸の2位、3位、5位及び6位のプロトンと4-メトキシカルボニル安息香酸の2位、3位、5位及び6位のプロトンに帰属される7.925ppm(s,4H)のピークの積分値を1,000とした際に、4-メトキシカルボニル安息香酸のメチル基のプロトンに帰属される3.346ppm(s,3H)のピークの積分値は68.3であったことから、金属錯体に含まれるテレフタル酸と4-メトキシカルボニル安息香酸のモル比は、テレフタル酸:4-メトキシカルボニル安息香酸=11:1であることがわかった。なお、図9において3.8ppm付近のブロードなシグナルは水によるものである。
 粉末X線結晶構造解析とH-NMR測定との結果から、得られた金属錯体の組成式は[Cu2(C8442-x(C1082)(C974xm(x=0.17)であることがわかった。nは任意の自然数を意味する。理論収量は[Cu2(C8441.83(C1082)(C9740.17n(銅:テレフタル酸:4,4’-ビピリジル:4-メトキシカルボニル安息香酸=2:1.83:1:0.17)で表される化合物の分子量から算出した。その結果、得られた金属錯体の収率は78%であった。
<合成例2>
[第一工程]
 窒素雰囲気下、テレフタル酸18.2g(109mmol)及びギ酸5.04g(109mmol)をメタノール200mLに分散させて298Kで18時間攪拌した。反応開始18時間の時点において、液体クロマトグラフィーを用いて4-メトキシカルボニル安息香酸を定量し、4-メトキシカルボニル安息香酸は反応系中に0.002質量%存在していることを確認した。これに、ギ酸銅四水和物24.7g(109mmol)を加え、懸濁状態で333Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール133mL中に分散させ、4,4’-ビピリジル8.54g(54.7mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体29.3gを得た。
 得られた金属錯体の粉末X線回折パターンを図10に示す。粉末X線結晶構造解析の結果、得られた金属錯体は合成例1で得た金属錯体と同じく、ジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。
 合成例1と同様にしてH-NMR測定を行った結果、金属錯体に含まれるテレフタル酸と4-メトキシカルボニル安息香酸のモル比は、テレフタル酸:4-メトキシカルボニル安息香酸=788:1であることがわかった。
 合成例1と同様にして算出した、得られた金属錯体の収率は88%であった。
<合成例3>
[ギ酸銅(I)の調製]
 窒素雰囲気下、塩化銅(I)3.96g(40.0mmol)をジクロロエタン80mLに分散させた。続いて、ギ酸1.84g(40.0mmol)をジクロロエタン40mmLに溶解させて加えた。0.5時間後にトリエチルアミン4.05g(40.0mmol)を加えて298Kで3時間攪拌した。析出した固体を吸引濾過により回収した後、ジクロロメタンで3回洗浄し、原料塩となるギ酸銅(I)1.60g(純度60%)を単離した。
[金属錯体の合成]
[第一工程]
 窒素雰囲気下、ギ酸銅(II)四水和物11.7g(52.0mmol)、テレフタル酸9.09g(54.7mmol)及び上記で作製したギ酸銅(I)0.300g(2.74mmol)をメタノール100mLに加え、さらにギ酸2.52g(55mmol)及び水2.00g(109mmol)を加えて、懸濁状態で333Kで24時間攪拌した。反応開始24時間の時点において、液体クロマトグラフィーを用いて4-メトキシカルボニル安息香酸を定量し、4-メトキシカルボニル安息香酸は反応系中に0.002質量%存在していることを確認した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール133mL中に分散させ、4,4’-ビピリジル4.27g(27.4mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体14.1gを得た。
 得られた金属錯体の粉末X線回折パターンを図11に示す。粉末X線結晶構造解析の結果、得られた金属錯体は合成例1で得た金属錯体と同じく、ジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。
 窒素雰囲気下、得られた金属錯体2mgとバソクプロインジスルホン酸二ナトリウム塩40mgを蒸留水で溶解し10mL定容とした(溶液A)。溶液A 5mL、0.03g/Lアスコルビン酸ナトリウム水溶液5mLを混合したサンプルについて分光光度計を用いて吸光度を測定し、金属錯体に含まれる全銅イオンの量を算出した。また、溶液A 5mL、3g/Lエチレンジアミン四酢酸二ナトリウム塩水溶液5mLを混合したサンプルについて分光光度計を用いて吸光度を測定し、金属錯体に含まれる銅(I)イオンの量を算出した。算出した全銅イオンの量と銅(I)イオンの量から、金属錯体に含まれる銅(I)イオンの量は4.6mol%であることがわかった。
 合成例1と同様にしてH-NMR測定を行った結果、金属錯体に含まれるテレフタル酸と4-メトキシカルボニル安息香酸のモル比は、テレフタル酸:4-メトキシカルボニル安息香酸=416:1であることがわかった。
