WO2014125889A1 - マグネトロンスパッタリング用磁場発生装置 - Google Patents
マグネトロンスパッタリング用磁場発生装置 Download PDFInfo
- Publication number
- WO2014125889A1 WO2014125889A1 PCT/JP2014/051380 JP2014051380W WO2014125889A1 WO 2014125889 A1 WO2014125889 A1 WO 2014125889A1 JP 2014051380 W JP2014051380 W JP 2014051380W WO 2014125889 A1 WO2014125889 A1 WO 2014125889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic pole
- permanent magnet
- pole member
- magnetic field
- magnetron sputtering
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0205—Magnetic circuits with PM in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
- H01J37/3408—Planar magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/345—Magnet arrangements in particular for cathodic sputtering apparatus
- H01J37/3452—Magnet distribution
Definitions
- the present invention relates to a magnetic field generator incorporated in a magnetron sputtering apparatus used for forming a thin film on a substrate surface.
- Sputtering is a phenomenon in which atoms and molecules constituting the target are knocked out by colliding with an inert substance such as Ar at a high speed. By depositing these knocked-out atoms and molecules on the substrate, a thin film is formed. Can be formed.
- Magnetron sputtering is a technique that can increase the deposition rate of the target material on the substrate by incorporating a magnetic field inside the cathode, and that enables film formation at low temperatures because no collision of electrons with the substrate occurs. . Therefore, in the manufacturing process of electronic components such as semiconductor ICs, flat panel displays, solar cells, and reflective films, a magnetron sputtering method is often used to form a thin film on the substrate surface.
- the magnetron sputtering apparatus includes a substrate on the anode side in a vacuum chamber, a target (cathode) disposed to face the substrate, and a magnetic field generator disposed below the target.
- Glow discharge is caused by applying a voltage between the anode and cathode, ionizing inert gas (such as Ar gas of about 0.1 Pa) in the vacuum chamber, while secondary electrons emitted from the target are magnetically applied. It is captured by the magnetic field formed by the generator and causes a cycloid movement on the target surface. Since the ionization of gas molecules is promoted by the cycloid motion of electrons, the film formation rate is remarkably increased as compared with the case where no magnetic field is used, and the adhesion strength of the film is increased.
- Japanese Patent Laid-Open No. 2008-156735 discloses a base 210 made of a non-magnetic material as shown in FIGS. 15 (a) and 15 (b), a rod-shaped central magnetic pole piece 220 installed on the surface thereof, and a periphery thereof.
- An elliptical outer peripheral pole piece 230 provided, and a plurality of permanent magnets 240, 250 disposed between the central magnetic pole piece and the outer peripheral magnetic pole piece, the permanent magnets 240, 250 being magnetized in the horizontal direction and Magnetron sputtering in which magnetic poles of the same polarity are arranged so as to face the central magnetic pole piece, and the height of the central magnetic pole piece and the height of the outer peripheral magnetic pole piece are greater than the height of the permanent magnet Magnetic field generator 200 is disclosed, and by using this magnetic field generator, a magnetic field region having a strength necessary for confining an inert gas in a plasma state (the magnetic flux density horizontal component is 10 ⁇ m or more) is particularly Because it spreads in the section, It describes that the erosion of the straight line portion and the corner portion can be made uniform by enlarging the erosion region.
- the magnetic field obtained by this magnetic field generator has a lower magnetic flux density in the part facing the central pole piece than in the other parts, so the erosion progress of the central part of the target (the part facing the central pole piece) is slow. .
- JP-B-7-74439 has an inner magnetic pole, an outer magnetic pole having an opposite polarity surrounding the inner magnetic pole, and a target material disposed on both magnetic poles in the vicinity of the outer magnetic pole from the inner magnetic pole, Both magnetic poles are made of a permanent magnet having a vertical magnetization or a soft magnetic material, a permanent magnet having a horizontal magnetization is provided between the magnetic poles, and the outer surface of the outer magnetic pole is opposite to the horizontal direction.
- a magnetron sputtering apparatus provided with a permanent magnet having a magnetization in the direction, and stably maintains the plasma on the target material, and at the same time, prevents local erosion of the target material and significantly extends the life of the target material. It states that it can.
- the magnetron sputtering apparatus described in Japanese Patent Publication No. 7-74439 has a configuration in which a permanent magnet is provided outside the target material (outside the outer magnetic pole) in order to prevent local erosion of the target material. Therefore, there is a problem that the magnetism generator is increased in size and costs are increased.
- an object of the present invention is to accelerate the erosion progress of the portion of the target facing the central magnetic pole member, thereby averaging the magnetic flux density distribution on the target and improving the utilization efficiency of the target.
- a magnetic field generator for tron sputtering is provided.
- the present inventors have been magnetized in a direction parallel to the target surface in a racetrack-like region formed by a linear central magnetic pole member and an outer peripheral magnetic pole member.
- the permanent magnets are parallel to a plurality of permanent magnets magnetized in a direction perpendicular to the target surface and target surfaces arranged on both sides thereof.
- the present inventors have found that the erosion progress of the portion of the target facing the central magnetic pole piece can be relatively accelerated, and have arrived at the present invention.
- the magnetic field generator for magnetron sputtering for generating a magnetic field on the target surface facing the target of the present invention Has a racetrack shape consisting of straight and corner parts, On a base made of a non-magnetic material, (a) a linear central magnetic pole member, (b) an outer peripheral magnetic pole member installed so as to surround the central magnetic pole member, and (c) the central magnetic pole member and the outer peripheral magnetic pole A plurality of vertical permanent magnets disposed between the members so as to surround the central magnetic pole member and have a magnetization direction perpendicular to the target surface; and (d) the central magnetic pole member and the vertical permanent magnet A plurality of first horizontal permanent magnets installed such that one magnetic pole faces the central magnetic pole member and the other magnetic pole faces the vertical permanent magnet, and (e) the outer peripheral magnetic pole member And a plurality of second horizontal permanent magnets installed such that one magnetic pole faces the outer peripheral magnetic pole member and the other magnetic pole faces the vertical permanent magnet.
- the total length of the magnetization directions of the first horizontal permanent magnet and the second horizontal permanent magnet is preferably 50 to 95% of the distance between the central magnetic pole member and the outer peripheral magnetic pole member.
- the thicknesses of the first and second horizontal permanent magnets in the direction perpendicular to the target surface are equal, and when the thicknesses are 100, the thickness of the vertical permanent magnet in the direction perpendicular to the target surface Is preferably 0 to 150.
- the vertical permanent magnets constituting the corner part, the first horizontal permanent magnets, and the second horizontal permanent magnets in the direction perpendicular to the target surface are respectively the vertical permanent magnets constituting the linear part,
- the thickness of the first horizontal permanent magnet and the second horizontal permanent magnet is preferably 30 to 100% of the thickness in the direction perpendicular to the target surface.
