WO2014125661A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2014125661A1
WO2014125661A1 PCT/JP2013/064524 JP2013064524W WO2014125661A1 WO 2014125661 A1 WO2014125661 A1 WO 2014125661A1 JP 2013064524 W JP2013064524 W JP 2013064524W WO 2014125661 A1 WO2014125661 A1 WO 2014125661A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
sensor
output current
internal combustion
Prior art date
Application number
PCT/JP2013/064524
Other languages
English (en)
French (fr)
Inventor
圭一郎 青木
剛 林下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP13875143.3A priority Critical patent/EP2957904B1/en
Priority to US14/441,681 priority patent/US10408149B2/en
Priority to KR1020157011289A priority patent/KR101734737B1/ko
Priority to BR112015011401A priority patent/BR112015011401A2/pt
Priority to CN201380058124.9A priority patent/CN105164525B/zh
Priority to RU2015117035/28A priority patent/RU2603997C1/ru
Publication of WO2014125661A1 publication Critical patent/WO2014125661A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • An oxygen concentration sensor including a diffusion rate layer covering an electrode is disposed in an engine exhaust passage, and an air-fuel ratio is controlled based on an output of the oxygen concentration sensor (see Patent Document 1). .
  • This oxygen concentration sensor generates an output voltage higher than the reference voltage corresponding to the theoretical air-fuel ratio when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, and is lower than the reference voltage when the air-fuel ratio is larger than the stoichiometric air-fuel ratio. Generate output voltage. Therefore, when the output voltage is higher than the reference voltage, it is determined that the air-fuel ratio is smaller than the theoretical air-fuel ratio, and control is performed so that the air-fuel ratio becomes larger. On the other hand, when the output voltage is lower than the reference voltage, it is determined that the air-fuel ratio is larger than the theoretical air-fuel ratio, and control is performed so that the air-fuel ratio becomes smaller.
  • the diffusion rate layer has a function of regulating the diffusion rate of the exhaust gas. In this oxygen concentration sensor, no voltage is applied between the exhaust gas side electrode and the reference gas side electrode.
  • Patent Document 1 since the exhaust gas side electrode is covered with the diffusion-controlling layer, the responsiveness of the oxygen concentration sensor is lowered. As a result, the output voltage of the oxygen concentration sensor has hysteresis. That is, the change in output voltage when the air-fuel ratio increases across the stoichiometric air-fuel ratio is different from the change in output voltage when the air-fuel ratio decreases across the stoichiometric air-fuel ratio. Therefore, particularly when the air-fuel ratio is close to the stoichiometric air-fuel ratio, the output voltage may be lower than the reference voltage even though the air-fuel ratio is smaller than the stoichiometric air-fuel ratio. Nevertheless, the output voltage may be higher than the reference voltage. As a result, the air-fuel ratio cannot be accurately detected, and therefore the air-fuel ratio may not be accurately controlled. To solve this problem, a complicated configuration or control is required.
  • a sensor for detecting the oxygen concentration or air-fuel ratio in the exhaust gas comprising an electrode and an electric circuit for applying a reference voltage between these electrodes, is disposed in the engine exhaust passage, and the oxygen concentration or air-fuel ratio is determined.
  • the sensor for detecting has a characteristic that the output current continues to increase without having a limit current region when the voltage applied between the electrodes is increased when the air-fuel ratio is constant, and the oxygen concentration or the air-fuel ratio.
  • the air / fuel ratio can be accurately controlled with a simple configuration.
  • 1 is an overall view of an internal combustion engine. It is a partial expanded sectional view of the sensor for detecting oxygen concentration or an air fuel ratio. It is the schematic of the electric circuit of the sensor for detecting oxygen concentration or an air fuel ratio. It is a diagram which shows the relationship between the output current of the sensor for detecting the oxygen concentration of the Example by this invention, or an air fuel ratio, and the voltage between electrodes. It is a diagram which shows the relationship between the output current of the conventional linear characteristic air fuel ratio sensor, and the voltage between electrodes. It is a diagram which shows the relationship between the output current of the sensor for detecting the oxygen concentration of the Example by this invention, or an air fuel ratio, and the voltage between electrodes.
  • 3 is a flowchart for executing an air-fuel ratio control routine. It is a diagram which shows the relationship between the output current of the sensor for detecting oxygen concentration or an air fuel ratio, and an air fuel ratio. It is a diagram which shows the relationship between the output current of the sensor for detecting oxygen concentration or an air fuel ratio, and an air fuel ratio. It is a diagram which shows the reference current Is. It is a flowchart which performs the air-fuel-ratio control routine of another Example by this invention.
  • FIG. 1 shows a case where the present invention is applied to a spark ignition type internal combustion engine.
  • the present invention can also be applied to a compression ignition type internal combustion engine.
  • 1 is an engine body having four cylinders
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust.
  • a valve, 9 is an exhaust port
  • 10 is a spark plug.
  • the intake port 7 is connected to a surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air cleaner 14 via an intake duct 13.
  • An air flow meter 15 for detecting the amount of intake air and a throttle valve 17 driven by an actuator 16 are disposed in the intake duct 13.
  • An electronically controlled fuel injection valve 18 is disposed in each intake port 7. These fuel injection valves 18 are connected to a fuel pump 20 through a common rail 19, and the fuel pump 20 is connected to a fuel tank 21.
  • the exhaust port 9 is connected to a relatively small capacity catalytic converter 23 via an exhaust manifold 22.
  • the catalytic converter 23 is connected to a relatively large capacity catalytic converter 25 via an exhaust pipe 24, and the catalytic converter 25 is connected to an exhaust pipe 26.
  • the catalytic converters 23 and 25 have catalysts such as three-way catalysts 23a and 25a, respectively.
  • a sensor 27u for detecting the oxygen concentration or air-fuel ratio in the exhaust gas is attached to the exhaust manifold 22 upstream of the three-way catalyst 23a, and the oxygen concentration or air in the exhaust gas is attached to the exhaust pipe 24 downstream of the three-way catalyst 23a.
  • a sensor 27d for detecting the fuel ratio is attached.
  • the sensor 27u is referred to as an upstream sensor
  • the sensor 27d is referred to as a downstream sensor.
  • the electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31.