合成例1と同様にして算出した、得られた金属錯体の収率は89%であった。
<比較合成例1>
 窒素雰囲気下、硫酸銅五水和物5.86g(23.5mmol)、テレフタル酸3.90g(23.5mmol)及びギ酸32.4g(704mmol)をメタノール3,750mLに溶解させ、313Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。次に、単離した中間体を窒素雰囲気下でメタノール2,000mL中に分散させ、4,4’-ビピリジル1.83g(11.7mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体1.79gを得た。
 得られた金属錯体の粉末X線回折パターンを図12に示す。粉末X線結晶構造解析の結果、得られた金属錯体は合成例1で得た金属錯体と同様、ジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。
 合成例1と同様にしてH-NMR測定を行った結果、4-メトキシカルボニル安息香酸由来のシグナルは検出されず、得られた金属錯体中に4-メトキシカルボニル安息香酸は含まれていないことがわかった。
 合成例1と同様にして算出した、得られた金属錯体の収率は25%であった。
<実施例1>
 合成例1で得られた金属錯体について、エスペック株式会社製低温恒温恒湿機PL-2KPを用い、353K、相対湿度80%の雰囲気下に置き、水蒸気曝露試験を行った。48時間後にサンプリングを行い、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。吸着等温線より0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率(Retention Rate)を算出した結果を表1に示す。
<実施例2>
 合成例2で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率を算出した結果を表1に示す。
<実施例3>
 合成例3で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率を算出した結果を表1に示す。
<比較例1>
 比較合成例1で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率を算出した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の構成要件を満たし、母骨格の炭素数4~14の芳香族モノカルボン酸化合物を有する合成例1、合成例2及び合成例3で得た金属錯体は、母骨格の炭素数4~14の芳香族モノカルボン酸化合物を有さない比較合成例1で得た金属錯体に比べ、高温・高湿度下でも二酸化炭素の平衡吸着量保持率が高く、時間の経過による保持率の低下も少ないことから、本発明の金属錯体が耐水性に優れていることは明らかである。
<実施例4>
 合成例2で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図13に示す。
<実施例5>
合成例3で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図13に示す。
 図13より、本発明の構成要件を満たす合成例2及び合成例3で得た金属錯体は二酸化炭素の吸着量が多いので、本発明の金属錯体が二酸化炭素の吸着材として使用できることは明らかである。
<実施例6>
 合成例2で得られた金属錯体について、293Kにおける二酸化炭素の吸脱着量を容量法により測定し、吸脱着等温線を作成した。結果を図14に示す。
 図14より、本発明の構成要件を満たす合成例2で得た金属錯体は圧力の増加と共に二酸化炭素を吸着し、また、圧力の減少と共に二酸化炭素を放出するので、本発明の金属錯体が二酸化炭素の吸蔵材として使用できることは明らかである。
<実施例7>
 合成例1で得られた金属錯体について、313Kにおける二酸化炭素及び水素の吸着量を容量法により測定し、吸脱着等温線を作成した。結果を図15に示す。
 図15より、本発明の構成要件を満たす合成例1で得た金属錯体は圧力の増加と共に二酸化炭素を選択的に吸着し、圧力の減少と共に放出するので、本発明の金属錯体が二酸化炭素と水素の分離材として使用できることは明らかである。
<合成例4>
[第一工程]
 窒素雰囲気下、テレフタル酸18.2g(109mmol)、酢酸銅一水和物21.8g(109mmol)及び酢酸26.2g(436mmol)をメタノール200mLに分散させ、懸濁状態で333Kで攪拌した。反応開始21時間の時点での、パックテストを用いて算出した原料金属塩の転化率が99%であることを確認し、反応開始24時間後に攪拌を停止した。反応開始24時間の時点において、液体クロマトグラフィーを用いて4-メトキシカルボニル安息香酸を定量し、4-メトキシカルボニル安息香酸は反応系中に0.003質量%存在していることを確認した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール133mL中に分散させ、4,4’-ビピリジル8.54g(54.7mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体29.5gを得た。