- the thickness of the second horizontal permanent magnet constituting the corner portion in the direction perpendicular to the target surface is thinner than the thickness of the first horizontal permanent magnet constituting the corner portion in the direction perpendicular to the target surface. Is preferred.
- the vertical permanent magnet, the first horizontal permanent magnet, and the second horizontal permanent magnet constituting the corner portion occupy 30% or more of the area of the gap between the central magnetic pole member and the outer peripheral magnetic pole member in plan view. Is preferred.
- the gap between the central magnetic pole member and the outer peripheral magnetic pole member in the corner portion includes the vertical permanent magnet, the first horizontal permanent magnet, the second horizontal permanent magnet, the vertical permanent magnet, and the first horizontal permanent magnet.
- You may comprise from a magnet and the nonmagnetic spacer which fills parts other than a 2nd horizontal permanent magnet.
- the magnetic field generator for magnetron sputtering may be configured by removing a part or all of the end portion of the central magnetic pole member, the outer peripheral magnetic pole member, and the vertical permanent magnet constituting the corner portion.
- Another magnetron sputtering magnetic field generator of the present invention is On a base made of a non-magnetic material, (a) a linear central magnetic pole member, (b) an outer peripheral magnetic pole member installed so as to surround the central magnetic pole member, and (c) the central magnetic pole member and the outer peripheral magnetic pole An intermediate magnetic pole member installed so as to surround the central magnetic pole member, and (d) one magnetic pole facing the central magnetic pole member between the central magnetic pole member and the intermediate magnetic pole member.
- a plurality of first horizontal permanent magnets installed so that the other magnetic pole faces the intermediate magnetic pole member, and (e) one magnetic pole is between the outer peripheral magnetic pole member and the intermediate magnetic pole member.
- a plurality of second horizontal permanent magnets arranged to face the magnetic pole member and have the other magnetic pole face the intermediate magnetic pole member; The first horizontal permanent magnet and the second horizontal permanent magnet have the same poles on the side facing the intermediate magnetic pole member.
- the width of the intermediate magnetic pole member is preferably 10 to 75% of the thickness of the first horizontal permanent magnet and the second horizontal permanent magnet in the direction perpendicular to the target surface.
- the thicknesses of the first and second horizontal permanent magnets in the direction perpendicular to the target surface are equal, and when the thickness is 100, the thickness of the intermediate magnetic pole member in the direction perpendicular to the target surface Is preferably 0 to 150.
- the magnetic field generator for magnetron sputtering may be configured by removing a part or all of the end portion of the central magnetic pole member, the outer peripheral magnetic pole member, and the intermediate magnetic pole member constituting the corner portion.
- the maximum value of the magnetic flux density in the direction parallel to the target surface is the portion facing the central magnetic pole member
- the magnetic flux density in the direction perpendicular to the target surface is preferably larger.
- the magnetic flux applied in the direction parallel to the target surface is preferably 10 ⁇ mT or more at a position where the magnetic flux applied in the direction perpendicular to the target surface of the magnetic field applied to the target surface is zero. .
- the erosion progress of the portion facing the central magnetic pole member of the target is relatively accelerated, and the erosion progress of the target can be made more uniform, so that the utilization efficiency of the target can be improved. it can.
- the magnetic field generation apparatus of the present invention By using the magnetic field generation apparatus of the present invention, a mechanism for mechanically swinging the target or the magnetic field generation apparatus is not required, so that the apparatus can be downsized and the cost can be reduced.
- FIG. 2 is an AA cross-sectional view in FIG.
- FIG. 2 is a BB cross-sectional view in FIG.
- FIG. 3 is a sectional view taken along the line CC in FIG. 2 (a).
- FIG. 3 is a DD cross-sectional view in FIG.
- FIG. 4 is a cross-sectional view taken along the line E-E in FIG.
- FIG. 4 is a sectional view taken along line FF in FIG.
- FIG. 3 (a). It is a top view which shows another example of the magnetic field generator for magnetron sputtering of this invention.
- FIG. 5 is a GG sectional view in FIG. 4 (a).
- FIG. 5 is a sectional view taken along line HH in FIG. 4 (a).
- FIG. 6 is a cross-sectional view taken along line II in FIG. 5 (a).
- FIG. 6 is a cross-sectional view taken along the line J-J in FIG.
- FIG. 7 is a KK sectional view in FIG. 6 (a).
- FIG. 7 is an LL sectional view in FIG. 6 (a). It is sectional drawing which shows another example of the magnet for corner parts of the magnetic field generator for magnetron sputtering of this invention. It is a top view which shows another example of the corner part of the magnetic field generator for magnetron sputtering of this invention. It is a top view which shows another example of the corner part of the magnetic field generator for magnetron sputtering of this invention.
- 1 is a plan view showing a magnetic field generator of Example 1.
- FIG. FIG. 11 is a cross-sectional view taken along line MM in FIG. 6 is a plan view showing a magnetic field generator of Comparative Example 1.
- FIG. FIG. 12 is a cross-sectional view taken along line NN in FIG.
- FIG. 3 is a schematic diagram showing an A line, a B line, a C line, and a D line in the magnetic field generator of Example 1.
- FIG. 6 is a schematic diagram showing an A line, a B line, a C line, and a D line in the magnetic field generator of Comparative Example 1.
- FIG. 3 is a graph in which parallel and vertical components of magnetic flux density generated on a target surface by the magnetic field generator of Example 1 are plotted along an A line, a B line, a C line, and a D line.
- 6 is a graph in which parallel and vertical components of magnetic flux density generated on a target surface by the magnetic field generator of Comparative Example 1 are plotted along A line, B line, C line, and D line.
- It is a top view which shows an example of the conventional magnetic field generator for magnetron sputtering.
- FIG. 16 is a cross-sectional view taken along line OO in FIG. 15 (a).
- the magnetron sputtering magnetic field generator of the present invention is an apparatus for generating a racetrack-like magnetic field on the surface of a target, for example, FIG. 1 (a), FIG. 1 (b) and FIG. As shown in FIG. 4, the racetrack shape is formed by the straight portion 20 and the two corner portions 30 and 30 facing the target 7.
- First ConfigurationA first magnetron sputtering magnetic field generator 1 includes a base 6 made of a nonmagnetic material, and (a) a linear central magnetic pole member 2 and (b) the central magnetic pole member 2 An outer peripheral magnetic pole member 3 installed so as to surround, and (c) between the central magnetic pole member 2 and the outer peripheral magnetic pole member 3, so as to surround the central magnetic pole member 2, and the magnetization direction on the target surface 7a
- a plurality of vertical permanent magnets 4a and 5a arranged so as to be perpendicular to each other, (d) one magnetic pole faces the central magnetic pole member 2 between the central magnetic pole member 2 and the vertical permanent magnets 4a and 5a
- a plurality of first horizontal permanent magnets 4b, 5b installed so that the other magnetic pole faces the vertical permanent magnets 4a, 5a, and (e) the outer peripheral magnetic pole member 3 and the vertical permanent magnets 4a, 5a.