  • a load sensor 40 for detecting the amount of depression of the accelerator pedal 39 is attached to the accelerator pedal 39. Output signals of the air flow meter 15, the sensors 27u and 27d, and the load sensor 40 are input to the input port 35 via the corresponding AD converters 37, respectively.
  • a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates by a certain angle, for example, 30 crank angles, is connected to the input port 35.
  • the CPU 34 calculates the engine speed based on the output pulse from the crank angle sensor 41.
  • the output port 36 is connected to the spark plug 10, the actuator 16, the fuel injection valve 18, and the fuel pump 20 via the corresponding drive circuit 38.
  • FIG. 2 shows a partially enlarged sectional view of the downstream sensor 27d.
  • the upstream sensor 27u is configured similarly to the downstream sensor 27d.
  • the upstream sensor can be configured by a sensor having a configuration different from that of the downstream sensor 27d.
  • reference numeral 50 denotes a housing
  • 51 denotes a sensor element held by the housing 50
  • 52 denotes a cover having an opening 53.
  • the sensor element 51 includes a cup-shaped solid electrolyte body 54, an exhaust gas side electrode 55 provided on the outer surface of the solid electrolyte body 54, and a reference gas side electrode 56 provided on the inner surface of the solid electrolyte body 54.
  • the sensor element 51 and the cover 52 are disposed in the internal space 24 a of the exhaust pipe 24. Therefore, the exhaust gas in the exhaust pipe 24 is introduced around the sensor element 51 through the opening 53 of the cover 52, and the exhaust gas side electrode 55 is brought into contact with the exhaust gas.
  • a reference gas chamber 57 into which a reference gas is introduced is formed in the internal space of the solid electrolyte body 54. Therefore, the reference gas side electrode 56 is in contact with the reference gas.
  • the reference gas is formed from the atmosphere, and therefore the reference gas side electrode 56 is also referred to as an atmosphere side electrode.
  • the solid electrolyte body 54 is formed from a solid electrolyte such as zirconia.
  • the electrodes 55 and 56 are made of a noble metal such as platinum.
  • the exhaust gas side electrode 55 is covered with a coating layer 58, the coating layer 58 is covered with a catalyst layer 59, and the catalyst layer 59 is covered with a trap layer 60.
  • the coating layer 58 is for protecting the exhaust gas side electrode 55 and is made of, for example, a porous ceramic such as spinel.
  • the catalyst layer 59 is for removing hydrogen in the exhaust gas, and is formed of a noble metal such as platinum supported on a porous ceramic such as alumina.
  • the trap layer 60 is for trapping foreign matter in the exhaust gas such as deposit, and is formed of a porous ceramic such as alumina.
  • the downstream sensor 27 d further includes an electric circuit 70 that applies a voltage between the electrodes 55 and 56.
  • an electric circuit 70 includes an offset power supply 71 that supplies an offset voltage Vo, a reference power supply 72 that supplies a reference voltage Vr, an operational amplifier 73 to which a power supply voltage Vb is applied, an electrical resistor 74 that provides an electrical resistance R, and An output terminal 75 is provided.
  • the offset power supply 71 is connected to the atmosphere-side electrode 56 that is a positive electrode on the one hand, and is connected to the reference power supply 72 on the other hand, and the reference power supply 72 is connected to the + terminal of the operational amplifier 73.
  • the exhaust gas side electrode 55 which is a negative electrode, is connected to the ⁇ terminal of the operational amplifier 73 on the one hand and to the output terminal 75 via the electric resistor 74 on the other hand.
  • the output terminal 75 is input to the electronic control unit 30 (FIG. 1), and the electronic control unit 30 detects an output voltage Eo that is a potential at the output terminal 75.
  • the electric circuit 70 applies a voltage between the electrodes 55 and 56 so that the voltage Vs between the electrodes 55 and 56 is maintained at the reference voltage Vr. At this time, a current Ip flows between the electrodes 55 and 56.
  • Expression (1) can be rewritten as the following expression (2).
  • Ip (Eo ⁇ Vr ⁇ Vo) / R (2)
  • the output voltage Eo is detected, and the output current Ip is obtained using the equation (2). In another embodiment, the output current Ip is detected directly.
  • the downstream sensor 27d also includes a circuit that detects the impedance of the sensor element 51.
  • the impedance of the sensor element 51 represents the temperature of the sensor element 51 or the downstream sensor 27d.
  • the exhaust gas contacts the exhaust gas side electrode 55. Therefore, at the exhaust gas side electrode 55, HC and CO in the exhaust gas react with oxygen. As a result, a current Ip flows between the electrodes 55 and 56.
  • FIG. 4 shows the relationship between the interelectrode voltage Vs of the downstream sensor 27d and the output current Ip when the air-fuel ratio is maintained at the stoichiometric air-fuel ratio.
  • the output current Ip continues to increase as the interelectrode voltage Vs increases.
  • FIG. 5 shows the relationship between the output current Ip 'of the linear characteristic air-fuel ratio sensor and the interelectrode voltage Vs' when the air-fuel ratio is maintained at the stoichiometric air-fuel ratio.
  • the output current Ip ′ increases as the interelectrode voltage Vs ′ increases.
  • the output current Ip' becomes substantially constant.
  • the output current Ip ′ increases as the interelectrode voltage Vs ′ increases.
  • the voltage region where the output current Ip ′ is substantially constant is referred to as a limiting current region LC.
  • the reason why the output current Ip ′ has the limit current region LC is that the diffusion of the exhaust gas to the exhaust gas side electrode is limited by the diffusion rate controlling layer.
  • the output current Ip ′ has a limit current region LC, the response of the air-fuel ratio sensor is lowered, and the output current Ip ′ may have hysteresis.
  • the output current Ip of the downstream sensor 27d of the embodiment according to the present invention does not have a limit current region as shown in FIG. This is because the downstream sensor 27d of the embodiment according to the present invention does not include a diffusion rate limiting layer. As a result, the response of the downstream sensor 27d is improved.
  • the reference voltage Vr is applied between the electrodes 55 and 56 as described above, the reaction at the exhaust gas side electrode 55 is promoted. As a result, the output current Ip has no hysteresis. Therefore, the air-fuel ratio can be accurately detected.
  • the coating layer 58 of the downstream sensor 27d of the embodiment according to the present invention is different in configuration from the diffusion rate limiting layer of the linear characteristic air-fuel ratio sensor in that the output current Ip is formed so as not to have a limit current region.