 得られた金属錯体の粉末X線回折パターンを図16に示す。粉末X線結晶構造解析の結果、得られた金属錯体は合成例1で得た金属錯体と同様、ジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。
 合成例1と同様にしてH-NMR測定を行った結果、金属錯体に含まれるテレフタル酸と4-メトキシカルボニル安息香酸のモル比は、テレフタル酸:4-メトキシカルボニル安息香酸=167:1であることがわかった。
 合成例1と同様にして算出した、得られた金属錯体の収率は88%であった。
<合成例5>
[第一工程]
 窒素雰囲気下、テレフタル酸18.2g(109mmol)、酢酸銅一水和物21.8g(109mmol)及び酢酸26.2g(436mmol)をメタノール200mLに分散させ、懸濁状態で333Kで攪拌した。反応開始5.5時間の時点での、パックテストを用いて算出した原料金属塩の転化率が98%であることを確認し、反応開始6時間後に攪拌を停止した。反応開始6時間の時点において、液体クロマトグラフィーを用いて4-メトキシカルボニル安息香酸を定量し、4-メトキシカルボニル安息香酸は反応系中に0.001質量%存在していることを確認した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール133mL中に分散させ、4,4’-ビピリジル8.54g(54.7mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体22.1gを得た。
 得られた金属錯体の粉末X線回折パターンを図17に示す。粉末X線結晶構造解析の結果、得られた金属錯体は合成例1で得た金属錯体と同様、ジャングルジム骨格が二重に相互貫入した構造を有していることがわかった。
 合成例1と同様にしてH-NMR測定を行った結果、金属錯体に含まれるテレフタル酸と4-メトキシカルボニル安息香酸のモル比は、テレフタル酸:4-メトキシカルボニル安息香酸=1,000:1であることがわかった。
 合成例1と同様にして算出した、得られた金属錯体の収率は73%であった。
<比較合成例2>
[第一工程]
 窒素雰囲気下、酢酸銅一水和物8.44g(42.3mmol)及びテレフタル酸7.02g(42.3mmol)をN、N-ジメチルホルムアミド375mLに分散させ、313Kで24時間攪拌した。析出した金属錯体を吸引濾過により回収した後、メタノールで3回洗浄し、中間体を単離した。
[第二工程]
 窒素雰囲気下、単離した中間体をメタノール450mL中に分散させ、4,4’-ビピリジル3.33g(21.1mmol)を添加し、298Kで3時間攪拌した。このとき、反応溶液は懸濁したままであった。金属錯体を吸引濾過により回収した後、メタノールで3回洗浄した。続いて、373K、50Paで8時間乾燥し、目的の金属錯体10.9gを得た。
 得られた金属錯体の粉末X線回折パターンを図18に示す。
 合成例1と同様にしてH-NMR測定を行った結果、4-メトキシカルボニル安息香酸由来のシグナルは検出されず、得られた金属錯体中に4-メトキシカルボニル安息香酸は含まれていないことがわかった。
 得られた金属錯体の収率は84%であった。
<実施例8>
 合成例4で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率(Retention Rate)を算出した結果を表2に示す。
<実施例9>
 合成例5で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率を算出した結果を表2に示す。
<比較例2>
 比較合成例2で得られた金属錯体について、実施例1と同様にして水蒸気曝露試験を行い、結果を測定した。0.92MPaにおける二酸化炭素の平衡吸着量を求め、その保持率を算出した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明の構成要件を満たし、母骨格の炭素数4~14の芳香族モノカルボン酸化合物を有する合成例4及び合成例5で得た金属錯体は、母骨格の炭素数4~14の芳香族モノカルボン酸化合物を有さない比較合成例2で得た金属錯体に比べ、高温・高湿度下でも二酸化炭素の平衡吸着量保持率が高く、時間の経過による保持率の低下も少ないことから、本発明の金属錯体が耐水性に優れていることは明らかである。
<実施例10>
 合成例4で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図19に示す。
<実施例11>
合成例5で得られた金属錯体について、273Kにおける二酸化炭素の吸着量を容量法により測定し、吸着等温線を作成した。結果を図19に示す。
 図19より、本発明の構成要件を満たす合成例4及び合成例5で得た金属錯体は二酸化炭素の吸着量が多いので、本発明の金属錯体が二酸化炭素の吸着材として使用できることは明らかである。
 