- the pole is the same as the pole on the side facing the target surface 7a of the vertical permanent magnets 4a, 5a.
- the straight portion 20 is, for example, as shown in FIGS. 1 (a) and 1 (b), (a) a square pole-shaped central magnetic pole member installed on a base 6 made of a nonmagnetic material. 2 and (b) two square pole-shaped outer peripheral magnetic pole members 3 arranged in parallel with the central magnetic pole member 2 and spaced apart on both sides of the central magnetic pole member 2, and (c) the central magnetic pole member 2 and the Between the outer peripheral magnetic pole member 3 and the central magnetic pole member 2 and the outer peripheral magnetic pole member 3, the magnetization direction is perpendicular to the target surface 7a, and one of the same magnetic poles (N pole in the figure) is the target surface.
- a plurality of first horizontal permanent magnets 4b that are rectangular in a plan view and are installed so as to face the magnet 4a, and (e) a magnetization direction is a target between the outer peripheral magnetic pole member 3 and the vertical permanent magnet 4a.
- one magnetic pole with the same polarity (S pole in the figure) faces the outer peripheral magnetic pole member 3, and the other magnetic pole with the same polarity (N pole in the figure) faces the vertical permanent magnet 4a.
- a plurality of second horizontal permanent magnets 4c that are rectangular in plan view, and are opposed to the vertical permanent magnets 4a of the first horizontal permanent magnet 4b and the second horizontal permanent magnet 4c.
- the pole on the side (N pole in the figure) is the same as the pole (N pole in the figure) on the side facing the target surface of the vertical permanent magnet 4a.
- a permanent magnet unit 4 formed by connecting the vertical permanent magnet 4a, the first horizontal permanent magnet 4b, and the second horizontal permanent magnet 4c to the linear portion 20 includes the central magnetic pole member 2 and the outer peripheral magnetic pole member 3. It arrange
- the permanent magnet unit 4 has a length Lb in the magnetization direction of the first horizontal permanent magnet 4b (direction in which each permanent magnet is connected) and a length in the magnetization direction (direction in which each permanent magnet is connected) of the second horizontal permanent magnet 4c.
- the total length Lc (Lb + Lc) is preferably configured to be 50 to 95% of the total length L (length in the connecting direction) of the permanent magnet unit 4, and is preferably 80 to 90% of the total length L.
- the configuration is such that Therefore, the connecting direction length La (corresponding to the distance between the first horizontal permanent magnet 4b and the second horizontal permanent magnet 4c) of the vertical permanent magnet 4a is 5 to 50% of the total length L. It is preferable that the total length L is 10 to 20% of the total length L.
- the magnetization direction length Lb of the first horizontal permanent magnet 4b and the magnetization direction length Lc of the second horizontal permanent magnet 4c may be different, but are preferably substantially the same length.
- the thickness Ltb in the direction perpendicular to the target surface 7a of the first horizontal permanent magnet 4b and the thickness Ltc in the direction perpendicular to the target surface 7a of the second horizontal permanent magnet 4c are preferably equal to each other and are perpendicular to each other.
- the thickness Lta of the permanent magnet 4a in the direction perpendicular to the target surface 7a may be the same as or different from the thickness Ltb and the thickness Ltc.
- the thickness Lta of the perpendicular permanent magnet 4a in the direction perpendicular to the target surface 7a is preferably 50 to 150%, more preferably 80 to 120% of the thickness Ltb and the thickness Ltc.
- the thickness Lta does not have to be the same for all the vertical permanent magnets 4a constituting the linear portion, and the thickness Lta may be partially changed according to the purpose.
- the vertical permanent magnet 4a, the first horizontal permanent magnet 4b, and the second horizontal permanent magnet 4c may be arranged by adhering each permanent magnet on the base 6 with an adhesive or the like.
- the permanent magnet unit 4 in which the vertical permanent magnet 4a, the first horizontal permanent magnet 4b, and the second horizontal permanent magnet 4c are bonded together may be attached to the base 6 and disposed.
- Each vertical permanent magnet 4a, first horizontal permanent magnet 4b, and second horizontal permanent magnet 4c may be composed of two or more permanent magnets.
- a permanent magnet unit 4 comprising a vertical permanent magnet 4a, a first horizontal permanent magnet 4b, and a second horizontal permanent magnet 4c between the central magnetic pole member 2 and the outer peripheral magnetic pole member 3.
- the permanent magnet unit 4 is formed as an integral unit.
- a circuit may be configured.
- the magnetic circuit of the linear portion 20 may be configured by separating a plurality of permanent magnet units 4 in accordance with the required magnetic field strength and magnet material. In the case of disposing them at a distance, the gap between the permanent magnet unit 4 and the permanent magnet unit 4 may be filled with a nonmagnetic spacer, or nothing may be placed.
- the number and size of the permanent magnet units 4 are not particularly limited, and may be divided into any size from the viewpoint of manufacturing or ease of assembly, and the sizes may be different.
- the corner portion 30 includes, for example, as shown in FIGS. 1 (a) and 1 (c), (a) an end 2a of the central magnetic pole member 2, and (b) the central magnetic pole member 2. Corner part outer peripheral magnetic pole member 3c installed in a semi-polygon shape centering on end part 2a of the center part, and (c) the corner part between end part 2a of central magnetic pole member 2 and corner part outer peripheral magnetic pole member 3c.
- a plan view in which the magnetization direction is perpendicular to the target surface 7a in parallel with the outer peripheral magnetic pole member 3c, and one of the same polarity magnetic poles (N pole in the figure) is connected so as to face the target surface 7a.
- the magnetic pole (S pole in the figure) faces the end 2a of the central magnetic pole member 2, and the other magnetic pole of the same polarity (N pole in the figure) faces the vertical permanent magnet 5a.
- first horizontal permanent magnets 5b that are trapezoidal in plan view and (e) the corner portion outer peripheral magnetic pole member 3c and the vertical permanent magnet 5a
- the magnetization direction with respect to the target surface 7a Parallel, one magnetic pole of the same polarity (S pole in the figure) faces the corner outer peripheral magnetic pole member 3c, and the other magnetic pole of the same polarity (N pole in the figure) faces the vertical permanent magnet 5a.
- a plurality of trapezoidal second horizontal permanent magnets 5c that are trapezoidal in plan view, on the side of the first horizontal permanent magnet 5b and the second horizontal permanent magnet 5c facing the vertical permanent magnet 5a.