  • the coating layer 58 has a larger porosity than, for example, a diffusion-controlled layer of a linear characteristic air-fuel ratio sensor.
  • the output current Ip at the interelectrode voltage Vs is expressed as Ip (Vs), (Ip (0.7 volts) ⁇ Ip (0.45 volts)) / Ip (0.45 volts) ⁇ 0. .05 and
  • FIG. 6 shows the relationship between the output current Ip and the interelectrode voltage Vs at various air-fuel ratios of the downstream sensor 27d of the embodiment according to the present invention.
  • curves Ca, Cb, Cc, Cd, Ce, Cf, Cg, Ch, and Ci have air-fuel ratios of 12, 13, 14, theoretical air-fuel ratio (14.6), 15, 18, 25, and 40, respectively.
  • the output current Ip when maintained is shown.
  • a curve Cj indicates the output current Ip when the exhaust gas side electrode 55 is in contact with the atmosphere. As can be seen from FIG. 6, the output current Ip increases as the air-fuel ratio increases.
  • FIG. 7 shows the relationship between the air-fuel ratio AF and the output current Ip when the interelectrode voltage Vs is maintained at the reference voltage Vr in the downstream sensor 27d of the embodiment according to the present invention.
  • the output current Ip increases as the air-fuel ratio AF increases.
  • the output current Ip becomes the reference current Is (> 0).
  • the reference air-fuel ratio is the stoichiometric air-fuel ratio.
  • the oxygen concentration or air-fuel ratio in the exhaust gas can be detected from the output current Ip of the downstream sensor 27d. Therefore, in the embodiment according to the present invention, when the output current Ip is smaller than the reference current Is, it is judged that the air-fuel ratio AF is smaller than the theoretical air-fuel ratio AFS, that is, richer than the theoretical air-fuel ratio AFS, and the output current Ip is When larger than the reference current Is, it is determined that the air-fuel ratio AF is larger than the theoretical air-fuel ratio AFS, that is, leaner than the theoretical air-fuel ratio AFS.
  • the air-fuel ratio is controlled based on the determination result. For example, when it is determined that the air-fuel ratio AF is smaller than the stoichiometric air-fuel ratio AFS based on the output current Ip of the downstream sensor 27d, the air-fuel ratio AF is controlled to increase. On the other hand, when it is determined that the air-fuel ratio AF is larger than the stoichiometric air-fuel ratio AFS based on the output current Ip of the downstream sensor 27d, the air-fuel ratio AF is controlled to be small. In this example, the air-fuel ratio AF is controlled using the theoretical air-fuel ratio AFS, that is, the reference air-fuel ratio as a target value. The air-fuel ratio AF is controlled, for example, by controlling the fuel injection amount or the intake air amount.
  • the reference voltage Vr is set so that the change of the output current Ip with respect to the air-fuel ratio AF becomes large in the vicinity of the reference air-fuel ratio. In this way, it is possible to more accurately detect whether the air-fuel ratio AF is smaller or larger than the reference air-fuel ratio.
  • FIG. 8 shows a routine for executing the above-described air-fuel ratio control.
  • step 101 it is determined whether or not the output current Ip of the downstream sensor 27d is smaller than the reference current Is.
  • the routine proceeds to step 102 where control is performed so that the air-fuel ratio becomes large.
  • the routine proceeds to step 103 where control is performed so that the air-fuel ratio becomes smaller.
  • FIG. 9A shows the output current Ip when the temperature of the downstream sensor 27d is relatively low
  • FIG. 9B shows the output current Ip when the temperature of the downstream sensor 27d is relatively high.
  • the output current Ip increases as the temperature of the downstream sensor 27d increases. For this reason, if the air-fuel ratio is detected based on the constant reference current Is, there is a risk of erroneous detection.
  • the reference current Is is set based on the temperature Ts of the downstream sensor 27d. Specifically, as shown in FIG. 10, the reference current Is is set to increase as the temperature Ts of the downstream sensor 27d increases. As a result, the air-fuel ratio can be accurately detected regardless of the temperature Ts of the downstream sensor 27d, and therefore the air-fuel ratio can be accurately controlled.
  • the reference current Is is stored in advance in the ROM 32 in the form of a map shown in FIG.
  • FIG. 11 shows a routine for executing air-fuel ratio control according to another embodiment of the present invention.
  • step 100a the temperature Ts of the downstream sensor 27d is detected.
  • the reference current Is is calculated from the map of FIG.
  • step 101 it is determined whether or not the output current Ip of the downstream sensor 27d is smaller than the reference current Is.
  • Ip ⁇ Is the routine proceeds to step 102 where control is performed so that the air-fuel ratio becomes large.
  • Ip ⁇ Is the routine proceeds to step 103 where control is performed so that the air-fuel ratio becomes smaller.
  • the reference voltage Vr is set so that the reference current Is has a positive value.
  • the reference voltage Vr is set so that the reference current Is becomes zero. In this way, the detection error is reduced.
  • FIG. 12A shows the relationship between the output current Ip and the interelectrode voltage Vs when the temperature Ts of the downstream sensor 27d is relatively low
  • FIG. 12B shows the output current Ip and the interelectrode voltage when the temperature of the downstream sensor 27d is relatively high. The relationship with the voltage Vs is shown.
  • FIGS. 12A and 12B when the temperature of the downstream sensor 27d increases, the reference voltage Vr at which the output current Ip becomes zero decreases. For this reason, if the air-fuel ratio is detected based on the output current Ip detected while applying the constant reference voltage Vr, there is a risk of erroneous detection.
  • the reference voltage Vr is set based on the temperature Ts of the downstream sensor 27d. Specifically, as shown in FIG. 13, the reference voltage Vr is set to decrease as the temperature Ts of the downstream sensor 27d increases. As a result, the air-fuel ratio can be accurately detected regardless of the temperature Ts of the downstream sensor 27d, and therefore the air-fuel ratio can be accurately controlled.
  • the reference voltage Vr is stored in advance in the ROM 32 in the form of a map shown in FIG.
  • FIG. 14 shows a routine for executing the reference voltage control of still another embodiment according to the present invention.
  • step 200a the temperature Ts of the downstream sensor 27d is detected.
  • the reference voltage Vr is calculated from the map of FIG.
  • the interelectrode voltage Vs is maintained at the reference voltage Vr calculated in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 固体電解質体と、固体電解質体の一側に設けられ排気ガスに接触される排気ガス側電極と、固体電解質体の他側に設けられ大気に接触される大気側電極と、これら電極間に基準電圧を印加する電気回路と、を備える、排気ガス中の酸素濃度又は空燃比を検出するためのセンサを機関排気通路内に配置する。酸素濃度又は空燃比を検出するためのセンサは、空燃比が一定のときに電極間に印加される電圧(Vs)を増加させていくと出力電流(Ip)が限界電流領域を有することなく増大し続ける特性を有する。酸素濃度又は空燃比を検出するためのセンサの出力電流(Ip)に基づいて空燃比を制御する。

