WO2014126154A1 - 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール - Google Patents

復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール Download PDF

Info

Publication number
WO2014126154A1
WO2014126154A1 PCT/JP2014/053339 JP2014053339W WO2014126154A1 WO 2014126154 A1 WO2014126154 A1 WO 2014126154A1 JP 2014053339 W JP2014053339 W JP 2014053339W WO 2014126154 A1 WO2014126154 A1 WO 2014126154A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
pressure
steam
partition members
partition
Prior art date
Application number
PCT/JP2014/053339
Other languages
English (en)
French (fr)
Inventor
一作 藤田
賢 平岡
健治 桐原
晃 福井
健介 西浦
太一 中村
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to EP14751741.1A priority Critical patent/EP2957847B1/en
Priority to US14/760,098 priority patent/US9638469B2/en
Priority to CN201480004413.5A priority patent/CN104937360B/zh
Priority to KR1020157018051A priority patent/KR101713467B1/ko
Publication of WO2014126154A1 publication Critical patent/WO2014126154A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/02Condensers in which the steam or vapour comes into direct contact with the cooling medium by providing a flowing coating of cooling liquid on the condensing surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • F28F25/087Vertical or inclined sheets; Supports or spacers

Definitions

  • the present invention relates to a condenser for returning steam to water, a multistage pressure condenser equipped with the condenser, and a reheat module used for the condenser.
  • Some steam plants are equipped with multistage condensers.
  • the cooling water inlet temperature of each condenser is different, so that the saturated steam pressure generated in the process of returning the steam to the water in each condenser differs among the condensers. For this reason, when two condensers are provided, one condenser serves as a high-pressure condenser, and the other condenser serves as a low-pressure condenser.
  • Patent Document 1 discloses a multi-stage pressure condenser having a high-pressure condenser and a low-pressure condenser.
  • the low-pressure condenser of this multistage pressure condenser is arranged in the upper space, a low-pressure condensate container into which low-pressure steam flows from the upper part, a pressure partition that divides the inside of the low-pressure condensate container into an upper space and a lower space, and And a heat transfer tube for condensing the low-pressure steam, and a tray disposed in the lower space.
  • the low-pressure condenser and the high-pressure condenser are connected by a steam duct that guides a part of the high-pressure steam flowing into the high-pressure condenser to the lower space of the low-pressure condenser.
  • a plurality of through holes penetrating in the vertical direction are formed in the pressure partition of the low pressure condenser.
  • the water condensed in the upper space flows down to the lower space through the plurality of through holes of the pressure partition. This water temporarily accumulates in the tray, then overflows from the tray, and accumulates at the bottom of the lower space.
  • the water passes through a plurality of through holes in the pressure bulkhead and reaches the tray, and further, from the tray to the water pool in the lower space, the high-temperature high-pressure steam from the high-pressure condenser. Exposed to heat.
  • the present invention provides a condenser capable of increasing the reheat efficiency of water after condensation by high-temperature steam from the outside in order to further increase the thermal efficiency of the entire steam plant, and a multi-stage pressure condenser provided with the same
  • An object of the present invention is to provide a reheat module for use in a condenser.
  • a condenser as one aspect according to the invention for achieving the above object is: A container into which steam flows, a pressure partition in which the interior of the container is divided into an upper space and a lower space and a plurality of partition wall through holes are formed, and the steam that flows in are condensed in the upper space of the container A heat transfer tube that is disposed in the lower space of the container, and the steam condenses in the upper space of the container, and the water that flows into the lower space of the container is transferred from the outside of the container to the lower space.
  • a reheater that heats with the flowing high-temperature steam, the reheater extending in the vertical direction in the lower space of the container, and a plurality of partition members arranged at intervals from each other, and a plurality of the partition members
  • a receiving plate for receiving water flowing down through the partition member, and a weir connected to the outer peripheral edge of the receiving plate and surrounding the receiving plate, the lower ends of the plurality of partition members being more than the upper ends of the weirs It is down.
  • the water that has passed through the plurality of partition members temporarily accumulates in an area surrounded by the receiving plate and the weir, then overflows from this area and falls downward.
  • the condenser since the lower ends of the plurality of partition members are lower than the upper ends of the weirs, the lower end portions of the plurality of partition members are submerged in the water accumulated in the region surrounded by the receiving plate and the weir. become. For this reason, the high temperature steam hardly flows between the plurality of partition members from below the plurality of partition members. Therefore, in the condenser, the flow velocity in the steam inflow direction perpendicular to the direction in which the plurality of partition members are arranged and the vertical direction is increased in the high-temperature steam passing between the plurality of partition members.
  • the contact rate between the high-temperature steam and water is increased, and the flow rate of the high-temperature steam in the steam inflow direction is increased, so that the heat transfer coefficient between the high-temperature steam and water is increased. Therefore, according to the condenser, water can be efficiently heated by the high temperature steam.
  • a plurality of receiving plate through holes may be formed in the receiving plate, and a plurality of weir through holes may be formed in the weir.
  • the outflow location of water from the region surrounded by the receiving plate and the weir is Since the water is dispersed, the contact rate between the high-pressure steam and the high-pressure steam increases until the water falls and reaches the water reservoir. Therefore, in the said condenser, the heating efficiency of the water by a high pressure steam can be improved more.
  • the reheater is disposed on both sides of a group of the plurality of partition members in a direction in which the plurality of partition members are arranged, and is spaced from the partition members. You may have an opposing side plate.
  • the reheater includes an upper end support member that supports upper end portions of the plurality of partition members, and a lower end support that supports lower end portions of the plurality of partition members. And a member.
  • the upper end support member is formed with an upper engagement portion that is recessed upward from below the lower space of the container and into which each upper end portion of the plurality of partition members enters
  • the lower end support member includes A lower engaging portion that is recessed downward from above the lower space of the container and into which the lower end portions of the plurality of partition members enter, and the partition members are elastically compressed in the vertical direction,
  • the upper end portion of the partition member enters the upper engagement portion of the upper end support member, the lower end portion of the partition member enters the lower engagement portion of the lower end support member, and is between the upper end support member and the lower end support member. It may be sandwiched and supported.
  • the partition member is a wave in which a convex portion protruding in a direction in which the plurality of partition members are arranged and a concave portion recessed in the arrangement direction are repeatedly formed in the vertical direction.
  • You may have a board.
  • the partition member may include the corrugated plate and a plurality of pocket forming members that open upward and form pockets for collecting water in cooperation with the corrugated plate.
  • a plurality of corrugated plate through holes may be formed in the corrugated plate.
  • the reheater includes a reheat module, and the reheat module includes a plurality of the partition member, the upper end support member, the lower end support member, and the receiver.
  • a plate, the weir, and the interconnecting plate, the upper end support member, and the lower end support member, and a plurality of the partition member, the upper end support member, the lower end support member, the receiving plate, and the You may have a connection member which integrates a weir.
  • the installation workability of the reheater can be improved by integrating at least a part of the reheater.
  • the reheat module is present in a vertically upper region of the plurality of partition members, and is formed with a plurality of perforated plate through holes penetrating in the vertical direction. You may have a board. In this case, the perforated plate of the reheating module may form part of the pressure partition.
  • the reheater may have a plurality of the reheat modules.
  • a plurality of reheat modules are prepared in advance, and by combining them appropriately, various sizes of condensers can be easily handled.
  • the plurality of reheat modules are adjacent to each other, and the reheater can take water that reaches a position between the plurality of reheat modules. You may have the water guide member guide
  • the multi-unit it is possible to reduce the amount of water that passes through a plurality of reheat modules.
  • the reheater includes a plurality of the partition members from one side in a direction in which the plurality of partition members are arranged and a steam inflow direction perpendicular to the vertical direction. You may have the steam forced introduction apparatus which forcibly guides the said high temperature steam in between.
  • the flow rate of the high temperature steam passing between the plurality of partition members is increased, and the water can be efficiently heated with the high temperature steam.
  • the reheater may be arranged on one side of a direction in which the plurality of partition members are arranged and a steam inflow direction perpendicular to the vertical direction with respect to the plurality of partition members.
  • the flow rate of the high-temperature steam in a plane that is arranged and aligns the flow direction of the high-temperature steam flowing between the plurality of partition members from the one side with the steam inflow direction and is perpendicular to the steam inflow direction.
  • You may have a rectifier which makes distribution uniform.
  • water and high-temperature steam can be efficiently exchanged heat evenly across the plurality of partition members.
  • a multi-stage pressure condenser as one aspect according to the invention for achieving the above-described object is: Any of the above-mentioned low-pressure condensers, which are the condenser, and saturated steam generated in the process of returning the steam flowing in the low-pressure condenser to water in the process of returning the steam flowing in to the water
  • a reheat module as one aspect according to the invention for achieving the above-described object is: In a reheating module that heats water from above with steam from the outside, a plurality of partition members that extend in the vertical direction and are arranged at intervals from each other, and water that has fallen through the plurality of partition members A receiving plate, a weir connected to the outer peripheral edge of the receiving plate and surrounding the receiving plate, an upper end support member that supports each upper end portion of the plurality of partition members, and each lower end portion of the plurality of partition members The lower end support member to be supported, the receiving plate, the upper end support member, and the lower end support member are connected to each other to form a plurality of the partition member, the receiving plate, the weir, the upper end support member, and the lower end support member. And a lower end of the plurality of partition members is lower than an upper end of the weir.
  • the contact rate between the high temperature steam and water is increased, and the flow rate of the high temperature steam in the steam inflow direction is increased, so that the heat transfer coefficient between the high temperature steam and water is increased.
  • operativity of a reheater can be improved by using the said reheat module.
  • the reheat module may include a side plate that is disposed on both sides of the collection of the plurality of partition members in a direction in which the plurality of partition members are arranged and is opposed to the partition members with a space therebetween.
  • a perforated plate in which a plurality of perforated plate through-holes are formed so as to cover the vertically upper regions of the plurality of partition members and the upper end support member and penetrate in the vertical direction. You may have.
  • the reheat efficiency of water after condensation with high-temperature steam from the outside can be increased.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is a perspective view of the reheating module of one embodiment concerning the present invention. It is an exploded perspective view of the reheat module of one embodiment concerning the present invention. It is a principal part perspective view of the partition member of one Embodiment concerning this invention. It is principal part sectional drawing of the low pressure condenser including the reheater of the 1st modification which concerns on this invention. It is principal part sectional drawing of the low pressure condenser including the reheater of the 2nd modification which concerns on this invention.
  • the multistage pressure condenser of this embodiment is a high-pressure condenser 10, a low-pressure condenser 20, and high-temperature and high-pressure saturated steam in the high-pressure condenser 10.
  • a steam duct 17 that leads to the inside, and a condensate flow pipe 18 that guides water accumulated at the bottom of the low-pressure condenser 20 to the high-pressure condenser 10 are provided.
  • This multistage condenser is part of the steam plant.
  • the steam plant is not only shown in this multistage pressure condenser, but also a boiler that generates steam and the steam from the boiler, and this steam is driven by the high pressure condenser 10 and the low pressure of the multistage pressure condenser.
  • a steam turbine exhausted to the condenser 20, and a condensate pump and a feed water pump for sending water from the multistage pressure condenser to the boiler are provided.
  • the high pressure condenser 10 includes a high pressure condensate container 11 into which steam from the steam turbine flows, and a heat transfer tube 16 disposed in the high pressure condensate container 11. Cooling water such as seawater is supplied to the heat transfer tube 16. The heat transfer tube 16 exchanges heat between the cooling water and the high-pressure steam to return the high-pressure steam to water. This water accumulates at the bottom of the high-pressure condensate container 11 and flows out from the condensate discharge pipe 19 formed at the bottom of the high-pressure condensate container 11. A condensate pump is connected to the end of the condensate discharge pipe 19.