- the pole (N pole in the figure) is the same as the pole (N pole in the figure) on the side facing the target surface of the vertical permanent magnet 5a.
- the end 2a of the central magnetic pole member 2 and the corner outer peripheral magnetic pole member 3c are semi-polygonal in FIG. 1 (a), but may be semicircular.
- the vertical permanent magnet 5a, the first horizontal permanent magnet 5b, and the second horizontal permanent magnet 5c are trapezoidal in plan view in FIG. 1 (a), but may be rectangular in plan view.
- the permanent magnet unit 5 formed by connecting the vertical permanent magnet 5a, the first horizontal permanent magnet 5b, and the second horizontal permanent magnet 5c is connected to the end 2a of the central magnetic pole member 2 and the corner The outer peripheral magnetic pole member 3c is arranged so as to fill a gap.
- the configuration of the permanent magnet unit 5 is the same as the configuration of the permanent magnet unit 4 for the straight portion described above. That is, the permanent magnet unit 5 includes a magnetization direction of the first horizontal permanent magnet 5b (direction in which the permanent magnets are connected) length Lb ′ and a magnetization direction of the second horizontal permanent magnet 5c (direction in which the permanent magnets are connected).
- the total length Lc ′ (Lb ′ + Lc ′) is preferably configured to be 50 to 95% of the total length L ′ of the permanent magnet unit 5 (length in the connecting direction). More preferably, it is configured to be 80 to 90% of L ′. Accordingly, the length La ′ in the connecting direction of the vertical permanent magnet 5a (corresponding to the distance between the first horizontal permanent magnet 5b and the second horizontal permanent magnet 5c) is 5 to 50% of the total length L ′. It is preferable to be configured so that it is 10 to 20% of the total length L ′.
- the magnetization direction length Lb ′ of the first horizontal permanent magnet 5b and the magnetization direction length Lc ′ of the second horizontal permanent magnet 5c may be different, but are preferably substantially the same length.
- the total length L ′ of the permanent magnet unit 5, the length La ′ of the vertical permanent magnet 5a, the length Lb ′ of the first horizontal permanent magnet 5b, and the length Lc ′ of the second horizontal permanent magnet 5c are the permanent
- the length of the corresponding part of the magnet unit 4 (full length L, length La, length Lb and length Lc) may be the same, but the erosion area of the target in the corner part is expanded, etc.
- the length may be different from the length of the corresponding part of the permanent magnet unit 4.
- the connecting direction length La ′ of the vertical permanent magnet 5a at the corner portion is the same as the connecting direction length La of the vertical permanent magnet 4a at the straight portion.
- the thickness Ltb ′ in the direction perpendicular to the target surface 7a of the first horizontal permanent magnet 5b and the thickness Ltc ′ in the direction perpendicular to the target surface 7a of the second horizontal permanent magnet 5c are preferably equal to each other.
- the thickness Lta ′ in the direction perpendicular to the target surface 7a of the vertical permanent magnet 5a may be the same as or different from the thickness Ltb ′ and the thickness Ltc ′.
- the thickness Lta ′ in the direction perpendicular to the target surface 7a of the vertical permanent magnet 5a is preferably 50 to 150%, more preferably 80 to 120% of the thickness Ltb ′ and the thickness Ltc ′. preferable.
- the thickness Lta ′ is not necessarily the same for all the vertical permanent magnets 5a constituting the corner portion, and the thickness Lta ′ may be partially changed according to the purpose.
- the corner permanent magnet unit 5 includes an end 2a of the central magnetic pole member 2 and a corner portion installed in a semi-polygon shape centering on the end 2a of the central magnetic pole member 2. It may be arranged so as to fill the entire gap with the outer peripheral magnetic pole member 3c, or as shown in FIG. 7, there is a gap 5e between the corner permanent magnet unit 5 and the corner permanent magnet unit 5. It may be arranged with a gap. Thus, the magnetic flux density on the target surface can be adjusted by opening the gap 5e and arranging the corner permanent magnet unit 5. The gap 5e may be filled with a nonmagnetic spacer.
- the occupation ratio of the corner permanent magnet unit 5 with respect to the total area of the gap between the end 2a of the central magnetic pole member 2 and the corner outer peripheral magnetic pole member 3c is not particularly limited, but is preferably 30% or more.
- the shape of the corner permanent magnet unit 5 in plan view is preferably set according to the shape of the corner outer peripheral magnetic pole member 3c.
- the corner portion permanent magnet unit 5 preferably has a substantially trapezoidal shape in plan view when the corner portion outer peripheral magnetic pole member 3c has a semi-polygonal shape.
- the outer peripheral magnetic pole member 3c is semicircular, it is preferably substantially fan-shaped in plan view. Further, as shown in FIG. 9, it may be rectangular in plan view.
- the number and size of the corner permanent magnet unit 5 are not particularly limited, and may be divided into any size from the viewpoint of manufacturing or ease of assembly, and each size may be different. .
- the vertical permanent magnet 5a, the first horizontal permanent magnet 5b, and the second horizontal permanent magnet 5c may be arranged by sticking each permanent magnet on the base 6 with an adhesive or the like.
- the corner portion permanent magnet unit 5 integrally formed by bonding the vertical permanent magnet 5a, the first horizontal permanent magnet 5b, and the second horizontal permanent magnet 5c may be attached to the base 6. good.
- Each vertical permanent magnet 5a, first horizontal permanent magnet 5b, and second horizontal permanent magnet 5c may be composed of two or more permanent magnets.
- the thickness Ltc ′ in the direction perpendicular to the target surface 7a is configured to be the same as the thickness of the corresponding portion of the permanent magnet unit 4 constituting the linear portion (Lta, Ltb, and Ltc, respectively). However, the thickness may be different from the thickness of the corresponding portion of the permanent magnet unit 4 constituting the linear portion, depending on the purpose of expanding the erosion region of the target at the corner portion.
- the thickness Lt ′ in the direction perpendicular to the target surface 7a of the corner permanent magnet unit 5 is equal to the straight portion permanent.
- the magnet unit 4 may be configured to be thinner than the thickness Lt in the direction perpendicular to the target surface 7a.
- the corner permanent magnet unit 5 when the corner permanent magnet unit 5 is thinned, it is preferable that the base 6 of the corner 30 is thickened so that the distance between the corner permanent magnet unit 5 and the target surface 7a is not changed.
- the thickness Lt ′ of the corner permanent magnet unit 5 can be appropriately set as required, but is preferably 30 to 100% of the thickness Lt of the linear permanent magnet unit 4.
- the end 2a of the central magnetic pole member constituting the corner portion, The outer peripheral magnetic pole member 3c and the vertical permanent magnet 5a can also be removed.