Description

内燃機関の制御装置
 本発明は内燃機関の制御装置に関する。
 固体電解質体と、固体電解質体の一側に設けられ排気ガスに接触される排気ガス側電極と、固体電解質体の他側に設けられ基準ガスに接触される基準ガス側電極と、排気ガス側電極を覆う拡散速度層とを備える酸素濃度センサを機関排気通路内に配置し、酸素濃度センサの出力に基づいて空燃比を制御する、内燃機関の制御装置が公知である(特許文献1参照)。この酸素濃度センサは、空燃比が理論空燃比よりも小さいときに理論空燃比に対応する基準電圧よりも高い出力電圧を発生し、空燃比が理論空燃比よりも大きいときに基準電圧よりも低い出力電圧を発生する。従って、出力電圧が基準電圧よりも高いときには空燃比が理論空燃比よりも小さいと判断され、空燃比が大きくなるように制御される。一方、出力電圧が基準電圧よりも低いときには空燃比が理論空燃比よりも大きいと判断され、空燃比が小さくなるように制御される。この場合、拡散速度層は排気ガスの拡散速度を律する働きを有している。なお、この酸素濃度センサでは排気ガス側電極と基準ガス側電極との間に電圧は印加されていない。
特開2006-291893号公報
 しかしながら、特許文献1では、排気ガス側電極が拡散律速層により覆われているので、酸素濃度センサの応答性が低下する。その結果、酸素濃度センサの出力電圧はヒステリシスを有することになる。即ち、空燃比が理論空燃比を横切って増大する場合の出力電圧の変化と、空燃比が理論空燃比を横切って減少する場合の出力電圧の変化とが互いに異なってしまう。このため、特に空燃比が理論空燃比に近いときに、空燃比が理論空燃比よりも小さいにもかかわらず出力電圧が基準電圧よりも低い場合があり、空燃比が理論空燃比よりも大きいにもかかわらず出力電圧が基準電圧よりも高い場合がある。その結果、空燃比を正確に検出できず、従って空燃比を正確に制御できないおそれがある。この問題を解決するには複雑な構成又は制御が必要になる。
 本発明によれば、固体電解質体と、固体電解質体の一側に設けられ排気ガスに接触される排気ガス側電極と、固体電解質体の他側に設けられ基準ガスに接触される基準ガス側電極と、これら電極間に基準電圧を印加する電気回路と、を備える、排気ガス中の酸素濃度又は空燃比を検出するためのセンサを機関排気通路内に配置し、該酸素濃度又は空燃比を検出するためのセンサは、空燃比が一定のときに電極間に印加される電圧を増加させていくと出力電流が限界電流領域を有することなく増大し続ける特性を有し、酸素濃度又は空燃比を検出するためのセンサの出力電流に基づいて空燃比を制御する、内燃機関の制御装置が提供される。
 簡単な構成でもって空燃比を正確に制御することができる。
内燃機関の全体図である。 酸素濃度又は空燃比を検出するためのセンサの部分拡大断面図である。 酸素濃度又は空燃比を検出するためのセンサの電気回路の概略図である。 本発明による実施例の酸素濃度又は空燃比を検出するためのセンサの出力電流と電極間電圧との関係を示す線図である。 従来のリニア特性空燃比センサの出力電流と電極間電圧との関係を示す線図である。 本発明による実施例の酸素濃度又は空燃比を検出するためのセンサの出力電流と電極間電圧との関係を示す線図である。 本発明による実施例の酸素濃度又は空燃比を検出するためのセンサの出力電流と空燃比との関係を示す線図である。 空燃比制御ルーチンを実行するフローチャートである。 酸素濃度又は空燃比を検出するためのセンサの出力電流と空燃比との関係を示す線図である。 酸素濃度又は空燃比を検出するためのセンサの出力電流と空燃比との関係を示す線図である。 基準電流Isを示す線図である。 本発明による別の実施例の空燃比制御ルーチンを実行するフローチャートである。 酸素濃度又は空燃比を検出するためのセンサの出力電流と電極間電圧との関係を示す線図である。 酸素濃度又は空燃比を検出するためのセンサの出力電流と電極間電圧との関係を示す線図である。 基準電圧Vrを示す線図である。 基準電圧制御ルーチンを実行するフローチャートである。
 図1は本発明を火花点火式内燃機関に適用した場合を示している。しかしながら、本発明を圧縮着火式内燃機関に適用することもできる。
 図1を参照すると、1は例えば4つの気筒を備えた機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポート、10は点火栓をそれぞれ示す。吸気ポート7は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。吸気ダクト13内には、吸入空気量を検出するためのエアフローメータ15と、アクチュエータ16により駆動されるスロットル弁17とが配置される。また、各吸気ポート7内には電子制御式の燃料噴射弁18が配置される。これら燃料噴射弁18は共通のコモンレール19を介し燃料ポンプ20に連結され、燃料ポンプ20は燃料タンク21に連結される。
 一方、排気ポート9は排気マニホルド22を介して比較的小容量の触媒コンバータ23に連結される。触媒コンバータ23は排気管24を介して比較的大容量の触媒コンバータ25に連結され、触媒コンバータ25は排気管26に連結される。触媒コンバータ23,25内は三元触媒23a,25aのような触媒をそれぞれ具備する。三元触媒23a上流の排気マニホルド22には排気ガス中の酸素濃度又は空燃比を検出するためのセンサ27uが取り付けられ、三元触媒23a下流の排気管24には排気ガス中の酸素濃度又は空燃比を検出するためのセンサ27dが取り付けられる。以下では、センサ27uを上流側センサと称し、センサ27dを下流側センサと称することにする。
 電子制御ユニット30はデジタルコンピュータから構成され、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。アクセルペダル39にはアクセルペダル39の踏み込み量を検出するための負荷センサ40が取り付けられる。エアフローメータ15、センサ27u,27d及び負荷センサ40の出力信号はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが一定角度例えば30クランク角度回転するごとに出力パルスを発生するクランク角センサ41が接続される。CPU34ではクランク角センサ41からの出力パルスに基づいて機関回転数が算出される。一方、出力ポート36は対応する駆動回路38を介して点火栓10、アクチュエータ16、燃料噴射弁18、および燃料ポンプ20にそれぞれ接続される。