  • the low-pressure condenser 20 is disposed in the upper space Sa, a low-pressure condensate container 21 into which steam from the steam turbine flows, a pressure partition wall 22 that partitions the low-pressure condensate container 21 into an upper space Sa and a lower space Sb.
  • the heat transfer tube 26 and the reheater 30 disposed in the lower space Sb are provided. Cooling water is supplied to the heat transfer tube 26.
  • the heat transfer tube 26 exchanges heat between the cooling water and the low-pressure steam to return the low-pressure steam to water.
  • the temperature of the cooling water supplied to the heat transfer pipe 26 of the low pressure condenser 20 is lower than the temperature of the cooling water supplied to the heat transfer pipe 16 of the high pressure condenser 10.
  • the pressure of the saturated steam generated in the process in which the steam flowing into the low-pressure condenser 20 returns to the water in the low-pressure condenser 20 is the same as the steam flowing into the high-pressure condenser 10 in the high-pressure condenser 10. It is lower than the pressure of saturated steam generated in the process of returning to
  • the pressure partition wall 22 includes a porous plate 23 positioned in the center region of the low-pressure condensate vessel 21 in plan view, and a cylindrical partition side plate 24 that is formed along the outer edge of the porous plate 23 and extends upward from the outer edge of the porous plate 23.
  • a condensate receiving plate 25 extending from the upper end of the partition side plate 24 to the outer peripheral side.
  • the perforated plate 23 is formed with a plurality of through holes 27 (hereinafter referred to as partition wall through holes 27) penetrating in the vertical direction. Further, the condensate receiving plate 25 extends from the upper end of the partition side plate 24 to the inner peripheral surface of the low-pressure condensate container 21 in the horizontal direction.
  • the lower space Sb side of the low-pressure condensate container 21 and the high-pressure condensate container 11 are connected by the steam duct 17 described above. For this reason, the inside of the high-pressure condensate container 11 and the lower space Sb of the low-pressure condensate container 21 communicate with each other through this steam duct 17.
  • the position on the bottom side of the high pressure condensate container 11 and the position on the bottom side of the low pressure condensate container 21 are connected by a condensate circulation pipe 18. For this reason, the condensate circulation pipe 18 communicates with the inside of the high-pressure condensate container 11 and the lower space Sb of the low-pressure condensate container 21.
  • the reheater 30 includes a reheat module 40 disposed below the perforated plate 23 in the lower space Sb, a rectifier 31 disposed on the steam duct 17 side of the reheat module 40, and the reheat module 40. And a steam forced introduction device 32 disposed on the opposite side of the steam duct 17.
  • the vertical direction is the Z direction
  • the direction in which the rectifier 31, the reheat module 40, and the forced steam introduction device 32 are arranged is the Y direction, the Z direction, and the Y direction.
  • the direction perpendicular to X is the X direction.
  • the rectifier 31 side is the steam upstream side with the reheat module 40 as a reference
  • the steam forced introduction device 32 side is the steam downstream side with the reheat module 40 as a reference.
  • the rectifier 31 is formed by arranging a plurality of plates extending in the Y direction in a lattice shape.
  • the rectifier 31 rectifies the steam from the steam duct 17 disposed on the upstream side of the steam with respect to the rectifier 31 and guides it to the reheat module 40 disposed on the downstream side of the steam with respect to the rectifier 31. Is.
  • the forced steam introduction device 32 is a device for forcibly guiding the high pressure steam in the high pressure condensate vessel 11 to the reheating module 40.
  • the forced steam introduction device 32 includes a buffer case 33 that covers the end of the reheat module 40 in the Y direction, and a vent pipe 34 that communicates the inside of the buffer case 33 with the upper space Sa.
  • the vent pipe 34 passes through the condensate receiving plate 25 of the pressure partition wall 22.
  • the reheat module 40 includes a plurality of partition members 41 that extend in the Z direction and the Y direction and are arranged at intervals in the X direction, and fall through the plurality of partition members 41.
  • Receiving plate 56 for receiving water, upper end support member 48 for supporting the upper end portions of the plurality of partition members 41, lower end support member 49 for supporting the lower end portions of the plurality of partition members 41, and a frame surrounding them. 50.
  • the partition member 41 has a corrugated plate 42 obtained by processing one rectangular plate so that a convex portion protruding in the X direction and a concave portion recessed in the X direction are repeated in the Z direction.
  • the corrugated plate 42 constituting the partition member 41 is made of, for example, SUS304 having a thickness of 3 mm.
  • the plurality of partition members 41 are arranged such that the positions of the upper end, the lower end, the convex portion, and the concave portion coincide with each other in the Z direction and are spaced from each other in the X direction. For this reason, the some partition member 41 has comprised the rectangular parallelepiped shape as a whole.
  • the upper end support member 48 extends in the X direction in which a plurality of partition members 41 are arranged, as shown in FIGS.
  • the upper end support member 48 is formed with an upper engaging portion 48a that is recessed from the lower side to the upper side and into which the upper end portions of the plurality of partition members 41 enter.
  • the lower end support member 49 also extends in the X direction in which the plurality of partition members 41 are arranged.
  • the lower end support member 49 is formed with a lower engagement portion 49a that is recessed downward from above and into which each lower end portion of the plurality of partition members 41 enters.
  • the frame 50 has twelve connecting members 51 arranged along portions corresponding to the sides of the rectangular parallelepiped formed by the plurality of partition members 41.
  • the connecting member 51 is made of angle steel. The end portions of each connecting member 51 are joined.
  • the upper end support member 48 is positioned on the upper side and faces each other in the X direction and is passed between the two connecting members 51. It is fixed.
  • the lower end support member 49 is positioned below the twelve connecting members 51 constituting the frame 50, faces each other in the X direction, and is passed between the two connecting members 51. It is fixed to the member 51.
  • the upper end portion of the partition member 41 enters the upper engagement portion 48 a of the upper end support member 48, and the lower end portion of the partition member 41 is the lower end support member 49.
  • the lower engaging portion 49a enters and is supported by being sandwiched between the upper end support member 48 and the lower end support member 49.
  • the receiving plate 56 has a rectangular shape, and among the twelve connecting members 51 constituting the frame 50, these four connecting members 51 are closed so as to close the rectangular openings formed by the lower four connecting members 51. It is joined to the connecting member 51.
  • the angle type steel which is the four connecting members 51 one of the two pieces extends in the horizontal direction, and the other piece extends upward from the end of the one piece.
  • each piece extending upward forms a weir 57 connected to the outer peripheral edge of the receiving plate 56 and surrounding the receiving plate 56.
  • the tray 55 is formed by the receiving plate 56 and the weir 57 that is connected to the outer peripheral edge of the receiving plate 56 and surrounds the receiving plate 56.
  • the receiving plate 56, the upper end support member 48, and the lower end support member 49 are connected to each other by a plurality of connecting members 51 constituting the frame 50.
  • the plurality of partition members 41, the receiving plate 56, the weir 57, the upper end support member 48, and the lower end support member 49 are integrated.
  • the lower ends of the plurality of partition members 41 are located below the upper ends of the weirs 57. For this reason, when the water overflows from the tray 55, the lower ends of the plurality of partition members 41 are surely submerged in the water accumulated in the tray 55.
  • the reheat module 40 described above is arranged in a state of being vertically floated in the lower space Sb at a position below the perforated plate 23. Therefore, the reheating module 40 is supported by, for example, a leg member or is held by a suspension member fixed to the pressure partition wall 22.
  • the steam exhausted from the steam turbine flows into the high-pressure condensate container 11.
  • the steam is condensed by being cooled by exchanging heat with the cooling water flowing in the heat transfer pipe 16 disposed in the high pressure condensate vessel 11 and returning to water (hereinafter referred to as high pressure side condensate).
  • the high-pressure side condensate temporarily accumulates at the bottom of the high-pressure condensate container 11 and is discharged to the outside through the condensate discharge pipe 19.
  • the high-pressure side condensate is returned to the boiler by the condensate pump and the feed water pump.
  • the steam exhausted from the steam turbine also flows into the upper space Sa of the low-pressure condensate vessel 21.
  • This steam is condensed by being cooled by exchanging heat with water flowing in the heat transfer tubes 26 arranged in the upper space Sa, and returns to water (hereinafter referred to as low-pressure side condensate).
  • the temperature of the cooling water supplied to the heat transfer pipe 26 of the low-pressure condenser 20 is lower than the temperature of the cooling water supplied to the heat transfer pipe 16 of the high-pressure condenser 10.
  • the pressure of the saturated steam generated in the process in which the steam that has flowed into the upper space Sa of the low-pressure condenser 20 returns to the water in the upper space Sa is the same as that of the steam that has flowed into the high-pressure condensate container 11. It is lower than the pressure of saturated steam generated in the process of returning to water. Accordingly, the pressure in the upper space Sa of the low-pressure condenser 20 is lower than the pressure in the high-pressure condenser 11.
  • the low-pressure side condensate temporarily accumulates on the pressure partition 22 in the upper space Sa.
  • the low-pressure side condensate accumulated on the pressure partition wall 22 passes through the plurality of partition wall through holes 27 formed in the porous plate 23 in the pressure partition wall 22 and flows down into the lower space Sb.
  • the low-pressure side condensate that has passed through the partition wall through-holes 27 of the perforated plate 23 is made into a thin film while flowing down along the surface of the corrugated plate 42 that forms the partition member 41 of the reheat module 40.
  • the surface area is expanded.
  • the low-pressure condensate flowing down along the corrugated plate 42 temporarily accumulates in a tray 55 disposed below the corrugated plate 42.
  • the low-pressure side condensate overflows from the tray 55 and temporarily accumulates at the bottom of the low-pressure condensate container 21.
  • FIG. 5 the low-pressure side condensate that has passed through the partition wall through-holes 27 of the perforated plate 23 is made into a thin film while flowing down along the surface of the corrugated plate 42 that forms the partition member 41 of the reheat module 40.
  • the surface area is expanded.
  • the low-pressure condensate flowing down along the corrugated plate 42 temporarily accumulates in a tray 55 disposed below the corrugated plate 42.
  • the low-pressure condensate accumulated at the bottom of the low-pressure condensate vessel 21 flows into the bottom of the high-pressure condensate vessel 11 through the condensate circulation pipe 18, and is condensed along with the high-pressure condensate. Returned to boiler by pump and feed pump.
  • the pressure in the upper space Sa of the low-pressure condensate vessel 21 is lower than the pressure in the high-pressure condensate vessel 11.
  • the pressure in the lower space Sb of the low pressure condensate vessel 21 into which the low pressure side condensate flows is higher than the pressure in the upper space Sa and lower than the pressure in the high pressure condensate vessel 11. That is, the pressure in the high pressure condensate vessel 11 is the highest among the pressure in the high pressure condensate vessel 11, the pressure in the lower space Sb of the low pressure condensate vessel 21, and the pressure in the upper space Sa of the low pressure condensate vessel 21. Furthermore, the pressure in the lower space Sb of the low-pressure condensate vessel 21 is high, and the pressure in the upper space Sa of the low-pressure condensate vessel 21 is the lowest.
  • the high-pressure steam that has flowed from the high-pressure condensate container 11 into the lower space Sb of the low-pressure condensate container 21 is forcibly introduced into the reheat module 40.
  • the flow rate of the high-pressure steam introduced into the reheat module 40 is larger than when the steam forced introduction device 32 is not provided.
  • the high-pressure steam passes through the rectifier 31 before being introduced into the reheating module 40.
  • the flow direction of the high-pressure steam is adjusted in the Y direction (steam inflow direction), and the flow velocity in the plane perpendicular to the Y direction, that is, the ZX plane can be made uniform.
  • the high-pressure steam rectified by the rectifier 31 passes between the plurality of partition members 41 of the reheat module 40 and then flows into the upper space Sa of the low-pressure condensate vessel 21 through the steam forced introduction device 32.
  • the low-pressure side condensate flows down on the surface of the corrugated plate 42 that is the partition member 41.
  • This low-pressure side condensate is thinned in the process of flowing down along the surface of the corrugated plate 42 and its surface area is enlarged, so that the contact rate with high-pressure steam per unit volume is high.
  • the flow rate of the high-pressure steam introduced into the reheating module 40 is increased as described above, the flow rate of the high-pressure steam passing through the plurality of partition members 41 is increased.
  • the low-pressure side condensate overflowed from the tray 55 is heated by being exposed to high-temperature high-pressure steam until it reaches the water reservoir portion of the lower space Sb. Furthermore, when the low-pressure side condensate overflowed from the tray 55 falls into the low-pressure side condensate accumulated at the bottom of the lower space Sb, a circulation flow is generated in the low-pressure side condensate accumulated at the bottom of the lower space Sb. The contact rate between the low-pressure side condensate and the high-temperature high-pressure steam passing therethrough is increased, and heating is further performed.
  • the heat transfer coefficient between the low-pressure side condensate and the high-temperature high-pressure steam increases, and the low-pressure side condensate is heated extremely efficiently by the high-temperature high-pressure steam.