- the end 2a of the central magnetic pole member at the corner portion, the outer peripheral magnetic pole member 3c and the vertical permanent magnet 5a may all be removed, but in order to adjust the magnetic flux density on the target surface to an appropriate size, A part may be removed.
- the width of the intermediate magnetic pole member 8 has a thickness in a direction perpendicular to the target surface 7a of the first horizontal permanent magnet 4b and the second horizontal permanent magnet 4c constituting the straight portion 20.
- the length is preferably 10 to 75%, more preferably 20 to 60%.
- the thickness Lta in the direction perpendicular to the target surface 7a of the intermediate magnetic pole member 8 is the thickness Ltb in the direction perpendicular to the target surface 7a of the first horizontal permanent magnet 4b and the target surface of the second horizontal permanent magnet 4c. It may be the same as or different from the thickness Ltc in the direction perpendicular to 7a.
- the thickness Lta of the intermediate magnetic pole member 8 in the direction perpendicular to the target surface 7a is preferably 50 to 150%, more preferably 80 to 120% of the thickness Ltb and the thickness Ltc.
- the width of the intermediate magnetic pole member 8 is 10 to 75% of the thickness in the direction perpendicular to the target surface 7a of the first horizontal permanent magnet 5b and the second horizontal permanent magnet 5c. It is preferable that the length is 20 to 60%.
- the thickness Lta ′ in the direction perpendicular to the target surface 7a of the intermediate magnetic pole member 8 is the thickness Ltb ′ in the direction perpendicular to the target surface 7a of the first horizontal permanent magnet 5b and the thickness of the second horizontal permanent magnet 5c. It may be the same as or different from the thickness Ltc ′ in the direction perpendicular to the target surface 7a.
- the thickness Lta ′ in the direction perpendicular to the target surface 7a of the intermediate magnetic pole member 8 is preferably 50 to 150%, more preferably 80 to 120% of the thickness Ltb ′ and the thickness Ltc ′. preferable.
- the end 2a of the central magnetic pole member constituting the corner portion, The outer peripheral magnetic pole member 3c and the intermediate magnetic pole member 8 can also be removed.
- the end 2a of the central magnetic pole member at the corner portion, the outer peripheral magnetic pole member 3c and the intermediate magnetic pole member 8 may all be removed, but in order to adjust the magnetic flux density on the target surface to an appropriate size, A part may be removed.
- the magnetic field generator for magnetron sputtering may be configured as shown in FIGS. 6 (a), 6 (b) and 6 (c) by removing all of 2a, outer peripheral magnetic pole member 3c and vertical permanent magnet 5a. .
- the permanent magnet constituting the straight portion and the corner portion can be formed of a known permanent magnet material.
- the material of the permanent magnet material may be appropriately set according to the equipment configuration (distance from the magnetic field generator to the target) and the required magnetic field strength. In the present invention, it is preferable to select the permanent magnet so that the parallel component of the magnetic flux density at the position where the perpendicular component of the magnetic flux density of the magnetic field on the target surface 7a becomes zero is 10 mT or more.
- R at least one of rare earth elements such as Nd
- rare earth such as RTB anisotropic sintered magnets with T (Fe or Fe and Co) and B as essential components
- a magnet having various surface treatments from the viewpoint of corrosion resistance
- the material and dimensions of the linear portion permanent magnet and the corner portion permanent magnet may be set in accordance with the required magnetic flux density.
- Magnetic pole member It is preferable to use a known magnetic material (soft magnetic material) for the magnetic pole member, and it is particularly preferable to use a steel material having magnetism.
- the magnetic field generator may be provided with a mechanism for adjusting the distance between the upper surface of the magnetic field generator and the target surface.