 図2は下流側センサ27dの部分拡大断面図を示している。なお、上流側センサ27uは下流側センサ27dと同様に構成される。なお、上流側センサは27uを下流側センサ27dと異なる構成のセンサから構成することもできる。
 図2を参照すると、50はハウジング、51はハウジング50により保持されたセンサ素子、52は開口53を有するカバーをそれぞれ示す。センサ素子51はカップ状の固体電解質体54と、固体電解質体54の外面に設けられた排気ガス側電極55と、固体電解質体54の内面に設けられた基準ガス側電極56とを備える。センサ素子51およびカバー52は排気管24の内部空間24a内に配置される。従って、排気管24内の排気ガスがカバー52の開口53を介しセンサ素子51周りに導入され、排気ガス側電極55は排気ガスに接触される。一方、固体電解質体54の内部空間には基準ガスが導入される基準ガス室57が形成されている。従って、基準ガス側電極56は基準ガスに接触される。図2に示される例では基準ガスが大気から形成され、従って基準ガス側電極56を大気側電極とも称する。図2に示される例では、固体電解質体54はジルコニアのような固体電解質から形成される。電極55,56は白金のような貴金属から形成される。
 排気ガス側電極55はコーティング層58により覆われ、コーティング層58は触媒層59により覆われ、触媒層59はトラップ層60により覆われている。コーティング層58は排気ガス側電極55を保護するためのものであり、例えばスピネルのような多孔質セラミックから形成される。触媒層59は排気ガス中の水素を除去するためのものであり、例えばアルミナのような多孔質セラミックに担持された白金のような貴金属から形成される。トラップ層60はデポジットのような排気ガス中の異物を捕獲するためのものであり、例えばアルミナのような多孔質セラミックから形成される。
 図3に示されるように、下流側センサ27dは更に、電極55,56間に電圧を印加する電気回路70を備える。図3を参照すると、電気回路70はオフセット電圧Voを与えるオフセット電源71、基準電圧Vrを与える基準電源72、電源電圧Vbが与えられているオペアンプ73、電気抵抗Rを与える電気抵抗器74、および出力端子75を備える。オフセット電源71は一方では正極である大気側電極56に接続され、他方では基準電源72に接続され、基準電源72はオペアンプ73の+端子に接続される。負極である排気ガス側電極55は一方ではオペアンプ73の-端子に接続され、他方では電気抵抗器74を介して出力端子75に接続される。出力端子75は電子制御ユニット30(図1)に入力され、電子制御ユニット30では出力端子75における電位である出力電圧Eoが検出される。
 電気回路70は電極55,56間の電圧Vsが基準電圧Vrに維持されるように電極55,56間に電圧を印加し、このとき電極55,56間に電流Ipが流れる。この場合、出力電圧Eoは次式(1)で表される。
   Eo=Vr+Vo+Ip・R   (1)
 式(1)は次式(2)のように書き換えられる。
   Ip=(Eo-Vr-Vo)/R   (2)
 図3に示される実施例では出力電圧Eoが検出され、式(2)を用いて出力電流Ipが求められる。別の実施例では出力電流Ipが直接的に検出される。なお、図3において、EおよびRiは固体電解質体54の起電力および内部抵抗をそれぞれ示している(Vs=E+Ip・Ri)。
 また、下流側センサ27dはセンサ素子51のインピーダンスを検出する回路も備えている。センサ素子51のインピーダンスはセンサ素子51ないし下流側センサ27dの温度を表している。
 さて、上述したように排気ガス側電極55には排気ガスが接触する。このため、排気ガス側電極55では排気ガス中のHC,COが酸素と反応する。その結果、電極55,56間に電流Ipが流れる。
 図4は空燃比を理論空燃比に維持したときの下流側センサ27dの電極間電圧Vsと出力電流Ipとの関係を示している。図4からわかるように、電極間電圧Vsを増加させていくと出力電流Ipは増大し続ける。
 ところで、固体電解質体と、固体電解質体の一側に設けられ排気ガスに接触される排気ガス側電極と、固体電解質体の他側に設けられ基準ガスに接触される基準ガス側電極と、これら電極間に電圧を印加する電気回路と、排気ガス側電極を覆う拡散律速層と、を備えるリニア特性空燃比センサが公知である。図5は空燃比を理論空燃比に維持したときのリニア特性空燃比センサの出力電流Ip’と電極間電圧Vs’との関係を示している。図5に示されるように、電極間電圧Vs’が低いときには電極間電圧Vs’が増加するにつれて出力電流Ip’は増加する。電極間電圧Vs’が更に増加すると出力電流Ip’はほぼ一定になる。電極間電圧Vs’が更に増加すると電極間電圧Vs’が増加するにつれて出力電流Ip’は増加する。図5において出力電流Ip’がほぼ一定になる電圧領域は限界電流領域LCと称されている。このように出力電流Ip’が限界電流領域LCを有するのは、排気ガス側電極への排気ガスの拡散が拡散律速層により律速されるからである。出力電流Ip’が限界電流領域LCを有する場合には空燃比センサの応答性が低下し、出力電流Ip’がヒステリシスを有するおそれがある。
 これに対し、本発明による実施例の下流側センサ27dの出力電流Ipは図4に示されるように限界電流領域を有していない。これは、本発明による実施例の下流側センサ27dが拡散律速層を備えていないからである。その結果、下流側センサ27dの応答性が高められる。しかも、上述したように電極55,56間に基準電圧Vrが印加されるので、排気ガス側電極55での反応が促進される。その結果、出力電流Ipはヒステリシスを有さない。従って、空燃比を正確に検出することができる。
 なお、本発明による実施例の下流側センサ27dのコーティング層58は、出力電流Ipが限界電流領域を有さないように形成される点で、リニア特性空燃比センサの拡散律速層と構成を異にする。具体的には、コーティング層58は例えばリニア特性空燃比センサの拡散律速層よりも大きな気孔率を有している。
 本発明では、電極間電圧Vsにおける出力電流IpをIp(Vs)で表したときに、(Ip(0.7ボルト)-Ip(0.45ボルト))/Ip(0.45ボルト)<0.05かつ|Ip(0.2ボルト)-Ip(0.45ボルト))|/Ip(0.45ボルト)<0.05のときに出力電流が限界電流領域を有していると判断される。これに対し、(Ip(0.7ボルト)-Ip(0.45ボルト))/Ip(0.45ボルト)≧0.05又は|Ip(0.2ボルト)-Ip(0.45ボルト))|/Ip(0.45ボルト)≧0.05のときには出力電流が限界電流領域を有していないと判断される。