Claims (15)

  1.  多価カルボン酸化合物と、周期表の2~13族に属する金属のイオンから選択される少なくとも1種の金属イオンと、該金属イオンに多座配位可能な有機配位子と、母骨格の炭素数4~14の芳香族モノカルボン酸化合物とからなる金属錯体。
  2.  該金属錯体を構成する多価カルボン酸化合物と母骨格の炭素数4~14の芳香族モノカルボン酸化合物との組成比が、多価カルボン酸化合物:母骨格の炭素数4~14の芳香族モノカルボン酸化合物=5:1~5,000:1の範囲内である請求項1に記載の金属錯体。
  3.  前記少なくとも1種の金属イオンが、周期表の2~12族に属する金属のイオンから選択される少なくとも1種の二価の金属イオンと、周期表の9~11族に属する金属のイオンから選択される少なくとも1種の一価の金属イオンとからなり、金属錯体中の全金属イオンの量に対する一価の金属イオンの含有量が3.5~20mol%である請求項1または2に記載の金属錯体。
  4.  該二価の金属イオン及び一価の金属イオンが、共に銅イオンである請求項1~3のいずれか一項に記載の金属錯体。
  5.  該芳香族モノカルボン酸化合物が、アルコキシカルボニル基を有する芳香族モノカルボン酸化合物である請求項1~4のいずれか一項に記載の金属錯体。
  6.  該金属錯体が、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、異形成形体、繊維、中空糸、織布、編布及び不織布から選ばれるいずれかの形状である請求項1~5のいずれか一項に記載の金属錯体。
  7.  請求項1~6のいずれか一項に記載の金属錯体からなる吸着材。
  8.  該吸着材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を吸着するための吸着材である請求項7に記載の吸着材。
  9.  請求項1~6のいずれか一項に記載の金属錯体からなる吸蔵材。
  10.  該吸蔵材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、水蒸気または有機蒸気を吸蔵するための吸蔵材である請求項9に記載の吸蔵材。
  11.  気密保持可能でガスの出入口を備えた耐圧容器の内方側にガス吸蔵空間を設けたガス貯蔵装置であって、前記ガス吸蔵空間に請求項9に記載の吸蔵材を内装してあるガス貯蔵装置。
  12.  請求項1~6のいずれか一項に記載の金属錯体からなる分離材。
  13.  該分離材が、二酸化炭素、水素、一酸化炭素、酸素、窒素、炭素数1~4の炭化水素、希ガス、硫化水素、アンモニア、硫黄酸化物、窒素酸化物、シロキサン、水蒸気または有機蒸気を分離するための分離材である請求項12に記載の分離材。
  14.  金属錯体と混合ガスとを0.01~10MPaの圧力範囲で接触させる工程を含むことを特徴とする請求項12に記載の分離材を用いる分離方法。
  15.  該分離方法が圧力スイング吸着法または温度スイング吸着法である請求項14に記載の分離方法。
PCT/JP2014/053635 2013-02-18 2014-02-17 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材 WO2014126238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500328A JPWO2014126238A1 (ja) 2013-02-18 2014-02-17 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-028719 2013-02-18
JP2013028719 2013-02-18
JP2013054486 2013-03-18
JP2013-054486 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014126238A1 true WO2014126238A1 (ja) 2014-08-21