- Comparative Example 1 The straight part permanent magnet unit 4 and the corner part permanent magnet unit 5 were replaced with a straight part permanent magnet 40 and a corner part permanent magnet 50, respectively, as shown in FIGS. 11 (a) and 11 (b).
- Example 1 From the magnetic field generator 1 surface of Example 1 and Comparative Example 1 (surface facing the target), the magnetic flux density at a position of 25 mm (corresponding to the position of the target surface) is obtained by magnetic field analysis, and the magnetic flux density with respect to the target surface of the magnetic flux density
- the parallel component (magnetic flux density parallel component) and the vertical component (magnetic flux density vertical component) are divided into A line (center of straight line), B line (corner) as shown in Fig. 12 (a) and Fig. 12 (b). Part), C line (corner part), and D line (corner part), and plotted in FIG. 13 (Example 1) and FIG. 14 (Comparative Example 1).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
直線部及びコーナー部からなるレーストラック形状を有し、
非磁性体からなるベース上に、(a)直線状の中央磁極部材と、(b)前記中央磁極部材を取り囲むように設置された外周磁極部材と、(c)前記中央磁極部材と前記外周磁極部材との間に、前記中央磁極部材を取り囲むように、かつ磁化方向が前記ターゲット表面に垂直になるように配置された複数の垂直永久磁石と、(d)前記中央磁極部材と前記垂直永久磁石との間に、一方の磁極が前記中央磁極部材に対向し、他方の磁極が前記垂直永久磁石に対向するように設置された複数の第1の水平永久磁石と、(e)前記外周磁極部材と前記垂直永久磁石との間に、一方の磁極が前記外周磁極部材に対向し、他方の磁極が前記垂直永久磁石に対向するように設置された複数の第2の水平永久磁石とを有し、
前記第1の水平永久磁石及び第2の水平永久磁石の、前記垂直永久磁石に対向する側の極が、前記垂直永久磁石の前記ターゲット表面に対向する側の極と同じであることを特徴とする。
非磁性体からなるベース上に、(a)直線状の中央磁極部材と、(b)前記中央磁極部材を取り囲むように設置された外周磁極部材と、(c)前記中央磁極部材と前記外周磁極部材との間に、前記中央磁極部材を取り囲むように設置された中間磁極部材と、(d)前記中央磁極部材と前記中間磁極部材との間に、一方の磁極が前記中央磁極部材に対向し、他方の磁極が前記中間磁極部材に対向するように設置された複数の第1の水平永久磁石と、(e)前記外周磁極部材と前記中間磁極部材との間に、一方の磁極が前記外周磁極部材に対向し、他方の磁極が前記中間磁極部材に対向するように設置された複数の第2の水平永久磁石とを有し、
前記第1の水平永久磁石及び第2の水平永久磁石の、前記中間磁極部材に対向する側の極が同じであることを特徴とする。
(A)全体構成
本発明のマグネトロンスパッタリング用磁場発生装置は、ターゲット表面にレーストラック状の磁場を発生させるための装置であり、例えば図1(a)、図1(b)及び図1(c)に示すように、ターゲット7に対向し、直線部20及び2つのコーナー部30,30からなるレーストラック形状を有している。
第1のマグネトロンスパッタリング用磁場発生装置1は、非磁性体からなるベース6上に、(a)直線状の中央磁極部材2と、(b)前記中央磁極部材2を取り囲むように設置された外周磁極部材3と、(c)前記中央磁極部材2と前記外周磁極部材3との間に、前記中央磁極部材2を取り囲むように、かつ磁化方向が前記ターゲット表面7aに垂直になるように配置された複数の垂直永久磁石4a,5aと、(d)前記中央磁極部材2と前記垂直永久磁石4a,5aとの間に、一方の磁極が前記中央磁極部材2に対向し、他方の磁極が前記垂直永久磁石4a,5aに対向するように設置された複数の第1の水平永久磁石4b,5bと、(e)前記外周磁極部材3と前記垂直永久磁石4a,5aとの間に、一方の磁極が前記外周磁極部材3に対向し、他方の磁極が前記垂直永久磁石4a,5aに対向するように設置された複数の第2の水平永久磁石4c,5cとを有し、前記第1の水平永久磁石4b,5b及び第2の水平永久磁石4c,5cの、前記垂直永久磁石4a,5aに対向する側の極が、前記垂直永久磁石4a,5aの前記ターゲット表面7aに対向する側の極と同じであることを特徴とする。
直線部20は、例えば図1(a)及び図1(b)に示すように、非磁性体からなるベース6上に設置された(a)四角柱状の中央磁極部材2と、(b)前記中央磁極部材2と平行に、前記中央磁極部材2の両側に離間して設置された四角柱状の2つの外周磁極部材3と、(c)前記中央磁極部材2及び前記外周磁極部材3との間に、前記中央磁極部材2及び外周磁極部材3と平行に、磁化方向が前記ターゲット表面7aに垂直で、一方の同極性の磁極(図ではN極)が前記ターゲット表面7aに対向するように連接して配置された、平面視で長方形の複数の垂直永久磁石4aと、(d)前記中央磁極部材2と前記垂直永久磁石4aとの間に、磁化方向がターゲット表面7aに対して平行で、一方の同極性の磁極(図ではS極)が中央磁極部材2に対向し、他方の同極性の磁極(図ではN極)が前記垂直永久磁石4aに対向するように設置された、平面視で長方形の複数の第1の水平永久磁石4bと、(e)前記外周磁極部材3と前記垂直永久磁石4aとの間に、磁化方向がターゲット表面7aに対して平行で、一方の同極性の磁極(図ではS極)が前記外周磁極部材3に対向し、他方の同極性の磁極(図ではN極)が前記垂直永久磁石4aに対向するように設置された、平面視で長方形の複数の第2の水平永久磁石4cとからなり、前記第1の水平永久磁石4b及び第2の水平永久磁石4cの、前記垂直永久磁石4aに対向する側の極(図ではN極)が、前記垂直永久磁石4aの前記ターゲット表面に対向する側の極(図ではN極)と同じである。
コーナー部30は、例えば図1(a)及び図1(c)に示すように、(a)中央磁極部材2の端部2aと、(b)前記中央磁極部材2の端部2aを中心として半多角形状に設置されたコーナー部外周磁極部材3cと、(c)前記中央磁極部材2の端部2aと前記コーナー部外周磁極部材3cとの間に、前記コーナー部外周磁極部材3cと平行に、磁化方向が前記ターゲット表面7aに垂直で、一方の同極性の磁極(図ではN極)が前記ターゲット表面7aに対向するように連接して配置された、平面視で台形の複数の垂直永久磁石5aと、(d)前記中央磁極部材2の端部2aと前記垂直永久磁石5aとの間に、磁化方向がターゲット表面7aに対して平行で、一方の同極性の磁極(図ではS極)が中央磁極部材2の端部2aに対向し、他方の同極性の磁極(図ではN極)が前記垂直永久磁石5aに対向するように設置された、平面視で台形の複数の第1の水平永久磁石5bと、(e)前記コーナー部外周磁極部材3cと前記垂直永久磁石5aとの間に、磁化方向がターゲット表面7aに対して平行で、一方の同極性の磁極(図ではS極)が前記コーナー部外周磁極部材3cに対向し、他方の同極性の磁極(図ではN極)が前記垂直永久磁石5aに対向するように設置された、平面視で台形の複数の第2の水平永久磁石5cとからなり、前記第1の水平永久磁石5b及び第2の水平永久磁石5cの、前記垂直永久磁石5aに対向する側の極(図ではN極)が、前記垂直永久磁石5aの前記ターゲット表面に対向する側の極(図ではN極)と同じである。前記中央磁極部材2の端部2a及び前記コーナー部外周磁極部材3cは、図1(a)では半多角形状だが、半円状であってもよい。また前記垂直永久磁石5a、第1の水平永久磁石5b及び第2の水平永久磁石5cは、図1(a)では平面視で台形であるが、平面視で長方形であっても良い。
前記第1の構成において、前記直線部20を構成する垂直永久磁石4a及びコーナー部30を構成する垂直永久磁石5aを、図4(a)、図4(b)及び図4(c)に示すように、磁性体(軟磁性体)からなる中間磁極部材8に置き換えてマグネトロンスパッタリング用磁場発生装置を構成しても良い。前記直線部20を構成する垂直永久磁石4a及びコーナー部30を構成する垂直永久磁石5aの全てを中間磁極部材8に置き換えても良いし、一部だけを中間磁極部材8に置き換えても良い。第2の構成は、垂直永久磁石4a,5aを中間磁極部材8に置き換えた以外、前記第1の構成と同様なので、以下中間磁極部材8についてのみ詳細に説明する。
前記中間磁極部材8の幅は、前記直線部20を構成する第1の水平永久磁石4b及び第2の水平永久磁石4cのターゲット表面7aに垂直な方向の厚さの10~75%の長さであるのが好ましく、20~60%の長さであるのがより好ましい。
前記中間磁極部材8の幅は、前記第1の水平永久磁石5b及び第2の水平永久磁石5cのターゲット表面7aに垂直な方向の厚さの10~75%の長さであるのが好ましく、20~60%の長さであるのがより好ましい。