 図6は本発明による実施例の下流側センサ27dの種々の空燃比における出力電流Ipと電極間電圧Vsとの関係を示している。図6において、曲線Ca,Cb,Cc,Cd,Ce,Cf,Cg,Ch,Ciはそれぞれ空燃比が12,13,14,理論空燃比(14.6),15,18,25,40に維持された場合の出力電流Ipを示している。また、曲線Cjは排気ガス側電極55に大気が接触された場合の出力電流Ipを示している。図6からわかるように、空燃比が大きくなるにつれて出力電流Ipが大きくなる。
 図7は本発明による実施例の下流側センサ27dにおいて電極間電圧Vsが基準電圧Vrに維持されている場合の空燃比AFと出力電流Ipとの関係を示している。図7からわかるように、空燃比AFが大きくなるにつれて出力電流Ipは大きくなる。また、空燃比AFが基準空燃比のときに出力電流Ipは基準電流Is(>0)となる。なお、図7に示される例では基準空燃比が理論空燃比とされている。
 このように下流側センサ27dの出力電流Ipから排気ガス中の酸素濃度又は空燃比を検出できる。そこで本発明による実施例では、出力電流Ipが基準電流Isよりも小さいときに空燃比AFが理論空燃比AFSよりも小さい、即ち理論空燃比AFSよりもリッチであると判断され、出力電流Ipが基準電流Isよりも大きいときに空燃比AFが理論空燃比AFSよりも大きい、即ち理論空燃比AFSよりもリーンであると判断される。
 その上で、この判断結果に基づいて空燃比が制御される。例えば、下流側センサ27dの出力電流Ipに基づき空燃比AFが理論空燃比AFSよりも小さいと判断されたときには、空燃比AFが大きくなるように制御される。一方、下流側センサ27dの出力電流Ipに基づき空燃比AFが理論空燃比AFSよりも大きいと判断されたときには、空燃比AFが小さくなるように制御される。この例では、空燃比AFは理論空燃比AFS、即ち基準空燃比を目標値として制御されることになる。なお、空燃比AFは例えば燃料噴射量又は吸入空気量を制御することにより制御される。
 なお、基準電圧Vrは、基準空燃比近傍において空燃比AFに対する出力電流Ipの変化が大きくなるように設定される。このようにすると、空燃比AFが基準空燃比よりも小さいか大きいかをより正確に検出することができる。
 図8は上述の空燃比制御を実行するルーチンを示している。図8を参照すると、ステップ101では下流側センサ27dの出力電流Ipが基準電流Isよりも小さいか否かが判別される。Ip<Isのときにはステップ102に進み、空燃比が大きくなるように制御される。Ip≧Isのときにはステップ103に進み、空燃比が小さくなるように制御される。
 次に、本発明による別の実施例を説明する。以下では図1から図8に示される実施例との差異について説明する。
 図9Aは下流側センサ27dの温度が比較的低いときの出力電流Ipを、図9Bは下流側センサ27dの温度が比較的高いときの出力電流Ipを示している。図9Aおよび図9Bからわかるように、下流側センサ27dの温度が高くなると、出力電流Ipが高くなる。このため、一定の基準電流Isに基づいて空燃比を検出すると、誤検出するおそれがある。
 そこで、本発明による別の実施例では、基準電流Isが下流側センサ27dの温度Tsに基づいて設定される。具体的には、図10に示されるように下流側センサ27dの温度Tsが高くなるにつれて基準電流Isが大きくなるように設定される。その結果、下流側センサ27dの温度Tsに関わらず、空燃比を正確に検出することができ、従って空燃比を正確に制御することができる。なお、基準電流Isは図10に示すマップの形で予めROM32内に記憶されている。
 図11は本発明による別の実施例の空燃比制御を実行するルーチンを示している。図11を参照すると、ステップ100aでは下流側センサ27dの温度Tsが検出される。続くステップ100bでは図10のマップから基準電流Isが算出される。続くステップ101では下流側センサ27dの出力電流Ipが基準電流Isよりも小さいか否かが判別される。Ip<Isのときにはステップ102に進み、空燃比が大きくなるように制御される。Ip≧Isのときにはステップ103に進み、空燃比が小さくなるように制御される。
 次に、本発明による更に別の実施例を説明する。以下では図1から図8に示される実施例との差異について説明する。
 上述の実施例では、基準電流Isが正値となるように基準電圧Vrが設定されている。これに対し、本発明による更に別の実施例では、基準電流Isがゼロとなるように基準電圧Vrが設定される。このようにすると、検出誤差が小さくなる。
 図12Aは下流側センサ27dの温度Tsが比較的低いときの出力電流Ipと電極間電圧Vsとの関係を、図12Bは下流側センサ27dの温度が比較的高いときの出力電流Ipと電極間電圧Vsとの関係を示している。図12Aおよび図12Bからわかるように、下流側センサ27dの温度が高くなると、出力電流Ipがゼロになる基準電圧Vrが低くなる。このため、一定の基準電圧Vrを印加しながら検出された出力電流Ipに基づいて空燃比を検出すると、誤検出するおそれがある。
 そこで、本発明による更に別の実施例では、基準電圧Vrが下流側センサ27dの温度Tsに基づいて設定される。具体的には、図13に示されるように下流側センサ27dの温度Tsが高くなるにつれて基準電圧Vrが低くなるように設定される。その結果、下流側センサ27dの温度Tsに関わらず、空燃比を正確に検出することができ、従って空燃比を正確に制御することができる。なお、基準電圧Vrは図13に示すマップの形で予めROM32内に記憶されている。
 図14は本発明による更に別の実施例の基準電圧制御を実行するルーチンを示している。図14を参照すると、ステップ200aでは下流側センサ27dの温度Tsが検出される。続くステップ100bでは図13のマップから基準電圧Vrが算出される。下流側センサ27dでは、電極間電圧Vsがこのようにして算出された基準電圧Vrに維持される。
 1  機関本体
 22  排気マニホルド
 24,26  排気管
 23a,25a  三元触媒
 27u,27d  酸素濃度又は空燃比を検出するためのセンサ
 54  固体電解質体
 55  排気ガス側電極
 56  基準ガス側電極
 70  電気回路