Family

ID=51354236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053635 WO2014126238A1 (ja) 2013-02-18 2014-02-17 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Country Status (2)

Country Link
JP (1) JPWO2014126238A1 (ja)
WO (1) WO2014126238A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010517A1 (en) * 2017-07-13 2019-01-17 The University Of Melbourne METHODS FOR CAPTURING AND STORING ANESTHETICS WITH ORGANOMETALLIC STRUCTURES
CN113614094A (zh) * 2019-04-01 2021-11-05 埃克森美孚研究工程公司 包含二亚胺双水杨酸酯支架的金属有机骨架材料及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (ja) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd 新規三次元型有機金属錯体及びガス吸着材
JP2003342260A (ja) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd 三次元型金属錯体、吸着材および分離材
JP2010159228A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd 自己集積型金属錯体、自己集積型金属錯体の製造方法及び触媒材
JP2010540600A (ja) * 2007-10-01 2010-12-24 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) カルボン酸鉄系有機/無機ハイブリッドナノ粒子
WO2011105521A1 (ja) * 2010-02-24 2011-09-01 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2011190256A (ja) * 2010-02-22 2011-09-29 Kuraray Co Ltd 金属錯体、並びにそれからなる吸蔵材及び分離材
WO2013024761A1 (ja) * 2011-08-17 2013-02-21 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2013040129A (ja) * 2011-08-16 2013-02-28 Kuraray Co Ltd 金属錯体、並びにそれからなる吸蔵材及び分離材
WO2014007179A1 (ja) * 2012-07-02 2014-01-09 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (ja) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd 新規三次元型有機金属錯体及びガス吸着材
JP2003342260A (ja) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd 三次元型金属錯体、吸着材および分離材
JP2010540600A (ja) * 2007-10-01 2010-12-24 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) カルボン酸鉄系有機/無機ハイブリッドナノ粒子
JP2010159228A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd 自己集積型金属錯体、自己集積型金属錯体の製造方法及び触媒材
JP2011190256A (ja) * 2010-02-22 2011-09-29 Kuraray Co Ltd 金属錯体、並びにそれからなる吸蔵材及び分離材
WO2011105521A1 (ja) * 2010-02-24 2011-09-01 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2013040129A (ja) * 2011-08-16 2013-02-28 Kuraray Co Ltd 金属錯体、並びにそれからなる吸蔵材及び分離材
WO2013024761A1 (ja) * 2011-08-17 2013-02-21 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
WO2014007179A1 (ja) * 2012-07-02 2014-01-09 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010517A1 (en) * 2017-07-13 2019-01-17 The University Of Melbourne METHODS FOR CAPTURING AND STORING ANESTHETICS WITH ORGANOMETALLIC STRUCTURES
CN113614094A (zh) * 2019-04-01 2021-11-05 埃克森美孚研究工程公司 包含二亚胺双水杨酸酯支架的金属有机骨架材料及其生产方法
CN113614094B (zh) * 2019-04-01 2024-03-19 埃克森美孚科技工程公司 包含二亚胺双水杨酸酯支架的金属有机骨架材料及其生产方法

Also Published As

Publication number Publication date
JPWO2014126238A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6270720B2 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP6076255B2 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
WO2014007181A1 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP5506283B2 (ja) 金属錯体及びその製造方法
JP5787665B2 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP5649342B2 (ja) 金属錯体及びその製造方法
JP5478120B2 (ja) 金属錯体及びその製造方法
JP5677131B2 (ja) 金属錯体、並びにそれからなる吸蔵材及び分離材
JP2011068631A (ja) 金属錯体及びそれからなる分離材
WO2014129569A1 (ja) 金属錯体の製造方法
JP2012031161A (ja) 金属錯体、並びにそれからなる吸蔵材及び分離材
WO2013069721A1 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP5478121B2 (ja) 金属錯体及びその製造方法
JP6242136B2 (ja) 多孔性金属錯体組成物
WO2014126238A1 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
WO2013084826A1 (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP5677132B2 (ja) 金属錯体及びその製造方法
JP2015205857A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP5832197B2 (ja) 金属錯体、並びにそれからなる吸蔵材及び分離材
JP2012056946A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2014205665A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2015027954A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2014156405A (ja) 金属錯体の製造方法
JP2017048145A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材および分離材
JP2014058481A (ja) 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751838

Country of ref document: EP

Kind code of ref document: A1