前記第1の構成において、前記直線部20を構成する中央磁極部材2、外周磁極部材3及び垂直永久磁石4a、並びに前記コーナー部30を構成する中央磁極部材の端部2a、外周磁極部材3c及び垂直永久磁石5aを全て除去して、図6(a)、図6(b)及び図6(c)に示すようにマグネトロンスパッタリング用磁場発生装置を構成しても良い。
直線部及びコーナー部を構成する永久磁石は、公知の永久磁石材料で形成することができる。永久磁石材料の材質は設備の構成(磁場発生装置からターゲットまでの距離)や必要な磁場強度によって適宜設定すれば良い。本発明においては、ターゲット表面7aにおける磁場の磁束密度垂直成分がゼロとなる位置における磁束密度の平行成分が10 mT以上となるように永久磁石を選択するのが好ましい。
磁極部材には公知の磁性体(軟磁性体)を用いるのが好ましい、特に磁性を有する鋼材を用いるのが好ましい。
本発明の磁場発生装置を複数台所定間隔で並列に配置することにより、一体型のターゲットを使用して大型の基板に成膜することができる。また磁場発生装置には、磁場発生装置の上面とターゲット面との距離を調節する機構を設けてもよい。
図10(a)及び図10(b)に示すように、Al-Mg系合金(A5052)製のベース6上に、フェライト系ステンレス(SUS430)製の中央磁極部材2、外周磁極部材3、及びフェライト焼結磁石(日立金属製NMF-12F、残留磁束密度:約450 mT)からなる直線部用永久磁石ユニット4(垂直永久磁石4a、第1の水平永久磁石4b及び第2の水平永久磁石4c)及びコーナー部用永久磁石ユニット5(垂直永久磁石5a、第1の水平永久磁石5b及び第2の水平永久磁石5c)を配置し、磁場発生装置1(W=160 mm、L=70 mm、La=10 mm、Lb=30 mm、Lc=30 mm、a=10 mm、b=5 mm、及びc=25 mm)を作製した。
直線部用永久磁石ユニット4及びコーナー部用永久磁石ユニット5を、図11(a)及び図11(b)に示すように、それぞれ直線部用永久磁石40及びコーナー部用永久磁石50に置き換えた以外実施例1と同様にして磁場発生装置1(W=170 mm、L=75 mm、a=10 mm、b=5 mm、及びc=25 mm)を作製した。
Claims (14)
- ターゲットに対向し、ターゲット表面に磁場を発生させるための、直線部及びコーナー部からなるレーストラック形状のマグネトロンスパッタリング用磁場発生装置であって、
非磁性体からなるベース上に、(a)直線状の中央磁極部材と、(b)前記中央磁極部材を取り囲むように設置された外周磁極部材と、(c)前記中央磁極部材と前記外周磁極部材との間に、前記中央磁極部材を取り囲むように、かつ磁化方向が前記ターゲット表面に垂直になるように配置された複数の垂直永久磁石と、(d)前記中央磁極部材と前記垂直永久磁石との間に、一方の磁極が前記中央磁極部材に対向し、他方の磁極が前記垂直永久磁石に対向するように設置された複数の第1の水平永久磁石と、(e)前記外周磁極部材と前記垂直永久磁石との間に、一方の磁極が前記外周磁極部材に対向し、他方の磁極が前記垂直永久磁石に対向するように設置された複数の第2の水平永久磁石とを有し、
前記第1の水平永久磁石及び第2の水平永久磁石の、前記垂直永久磁石に対向する側の極が、前記垂直永久磁石の前記ターゲット表面に対向する側の極と同じであることを特徴とするマグネトロンスパッタリング用磁場発生装置。 - 請求項1に記載のマグネトロンスパッタリング用磁場発生装置において、前記第1の水平永久磁石及び第2の水平永久磁石の磁化方向長さの合計が、前記中央磁極部材と前記外周磁極部材との間隔の50~95%であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1又は2に記載のマグネトロンスパッタリング用磁場発生装置において、前記第1及び第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さが等しく、それらの前記厚さを100としたとき、前記垂直永久磁石の前記ターゲット表面に垂直な方向の厚さが0~150であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1~3のいずれかに記載のマグネトロンスパッタリング用磁場発生装置において、前記コーナー部を構成する垂直永久磁石、第1の水平永久磁石、及び第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さが、それぞれ前記直線部を構成する垂直永久磁石、第1の水平永久磁石、及び第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さの30~100%であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項4に記載のマグネトロンスパッタリング用磁場発生装置において、前記コーナー部を構成する第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さが、前記コーナー部を構成する第1の水平永久磁石の前記ターゲット表面に垂直な方向の厚さよりも薄いことを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1~5のいずれかに記載のマグネトロンスパッタリング用磁場発生装置において、前記コーナー部を構成する垂直永久磁石、第1の水平永久磁石、及び第2の水平永久磁石が、平面視で前記中央磁極部材と前記外周磁極部材との間隙の面積の30%以上を占めることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項6に記載のマグネトロンスパッタリング用磁場発生装置において、前記コーナー部の、前記中央磁極部材と前記外周磁極部材との間隙は、前記垂直永久磁石、第1の水平永久磁石、及び第2の水平永久磁石と、前記垂直永久磁石、第1の水平永久磁石、及び第2の水平永久磁石以外の部分を充填する非磁性体のスペーサとからなることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1~7のいずれかに記載のマグネトロンスパッタリング用磁場発生装置から、前記コーナー部を構成する中央磁極部材の端部、外周磁極部材及び垂直永久磁石のうちの一部又は全部を除去した構成を有することを特徴とするマグネトロンスパッタリング用磁場発生装置。
- ターゲットに対向し、ターゲット表面に磁場を発生させるための、直線部及びコーナー部からなるレーストラック形状のマグネトロンスパッタリング用磁場発生装置であって、
非磁性体からなるベース上に、(a)直線状の中央磁極部材と、(b)前記中央磁極部材を取り囲むように設置された外周磁極部材と、(c)前記中央磁極部材と前記外周磁極部材との間に、前記中央磁極部材を取り囲むように設置された中間磁極部材と、(d)前記中央磁極部材と前記中間磁極部材との間に、一方の磁極が前記中央磁極部材に対向し、他方の磁極が前記中間磁極部材に対向するように設置された複数の第1の水平永久磁石と、(e)前記外周磁極部材と前記中間磁極部材との間に、一方の磁極が前記外周磁極部材に対向し、他方の磁極が前記中間磁極部材に対向するように設置された複数の第2の水平永久磁石とを有し、
前記第1の水平永久磁石及び第2の水平永久磁石の、前記中間磁極部材に対向する側の極が同じであることを特徴とするマグネトロンスパッタリング用磁場発生装置。 - 請求項9に記載のマグネトロンスパッタリング用磁場発生装置において、前記中間磁極部材の幅が、前記第1の水平永久磁石及び第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さの10~75%の長さであることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項9又は10に記載のマグネトロンスパッタリング用磁場発生装置において、前記第1及び第2の水平永久磁石の前記ターゲット表面に垂直な方向の厚さが等しく、それらの前記厚さを100としたとき、前記中間磁極部材の前記ターゲット表面に垂直な方向の厚さが0~150であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項9~11のいずれかに記載のマグネトロンスパッタリング用磁場発生装置から、前記コーナー部を構成する中央磁極部材の端部、外周磁極部材及び中間磁極部材のうちの一部又は全部を除去した構成を有することを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1~12のいずれかに記載のマグネトロンスパッタリング用磁場発生装置において、前記ターゲット表面に印加される磁場を、前記直線部において軸方向と直交する方向について測定したとき、前記ターゲット表面に対して平行な方向の磁束密度の極大値が、前記中央磁極部材に対向する部分の前記ターゲット表面に対して垂直な方向の磁束密度よりも大きいことを特徴とするマグネトロンスパッタリング用磁場発生装置。
- 請求項1~13のいずれかに記載のマグネトロンスパッタリング用磁場発生装置において、前記ターゲット表面に印加される磁場の、前記ターゲット表面に対して垂直な方向の磁束密度がゼロとなる位置において、前記ターゲット表面に対して平行な方向の磁束密度が10 mT以上であることを特徴とするマグネトロンスパッタリング用磁場発生装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014000416.2T DE112014000416T5 (de) | 2013-02-15 | 2014-01-23 | Magnetfeld-erzeugende Vorrichtung für Magnetron Sputtern |
JP2015500169A JP6090422B2 (ja) | 2013-02-15 | 2014-01-23 | マグネトロンスパッタリング用磁場発生装置 |
CN201480004542.4A CN104919082B (zh) | 2013-02-15 | 2014-01-23 | 磁控管溅射用磁场生成装置 |