Claims (9)

  1.  固体電解質体と、固体電解質体の一側に設けられ排気ガスに接触される排気ガス側電極と、固体電解質体の他側に設けられ基準ガスに接触される基準ガス側電極と、これら電極間に基準電圧を印加する電気回路と、を備える、排気ガス中の酸素濃度又は空燃比を検出するためのセンサを機関排気通路内に配置し、該酸素濃度又は空燃比を検出するためのセンサは、空燃比が一定のときに電極間に印加される電圧を増加させていくと出力電流が限界電流領域を有することなく増大し続ける特性を有し、酸素濃度又は空燃比を検出するためのセンサの出力電流に基づいて空燃比を制御する、内燃機関の制御装置。
  2.  酸素濃度又は空燃比を検出するためのセンサは空燃比が大きくなるにつれて出力電流が増大する特性を有する、請求項1に記載の内燃機関の制御装置。
  3.  出力電流が基準空燃比に対応する基準電流よりも小さいときに空燃比が基準空燃比よりも小さいと判断され、出力電流が基準電流よりも大きいときに空燃比が基準空燃比よりも大きいと判断され、判断結果に基づいて空燃比が制御される、請求項2に記載の内燃機関の制御装置。
  4.  酸素濃度又は空燃比を検出するためのセンサの温度に基づいて基準電流が設定される、請求項3に記載の内燃機関の制御装置。
  5.  酸素濃度又は空燃比を検出するためのセンサの温度が高くなるにつれて基準電流が大きく設定される、請求項4に記載の内燃機関の制御装置。
  6.  基準空燃比が理論空燃比である、請求項3から5までのいずれか一項に記載の内燃機関の制御装置。
  7.  基準電流が正値になるように基準電圧が設定される、請求項3から6までのいずれか一項に記載の内燃機関の制御装置。
  8.  基準電流がゼロになるように基準電圧が設定される、請求項3から6までのいずれか一項に記載の内燃機関の制御装置。
  9.  基準ガスが大気である、請求項1から8までのいずれか一項に記載の内燃機関の制御装置。
PCT/JP2013/064524 2013-02-18 2013-05-24 内燃機関の制御装置 WO2014125661A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13875143.3A EP2957904B1 (en) 2013-02-18 2013-05-24 Device for controlling an internal combustion engine
US14/441,681 US10408149B2 (en) 2013-02-18 2013-05-24 Control device for internal combustion engine
KR1020157011289A KR101734737B1 (ko) 2013-02-18 2013-05-24 내연 기관의 제어 시스템
BR112015011401A BR112015011401A2 (pt) 2013-02-18 2013-05-24 dispositivo de controle para motor de combustão interna
CN201380058124.9A CN105164525B (zh) 2013-02-18 2013-05-24 内燃机的控制装置
RU2015117035/28A RU2603997C1 (ru) 2013-02-18 2013-05-24 Устройство управления для двигателя внутреннего сгорания

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013029168A JP5440724B1 (ja) 2013-02-18 2013-02-18 内燃機関の制御装置
JP2013-029168 2013-12-12

Publications (1)

Publication Number Publication Date
WO2014125661A1 true WO2014125661A1 (ja) 2014-08-21

Family

ID=50396744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064524 WO2014125661A1 (ja) 2013-02-18 2013-05-24 内燃機関の制御装置

Country Status (8)