  • the heated low-pressure side condensate flows into the bottom of the high-pressure condensate vessel 11 through the condensate circulation pipe 18 as described above, and together with the high-pressure side condensate, the boiler is formed by the condensate pump and the feed water pump. Returned to Therefore, in this embodiment, since hot water can be supplied to a boiler, the thermal efficiency of a steam plant can be improved.
  • the reheat module 40 a of the reheater 30 a includes a side plate 61 provided on the side surface of the frame 50 that covers the plurality of partition members 41, and a tray 55 a provided below the frame 50. It is.
  • the side plate 61 closes a rectangular opening formed by four connecting members 51 on one side in the X direction, and the other side plate 61 on the other side in the X direction.
  • Each side plate 61 is joined to the connecting member 51.
  • a plurality of through holes 58 are formed in the two connecting members 51 arranged on the lower side and opposed in the X direction. More specifically, a through hole 58 penetrating in the X direction is formed in a piece extending above the angle type steel constituting the connecting member 51.
  • the side plate 61 is formed with a through hole 62 that penetrates in the X direction and communicates with the through hole 58 of the connecting member 51.
  • the tray 55a is configured to include a receiving plate 56a and a weir 57a that is connected to the outer peripheral edge of the receiving plate 56a and surrounds the receiving plate 56a, like the tray 55 of the above embodiment.
  • the tray 55a of the present modified example has a receiving plate 56a disposed below the frame 50 and a weir 57a disposed outside the frame 50 in the X direction and the Y direction. ing.
  • the lower ends of the plurality of partition members 41 are located below the upper ends of the weirs 57a.
  • high-pressure steam from the X direction can approach the partition members 41 located at both ends in the X direction among the plurality of partition members 41 arranged in the X direction.
  • the flow rate in the steam inflow direction (Y direction) of the high-pressure steam with respect to the partition members 41 located at both ends in the X direction is lower than the flow rate in the steam inflow direction of the high-pressure steam between the plurality of partition members 41. Therefore, in this modification, the flow rate in the steam inflow direction of the high-pressure steam with respect to the partition members 41 located at both ends in the X direction is equal to the flow rate in the steam inflow direction of the high-pressure steam between the plurality of partition members 41.
  • a side plate 61 is provided on the frame 50 to suppress the approach of high-pressure steam from the X direction.
  • the low-pressure side condensate accumulated in the tray 55a cannot flow out from the X direction side where the side plate 61 is provided, but flows out exclusively from the Y direction side.
  • the contact rate with the high-pressure steam decreases until the low-pressure side condensate reaches the pooled portion of the lower space Sb.
  • the distribution of the circulation flow formed when the low-pressure side condensate falls into the low-pressure side condensate collected at the bottom of the lower space Sb is unevenly distributed, the low-pressure side condensate accumulated at the bottom of the lower space Sb is distributed.
  • the contact rate between water and the high-temperature high-pressure steam passing above the water also decreases. Therefore, the efficiency with which the low-pressure condensate is heated by the high-pressure steam decreases.
  • the reheat module 40b of the reheater 30b of this modification is provided with a porous plate 63 on the top of the reheat module 40 of the above embodiment.
  • the perforated plate 63 is formed with a plurality of through holes 64 (perforated plate through holes 64) penetrating in the vertical direction (Z direction). This perforated plate 63 is joined to the upper part of the frame 50 of the reheat module 40b of this modification.
  • the present modification is provided with the porous plate 63 above the reheating module 40 of the above embodiment, but the porous plate 63 is provided above the reheating module 40a of the first modification. It may be provided.
  • the reheat module 40c of the reheater 30c of this modification is provided with a porous plate 63 on the top of the reheat module 40a of the first modification. Furthermore, the reheater 30c according to the present modification is configured such that the function of the side plate 61 of the reheat module 40a according to the first modification is performed by the partition side plate 24c of the pressure partition 22c in the low-pressure condenser 20.
  • the partition side plate 24c of the pressure partition wall 22c extends to the lower end of the frame 50 along the frame 50 of the reheat module 40c.
  • a flange portion 65 is formed on the outer peripheral edge thereof so as to face the partition side plate 24c.
  • the perforated plate 63 is joined to the frame 50 of the reheat module 40c, and the flange portion 65 of the perforated plate 63 is joined to the partition side plate 24c in the installation process of the reheat module 40c, so that the low pressure condenser It forms a part of the pressure partition 22c.
  • high-pressure steam does not flow from above, below, or from the X direction of the plurality of partition members 41, so that the high pressure in the steam inflow direction (Y direction) between the plurality of partition members 41.
  • the flow rate of the steam is higher than that in the above embodiment and the above-described modifications, and the heating efficiency of the low-pressure side condensate by the high-pressure steam can be further increased.
  • the reheater 30d of the present modification includes a plurality of reheat modules 40d. Further, the reheat module 40d of the present modification is provided with a porous plate 63 on the upper portion of the frame 50 in the reheat module 40d. Each porous plate 63 of the plurality of reheating modules 40d is joined to the partition side plate 24d of the pressure partition wall 22d as in the third modification. Therefore, each porous plate 63 of the plurality of reheating modules 40d forms a part of the pressure partition 22d of the low-pressure condenser as in the third modification.
  • the plurality of reheat modules 40d are arranged in the Y direction. Of the plurality of reheat modules 40d, two reheat modules 40d adjacent in the Y direction are connected to each other by a connector 66 such as a bolt. Further, the reheater 30d of this modification has a water guide member 67 that guides the low-pressure side condensate that has reached between two adjacent reheat modules 40d onto the partition member 41 of one reheat module 40d. ing. This water guide member 67 is joined to the end portion in the Y direction of the perforated plate 63 in the installation process of the plurality of reheating modules 40d, or the plurality of connecting members 51 constituting the frame 50 of the reheating module 40d. It is joined to the connecting member 51 located at the end in the Y direction.
  • the rectifier 31 is provided on the steam upstream side of the reheat module 40d on the most upstream side of the steam among the plurality of reheat modules 40d. Further, among the plurality of reheat modules 40d, a steam forced introduction device 32 is provided on the steam downstream side of the reheat module 40d on the most downstream side of the steam.
  • the plurality of reheat modules 40d are arranged in the Y direction. However, even if the plurality of reheat modules are arranged in the X direction, the plurality of reheat modules are arranged in the X direction and the Y direction. Good.
  • the reheat module 40e of the reheater 30e of this modification is formed by forming a plurality of through holes 58a (hereinafter referred to as dam through holes 58a) in the weir 57 of the reheat module 40 in the above embodiment.
  • dam through holes 58a the number of the dam through holes 58a is such that the total flow rate of the low pressure side condensate flowing out from the plurality of dam through holes 58a is smaller than the minimum flow rate of the low pressure side condensate flowing into the lower space Sb from the upper space Sa.
  • the opening area of the dam penetration hole 58a is defined.
  • the tray 55 is filled with the low-pressure side condensate as long as the low-pressure side condensate flows from the upper space Sa to the lower space Sb.
  • the outflow portions of the low-pressure side condensate flowing out from the tray 55 are dispersed, so that the low-pressure side condensate is formed in the lower space Sb.
  • the contact rate with the high-pressure steam becomes high until reaching the puddle. Therefore, in this modification, the heating efficiency of the low pressure side condensate by the high pressure steam can be further increased.
  • the reheat module 40f of the reheater 30f of the present modification is obtained by forming a plurality of through holes 59 (hereinafter referred to as the receiving plate through holes 59) in the receiving plate 56 of the reheating module 40 in the above embodiment.
  • the total flow rate of the low-pressure side condensate flowing out from the plurality of receiving plate through holes 59 is the minimum of the low-pressure side condensate flowing into the lower space Sb from the upper space Sa.
  • the number of receiving plate through holes 59 and the opening area of the receiving plate through holes 59 are determined so as to be smaller than the flow rate.
  • the tray 55 is filled with the low pressure side condensate as long as the low pressure side condensate flows from the upper space Sa to the lower space Sb. .
  • the contact ratio between the low pressure side condensate and the high pressure steam increases until the low pressure side condensate reaches the water reservoir portion of the lower space Sb. Therefore, also in this modification, the heating efficiency of the low pressure side condensate by the high pressure steam can be further increased.
  • the fifth modification and the sixth modification are examples in which the reheating module 40 in the above embodiment is modified, but the reheating modules in the first to fourth modifications described above are similarly modified. Also good.
  • All of the plurality of connecting members 51 forming the frame in the reheating module of the above-described embodiment and each modified example are angle steel.
  • the connecting member may not be an angle die steel, may be another die steel, and may be a bar screw 71 as shown in FIG.
  • the plurality of connecting members forming the frame may not all be members of the same standard, and as shown in the figure, members of various standards such as a bar screw 71, a flat plate 72, and an angle die steel 73 are mixed. Also good.
  • the partition member 41a of this modification is formed by forming a plurality of through holes 43 (hereinafter referred to as corrugated plate through holes 43) in the corrugated plate 42 forming the partition member 41 in the above embodiment.
  • the low pressure side condensate flows down along the surface of the corrugated plate 42 and also drops from the corrugated plate through holes 43. For this reason, dispersion of the low-pressure side condensate is achieved, and the contact rate between the low-pressure side condensate and the high-pressure steam can be increased. Therefore, in this modification, the heating efficiency of the low pressure side condensate by the high pressure steam can be further increased.
  • the partition member 41b of the present modification includes a corrugated plate 42 that forms the partition member 41 in the above-described embodiment, and a plurality of pockets that form a pocket 45 that cooperates with the corrugated plate 42 to temporarily store low-pressure side condensate. Forming member 44.
  • the low-pressure side condensate flows down along the surface of the corrugated plate 42.
  • a part of the low-pressure side condensate is temporarily stored in the pocket 45, overflows from the pocket 45, and flows down along the surface of the corrugated plate 42 again.
  • the low-pressure side condensate flows into the pocket 45, the low-pressure side condensate accumulated in the pocket 45 is agitated. For this reason, the contact ratio between the low-pressure side condensate and the high-pressure steam accumulated in the pocket 45 is increased. Therefore, also in this modification, the heating efficiency of the low pressure side condensate by the high pressure steam can be further increased.
  • a plurality of pocket forming members 44 are provided on the corrugated sheet 42 that forms the partition member 41 in the above-described embodiment, but the corrugated sheet 42 that forms the partition member 41a in the first modification is provided.
  • a plurality of pocket members may be provided.
  • the partition member does not have to be formed only by the corrugated plate 42, as long as the surface area of the low-pressure side condensate flowing from the upper space Sa to the lower space Sb can be increased. Anything may be used, for example, a simple flat plate may be inclined.
  • the forced steam introduction device 32a of the present modification includes a buffer case 33 that covers the downstream end of the reheating module 40, a vent pipe 34a that connects the inside of the buffer case 33 and the upper space Sa, and a gas that passes through the vent pipe 34a. And a flow rate adjusting valve 35 for adjusting the flow rate.
  • the vent pipe 34a penetrates the side wall that defines the lower space Sb of the low-pressure condensate container 21, and once exits the low-pressure condensate container 21. After that, it penetrates the side wall that defines the upper space Sa of the low-pressure condensate container 21.
  • the flow rate adjusting valve 35 is provided in a portion existing outside the low-pressure condensate vessel 21 by the vent pipe 34a.
  • the flow rate of the high-pressure steam passing between the plurality of partition members 41 can be adjusted by changing the valve opening degree of the flow rate control valve 35.
  • the flow rate adjustment valve 35 is provided to adjust the flow rate of the high-pressure steam, but an orifice may be used instead.
  • a fan may be used.
  • the fan may be provided on the upstream side or the downstream side of the reheating module 40 or may be provided in the steam duct 17.
  • the pressure partition 22 which partitions off the low-pressure condensate container 21 into the upper space Sa and the lower space Sb is a two-stage structure divided into two upper and lower stages.
  • this pressure partition may be flat and may have a single stage configuration.
  • the multi-stage pressure condenser of the above embodiment includes two condensers, a high-pressure condenser 10 and a low-pressure condenser 20, but three or more condensers having different saturated steam pressures. May be provided.
  • the second condenser with the next highest saturated steam pressure becomes the low pressure condenser with respect to the first condenser with the highest saturated steam pressure.
  • the third condenser with the next highest saturated steam pressure becomes the low-pressure condenser with respect to the second condenser.
  • the reheat efficiency of water after condensation with high-temperature steam from the outside can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 低圧復水器(20)は、容器内を上部空間(Sa)と下部空間(Sb)とに仕切り、上下方向に貫通する複数の隔壁貫通孔(27)が形成されている圧力隔壁(22)と、上部空間に配置され、外部から流入した蒸気を凝縮させる伝熱管と、下部空間に配置され、上部空間で凝縮して下部空間に流入してきた水を外部から下部空間に流入してきた高温蒸気で加熱する再熱器(30)と、を備える。再熱器(30)は、互いに間隔をあけて並んでいる複数の仕切部材(41)と、複数の仕切部材(41)を経て流下した水を受ける受け板(56)と、受け板(56)の外周縁に接続されている堰(57)と、を有する。複数の仕切部材(41)の下端は、堰(57)の上端よりも下方である。