US14/758,624 US20150340211A1 (en) | 2013-02-15 | 2014-01-23 | Magnetic-field-generating apparatus for magnetron sputtering |
KR1020157017344A KR20150117640A (ko) | 2013-02-15 | 2014-01-23 | 마그네트론 스퍼터링용 자장 발생 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013027970 | 2013-02-15 | ||
JP2013-027970 | 2013-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014125889A1 true WO2014125889A1 (ja) | 2014-08-21 |
Family
ID=51353899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051380 WO2014125889A1 (ja) | 2013-02-15 | 2014-01-23 | マグネトロンスパッタリング用磁場発生装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150340211A1 (ja) |
JP (1) | JP6090422B2 (ja) |
KR (1) | KR20150117640A (ja) |
CN (1) | CN104919082B (ja) |
DE (1) | DE112014000416T5 (ja) |
WO (1) | WO2014125889A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112359335B (zh) * | 2020-10-23 | 2023-01-17 | 北京北方华创微电子装备有限公司 | 半导体工艺设备及其工艺腔室 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02118750U (ja) * | 1989-03-08 | 1990-09-25 | ||
JPH04187766A (ja) * | 1990-11-22 | 1992-07-06 | Tdk Corp | マグネトロン・スパッタリング装置用磁気回路装置 |
JPH08232063A (ja) * | 1996-03-08 | 1996-09-10 | Aneruba Kk | スパッタリング装置 |
JP2008156735A (ja) * | 2006-12-26 | 2008-07-10 | Hitachi Metals Ltd | マグネトロンスパッタリング用磁気回路 |
WO2012102092A1 (ja) * | 2011-01-24 | 2012-08-02 | 日立金属株式会社 | マグネトロンスパッタリング用磁場発生装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112040A (ja) * | 2010-11-05 | 2012-06-14 | Shin-Etsu Chemical Co Ltd | スパッタ装置用磁気回路 |
WO2012165385A1 (ja) * | 2011-05-30 | 2012-12-06 | 日立金属株式会社 | レーストラック形状のマグネトロンスパッタリング用磁場発生装置 |
-
2014
- 2014-01-23 US US14/758,624 patent/US20150340211A1/en not_active Abandoned
- 2014-01-23 DE DE112014000416.2T patent/DE112014000416T5/de not_active Withdrawn
- 2014-01-23 JP JP2015500169A patent/JP6090422B2/ja active Active
- 2014-01-23 KR KR1020157017344A patent/KR20150117640A/ko not_active Application Discontinuation
- 2014-01-23 CN CN201480004542.4A patent/CN104919082B/zh not_active Expired - Fee Related
- 2014-01-23 WO PCT/JP2014/051380 patent/WO2014125889A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02118750U (ja) * | 1989-03-08 | 1990-09-25 | ||
JPH04187766A (ja) * | 1990-11-22 | 1992-07-06 | Tdk Corp | マグネトロン・スパッタリング装置用磁気回路装置 |
JPH08232063A (ja) * | 1996-03-08 | 1996-09-10 | Aneruba Kk | スパッタリング装置 |
JP2008156735A (ja) * | 2006-12-26 | 2008-07-10 | Hitachi Metals Ltd | マグネトロンスパッタリング用磁気回路 |
WO2012102092A1 (ja) * | 2011-01-24 | 2012-08-02 | 日立金属株式会社 | マグネトロンスパッタリング用磁場発生装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20150117640A (ko) | 2015-10-20 |
CN104919082A (zh) | 2015-09-16 |
DE112014000416T5 (de) | 2015-10-15 |
CN104919082B (zh) | 2017-05-10 |
JPWO2014125889A1 (ja) | 2017-02-02 |
US20150340211A1 (en) | 2015-11-26 |
JP6090422B2 (ja) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835235B2 (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP5971262B2 (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP5692374B2 (ja) | レーストラック形状のマグネトロンスパッタリング用磁場発生装置 | |
JP2008156735A (ja) | マグネトロンスパッタリング用磁気回路 | |
US8778150B2 (en) | Magnetron sputtering cathode, magnetron sputtering apparatus, and method of manufacturing magnetic device | |
JP6090422B2 (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP2021001382A (ja) | マグネトロンスパッタリング装置用のカソードユニット | |
JP6607251B2 (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP5077752B2 (ja) | マグネトロンスパッタリング装置 | |
JP2015017304A (ja) | 磁界発生装置、及びスパッタリング装置 | |
JP2014210967A (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP2018044204A (ja) | マグネトロンスパッタリング用磁場発生装置 | |
JP2015147955A (ja) | マグネトロンスパッタリング用磁場発生装置 | |
TWI391514B (zh) | 磁控濺鍍機 | |
JP2005068468A (ja) | マグネトロンスパッタリング用ターゲット及びマグネトロンスパッタリング装置 | |
JP2008106330A (ja) | マグネトロンスパッタ装置 | |
JP2002208499A (ja) | 加速器用ビームダクト | |
JP2016176125A (ja) | マグネトロンスパッタリング装置、および、膜の製造方法 | |
JPH02243763A (ja) | マグネトロンカソードのマグネット | |
JP2012001761A (ja) | 成膜装置及び成膜方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14751965 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015500169 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157017344 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14758624 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140004162 Country of ref document: DE Ref document number: 112014000416 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14751965 Country of ref document: EP Kind code of ref document: A1 |