Country Link
US (1) US10408149B2 (ja)
EP (1) EP2957904B1 (ja)
JP (1) JP5440724B1 (ja)
KR (1) KR101734737B1 (ja)
CN (1) CN105164525B (ja)
BR (1) BR112015011401A2 (ja)
RU (1) RU2603997C1 (ja)
WO (1) WO2014125661A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6562047B2 (ja) * 2017-08-10 2019-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205350A (ja) * 1984-03-05 1985-10-16 本田技研工業株式会社 未知ガスの酸素含有量を測定する方法及び装置
JPS61164148A (ja) * 1985-01-16 1986-07-24 Japan Electronic Control Syst Co Ltd 酸素センサ素子
JPS6287846A (ja) * 1985-10-14 1987-04-22 Hitachi Ltd 内燃機関制御装置
JPH02102447A (ja) * 1988-10-11 1990-04-16 Hitachi Ltd エンジンの空燃比制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2000241383A (ja) * 1999-02-19 2000-09-08 Denso Corp ガス濃度検出装置
JP2006291893A (ja) 2005-04-13 2006-10-26 Toyota Motor Corp 酸素センサ及び空燃比制御システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2649272C2 (de) * 1976-05-22 1986-04-03 Robert Bosch Gmbh, 7000 Stuttgart Regelverfahren und Gemischverhältnisregeleinrichtung zur Bestimmung der Verhältnisanteile eines einer Brennkraftmaschine zugeführten Kraftstoff-Luftgemisches
JPS5820379B2 (ja) * 1976-12-28 1983-04-22 日産自動車株式会社 空燃比制御装置
US4212066A (en) * 1978-06-22 1980-07-08 The Bendix Corporation Hybrid electronic control unit for fuel management systems
JPS56122950A (en) * 1980-03-03 1981-09-26 Nissan Motor Co Ltd Supplying circuit for controlling current for oxygen partial pressure on reference pole for oxygen sensor element
US4566419A (en) * 1983-08-20 1986-01-28 Nippondenso Co., Ltd. Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
JPS6086457A (ja) * 1983-10-19 1985-05-16 Hitachi Ltd エンジン制御用空燃比センサ
JPS62145161A (ja) 1985-12-19 1987-06-29 Sanyo Electric Co Ltd 酸素センサ
JPH0413961A (ja) 1990-05-07 1992-01-17 Toyota Motor Corp 空燃比検出装置
JP2880273B2 (ja) * 1990-08-20 1999-04-05 株式会社日本自動車部品総合研究所 酸素濃度検出装置
JP3467808B2 (ja) * 1992-12-02 2003-11-17 株式会社デンソー 酸素濃度判定装置
DE4340875A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Sauerstoffmeßfühler
JP3711582B2 (ja) * 1995-03-31 2005-11-02 株式会社デンソー 酸素濃度検出装置
JP2812247B2 (ja) * 1995-06-01 1998-10-22 トヨタ自動車株式会社 空燃比センサの活性状態判定装置
JP3684686B2 (ja) * 1995-12-18 2005-08-17 株式会社デンソー 酸素濃度判定装置
RU2092827C1 (ru) * 1995-12-29 1997-10-10 Государственное предприятие Техноцентр "Лазерная диагностика и чистые технологии" Научно-исследовательского и конструкторского института энерготехники Устройство для измерения парциального давления кислорода и способ его изготовления
JPH09196889A (ja) 1996-01-16 1997-07-31 Toyota Motor Corp 空燃比検出装置
US6055972A (en) * 1996-07-04 2000-05-02 Denso Corporation Air fuel ratio control apparatus having air-fuel ratio control point switching function
US6382015B1 (en) 1998-06-11 2002-05-07 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio sensor resistance detecting apparatus
JP3646566B2 (ja) 1998-06-11 2005-05-11 トヨタ自動車株式会社 空燃比センサの抵抗検出装置
JP2000111512A (ja) 1998-10-02 2000-04-21 Fujikura Ltd 限界電流式酸素センサの駆動方法
US6440283B1 (en) 1998-12-02 2002-08-27 Georgia Tech Research Corporation Oxygen sensor and emission control system
JP2002022699A (ja) 2000-07-07 2002-01-23 Unisia Jecs Corp 空燃比センサの素子温度推定装置
JP4595264B2 (ja) * 2000-10-05 2010-12-08 株式会社デンソー 酸素センサ素子及びその製造方法
CN100416268C (zh) 2003-09-01 2008-09-03 丰田自动车株式会社 废气传感器控制装置
JP4805734B2 (ja) 2006-06-27 2011-11-02 日本特殊陶業株式会社 センサ素子劣化判定装置およびセンサ素子劣化判定方法
JP4725481B2 (ja) 2006-10-16 2011-07-13 トヨタ自動車株式会社 空燃比制御装置
JP2009121401A (ja) 2007-11-16 2009-06-04 Toyota Motor Corp 内燃機関の排気温度推定装置に関する。
JP4974936B2 (ja) * 2008-03-05 2012-07-11 日本特殊陶業株式会社 ガスセンサ素子の検査方法
JP5166354B2 (ja) * 2009-06-05 2013-03-21 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP5360312B1 (ja) * 2013-01-29 2013-12-04 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205350A (ja) * 1984-03-05 1985-10-16 本田技研工業株式会社 未知ガスの酸素含有量を測定する方法及び装置
JPS61164148A (ja) * 1985-01-16 1986-07-24 Japan Electronic Control Syst Co Ltd 酸素センサ素子
JPS6287846A (ja) * 1985-10-14 1987-04-22 Hitachi Ltd 内燃機関制御装置
JPH02102447A (ja) * 1988-10-11 1990-04-16 Hitachi Ltd エンジンの空燃比制御装置
JPH1082760A (ja) * 1996-07-19 1998-03-31 Denso Corp 空燃比制御方法
JP2000241383A (ja) * 1999-02-19 2000-09-08 Denso Corp ガス濃度検出装置
JP2006291893A (ja) 2005-04-13 2006-10-26 Toyota Motor Corp 酸素センサ及び空燃比制御システム

Also Published As

Publication number Publication date
CN105164525B (zh) 2018-01-19
KR101734737B1 (ko) 2017-05-11
KR20150056662A (ko) 2015-05-26
RU2603997C1 (ru) 2016-12-10
BR112015011401A2 (pt) 2017-07-11
JP2014156846A (ja) 2014-08-28
CN105164525A (zh) 2015-12-16
US20150337752A1 (en) 2015-11-26
JP5440724B1 (ja) 2014-03-12
US10408149B2 (en) 2019-09-10
EP2957904B1 (en) 2021-08-04
EP2957904A1 (en) 2015-12-23
EP2957904A4 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP4609545B2 (ja) ガスセンサの信号処理装置
KR101781278B1 (ko) 내연 기관의 제어 장치
WO2014118889A1 (ja) 内燃機関の制御装置
EP2442099B1 (en) Gas concentration measuring apparatus designed to compensate for output error
JP5981398B2 (ja) 内燃機関のSOx濃度検出装置
US20220113280A1 (en) Gas sensor
US8418439B2 (en) NOx sensor ambient temperature compensation
JPWO2011016145A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
CN110672698A (zh) 气体传感器及传感器元件
JP2020008558A (ja) ガスセンサ
US8452521B2 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for an internal combustion engine
JP2005121003A (ja) 空燃比センサの異常検出装置
WO2017212950A1 (ja) ガスセンサ制御装置
JP5440724B1 (ja) 内燃機関の制御装置
JP6562047B2 (ja) 内燃機関の排気浄化装置
WO2014118888A1 (ja) 内燃機関の制御装置
JP2007248113A (ja) ガス濃度検出装置
JP5459513B2 (ja) 内燃機関の空燃比制御装置
JP6455389B2 (ja) センサ制御装置
JP2019105187A (ja) 触媒劣化検出装置
JP2010203787A (ja) 酸素センサの故障診断装置
JP2020197201A (ja) 空燃比検出システム
JP2004245843A (ja) 酸素濃度検出装置
JP4196794B2 (ja) 内燃機関の空燃比検出装置
JP6734019B2 (ja) 下流側空燃比センサの異常診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380058124.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011289

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013875143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441681

Country of ref document: US

Ref document number: IDP00201502777

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015011401

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015117035

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015011401

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150518