Description

復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
 本発明は、蒸気を水に戻す復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュールに関する。本願は、2013年2月13日に、日本国に出願された特願2013-026077号に基づき優先権を主張し、この内容をここに援用する。
 蒸気プラントでは、多段復水器を備えているものがある。多段復水器では、各復水器の冷却水入口温度が異なっているため、各復水器で蒸気を水に戻す過程で生じる飽和蒸気の圧力が各復水器相互で異なる。このため、復水器を2基備えている場合、一方の復水器が高圧復水器となり、他方の復水器が低圧復水器となる。
 以下の特許文献1には、高圧復水器と低圧復水器とを備えている多段圧復水器が開示されている。この多段圧復水器の低圧復水器は、上部から低圧蒸気が流入する低圧復水容器と、この低圧復水容器内を上部空間と下部空間とに仕切る圧力隔壁と、上部空間内に配置されて低圧蒸気を凝縮させる伝熱管と、下部空間に配置されているトレイと、を備えている。この低圧復水器と高圧復水器とは、高圧復水器内に流入した高圧蒸気の一部を低圧復水器の下部空間に導く蒸気ダクトで接続されている。
 低圧復水器の圧力隔壁には、鉛直方向に貫通する複数の貫通孔が形成されている。上部空間で凝縮した水は、この圧力隔壁の複数の貫通孔を通って、下部空間に流れ落ちる。この水は、トレイに一時的に溜まった後、トレイからオーバーフローして、下部空間の底に溜まる。水は、圧力隔壁の複数の貫通孔を通って、トレイに至るまでの間、さらに、トレイからオーバーフローして下部空間の水溜り部分に至るまでの間、高圧復水器からの高温の高圧蒸気に晒され加熱される。さらに、トレイからオーバーフローした水が下部空間の底に溜まっている水に落下すると、下部空間の底に溜まっている水に循環流が生じるため、この水とこの上方を通過する高温の高圧蒸気との接触率が高まる。よって、この特許文献1に記載の技術では、下部空間の底に溜まる水の温度を高くすることができる。
特許第3706571号公報
 一般的に、蒸気プラントでは、復水器の底に溜まった水が、復水ポンプ及び給水ポンプを介して、ボイラーに導かれる。ボイラーに導かれた水は、そこで蒸気となり、蒸気タービンに供給された後、復水器で水に戻される。このため、復水器の底に溜まる水の温度が高いほど蒸気プラント全体の熱効率が高まる。そこで、特許文献1に記載の技術では、前述したように、低圧復水器の底に溜まる水を高圧復水器からの高温の蒸気で加熱し、この水の温度を高めている。
 ところで、蒸気プラント全体の熱効率をより高めたいという要望は常になる。
 そこで、本発明は、蒸気プラント全体の熱効率をより高めるために、外部からの高温の蒸気による凝縮後の水の再熱効率を高めることができる復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュールを提供することを目的とする。
 上記目的を達成するための発明に係る一態様としての復水器は、
 蒸気が流入する容器と、前記容器内を上部空間と下部空間とに分け、複数の隔壁貫通孔が形成されている圧力隔壁と、前記容器の前記上部空間に配置され、流入した前記蒸気を凝縮させる伝熱管と、前記容器の前記下部空間に配置され、前記容器の前記上部空間で前記蒸気が凝縮して、前記容器の前記下部空間に流入した水を、前記容器の外部から前記下部空間に流入した高温蒸気で加熱する再熱器と、を備え、前記再熱器は、前記容器の前記下部空間内で上下方向に延びて、互いに間隔をあけて並ぶ複数の仕切部材と、複数の前記仕切部材を経て流下した水を受ける受け板と、前記受け板の外周縁に接続されて前記受け板を囲む堰と、を有し、前記複数の仕切部材の下端は、前記堰の上端よりも下方である。
 水は、下方に落ちる過程で、複数の仕切部材に接する。この結果、水の表面積が大きくなる。このため、当該復水器では、複数の仕切部材の間を通る高温蒸気と水と接触率が高まる。
 複数の仕切部材を経た水は、受け板及び堰で囲まれた領域に一時的に溜まった後、この領域からオーバーフローして、下方に落下する。当該復水器では、複数の仕切部材の下端が堰の上端よりも下方であるため、複数の仕切部材の下端部は、受け板及び堰で囲まれた領域に溜まっている水中に水没することになる。このため、複数の仕切部材の間には、複数の仕切部材の下方から高温蒸気がほとんど流入しない。よって、当該復水器では、複数の仕切部材の間を通る高温蒸気における、複数の前記仕切部材が並ぶ方向及び上下方向に垂直な蒸気流入方向の流速が高まる。
 以上のように、当該復水器では、高温蒸気と水との接触率が高まる上に、高温蒸気の蒸気流入方向の流速が高まるため、高温蒸気と水との間の熱伝達率が高まる。したがって、当該復水器によれば、高温蒸気により効率的に水を加熱することができる。
 ここで、前記復水器において、前記受け板には、複数の受け板貫通孔が形成されていてもよいし、前記堰にも、複数の堰貫通孔が形成されていてもよい。
 受け板に複数の受け板貫通孔が形成されている場合、堰に複数の堰貫通孔が形成されている場合のいずれの場合も、受け板及び堰で囲まれた領域から水の流出箇所が分散化されるので、この水が落下して水溜り部分に至るまでの間で高圧蒸気と接触率が高くなる。よって、当該復水器では、高圧蒸気による水の加熱効率をより高めることができる。
 また、以上のいずれかの前記復水器において、前記再熱器は、複数の前記仕切部材が並ぶ方向における、複数の前記仕切部材の集まりの両側に配され、前記仕切部材と間隔をあけて対向する側板を有してもよい。
 複数の仕切部材の集まりの両側に側板が配置されていない場合、並び方向の両端に位置する仕切部材には、並び方向からの高温蒸気が接近し得る。このため、並び方向の両端に位置する仕切部材に対する高温蒸気の蒸気流入方向の流速が低下する。そこで、当該復水器では、複数の仕切部材の集まりの両側に側板を配置し、並び方向からの高温蒸気の接近を抑制する。
 また、以上のいずれかの前記復水器において、前記再熱器は、複数の前記仕切部材の各上端部を支持する上端支持部材と、複数の前記仕切部材の各下端部を支持する下端支持部材と、を有してもよい。この場合、前記上端支持部材には、前記容器の前記下部空間の下方から上方に向かって凹み、複数の前記仕切部材の各上端部が入り込む上部係合部が形成され、前記下端支持部材には、前記容器の前記下部空間の上方から下方に向かって凹み、複数の前記仕切部材の前記下端部が入り込む下部係合部が形成され、前記仕切部材は、上下方向に弾性圧縮した状態で、前記仕切部材の上端部が前記上端支持部材の上部係合部に入り込み、前記仕切部材の下端部が前記下端支持部材の下部係合部に入り込み、前記上端支持部材と前記下端支持部材との間に挟まれて、支持されていてもよい。
 また、以上のいずれかの前記復水器において、前記仕切部材は、複数の前記仕切部材が並ぶ方向に突出する凸部と前記並び方向に凹む凹部とが、上下方向に繰り返し形成されている波板を有してもよい。さらに、前記仕切部材は、前記波板と、上方に向かって開口し前記波板と協働して水を溜めるポケットを形成する複数のポケット形成部材と、を有してもよい。また、前記波板には、複数の波板貫通孔が形成されていてもよい。
 また、以上のいずれかの前記復水器において、前記再熱器は、再熱モジュールを有し、前記再熱モジュールは、複数の前記仕切部材と前記上端支持部材と前記下端支持部材と前記受け板と前記堰とを有すると共に、前記受け板と前記上端支持部材と前記下端支持部材とを相互に接続し、複数の前記仕切部材と前記上端支持部材と前記下端支持部材と前記受け板と前記堰とを一体化する連結部材を有してもよい。
 以上のように、再熱器の少なくとも一部を一体化しておくことで、再熱器の設置施工性を高めることができる。
 また、前記再熱モジュールを有する復水器において、前記再熱モジュールは、複数の前記仕切部材の鉛直上方の領域に存在し、上下方向に貫通する複数の多孔板貫通孔が形成されている多孔板を有してもよい。この場合、前記再熱モジュールの前記多孔板は、前記圧力隔壁の一部を成してもよい。
 また、以上のいずれかの、前記再熱モジュールを有する復水器において、前記再熱器は、複数の前記再熱モジュールを有してもよい。
 予め複数の再熱モジュールを準備しておき、これらを適宜組み合わせることで、各種サイズの復水器に容易に対応することができる。
 また、複数の再熱モジュールを有する前記復水器において、複数の前記再熱モジュールは、相互に隣接し、前記再熱器は、複数の前記再熱モジュールの間の位置に至った水をいずれかの再熱モジュールの前記仕切部材上に導く水ガイド部材を有してもよい。
 当該複数器では、複数の再熱モジュール間をスルーしてしまう水の量を少なくすることができる。
 また、以上のいずれかの前記復水器において、前記再熱器は、複数の前記仕切部材が並んでいる並び方向及び上下方向に垂直な蒸気流入方向の一方側から、複数の前記仕切部材の間に前記高温蒸気を強制的に導く蒸気強制導入装置を有してもよい。
 当該復水器では、複数の仕切部材の間を通る高温蒸気の流量が多くなり、水を高温蒸気で効率的に加熱することができる。
 また、以上のいずれかの前記復水器において、前記再熱器は、複数の前記仕切部材を基準にして、複数の前記仕切部材が並ぶ方向及び上下方向に垂直な蒸気流入方向の一方側に配置され、前記一方側から複数の前記仕切部材の間に流入する前記高温蒸気の流れ方向を前記蒸気流入方向に揃え、且つ前記蒸気流入方向に対して垂直な面内での前記高温蒸気の流速分布を均一化する整流器を有してもよい。
 当該復水器では、複数の仕切部材の全体で均等に水と高温蒸気とを効率的に熱交換させることができる。
 前記目的を達成するための発明に係る一態様としての多段圧復水器は、
 以上のいずれかの前記復水器である低圧復水器と、流入した蒸気を水に戻す過程で生じる飽和蒸気の圧力が前記低圧復水器で流入した蒸気を水に戻す過程で生じる飽和蒸気の圧力よりも高い高圧復水器と、前記高圧復水器に流入した前記蒸気の一部を前記低圧復水器の前記下部空間に流入させる蒸気ダクトと、を備えていることを特徴とする。
 前記目的を達成するための発明に係る一態様としての再熱モジュールは、
 上方からの水を、外部からの蒸気で加熱する再熱モジュールにおいて、上下方向に延びて、互いに間隔をあけて並んでいる複数の仕切部材と、複数の前記仕切部材を経て落ちてきた水を受ける受け板と、前記受け板の外周縁に接続されて前記受け板を囲む堰と、複数の前記仕切部材の各上端部を支持する上端支持部材と、複数の前記仕切部材の各下端部を支持する下端支持部材と、前記受け板と前記上端支持部材と前記下端支持部材とを相互に接続して、複数の前記仕切部材と前記受け板と前記堰と前記上端支持部材と前記下端支持部材とを一体化する連結部材と、を有し、前記複数の仕切部材の下端は、前記堰の上端よりも下方である、ことを特徴とする。
 当該再熱モジュールでも、上記再熱器と同様、高温蒸気と水との接触率が高まる上に、高温蒸気の蒸気流入方向の流速が高まるため、高温蒸気と水との間の熱伝達率が高まる。よって、当該再熱モジュールでも、高温蒸気により効率的に水を加熱することができる。さらに、当該再熱モジュールを用いることで、再熱器の設置施工性を高めることができる。
 ここで、前記再熱モジュールにおいて、複数の前記仕切部材が並ぶ方向における、複数の前記仕切部材の集まりの両側に配され、前記仕切部材と間隔をあけて対向する側板を有してもよい。
 また、以上のいずれかの再熱モジュールにおいて、複数の前記仕切部材及び前記上端支持部材の鉛直上方の領域を覆い、鉛直方向に貫通している複数の多孔板貫通孔が形成されている多孔板を有してもよい。
 本発明に係る一態様によれば、外部からの高温の蒸気による凝縮後の水の再熱効率を高めることができる。
本発明に係る一実施形態の多段圧復水器の要部断面図である。 図1のII-II断面図である。 本発明に係る一実施形態の再熱モジュールの斜視図である。 本発明に係る一実施形態の再熱モジュールの分解斜視図である。 本発明に係る一実施形態の仕切部材の要部斜視図である。 本発明に係る第一変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第二変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第三変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第四変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第四変形例の再熱器の要部斜視図である。 本発明に係る第五変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第六変形例の再熱器を含む低圧復水器の要部断面図である。 本発明に係る第七変形例の再熱器に採用される再熱モジュールの斜視図である。 本発明に係る第一変形例の仕切部材の要部斜視図である。 本発明に係る第二変形例の仕切部材の正面図である。 本発明に係る変形例の蒸気強制導入装置を含む低圧復水器の要部断面図である。
 以下、本発明の各種実施形態について図面を参照して説明する。
 「多段圧復水器の実施形態」
 まず、本発明に係る多段圧復水器の実施形態について、図1~図5を参照して説明する。
 本実施形態の多段圧復水器は、図1に示すように、高圧復水器10と、低圧復水器20と、高圧復水器10内の高温高圧の飽和蒸気を低圧復水器20内に導く蒸気ダクト17と、低圧復水器20内の底に溜まった水を高圧復水器10に導く復水流通管18と、を備えている。
 この多段圧復水器は、蒸気プラントの一部を構成している。蒸気プラントは、図示されていないが、この多段圧復水器の他に、蒸気を発生するボイラーと、ボイラーからの蒸気で駆動しこの蒸気を多段圧復水器の高圧復水器10及び低圧復水器20に排気する蒸気タービンと、多段圧復水器からの水をボイラーに送るための復水ポンプ及び給水ポンプと、を備えている。
 高圧復水器10は、蒸気タービンからの蒸気が流入する高圧復水容器11と、この高圧復水容器11内に配置されている伝熱管16と、を備えている。伝熱管16には、海水等の冷却水が供給される。この伝熱管16は、冷却水と高圧蒸気とを熱交換させて、高圧蒸気を水に戻す。この水は、高圧復水容器11の底に溜まり、この高圧復水容器11の底に形成されている復水排出管19から外部に流出する。なお、この復水排出管19の端部には復水ポンプが接続されている。
 低圧復水器20は、蒸気タービンからの蒸気が流入する低圧復水容器21と、この低圧復水容器21を上部空間Saと下部空間Sbとに仕切る圧力隔壁22と、上部空間Sa内に配置されている伝熱管26と、下部空間Sb内に配置されている再熱器30と、を備えている。この伝熱管26には、冷却水が供給される。この伝熱管26は、冷却水と低圧蒸気とを熱交換させて、低圧蒸気を水に戻す。低圧復水器20の伝熱管26に供給される冷却水の温度は、高圧復水器10の伝熱管16に供給される冷却水の温度よりも低い。このため、低圧復水器20に流入した蒸気が低圧復水器20内で水に戻る過程で生じる飽和蒸気の圧力は、高圧復水器10に流入した蒸気が高圧復水器10内で水に戻る過程で生じる飽和蒸気の圧力よりも低い。
 圧力隔壁22は、平面視で低圧復水容器21の中央領域に位置する多孔板23と、多孔板23の外縁に沿って形成され多孔板23の外縁から上方に延びる筒状の仕切り側板24と、仕切り側板24の上端から外周側に広がる復水受け板25と、を有する。多孔板23には、鉛直方向に貫通した複数の貫通孔27(以下、隔壁貫通孔27とする)が形成されている。また、復水受け板25は、仕切り側板24の上端から水平方向に低圧復水容器21の内周面まで延びている。
 低圧復水容器21の下部空間Sb側と高圧復水容器11とは、前述の蒸気ダクト17で接続されている。このため、高圧復水容器11内と低圧復水容器21の下部空間Sbとは、この蒸気ダクト17で連通している。また、高圧復水容器11の底側の位置と低圧復水容器21の底側の位置とは、復水流通管18で接続されている。このため、高圧復水容器11内と低圧復水容器21の下部空間Sbとは、この復水流通管18でも連通している。
 再熱器30は、下部空間Sb内で多孔板23の鉛直下方に配置されている再熱モジュール40と、再熱モジュール40の蒸気ダクト17側に配置されている整流器31と、再熱モジュール40の蒸気ダクト17とは反対側に配置されている蒸気強制導入装置32と、を有している。ここで、以下の説明の都合上、鉛直方向をZ方向、このZ方向に垂直で、整流器31、再熱モジュール40及び蒸気強制導入装置32が並んでいる方向をY方向、Z方向及びY方向に垂直な方向をX方向とする。また、Y方向であって、再熱モジュール40を基準にして整流器31側を蒸気上流側、再熱モジュール40を基準にして蒸気強制導入装置32側を蒸気下流側とする。
 整流器31は、Y方向に広がる複数の板を格子状に配置したものである。この整流器31は、整流器31を基準にして蒸気上流側に配置されている蒸気ダクト17からの蒸気を整流させて、整流器31を基準にして蒸気下流側に配置されている再熱モジュール40へ導くものである。
 蒸気強制導入装置32は、高圧復水容器11内の高圧蒸気を再熱モジュール40に強制的に導く装置である。この蒸気強制導入装置32は、Y方向における再熱モジュール40の端部を覆うバッファケース33と、バッファケース33内と上部空間Saとを連通させるベント管34とを有している。このベント管34は、圧力隔壁22の復水受け板25を貫通している。
 再熱モジュール40は、図2~図4に示すように、Z方向及びY方向に延びてX方向で互いに間隔をあけて並んでいる複数の仕切部材41と、複数の仕切部材41を経て落ちてきた水を受ける受け板56と、複数の仕切部材41の各上端部を支持する上端支持部材48と、複数の仕切部材41の各下端部を支持する下端支持部材49と、これらを囲む枠50と、を有している。
 仕切部材41は、図5に示すように、X方向に突出する凸部とX方向に凹む凹部とがZ方向で繰り返すよう、1枚の長方形板を加工した波板42を有している。この仕切部材41を成す波板42は、例えば、厚さが3mmのSUS304で形成されている。複数の仕切部材41は、それぞれの上端、下端、凸部及び凹部の位置がZ方向で互いに一致し、且つ、X方向で互いに間隔をあけて並んでいる。このため、複数の仕切部材41は、全体として直方体形状を成している。
 上端支持部材48は、図2~図4に示すように、複数の仕切部材41が並んでいるX方向に延びている。この上端支持部材48には、下方から上方に向かって凹み、複数の仕切部材41の各上端部が入り込む上部係合部48aが形成されている。また、下端支持部材49も、複数の仕切部材41が並んでいるX方向に延びている。この下端支持部材49には、上方から下方に向かって凹み、複数の仕切部材41の各下端部が入り込む下部係合部49aが形成されている。
 枠50は、複数の仕切部材41で形成される直方体の各辺に相当する部分に沿って配置さている12個の連結部材51を有している。連結部材51は、アングル型鋼で形成されている。各連結部材51は、端部相互が接合されている。上端支持部材48は、枠50を構成する12個の連結部材51のうちで、上側に位置してX方向で互いに対向し2個の連結部材51の間に渡されて、これら連結部材51に固定されている。また、下端支持部材49は、枠50を構成する12個の連結部材51のうちで、下側に位置してX方向で互いに対向し2個の連結部材51の間に渡されて、これら連結部材51に固定されている。仕切部材41は、上下方向(Z方向)に弾性圧縮した状態で、仕切部材41の上端部が上端支持部材48の上部係合部48aに入り込み、仕切部材41の下端部が下端支持部材49の下部係合部49aに入り込み、上端支持部材48と下端支持部材49との間に挟まれて、支持されている。
 受け板56は、長方形状を成し、枠50を構成する12個の連結部材51のうちで、下側の4個の連結部材51で形成する長方形の開口を塞ぐように、これら4個の連結部材51に接合されている。これら4個の連結部材51であるアングル型鋼は、二つの片のうち、一方の片が水平方向を広がり、他方の片が一方の片の端部から上方に広がっている。これら4個の連結部材51であるアングル型鋼において、上方に広がっている各片は、受け板56の外周縁に接続されて受け板56を囲む堰57を形成している。この再熱モジュール40では、受け板56と、受け板56の外周縁に接続されて受け板56を囲む堰57とで、トレイ55を形成している。
 受け板56、上端支持部材48、下端支持部材49は、枠50を構成する複数の連結部材51により相互に接続されている。この結果、再熱モジュール40において、複数の仕切部材41、受け板56、堰57、上端支持部材48、下端支持部材49が一体化している。
 この再熱モジュール40では、図2に示すように、複数の仕切部材41の下端は、堰57の上端より下方に位置している。このため、トレイ55から水がオーバーフローしている状態では、複数の仕切部材41の下端は、確実にトレイ55に溜まっている水中に没することになる。
 以上で説明した再熱モジュール40は、多孔板23の鉛直下方の位置で、下部空間Sb中に浮いた状態で配置される。このため、この再熱モジュール40は、例えば、脚部材で支持されているか、圧力隔壁22に固定されている吊下部材により保持されている。
 次に、以上で構成を説明した多段圧復水器の作用について説明する。
 高圧復水容器11内には、蒸気タービンから排気された蒸気が流入する。この蒸気は、高圧復水容器11内に配置されている伝熱管16内を流れる冷却水と熱交換して冷却されることで凝縮し、水(以下、高圧側復水と称する)に戻る。この高圧側復水は、高圧復水容器11の底に一時的に溜まり、復水排出管19を介して外部へ排出される。この高圧側復水は、前述したように、復水ポンプ及び給水ポンプによりボイラーに戻される。
 また、低圧復水容器21の上部空間Saにも、蒸気タービンから排気された蒸気が流入する。この蒸気は、上部空間Saに配置されている伝熱管26内を流れる水と熱交換して冷却されることで凝縮し、水(以下、低圧側復水と称する)に戻る。ここで、前述したように、低圧復水器20の伝熱管26に供給される冷却水の温度は、高圧復水器10の伝熱管16に供給される冷却水の温度よりも低い。このため、低圧復水器20の上部空間Saに流入した蒸気が上部空間Sa内で水に戻る過程で生じる飽和蒸気の圧力は、高圧復水容器11に流入した蒸気が高圧復水容器11内で水に戻る過程で生じる飽和蒸気の圧力よりも低い。したがって、低圧復水器20の上部空間Saの圧力は、高圧復水容器11内の圧力よりも低い。低圧側復水は、上部空間Sa中の圧力隔壁22上に一時的に溜まる。圧力隔壁22上に溜まった低圧側復水は、圧力隔壁22中の多孔板23に形成されている複数の隔壁貫通孔27を通過して、下部空間Sb中に流下する。
 多孔板23の隔壁貫通孔27を通過した低圧側復水は、図5に示すように、再熱モジュール40の仕切部材41を形成する波板42の表面に沿って流下しつつ薄膜化し、その表面積が広げられる。波板42に沿って流下した低圧側復水は、図2に示すように、波板42の下方に配置されているトレイ55中に一時的に溜まる。そして、低圧側復水は、トレイ55からオーバーフローして、低圧復水容器21の底に一時的に溜まる。この低圧復水容器21の底に溜まった低圧側復水は、図1に示すように、復水流通管18を経て、高圧復水容器11の底に流れ込み、高圧側復水と共に、復水ポンプ及び給水ポンプによりボイラーに戻される。
 ところで、前述したように、低圧復水容器21の上部空間Saの圧力は、高圧復水容器11内の圧力より低い。また、低圧側復水が流入する低圧復水容器21の下部空間Sbの圧力は、上部空間Saの圧力より高く、高圧復水容器11内の圧力より低い。すなわち、高圧復水容器11内の圧力、低圧復水容器21の下部空間Sbの圧力、低圧復水容器21の上部空間Saの圧力のうち、高圧復水容器11内の圧力が最も高く、次に、低圧復水容器21の下部空間Sbの圧力が高く、低圧復水容器21の上部空間Saの圧力が最も低い。
 このため、高圧復水容器11内の高圧蒸気の一部は、蒸気ダクト17を介して、低圧復水容器21の下部空間Sbに流入する。また、再熱モジュール40の蒸気下流側は、蒸気強制導入装置32により、低圧復水容器21の上部空間Saと連通している。このため、下部空間Sbに流入した高圧蒸気は、整流器31、再熱モジュール40及び蒸気強制導入装置32を介して、低圧復水容器21の上部空間Saに流入する。言い換えると、高圧復水容器11から低圧復水容器21の下部空間Sbに流入した高圧蒸気は、強制的に再熱モジュール40に導入されることになる。このため、再熱モジュール40に導入される高圧蒸気の流量は、蒸気強制導入装置32を設けない場合よりも多くなる。
 高圧蒸気は、再熱モジュール40に導入される前に整流器31を通る。高圧蒸気は、この整流器31を通る過程で、流れ方向がY方向(蒸気流入方向)に整えられると共に、Y方向に垂直な面内、つまりZX面内での流速の均一化が図れる。
 整流器31で整流された高圧蒸気は、再熱モジュール40の複数の仕切部材41の間を通った後、蒸気強制導入装置32を介して、低圧復水容器21の上部空間Saに流入する。仕切部材41である波板42の表面には、前述したように、低圧側復水が流下している。この低圧側復水は、波板42の表面に沿って流下する過程で、薄膜化しその表面積が拡大しているため、単位体積当たりの高圧蒸気との接触率が高い。また、再熱モジュール40に導入される高圧蒸気の流量は、前述したように、多くなっているため、複数の仕切部材41を通過する高圧蒸気の流速が高くなる。しかも、複数の仕切部材41の下端部は、トレイ55に溜まっている低圧側復水内に水没しているため、複数の仕切部材41の間には、複数の仕切部材41の下方から高圧蒸気が流入せず、ほとんどの高圧蒸気は整流器31側から流入する。このため、複数の仕切部材41の間における蒸気流入方向(Y方向)の高圧蒸気の流速は、より高くなる。したがって、薄膜化している低圧側復水と高圧蒸気との間の熱伝達率が高まり、低圧側復水は、高圧蒸気により効率的に加熱される。
 トレイ55からオーバーフローした低圧側復水は、下部空間Sbの水溜り部分に至るまでの間も、高温の高圧蒸気に晒され加熱される。さらに、トレイ55からオーバーフローした低圧側復水が下部空間Sbの底に溜まっている低圧側復水中に落下すると、この下部空間Sbの底に溜まっている低圧側復水に循環流が生じるため、この低圧側復水とこの上を通過する高温の高圧蒸気との接触率が高まり、より加熱される。
 以上のように、本実施形態では、低圧側復水と高温の高圧蒸気との間の熱伝達率が高まり、低圧側復水は、高温の高圧蒸気により極めて効率的に加熱される。このように、加熱された低圧側復水は、前述したように、復水流通管18を経て、高圧復水容器11の底に流れ込み、高圧側復水と共に、復水ポンプ及び給水ポンプによりボイラーに戻される。よって、本実施形態では、高温の水をボイラーに供給することができるため、蒸気プラントの熱効率を高めることができる。
 「再熱器の第一変形例」
 次に、再熱器の第一変形例について図6を参照して説明する。
 本変形例の再熱器30aの再熱モジュール40aは、複数の仕切部材41を覆う枠50の側面に側板61が設けられていると共に、枠50よりも下方にトレイ55aが設けられているものである。
 側板61としては、枠50を構成する12個の連結部材51のうちで、X方向の一方側の4個の連結部材51で形成する長方形の開口を塞ぐ側板61と、X方向の他方側の4個の連結部材51で形成する長方形の開口を塞ぐ側板61とがある。各側板61は、いずれも、連結部材51に接合されている。
 枠50を構成する12個の連結部材51のうちで、下側に配置され且つX方向で対向する2個の連結部材51には複数の貫通孔58が形成されている。より具体的には、これら連結部材51を成すアングル型鋼の上方に広がっている片には、X方向に貫通する貫通孔58が形成されている。側板61には、X方向に貫通し、且つ連結部材51の貫通孔58と連通する貫通孔62が形成されている。
 トレイ55aは、上記実施形態のトレイ55と同様、受け板56aと、受け板56aの外周縁に接続されて受け板56aを囲む堰57aとを有して構成されている。但し、本変形例のトレイ55aは、上記実施形態のトレイ55と異なり、枠50よりも下方に受け板56aが配置され、枠50に対してX方向及びY方向の外側に堰57aが配置されている。但し、本変形例においても、複数の仕切部材41の下端は、堰57aの上端よりも下方に位置している。
 上記実施形態の再熱器30では、X方向に並んでいる複数の仕切部材41のうちで、X方向の両端に位置する仕切部材41には、X方向からの高圧蒸気が接近し得る。このため、X方向の両端に位置する仕切部材41に対する高圧蒸気の蒸気流入方向(Y方向)の流速が、複数の仕切部材41の間における高圧蒸気の蒸気流入方向の流速よりも低くなる。そこで、本変形例では、X方向の両端に位置する仕切部材41に対する高圧蒸気の蒸気流入方向の流速が、複数の仕切部材41の間における高圧蒸気の蒸気流入方向の流速と同等になるよう、枠50に側板61を設けて、X方向からの高圧蒸気の接近を抑制している。
 しかしながら、枠50に側板61を設けると、トレイ55aに溜まった低圧側復水は、側板61が設けられているX方向の側から流出できず、もっぱらY方向の側から流出することになる。このように、特定の方向からしか低圧側復水が流出できないと、この低圧側復水が下部空間Sbの水溜り部分に至るまでの間で高圧蒸気と接触率が低下する。さらに、低圧側復水が下部空間Sbの底に溜まっている低圧側復水中に落下した際に形成される循環流の分布が偏在化するため、下部空間Sbの底に溜まっている低圧側復水とこの上を通過する高温の高圧蒸気との接触率も低下する。よって、低圧側復水が高圧蒸気により加熱される効率が低下する。
 そこで、本変形例では、下側に配置されている連結部材51及び側板61にX方向に貫通する貫通孔58,62を形成し、側板61からX方向にも低圧側復水が流出できるようにしている。さらに、本変形例では、複数の仕切部材41の下側に溜まる低圧側復水の液レベルが、複数の仕切部材41の下端よりも確実に上になるようにするため、トレイ55aの堰57aを枠50に対してX方向及びY方向の外側に位置させると共に、複数の仕切部材41の下端が堰57aの上端よりも下方に位置するようにしている。
 「再熱器の第二変形例」
 次に、再熱器の第二変形例について図7を参照して説明する。
 本変形例の再熱器30bの再熱モジュール40bは、上記実施形態の再熱モジュール40の上部に多孔板63を設けたものである。この多孔板63には、上下方向(Z方向)に貫通した複数の貫通孔64(多孔板貫通孔64)が形成されている。この多孔板63は、本変形例の再熱モジュール40bの枠50の上部に接合されている。
 本変形例では、複数の仕切部材41の間には、複数の仕切部材41の上方から高圧蒸気が流入せず、ほとんどの高圧蒸気は整流器31(図1に示す)側から流入する。したがって、本変形例では、複数の仕切部材41の間における蒸気流入方向(Y方向)の高圧蒸気の流速が上記実施形態よりも高くなり、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 なお、本変形例は、前述したように、上記実施形態の再熱モジュール40の上部に多孔板63を設けたものであるが、第一変形例の再熱モジュール40aの上部に多孔板63を設けてもよい。
 「再熱器の第三変形例」
 次に、再熱器の第三変形例について図8を参照して説明する。
 本変形例の再熱器30cの再熱モジュール40cは、第一変形例における再熱モジュール40aの上部に多孔板63を設けたものである。さらに、本変形例の再熱器30cは、第一変形例における再熱モジュール40aの側板61の機能を低圧復水器20における圧力隔壁22cの仕切り側板24cに担わせたものである。
 本変形例において、圧力隔壁22cの仕切り側板24cは、再熱モジュール40cの枠50に沿って、枠50の下端まで延びている。
 再熱モジュール40cの多孔板63には、その外周縁に仕切り側板24cに対向するフランジ部65が形成されている。この多孔板63は、再熱モジュール40cの枠50に接合されていると共に、この再熱モジュール40cの設置過程で、多孔板63のフランジ部65が仕切り側板24cに接合され、低圧復水器の圧力隔壁22cの一部を成すことなる。
 本変形例では、複数の仕切部材41の上方からも、下方からも、さらには、X方向からも高圧蒸気が流入しないため、複数の仕切部材41の間における蒸気流入方向(Y方向)の高圧蒸気の流速が上記実施形態や以上の各変形例よりも高くなり、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 「再熱器の第四変形例」
 次に、再熱器の第四変形例について図9及び図10を参照して説明する。
 本変形例の再熱器30dは、複数の再熱モジュール40dを備えているものである。また、本変形例の再熱モジュール40dは、この再熱モジュール40dにおける枠50の上部に多孔板63を設けたものである。複数の再熱モジュール40dの各多孔板63は、第三変形例と同様、圧力隔壁22dの仕切り側板24dに接合されている。よって、複数の再熱モジュール40dの各多孔板63は、第三変形例と同様、低圧復水器の圧力隔壁22dの一部を成す。
 複数の再熱モジュール40dは、Y方向に並んでいる。複数の再熱モジュール40dのうち、Y方向で隣接する2つの再熱モジュール40dは、ボルト等の連結具66で相互に連結されている。また、本変形例の再熱器30dは、隣接する2つの再熱モジュール40dの間に至った低圧側復水を一方の再熱モジュール40dの仕切部材41上に導く水ガイド部材67を有している。この水ガイド部材67は、複数の再熱モジュール40dの設置過程で、多孔板63のY方向の端部に接合される、又は、再熱モジュール40dの枠50を構成する複数の連結部材51のうちでY方向の端に位置する連結部材51に接合される。
 本変形例では、複数の再熱モジュール40dのうちで、最も蒸気上流側の再熱モジュール40dの蒸気上流側には、整流器31が設けられている。さらに、複数の再熱モジュール40dのうちで、最も蒸気下流側の再熱モジュール40dの蒸気下流側には、蒸気強制導入装置32が設けられている。
 以上、本変形例のように、予め準備しておいた複数の再熱モジュール40dを適宜組み合わせることで、各種サイズの低圧復水器に容易に対応することができる。なお、本変形例では、複数の再熱モジュール40dをY方向に並べた例であるが、複数の再熱モジュールをX方向に並べても、複数の再熱モジュールをX方向及びY方向に並べてもよい。
 「再熱器の第五変形例」
 次に、再熱器の第五変形例について図11を参照して説明する。
 本変形例の再熱器30eの再熱モジュール40eは、上記実施形態における再熱モジュール40の堰57に複数の貫通孔58a(以下、堰貫通孔58aとする)を形成したものである。但し、複数の堰貫通孔58aから流出する低圧側復水の全流量は、上部空間Saから下部空間Sbへ流入する低圧側復水の最小流量よりも少なくなるように、堰貫通孔58aの数及び堰貫通孔58aの開口面積が定められている。このため、堰57に複数の堰貫通孔58aが形成されていても、上部空間Saから下部空間Sbへ低圧側復水が流入している限り、トレイ55は低圧側復水で満たされる。
 以上のように、堰57に複数の堰貫通孔58aが形成されていると、トレイ55から流出する低圧側復水の流出箇所が分散化されるので、この低圧側復水が下部空間Sbの水溜り部分に至るまでの間で高圧蒸気と接触率が高くなる。よって、本変形例では、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 「再熱器の第六変形例」
 次に、再熱器の第六変形例について図12を参照して説明する。
 本変形例の再熱器30fの再熱モジュール40fは、上記実施形態における再熱モジュール40の受け板56に複数の貫通孔59(以下、受け板貫通孔59とする)を形成したものである。但し、本変形例においても、第五変形例と同様、複数の受け板貫通孔59から流出する低圧側復水の全流量は、上部空間Saから下部空間Sbへ流入する低圧側復水の最小流量よりも少なくなるように、受け板貫通孔59の数及び受け板貫通孔59の開口面積が定められている。このため、受け板56に複数の受け板貫通孔59が形成されていても、上部空間Saから下部空間Sbへ低圧側復水が流入している限り、トレイ55は低圧側復水で満たされる。
 以上のように、受け板56に複数の受け板貫通孔59が形成されている場合も、堰57に複数の堰貫通孔58aが形成されている場合と同様、トレイ55から流出する低圧側復水の流出箇所が分散化されるので、この低圧側復水が下部空間Sbの水溜り部分に至るまでの間で高圧蒸気と接触率が高くなる。よって、本変形例でも、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 なお、第五変形例及び第六変形例は、上記実施形態における再熱モジュール40を変形した例であるが、以上で説明した第一~第四変形例における再熱モジュールを同様に変形してもよい。
 「再熱器の第七変形例」
 次に、再熱器の第七変形例について図13を参照して説明する。
 以上の実施形態及び各変形例の再熱モジュールにおける枠を形成する複数の連結部材51は、いずれも、アングル型鋼である。しかしながら、連結部材は、アングル型鋼でなくてもよく、他の型鋼でも、さらに、図13に示すように、棒ネジ71であってもよい。さらに、枠を形成する複数の連結部材は、全て同一規格の部材でなくてもよく、同図に示すように、棒ネジ71、平板72、アングル型鋼73等、各種規格の部材が混ざっていてもよい。
 「仕切部材の第一変形例」
 次に、仕切部材の第一変形例について図14を参照して説明する。
 本変形例の仕切部材41aは、上記実施形態における仕切部材41を形成する波板42に複数の貫通孔43(以下、波板貫通孔43とする)を形成したものである。
 このように、波板42に複数の波板貫通孔43を形成すると、低圧側復水は、波板42の表面に沿って流下すると共に、波板貫通孔43から落下もする。このため、低圧側復水の分散化が図られ、低圧側復水と高圧蒸気との接触率を高めることができる。よって、本変形例では、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 「仕切部材の第二変形例」
 次に、仕切部材の第二変形例について図15を参照して説明する。
 本変形例の仕切部材41bは、上記実施形態における仕切部材41を形成する波板42と、この波板42と協働して低圧側復水を一時的に溜めるポケット45を形成する複数のポケット形成部材44と、を有している。
 低圧側復水は、波板42の表面に沿って流下する。この過程で、低圧側復水の一部は、ポケット45に一時溜められた後、このポケット45からオーバーフローして、再び、波板42の表面に沿って流下する。ポケット45に低圧側復水が流れ込むと、このポケット45に溜まっている低圧側復水は撹拌される。このため、このポケット45に溜まっている低圧側復水と高圧蒸気と接触率が高くなる。よって、本変形例でも、高圧蒸気による低圧側復水の加熱効率をより高めることができる。
 なお、本変形例は、上記実施形態における仕切部材41を形成する波板42に複数のポケット形成部材44を設けたものであるが、第一変形例における仕切部材41aを形成する波板42に複数のポケット部材を設けてもよい。このように、仕切部材は、波板42のみで形成されているものでなくてもよく、上部空間Saから下部空間Sbに流入する低圧側復水の表面積を大きくすることができるものであれば、如何なるものでもよく、例えば、単なる平板を傾斜配置したものでもよい。
 「蒸気強制導入装置の変形例」
 次に、蒸気強制導入装置の変形例について図16を参照して説明する。
 本変形例の蒸気強制導入装置32aは、再熱モジュール40の下流側端部を覆うバッファケース33と、バッファケース33内と上部空間Saとを連通させるベント管34aと、ベント管34aを通るガス流量を調節する流量調節弁35と、を有している。ベント管34aは、上記実施形態における蒸気強制導入装置32のベント管34と異なり、低圧復水容器21の下部空間Sbを画定する側壁を貫通し、一旦、低圧復水容器21の外部に出た後、低圧復水容器21の上部空間Saを画定する側壁を貫通している。流量調節弁35は、このベント管34aで低圧復水容器21の外部に存在する部分に設けられている。
 本変形例の再熱器30gにおける蒸気強制導入装置32aでは、流量調節弁35の弁開度を変えることで、複数の仕切部材41の間を通る高圧蒸気の流量を調節することができる。なお、本変形例では、高圧蒸気の流量を調節するために流量調節弁35を設けているが、この替りにオリフィスを用いてもよい。
 また、上記実施形態及び本変形例は、いずれも、基本的に、各空間の圧力差を利用するものであるが、ファンを利用してもよい。このファンは、例えば、再熱モジュール40の上流側、下流側に設けてもよく、蒸気ダクト17に設けてもよい。
 「その他の変形例」
 上記実施形態では、低圧復水容器21を上部空間Saと下部空間Sbとに仕切る圧力隔壁22が、上下二段に分かれている二段構成である。しかしながら、この圧力隔壁は、平板状で、一段構成であってもよい。
 また、上記実施形態の多段圧復水器は、高圧復水器10と低圧復水器20との2つの復水器を備えているが、飽和蒸気の圧力がそれぞれ異なる3以上の復水器を備えていてもよい。この場合、最も飽和蒸気の圧力が高い第一復水器に対して、次に飽和蒸気の圧力が高い第二復水器が低圧復水器となる。さらに、この第二復水器に対して、次に飽和蒸気の圧力が高い第三復水器が低圧復水器となる。
 本発明に係る一態様によれば、外部からの高温の蒸気による凝縮後の水の再熱効率を高めることができる。
 10:高圧復水器、11:高圧復水容器、16:伝熱管、17:蒸気ダクト、18:復水流通管、20:低圧復水器、21:低圧復水容器、22,22c,22d:圧力隔壁、23:多孔板、24:仕切り側板、25:復水受け板、26:伝熱管、27:隔壁貫通孔、30,30a,30b,30c,30e,30f,30g:再熱器、31:整流器、32,32a:蒸気強制導入装置、40,40a,40b,40c,40d,40f:再熱モジュール、41,41a,41b:仕切部材、42:波板、43:波板貫通孔、44:ポケット形成部材、45:ポケット、48:上端支持部材、48a:上部係合部、49:下端支持部材、49b:下部係合部、50:枠、51:連結部材、55,55a:トレイ、56:受け板、57:堰、58,59:貫通孔、58a:堰貫通孔、59:受け板貫通孔、61:側板、63:多孔板、64:多孔板貫通孔、67:水ガイド部材

Claims (20)

  1.  蒸気が流入する容器と、
     前記容器内を上部空間と下部空間とに分け、複数の隔壁貫通孔が形成されている圧力隔壁と、
     前記容器の前記上部空間に配置され、流入した前記蒸気を凝縮させる伝熱管と、
     前記容器の前記下部空間に配置され、前記容器の前記上部空間で前記蒸気が凝縮して、前記容器の前記下部空間に流入した水を、前記容器の外部から前記下部空間に流入した高温蒸気で加熱する再熱器と、
     を備え、
     前記再熱器は、前記容器の前記下部空間内で上下方向に延びて、互いに間隔をあけて並ぶ複数の仕切部材と、複数の前記仕切部材を経て流下した水を受ける受け板と、前記受け板の外周縁に接続されて前記受け板を囲む堰と、を有し、
     前記複数の仕切部材の下端は、前記堰の上端よりも下方である、
     復水器。
  2.  請求項1に記載の復水器において、
     前記受け板には、複数の受け板貫通孔が形成されている、
     復水器。
  3.  請求項1又は2に記載の復水器において、
     前記堰には、複数の堰貫通孔が形成されている、
     復水器。
  4.  請求項1から3のいずれか一項に記載の復水器において、
     前記再熱器は、複数の前記仕切部材が並ぶ方向における、複数の前記仕切部材の集まりの両側に配され、前記仕切部材と間隔をあけて対向する側板を有する、
     復水器。
  5.  請求項1から4のいずれか一項に記載の復水器において、
     前記再熱器は、複数の前記仕切部材の各上端部を支持する上端支持部材と、複数の前記仕切部材の各下端部を支持する下端支持部材と、を有する、
     復水器。
  6.  請求項5に記載の復水器において、
     前記上端支持部材には、前記容器の前記下部空間の下方から上方に向かって凹み、複数の前記仕切部材の各上端部が入り込む上部係合部が形成され、
     前記下端支持部材には、前記容器の前記下部空間の上方から下方に向かって凹み、複数の前記仕切部材の前記下端部が入り込む下部係合部が形成され、
     前記仕切部材は、上下方向に弾性圧縮した状態で、前記仕切部材の上端部が前記上端支持部材の上部係合部に入り込み、前記仕切部材の下端部が前記下端支持部材の下部係合部に入り込み、前記上端支持部材と前記下端支持部材との間に挟まれて、支持されている、
     復水器。
  7.  請求項1から6のいずれか一項に記載の復水器において、
     前記仕切部材は、複数の前記仕切部材が並ぶ方向に突出する凸部と前記並び方向に凹む凹部とが、上下方向に繰り返し形成されている波板を有する、
     復水器。
  8.  請求項7に記載の復水器において、
     前記仕切部材は、前記波板と、上方に向かって開口し前記波板と協働して水を溜めるポケットを形成する複数のポケット形成部材と、を有する、
     復水器。
  9.  請求項7又は8に記載の復水器において、
     前記波板には、複数の波板貫通孔が形成されている、
     復水器。
  10.  請求項5又は6に記載の復水器において、
     前記再熱器は、再熱モジュールを有し、
     前記再熱モジュールは、複数の前記仕切部材と前記上端支持部材と前記下端支持部材と前記受け板と前記堰とを有すると共に、前記受け板と前記上端支持部材と前記下端支持部材とを相互に接続し、複数の前記仕切部材と前記上端支持部材と前記下端支持部材と前記受け板と前記堰とを一体化する連結部材を有する、
     復水器。
  11.  請求項10に記載の復水器において、
     前記再熱モジュールは、複数の前記仕切部材の鉛直上方の領域に存在し、上下方向に貫通する複数の多孔板貫通孔が形成されている多孔板を有する、
     復水器。
  12.  請求項11に記載の復水器において、
     前記再熱モジュールの前記多孔板は、前記圧力隔壁の一部を成す、
     復水器。
  13.  請求項10から12のいずれか一項に記載の復水器において、
     前記再熱器は、複数の前記再熱モジュールを有する、
     復水器。
  14.  請求項13に記載の復水器において、
     複数の前記再熱モジュールは、相互に隣接し、
     前記再熱器は、複数の前記再熱モジュールの間の位置に至った水をいずれかの再熱モジュールの前記仕切部材上に導く水ガイド部材を有する、
     復水器。
  15.  請求項1から14のいずれか一項に記載の復水器において、
     前記再熱器は、複数の前記仕切部材が並ぶ方向及び上下方向に垂直な蒸気流入方向の一方側から、複数の前記仕切部材の間に前記高温蒸気を強制的に導く蒸気強制導入装置を有する、
     復水器。
  16.  請求項1から15のいずれか一項に記載の復水器において、
     前記再熱器は、複数の前記仕切部材を基準にして、複数の前記仕切部材が並ぶ方向及び上下方向に垂直な蒸気流入方向の一方側に配置され、前記一方側から複数の前記仕切部材の間に流入する前記高温蒸気の流れ方向を前記蒸気流入方向に揃え、且つ前記蒸気流入方向に対して垂直な面内での前記高温蒸気の流速分布を均一化する整流器を有する、
     復水器。
  17.  請求項1から16のいずれか一項に記載の復水器である低圧復水器と、
     流入した蒸気を水に戻す過程で生じる飽和蒸気の圧力が前記低圧復水器で流入した蒸気を水に戻す過程で生じる飽和蒸気の圧力よりも高い高圧復水器と、
     前記高圧復水器に流入した前記蒸気の一部を前記低圧復水器の前記下部空間に流入させる蒸気ダクトと、
     を備えている多段圧復水器。
  18.  上方からの水を、外部からの蒸気で加熱する再熱モジュールにおいて、
     上下方向に延びて、互いに間隔をあけて並んでいる複数の仕切部材と、
     複数の前記仕切部材を経て落ちてきた水を受ける受け板と、
     前記受け板の外周縁に接続されて前記受け板を囲む堰と、
     複数の前記仕切部材の各上端部を支持する上端支持部材と、
     複数の前記仕切部材の各下端部を支持する下端支持部材と、
     前記受け板と前記上端支持部材と前記下端支持部材とを相互に接続して、複数の前記仕切部材と前記受け板と前記堰と前記上端支持部材と前記下端支持部材とを一体化する連結部材と、
     を有し、
     前記複数の仕切部材の下端は、前記堰の上端よりも下方である、
     再熱モジュール。
  19.  請求項18に記載の再熱モジュールにおいて、
     複数の前記仕切部材が並ぶ方向における、複数の前記仕切部材の集まりの両側に配され、前記仕切部材と間隔をあけて対向する側板を有する、
     再熱モジュール。
  20.  請求項18又は19に記載の再熱モジュールにおいて、
     複数の前記仕切部材及び前記上端支持部材の鉛直上方の領域を覆い、鉛直方向に貫通している複数の多孔板貫通孔が形成されている多孔板を有する、
     再熱モジュール。
PCT/JP2014/053339 2013-02-13 2014-02-13 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール WO2014126154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14751741.1A EP2957847B1 (en) 2013-02-13 2014-02-13 Condenser, multistage pressure condenser provided therewith, and reheating module used in condenser
US14/760,098 US9638469B2 (en) 2013-02-13 2014-02-13 Condenser, multistage pressure condenser provided therewith, and reheating module used in condenser
CN201480004413.5A CN104937360B (zh) 2013-02-13 2014-02-13 冷凝器、具备冷凝器的多级压力冷凝器、使用于冷凝器的再热模块
KR1020157018051A KR101713467B1 (ko) 2013-02-13 2014-02-13 복수기, 이를 구비하고 있는 다단압 복수기, 복수기에 이용하는 재열모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026077A JP5936562B2 (ja) 2013-02-13 2013-02-13 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
JP2013-026077 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126154A1 true WO2014126154A1 (ja) 2014-08-21

Family

ID=51354153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053339 WO2014126154A1 (ja) 2013-02-13 2014-02-13 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール

Country Status (6)

Country Link
US (1) US9638469B2 (ja)
EP (1) EP2957847B1 (ja)
JP (1) JP5936562B2 (ja)
KR (1) KR101713467B1 (ja)
CN (1) CN104937360B (ja)
WO (1) WO2014126154A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599943A (en) * 1968-04-04 1971-08-17 Carl Georg Munters Liquid and gas contact apparatus
JPS6149230U (ja) * 1984-09-03 1986-04-02
JP3706571B2 (ja) 2001-11-13 2005-10-12 三菱重工業株式会社 多段圧復水器
JP2011247454A (ja) * 2010-05-24 2011-12-08 Taikisha Ltd 空気浄化加湿装置
WO2012117597A1 (ja) * 2011-02-28 2012-09-07 三菱重工業株式会社 多段圧復水器およびこれを備えた蒸気タービンプラント

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575392A (en) * 1968-04-29 1971-04-20 Ingersoll Rand Co Direct contact condenser
JPS4736543Y1 (ja) 1969-04-16 1972-11-06
US3911067A (en) * 1973-10-09 1975-10-07 Ingersoll Rand Co Direct contact gas condenser
DE7717599U1 (de) * 1977-06-03 1977-11-17 Regehr, Ulrich, Dr.-Ing., 5100 Aachen Lamellendeflektor zur abscheidung von in einem fluessigkeit-dampf-gemisch mitgefuehrter fluessigkeit
EP0128346B1 (de) * 1983-06-09 1986-09-10 BBC Aktiengesellschaft Brown, Boveri & Cie. Mehrdruckkondensator für Dampfturbinen mit Aufwärmungseinrichtungen zur Unterdrückung der Unterkühlung des Kondensators
JPS6149230A (ja) 1984-08-16 1986-03-11 Fuji Electric Co Ltd 画面ハ−ドコピ−方式
JPH06118197A (ja) 1992-09-28 1994-04-28 Toshiba Corp 湿分分離器
JPH0736543A (ja) * 1993-07-23 1995-02-07 Furukawa Electric Co Ltd:The 移動体の位置検出方法
FI93773C (fi) * 1994-03-09 1995-05-26 Shippax Ltd Oy Lämmönvaihtoelementti
JPH11173768A (ja) * 1997-12-10 1999-07-02 Mitsubishi Heavy Ind Ltd 多段圧復水器
JP2009052867A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 多段圧復水器
JP2009097788A (ja) * 2007-10-16 2009-05-07 Toshiba Corp 複圧式復水器及び復水再熱方法
JP5885990B2 (ja) * 2011-10-13 2016-03-16 三菱重工業株式会社 多段圧復水器及びこれを備えるタービンプラント
US9488416B2 (en) * 2011-11-28 2016-11-08 Mitsubishi Hitachi Power Systems, Ltd. Multistage pressure condenser and steam turbine plant having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599943A (en) * 1968-04-04 1971-08-17 Carl Georg Munters Liquid and gas contact apparatus
JPS6149230U (ja) * 1984-09-03 1986-04-02
JP3706571B2 (ja) 2001-11-13 2005-10-12 三菱重工業株式会社 多段圧復水器
JP2011247454A (ja) * 2010-05-24 2011-12-08 Taikisha Ltd 空気浄化加湿装置
WO2012117597A1 (ja) * 2011-02-28 2012-09-07 三菱重工業株式会社 多段圧復水器およびこれを備えた蒸気タービンプラント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957847A4 *

Also Published As

Publication number Publication date
JP5936562B2 (ja) 2016-06-22
US9638469B2 (en) 2017-05-02
EP2957847B1 (en) 2017-05-17
KR20150092293A (ko) 2015-08-12
CN104937360A (zh) 2015-09-23
EP2957847A4 (en) 2016-11-23
CN104937360B (zh) 2017-09-29
US20160010923A1 (en) 2016-01-14
EP2957847A1 (en) 2015-12-23
JP2014153039A (ja) 2014-08-25
KR101713467B1 (ko) 2017-03-07

Similar Documents

Publication Publication Date Title
JP5905487B2 (ja) 多段圧復水器およびこれを備えた蒸気タービンプラント
KR101874936B1 (ko) 냉각 장치
EP3087335B1 (en) Distributor for falling film evaporator
KR101100097B1 (ko) 플레이트식 조수장치
EP3042127B1 (en) Integrated separator-distributor for falling film evaporator
KR102484155B1 (ko) 증발기 및 증발기에서 물질을 증발시키기 위한 방법
US9188393B2 (en) Multistage pressure condenser and steam turbine plant equipped with the same
KR101812526B1 (ko) 증류 스테이션
US8881690B2 (en) Steam generator
CN212390655U (zh) 一种蒸发器及制冷系统
JP5936562B2 (ja) 復水器、これを備えている多段圧復水器、復水器に用いる再熱モジュール
US20080121379A1 (en) Evaporator
WO2022123611A1 (en) Heat exchanger
CN114076424A (zh) 一种蒸发器及制冷系统
JP2573806Y2 (ja) シェル・アンド・チューブ式吸収凝縮器
JP3483697B2 (ja) 沸騰水型原子炉の給水加熱器
JP7010608B2 (ja) 空冷吸収式冷凍機
EP2452144A1 (en) Mixing condenser
JPS62238906A (ja) 湿分分離再熱器
JP2000018846A (ja) 脱気復水器
WO2017010907A1 (ru) Парогенератор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751741

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014751741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014751741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157018051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE