WO2014123265A1 - 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법 및 이를 통해 제조된 나노 이산화망간(cmd) - Google Patents

재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법 및 이를 통해 제조된 나노 이산화망간(cmd) Download PDF

Info

Publication number
WO2014123265A1
WO2014123265A1 PCT/KR2013/001049 KR2013001049W WO2014123265A1 WO 2014123265 A1 WO2014123265 A1 WO 2014123265A1 KR 2013001049 W KR2013001049 W KR 2013001049W WO 2014123265 A1 WO2014123265 A1 WO 2014123265A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese dioxide
cmd
nano
secondary battery
mixture
Prior art date
Application number
PCT/KR2013/001049
Other languages
English (en)
French (fr)
Inventor
박선민
노광철
김성욱
조해란
Original Assignee
한국세라믹기술원
한창산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 한창산업 주식회사 filed Critical 한국세라믹기술원
Publication of WO2014123265A1 publication Critical patent/WO2014123265A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing nano manganese dioxide (CMD) for a secondary battery cathode material using a recycling process and to nano manganese dioxide (CMD) manufactured by the same, and more specifically, to heat treatment of industrial manganese carbonate (MnCO 3 ).
  • CMD nano manganese dioxide
  • MnCO 3 industrial manganese carbonate
  • manganese dioxide (CMD) used as a precursor of the secondary battery cathode material is first prepared by homogeneous crystal growth on the surface of nano manganese dioxide (CMD1), where the powdery primary
  • CMD1 nano manganese dioxide
  • CMD2 and CMD3 secondary and tertiary manganese dioxide
  • the yield of manganese dioxide per unit time in the whole reaction process can be improved. It is also possible to mass-produce the manganese dioxide and to use it as a precursor of the cathode material of a lithium secondary battery.
  • lithium manganese oxide has attracted attention as a cathode material of a high output lithium secondary battery such as a hybrid electric vehicle or a power supply device for heavy equipment.
  • Lithium manganese oxide has relatively good characteristics in terms of battery characteristics, stability, and economy, and thus has a relatively low battery capacity compared to other materials such as lithium cobalt oxide. It is evaluated as a good candidate.
  • methods such as surface coating of lithium manganese oxide and addition of metal components It's going on. Many methods for improving the properties of such lithium manganese oxide include attempts to improve battery characteristics using various precursors of lithium manganese oxide.
  • CMD manganese dioxide
  • EMD electrochemical treatment
  • CMD chemical manganese dioxide
  • CMD lithium manganese oxide prepared using such manganese dioxide
  • the characteristic of manganese dioxide (CMD) is that it is easier to control particle size, particle shape, purity of manganese dioxide and manganese oxide than manganese dioxide (EMD) obtained by electrochemical treatment.
  • the manufacturing method of manganese dioxide (CMD) includes a solid phase method for producing a heat treatment of manganese carbonate and a liquid phase method using the oxidation-reduction reaction of various manganese salts such as sol-gel, precipitation method.
  • the solid phase method has a disadvantage in that it is difficult to control the size and shape of the product particles and the oxidation number of manganese as in manganese dioxide (EMD) obtained by using an electrochemical treatment, and the liquid phase method takes a long reaction time, and a mass production process. There is an unsuitable disadvantage.
  • the proposed commercial process has prepared CMD using active manganese dioxide (Active-MnO 2 ) as a catalyst for the reaction. Due to the catalytic action of Active-MnO 2 , CMD can be produced in a high yield even at a relatively low acid concentration, low reaction temperature and short reaction time in the above reaction.
  • a homogeneous nanoCMD is synthesized in a short time using nano manganese dioxide seeds using industrial manganese carbonate, and CMD Isolate and reuse the remaining reaction filtrate to prepare CMD continuously to improve the production of CMD per unit time.
  • CMD1 synthesis In the first step of the recycling reaction (CMD1 synthesis), more homogeneous powdered manganese dioxide seeds, from which impurities are removed by acid treatment, are added to the reaction solution in which manganese ions with various oxidation numbers are present, Manganese ions are oxidized to Mn 4+ by the addition of oxidant at a constant temperature and time to form CMD1.
  • the CMD1 thus produced undergoes homogeneous crystal growth on the surface of the added manganese dioxide seed.
  • the final product, CMD1 is separated into a powder form through a filter, and the reaction filtrate separated into a liquid phase is recycled and introduced into the reactor to prepare CMD2 and CMD3.
  • the recycled filtrate contains sulfuric acid necessary for this reaction, and only the minimum raw materials (manganese dioxide seed, sodium chlorate; NaClO 3 ,) necessary to obtain the final CMD are added to the reaction filtrate.
  • the minimum raw materials manganesese dioxide seed, sodium chlorate; NaClO 3 ,
  • the present invention has been made in view of the above-mentioned conventional problems and circumstances, and its purpose is to heat-process industrial manganese carbonate to produce powdered manganese dioxide seeds in consideration of economic feasibility, and then, the primary manganese particles are nano-sized. Pulverized with manganese dioxide seed of phosphorus nano powder, acid-treated, made into more homogeneous powder form of manganese dioxide without impurities, and then manganese dioxide (CMD) used as a precursor of secondary battery cathode material is homogeneous on the surface of nano manganese dioxide seed.
  • CMD manganese dioxide
  • CMD1 powdery primary manganese dioxide
  • CMD2 and CMD3 secondary and tertiary manganese dioxide
  • the yield of manganese dioxide in the entire reaction process can be improved, and also the mass production of manganese dioxide can be performed.
  • Nano manganese dioxide for secondary battery positive electrode material using a recycling process that can be used as a precursor of the positive electrode material of the lithium secondary battery, and to further improve the charging and discharging efficiency of the lithium secondary battery using the positive electrode material ( CMD) to provide a manufacturing method.
  • the present invention is to provide a nano manganese dioxide (CMD) that can be used as an excellent precursor of a lithium secondary battery through a high yield of nano manganese dioxide (CMD) prepared as described above.
  • CMD nano manganese dioxide
  • the present invention in the manufacturing method of nano-manganese dioxide (CMD) for secondary battery positive electrode material using a recycling process,
  • step b) a plurality of ceramic balls for friction milling of the manganese dioxide seed produced in step a) with respect to 20-30 wt% of manganese dioxide in an attrition mill grinder; Pulverizing 62 wt% and distilled water by 8-18 wt%, drying the pulverized product from which the ceramic balls are removed, and preparing powdered manganese dioxide seeds;
  • step e) mixing and stirring the mixture of step e) with the mixture of step f) at a constant temperature, and then separating the mixture into CMD1 and the reaction filtrate firstly in a solid-liquid separator;
  • step i) recycling the reaction filtrate separated in the solid-liquid separation process of step h) to the filtrate of step h) again, and mixing the mixture of step c) and e) again in the recycled reaction filtrate at a constant temperature and After stirring, the solid-liquid separation of the CMD 3 and the reaction filtrate in the solid-liquid separator in the third; by preparing a method for producing manganese dioxide for a secondary battery positive electrode material using a recycling process characterized in that it is prepared.
  • the present invention is the manganese dioxide seed in the process of step b) is pulverized at 500rpm for 12 hours in an attrition mill grinder, the manganese dioxide seed pulverized in the process of step b) is dried at an oven temperature of 80 °C It is characterized by.
  • manganese dioxide in the process of step c) The mixing ratio of seed and sulfuric acid is crushed manganese dioxide Sulfuric acid 76 ⁇ 82wt% relative to the seed 18 ⁇ 24wt%, the temperature inside the stirrer in the process of step c) is made of 95 °C, the manganese dioxide Seed and sulfuric acid are characterized by mixing for 30 minutes in a stirrer.
  • the present invention is the mixing ratio of manganese sulfate and distilled water in the process of step d) is made of 90 ⁇ 95 wt% of distilled water with respect to 5 to 10 wt% of manganese sulfate, the inside of the stirrer in the process of d) The temperature is made of 95 °C, characterized in that the manganese sulfate and distilled water is mixed for 10 minutes in a stirrer.
  • the mixing ratio of sodium chlorate and distilled water in the process of step e) is mixed at a ratio of 70 to 80 wt% of distilled water with respect to 20-30 wt% of sodium chlorate, the temperature inside the stirrer in the process of step e) Consisting of 95 °C, the sodium chlorate and distilled water is mixed for 10 minutes in a stirrer.
  • potassium chlorate (KClO 3 ) instead of sodium chlorate (NaClO 3 ) which is mixed and mixed with 70 to 80wt% of distilled water in the process of step e), potassium chlorate (KClO 3 ), hydrogen peroxide (H 2 O 2 ), sodium persulfate (Na 2 S 2 O 8), and ammonium persulfate [(NH 4) 2 S 2 O 8], potassium persulfate (K 2 S 2 O 8) may be selected.
  • the present invention is a mixture of steps c) and d) in step f) is mixed at a temperature of 95 °C, the mixed mixture of step f) Mn 2 of nano-sized manganese dioxide seed particles and manganese sulfate + Is characterized by the presence of ions.
  • step g) is manganese dioxide of step c)
  • the mixture is stirred and mixed in the process of step g) is manganese dioxide of step c)
  • 46 wt% of the manganese sulfate and distilled water mixture of step d) and 28 wt% of the sodium chlorate and distilled water mixture of step e) were mixed, and the mixture of step g) was heated to a temperature of 95 ° C.
  • step e After mixing for 5 minutes, when the sodium chlorate mixture of step e) is added, sodium chlorate acts as an oxidizer and Mn of manganese sulfate in the reaction base material 2+ As the ions are oxidized, CMD is homogenously grown on the nano manganese dioxide seed, and CMD can be obtained with a yield of about 95% or more.
  • reaction filtrate separated in the solid-liquid separation process of steps h) and i) is recycled back to the reaction mother liquor of each step, and the mixture of steps c) and e) is again inside the recycled reaction mother liquor at a constant temperature.
  • the solid-liquid separation into CMD2 and CMD3 and the reaction filtrate in a solid-liquid separator is characterized in that the solid-liquid separation into CMD2 and CMD3 and the reaction filtrate in a solid-liquid separator.
  • the present invention is characterized in that the CMD has a particle size of 0.1 to 0.2 ⁇ m and is formed in a rod shape on the manganese dioxide seed.
  • a method for manufacturing a nano-manganese dioxide (CMD) for a cathode material using a recycling process and a nano-manganese dioxide (CMD) prepared by the same after heat-treating industrial manganese carbonate to produce powdered manganese dioxide seed, the seed of the manganese dioxide first
  • the particles are pulverized with nano-sized manganese dioxide seeds of nano-powder, and acid-treated to prepare manganese dioxide seeds in a more homogeneous powder form in which impurities are removed, and then manganese dioxide (CMD), which is used as a precursor of the secondary battery cathode material, is nano-manganese dioxide.
  • CMD nano manganese dioxide
  • Figure 2 is the particle size distribution of the primary manganese dioxide (CMD1) and secondary and tertiary manganese dioxide (CMD2 and CMD3) produced sequentially through the recycling process of the present invention.
  • FIG. 3 is a schematic diagram of a reactor used in the method for producing nano manganese dioxide (CMD) for the secondary battery cathode material using the recycling process according to the present invention.
  • CMD nano manganese dioxide
  • 4A, 4B and 4C are electron micrographs of secondary and tertiary manganese dioxides (CMD2 and CMD3) sequentially prepared through a recycling process with primary manganese dioxide (CMD1) of the present invention.
  • FIG. 5 is a graph showing X-ray diffraction (XRD) patterns of secondary and tertiary manganese dioxides (CMD2 and CMD3) sequentially prepared through a recycling process with primary manganese dioxide (CMD1) of the present invention.
  • XRD X-ray diffraction
  • LiMn2O4 lithium-manganese oxide
  • CMD1 primary and secondary manganese dioxide
  • CMD2 and CMD3 secondary and tertiary manganese dioxide
  • FIG. 7A to 7C illustrate a secondary and tertiary manganese dioxide (CMD2 and CMD3) that are sequentially manufactured through a primary manganese dioxide (CMD1) and a recycling process of the present invention, using lithium secondary batteries to discharge capacity according to voltage.
  • Curve graph showing specific capacity.
  • FIG. 8A, 8B, and 8C illustrate lithium secondary batteries prepared by sequentially manufacturing secondary manganese dioxide (CMD1) and secondary and tertiary manganese dioxides (CMD2 and CMD3) sequentially manufactured through a recycling process of the present invention. Life characteristics graph showing discharge capacity according to the number of charge and discharge cycles.
  • CMD1 secondary manganese dioxide
  • CMD2 and CMD3 secondary and tertiary manganese dioxides
  • CMD nano manganese dioxide
  • CMD nano-manganese dioxide
  • a secondary battery cathode material using a recycling process according to the present invention
  • the manganese dioxide seeds produced in the step a) a plurality of ceramic balls for friction milling with respect to the manganese dioxide seeds 10 ⁇ 13wt% in an attribution mill grinder 67 wt% and 10 to 20wt% of distilled water are mixed and pulverized, and the pulverized product from which the ceramic ball is removed is dried to prepare a powdery nano-sized manganese dioxide seed, and c) the pulverized manganese dioxide using a stirrer.
  • step e) The mixture of step e) is mixed and stirred at a constant temperature, and then subjected to a solid-liquid separation process with the primary nano manganese dioxide (CMD1) and the reaction filtrate in a solid-liquid separator, and the reaction filtrate separated from the solid-liquid separated in step g) is h)
  • Manganese dioxide of step c) with respect to 63wt% of the reaction filtrate at a predetermined temperature in step 18 wt% of the seed and sulfuric acid mixtures and 19 wt% of the sodium chlorate and distilled water mixtures of step e) are mixed and stirred at a constant temperature, and then the solid solution is reacted with secondary nano manganese dioxide (CMD2) in a solid-liquid separator.
  • CMD2 primary nano manganese dioxide
  • the reaction filtrate separated from the solid-liquid separation in the solid-liquid separation process of step h) is recycled to the reaction mother liquor of step h) again in step i), and the steps c) and e again inside the recycled reaction filtrate.
  • CMD3 tertiary nano manganese dioxide
  • step a) the industrial manganese carbonate is heated to 5 ° C / min from 300 to 450 ° C in an air atmosphere in an electric furnace, and then heated to maintain the temperature for 30 minutes to 15 hours.
  • manganese carbonate is converted to CO 2 and removed, and manganese is oxidized to form manganese dioxide seeds.
  • the heating temperature of the industrial manganese carbonate is 300 ° C. or less, it is difficult to remove the carbonate.
  • the heating temperature of the industrial manganese carbonate is 450 ° C. or higher, Mn 3 O 4 is generated by the high temperature, which is nano-manganese dioxide (CMD).
  • CMD nano-manganese dioxide
  • the manganese dioxide seeds produced in step a) are ceramic balls having diameters of different sizes for grinding against 10 to 13 wt% of manganese dioxide seeds in an attrition mill grinder. 67t% and 10-20 wt% of distilled water are mixed, and it grind
  • the manganese dioxide seeds when the manganese dioxide seeds are mixed at 10 wt% or less with respect to the ceramic balls and distilled water, the manganese dioxide may not be pulverized properly by distilled water mixed with the manganese dioxide seeds, and the manganese dioxide may be mixed with the ceramic balls.
  • the manganese dioxide seed In the case of mixing at 13 wt% or more with distilled water, since the grinding effect of the powder is reduced by aggregation between particles, it is preferable to mix the manganese dioxide seed with 10 to 13 wt% with respect to the ceramic ball and distilled water.
  • the manganese dioxide seeds pulverized as described above are dried at a temperature of 80 ° C. in an oven after removing the ceramic balls, and are obtained as nano powder manganese dioxide seeds.
  • sulfuric acid 76 ⁇ 82 wt with respect to 18 ⁇ 24wt% manganese dioxide seed in the step c) % Is added to the stirrer and mixed for 30 minutes at a speed of about 300 rpm while maintaining the temperature inside the stirrer at 95 °C.
  • the crushed manganese dioxide seed is 18wt% or less, the manganese dioxide seed is too small in the reaction solution, and it takes a lot of time in the preparation of the nano-manganese dioxide (CMD) from which impurities described later are removed, and the crushed manganese dioxide seed is 24wt% In the above case, the effect of removing impurities of manganese dioxide by sulfuric acid becomes small, which makes it difficult to produce homogeneous manganese dioxide seeds.
  • CMD nano-manganese dioxide
  • step d) a reaction mother liquor containing manganese ions, which is a raw material of manganese oxide, grown on manganese dioxide seeds is prepared.
  • dilute distilled water at a rate of 90 to 95 wt% with respect to 5 to 10 wt% of manganese sulfate and mix for 10 minutes at a speed of about 300 rpm while maintaining the temperature inside the stirrer at 95 ° C.
  • step e) to prepare an oxidant solution for oxidizing the manganese ions present in the reaction mother liquor of step d).
  • dilute distilled water at a rate of 70 to 80 wt% to 20 to 30 wt% of sodium chlorate, and mix for 10 minutes at a speed of about 300 rpm while maintaining the temperature inside the stirrer at 95 ° C.
  • the temperature at which the manganese dioxide seed and sulfuric acid are mixed and stirred, the temperature at which the manganese sulfate is mixed and stirred with distilled water, and the temperature at which sodium chlorate and distilled water are mixed and stirred are kept at 95 ° C, thereby removing impurities described below.
  • the temperature variable in the entire reaction system was controlled by maintaining a constant temperature of 95 ° C. even after the mixtures were mixed together.
  • potassium chlorate (KClO 3 ), hydrogen peroxide (H 2 O 2 ), sodium persulfate (Na 2 S 2 O 8 ), Ammonium persulfate [(NH 4 ) 2 S 2 O 8 ], and potassium persulfate (K 2 S 2 O 8 ) may be mixed.
  • the mixture mixed in the process of step c) and d) and e), respectively, the manganese dioxide seed and sulfuric acid mixture and sulfuric acid produced in the process of step c) and d) in the process of step f) A mixture of manganese and distilled water is mixed inside the mixer. At this time, in the mixture produced in the steps c) and d), the nano-sized manganese dioxide seed particles and Mn 2+ ions of manganese sulfate are present.
  • step g in order to oxidize Mn 2+ as Mn 4+ , in the step g), the mixture of sodium chlorate and distilled water mixed in step e) is added to the mixture mixed in step f). After mixing and stirring at a temperature of 95 ° C. for 5 minutes, it was separated in a solid-liquid separator to prepare primary nanomanganese dioxide (CMD1).
  • CMD1 primary nanomanganese dioxide
  • the composition of the mixture which is mixed and stirred in the process of step g) is 26wt% of the manganese dioxide seed and sulfuric acid mixture of step c), 46wt% of the manganese sulfate and distilled water mixture of step d) and sodium chlorate of step e) And distilled water mixture 28% by weight.
  • sodium chlorate mixture which is the mixture of step e)
  • sodium chlorate acts as an oxidizing agent
  • Mn 2+ of MnSO 4 present in the reaction matrix is oxidized to Mn 4+ on the surface of nano manganese dioxide. Homogeneous crystal growth yields high-purity primary nano manganese dioxide (CMD1).
  • reaction filtrate separated through the separation process using a solid-liquid separator as described above is recycled to the reaction mother liquor in step h), and the manganese dioxide of step c) with respect to 63wt% of the reaction mother liquor.
  • Seed and sulfuric acid mixture 18wt% and e) sodium chlorate and distilled water mixture 19wt% of the mixture was stirred at a temperature of 95 °C for 5 minutes, and then separated through a solid-liquid separator secondary manganese dioxide (CMD2) is prepared.
  • CMD2 solid-liquid separator secondary manganese dioxide
  • reaction filtrate separated in the solid-liquid separation process in step h) is recycled back to the reaction mother solution in step h) in step i), and the manganese dioxide in step c) with respect to 63 wt% of the recycled reaction mother solution.
  • Seed and sulfuric acid mixture 18wt% and e) sodium chlorate and distilled water mixture 19wt% of the mixture was mixed at a ratio of 5 minutes at a temperature of 95 °C and separation through a solid-liquid separator and tertiary nano manganese dioxide (CMD3 ).
  • the particle size of the first ⁇ third CMD (CMD1 ⁇ CMD3) measured by using the nanoparticle size analyzer can be confirmed that the nano-size CMD was prepared as 100 ⁇ 200 nanometers (nm) .
  • CMD2 and CMD3 are sequentially manufactured through a recycling process with primary manganese dioxide (CMD1) of the present invention, and it can be confirmed that CMDs having a relatively constant particle size are manufactured. have.
  • FIG 3 is a schematic diagram of a reactor used in the method for producing nano-manganese dioxide (CMD) for the secondary battery cathode material using the recycling process according to the present invention, the reaction filtrate (sulfuric acid solution) separated by a filter reaction of the reaction using a pump Reactive raw materials (manganese dioxide seeds, sodium chlorate) recycled as the mother liquor and consumed in the reaction are additionally added.
  • CMD nano-manganese dioxide
  • FIGS. 4A, 4B, and 4C are electron micrographs of CMD2 and CMD3 sequentially prepared through a recycling process with CMD1 of the present invention, and the filtrate after reaction with CMD1 as shown in FIGS. 4A, 4B, and 4C.
  • particles having the same shape and size of CMD2 and CMD3 prepared by recycling it can be seen that they are formed in the form of nano-sized rods on the surface of the manganese dioxide seed.
  • FIG. 5 is an X-ray diffraction graph of CMD2 and CMD3 sequentially prepared through a recycling process with CMD1 of the present invention, wherein the X-ray diffraction uses D / Max-2500 manufactured by Rigaku, Japan. It was measured by.
  • CMD1, CMD2, and CMD3 prepared by the present invention all have the same -MnO2 crystal phase.
  • FIG. 6 is an X-ray diffraction graph of lithium-manganese oxide prepared using CMD2 and CMD3 sequentially prepared through recycling process with CMD1 of the present invention, wherein the X-ray diffraction is manufactured by Rigaku, Japan. It measured using D / Max-2500 of the company.
  • lithium-manganese oxides prepared using CMD2 and CMD3 sequentially prepared through recycling process with CMD1 of the present invention are the same as a whole, and show uniform crystal phases of lithium-manganese oxide. You can see.
  • Figure 7a to 7c is a graph showing the discharge capacity (specific capacity) according to the voltage produced by the lithium secondary battery CMD2 and CMD3 sequentially prepared through the recycling process with CMD1 of the present invention
  • Figure 7a In the case of using a cathode material made of CMD1, CMD2, CMD3, etc. of the present invention as shown in Figure 7c, in the charge and discharge test at room temperature (25 °C), the first discharge capacity of the lithium secondary battery is At 112 mAh / g, CMD1, CMD2, and CMD3 all showed similar capacities.
  • FIG. 8A, 8B, and 8C illustrate a discharge capacity according to the number of charge and discharge cycles of a lithium secondary battery by manufacturing CMD2 and CMD3 sequentially manufactured through a recycling process with CMD1 of the present invention, respectively, as a lithium secondary battery.
  • the industrial manganese carbonate was heated to 5 ° C./min from 300 to 450 ° C. in an air atmosphere in an electric furnace, and then heated to maintain the temperature for 30 minutes to 15 hours. In this process, the manganese carbonate was converted to CO 2 and removed, and the manganese was oxidized.
  • the pulverized manganese dioxide seeds were separated from the ceramic balls and dried in an oven at a temperature of 80 ° C., and the primary particles were recovered as nano powder-like manganese dioxide seeds having a nano size.
  • manganese dioxide seed in the nano powder form as a more homogeneous nano powder manganese dioxide seed without impurities
  • 76-82 wt% sulfuric acid was added to the agitator and the temperature inside the stirrer was added to 18-24 wt% manganese dioxide seed.
  • Manganese dioxide seeds were purified by mixing for 30 minutes at a speed of about 300 rpm while maintaining at 95 °C.
  • CMD ultra-fine manganese dioxide
  • a reaction mother liquor containing manganese ions which is a raw material of manganese oxide, grown on manganese dioxide seeds was prepared.
  • the reaction mother liquor was prepared by diluting the manganese sulfate 5 to 10 wt% at a rate of 90 to 95 wt% of distilled water and maintaining the temperature inside the stirrer at 95 ° C. for 10 minutes at a speed of about 300 rpm.
  • an oxidant solution for oxidizing manganese ions present in the reaction mother liquor was prepared. Using a stirrer to dilute 20 ⁇ 30 wt% of sodium chlorate at a rate of 70 ⁇ 80wt% of distilled water, it was mixed for 30 minutes at a speed of about 300rpm while maintaining the temperature inside the stirrer at 95 °C.
  • potassium chlorate (KClO 3 ), hydrogen peroxide (H 2 O 2 ), sodium persulfate (Na 2 S 2 O 8 ), and Any of ammonium sulfate [(NH 4 ) 2 S 2 O 8 ] and potassium persulfate (K 2 S 2 O 8 ) may be mixed.
  • the mixture of the manganese dioxide seed, the sulfuric acid mixture and the reaction mother liquor is injected into the reactor and mixed.
  • nano-sized manganese dioxide seed particles and Mn 2+ ions of manganese sulfate are present in the reactor.
  • the composition of the mixture that is mixed and stirred in the final step is composed of a manganese dioxide seed and a sulfuric acid mixture of 26wt%, a ratio of 46wt% manganese sulfate and distilled water mixture and 28wt% of sodium chlorate and distilled water mixture.
  • sodium chlorate mixture acts as an oxidizing agent, and Mn 2+ of MnSO 4 present in the reaction base material is oxidized to Mn 4+ , homogeneous crystal growth on the surface of nano-manganese dioxide results in high purity CMD. You can get it.
  • the particle shape of the CMD in powder form prepared using the manganese dioxide seed obtained through the chemical treatment of industrial manganese carbonate as described above is rod-shaped, when measured using a nano particle sizer (nano particle sizer), 0.1 ⁇ 0.2 ⁇ m While having a size, it is formed in the form of a rod on the manganese dioxide seed, and the CMD yield at a reaction time of 5 minutes is about 95% or more.
  • reaction filtrate separated through the separation process using the solid-liquid separator as described above was recycled to the reaction mother liquor of step 6, manganese dioxide of step 3 to 63wt% of the reaction mother liquor 18 wt% of the seed and sulfuric acid mixtures and 19 wt% of the sodium chlorate and distilled water mixtures of step 5 were stirred, and then stirred at a temperature of 95 ° C. for 5 minutes, followed by a separation process through a solid-liquid separator to obtain a second CMD (CMD2 ) Was prepared.
  • CMD2 CMD
  • reaction filtrate separated in the solid-liquid separation process of step 7 is recycled back to the reaction mother liquor of step 7, and the manganese dioxide of step 3 with respect to 63wt% of the recycled reaction mother liquor.
  • 18 wt% of the seed and sulfuric acid mixtures and 19 wt% of the sodium chlorate and distilled water mixtures of step 5 were mixed. The mixture was stirred for 5 minutes at a temperature of 95 ° C. and separated through a solid-liquid separator. Prepared.
  • the particle shape of the CMD in powder form prepared using the manganese dioxide seed obtained through the chemical treatment of industrial manganese carbonate as described above is rod-shaped, when measured using a nano particle sizer (nano particle sizer), 0.1 ⁇ 0.2 ⁇ m While having a size, it is formed in the form of a rod on the manganese dioxide seed, and the CMD yield at a reaction time of 5 minutes is about 95% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 공업용 탄산망간(MnCO3)를 열처리 하여 분말상의 이산화망간 종자(seed-MnO2)로 제작한 후, 상기 이산화망간 종자를 1차 입자가 나노 크기(nano size)인 나노분말의 이산화망간 종자로 분쇄하고, 산처리하여, 불순물이 제거된 보다 균질한 분말 형태의 이산화망간 종자로 제조한 후, 이차전지 양극재의 전구체로 사용되는 이산화망간(CMD)을 나노 이산화망간 종자 표면위에 동종결정성장 시켜 1차로 제조한다(CMD1). 이때 분말상의 1차 이산화망간(CMD1)을 얻기 위해 분리된 반응여액(solution)을 재순환시켜, 2차 및 3차 이산화망간(CMD2 및 CMD3)을 제조하기위한 반응모액으로 활용함으로써, 전체 반응공정에서의 이산화망간 수율이 향상될 수 있도록 하며, 또한 상기 이산화망간을 대량생산 할 수 있도록 함은 물론, 리튬이차전지의 양극재의 전구체(前驅體)로서 사용할 수 있도록 하고, 이를 양극재로 사용하는 리튬이차전지의 충,방전 효율이 더욱 향상될 수 있도록 한다.

Description

재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법 및 이를 통해 제조된 나노 이산화망간(CMD)
본 발명은 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(Chemical Manganese Dioxide; CMD)제조방법 및 이를 통해 제조된 나노 이산화망간(CMD)에 관한 것으로 보다 상세하게는, 공업용 탄산망간(MnCO3)를 열처리 하여 분말상의 이산화망간 종자(seed-MnO2)로 제작한 후, 이차전지 양극재의 전구체로 사용되는 이산화망간(CMD)을 나노 이산화망간 종자 표면위에 동종결정성장 시켜 1차로 제조하며(CMD1), 이때 분말상의 1차 이산화망간(CMD1)을 얻고 분리된 반응여액(solution)을 재순환시켜, 2차 및 3차 이산화망간(CMD2 및 CMD3)을 제조하기 위한 반응모액으로 활용함으로써, 전체 반응공정에서의 단위시간당 이산화망간 수율이 향상될 수 있도록 하며, 또한 상기 이산화망간을 대량생산 할 수 있도록 함은 물론, 리튬이차전지의 양극재의 전구체(前驅體)로서 사용할 수 있도록 하고, 이를 양극재로 사용하는 리튬이차전지의 충,방전 효율이 더욱 향상될 수 있도록 한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법 및 이를 통해 제조된 나노 이산화망간(CMD)에 관한 것이다.
최근 들어 리튬망간산화물(Lithium Manganese Oxide; LMO)는 하이브리드 전기 자동차나 중장비의 전원 공급 장치등과 같은 고출력의 리튬이차전지의 양극재 물질로서 주목 받고 있다. 리튬망간산화물은 전지특성과 안정성 그리고 경제성면에서 비교적 좋은 특성을 보이므로, 리튬코발트산화물등과 같은 다른 물질과 비교하여 상대적으로 낮은 전지용량을 가짐에도 불구하고, 고출력 전원용 리튬이차전지의 양극재에 좋은 후보로서 평가 받고 있다. 또한, 하이브리드 전기 자동차 전원용 전지에 적용 되었을 때 치명적인 결점으로 지적되고 있는 리튬망간산화물의 고온에서의 수명 특성과 전기 저장 특성을 개선하기 위해, 리튬망간산화물의 표면 코팅 및 금속 성분의 첨가 등의 방법들이 진행되고 있다. 이러한 리튬망간산화물의 물성을 개선시키기 위한 많은 방법에는 다양한 리튬망간산화물의 전구체를 이용하여 전지 특성을 향상 시키고자 하는 시도가 포함된다.
상업적으로 이용되고 있는 리튬망간산화물의 대부분은 전기화학적 처리를 이용하여 얻어지는 이산화망간(Electrolytic Manganese Dioxide; EMD)를 전구체로 사용하여 제조되고 있다. 그러나 최근에는 화학적인 처리를 이용하여 얻어지는 이산화망간(Chemical Manganese Dioxide; CMD)를 전구체로 이용하고자 하는 시도가 있으며, 실질적으로, 이러한 이산화망간(CMD)을 이용하여 제조된 리튬망간산화물을 양극재로 사용 하였을 때 리튬이차전지의 전지특성이 보다 개선되는 경향을 보이고 있다. 이산화망간(CMD)의 특징은 전기화학적 처리를 이용하여 얻어지는 이산화망간(EMD)보다 입자의 크기, 입자의 모양, 이산화망간의 순도 그리고 망간의 산화수를 조절하기 용이 하다는데 있다. 이러한 이산화망간(CMD)의 제조 방법에는 탄산망간을 열처리하여 제조하는 고상법 그리고 졸-겔, 침전법과 같이 다양한 망간염의 산화-환원반응을 이용하는 액상법등이 있다.
그러나, 상기 고상법은 전기화학적 처리를 이용하여 얻어지는 이산화망간(EMD)에서와 같이 생성물 입자의 크기와 모양 그리고 망간의 산화수를 조절하기 어려운 단점이 있으며, 액상법은 반응시간이 오래 걸리며, 대량의 양산공정에는 적합하지 않은 단점이 있다. 기존에 제안된 상업용 공정은 이러한 문제점을 보완하기 위하여, 활성 이산화망간(Active-MnO2)을 반응의 촉매로 이용하여 CMD를 제조하였다. Active-MnO2의 촉매 작용에 의해 상기의 반응에서는 비교적 낮은 산농도와 낮은 반응온도 그리고 짧은 반응 시간에도 높은 수율로 CMD를 제조할 수 있다. 하지만, 상기의 반응 공정에서, 시약급을 사용하지 않는 한, 첨가되는 활성 이산화망간(active-MnO2)의 개량에 의해 CMD의 생산 공정을 보다 효율적으로 개선시킬 수 있는 여지는 충분히 있다. 즉 시약급을 사용하여 CMD를 제조할 경우 미세한 active-MnO2로부터 미세한 CMD를 얻을수 있으나, 생산원가, 경제성에 문제가 있으며, 공업용으로 CMD를 제조할 경우는 거대한 활성 이산화망간(active-MnO2)으로부터 거대한 CMD가 얻어지므로 의 개량이 요구된다.
본 발명에서는 기존에 제안된 CMD제조 공정을 보완하고, 실제 양산공정에 적합한 공정을 개발하기 위하여, 공업용 탄산망간을 이용하여 나노 크기의 이산화망간 종자를 이용하여 단시간내에 균질한 나노CMD를 합성하고, CMD를 분리하고 남은 반응여액을 재이용하여 CMD를 연속적으로 제조함으로써 단위시간당 CMD의 생산량을 향상 시키고자 하였다.
재순환 반응중의 첫 번째 단계(CMD1합성)에서는, 산처리에 의해 불순물이 제거된 보다 균질한 분말 형태의 이산화망간 종자가 다양한 산화수를 가지는 망간이온들이 존재하는 반응용액 속에 첨가되며, 반응용액중에 존재하는 망간이온들은 일정한 온도와 시간동안에 첨가된 산화제에 의해 Mn4+로 산화되어 CMD1이 형성된다. 이렇게 생성된 CMD1은 첨가된 이산화망간 종자의 표면위에서 동종결정성장을 한다. 최종적인 생성물인 CMD1은 필터를 통하여 분말상의 형태로 분리되고, 액상으로 분리된 반응여액은 CMD2과 CMD3를 제조하기 위해 재순환되어 반응기내로 투입된다. 이때 재순환되는 반응여액중에는 이 반응에 필요한 황산이 함유 되어있으며, 최종적인 CMD을 얻기 위해 필요한 최소한의 원료(이산화망간 종자, 염소산나트륨; NaClO3,)만 반응여액에 추가적으로 첨가하게 된다. 이상과 같이 이 반응공정에서는 황산과 같은 독성물질을 재순환 하여 사용하고, 소모된 반응원료만 추가적으로 첨가되기 때문에 보다 환경친화적이며, 효율적인 생산공정이 이루어진다.
한편, 여러 가지 전해법에 의해 이산화망간을 제조하는 방법이 미국 특허 제3,535,217호 및 제 4,048,027호에 알려져 있다. 상기 특허에 의해 제조되는 이산화망간을 이용하여 리튬이차전지를 제조하면, 전지의 수명특성이 현재 상업적으로 사용되는 전지와 비교 하여 현저히 저하되며, 전극밀도 또한 상업적으로 사용되는 전지의 크기에 적용될 수 없는 문제점이 있다.
본 발명은 상기와 같은 종래의 문제점 및 실정을 감안하여 안출된 것으로서 그 목적은, 경제성을 고려하여 공업용 탄산망간을 열처리 하여 분말상의 이산화망간 종자로 제작한 후, 상기 이산화망간 종자를 1차 입자가 나노 크기인 나노분말의 이산화망간 종자로 분쇄하고, 산처리하여, 불순물이 제거된 보다 균질한 분말 형태의 이산화망간 종자로 제조한 후, 이차전지 양극재의 전구체로 사용되는 이산화망간(CMD)을 나노 이산화망간 종자 표면위에 동종결정성장 시켜 1차로 제조하며(CMD1), 이때 분말상의 1차 이산화망간(CMD1)을 얻기 위해 분리된 반응여액을 재순환시켜, 2차 및 3차 이산화망간(CMD2 및 CMD3)을 제조하기위한 반응모액으로 활용함으로써, 전체 반응공정에서의 이산화망간 수율이 향상될 수 있도록 하며, 또한 상기 이산화망간을 대량생산 할 수 있도록 함은 물론, 리튬이차전지의 양극재의 전구체로서 사용할 수 있도록 하고, 이를 양극재로 사용하는 리튬이차전지의 충,방전 효율이 더욱 향상될 수 있도록 한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법을 제공 하는데 있다.
또한, 본 발명은 상기와 같이 제조된 높은 수율의 나노 이산화망간(CMD)을 통하여, 리튬이차전지의 우수한 전구체로서 사용할 수 있는 나노 이산화망간(CMD)을 제공 하는데에 있다.
상기와 같은 목적을 달성하기 위한 기술적인 수단으로서 본 발명은, 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법에 있어서,
a)공업용 탄산망간을 Air 분위기하에 300~450℃의 온도로 30분~10시간 유지시킨 후 냉각하여 이산화망간 종자를 생성하는 단계;
b)상기 a)단계에서 생성된 이산화망간 종자를 어트리션 밀(attrition mill) 분쇄기에서 이산화망간 20~30wt%에 대하여 마찰 분쇄용의 다수의 세라믹 볼(zirconia ball) 62wt% 및 증류수를 8~18wt% 혼합하여 분쇄하고, 상기 세라믹 볼을 제거한 분쇄물을 건조하여 분말상의 이산화망간 종자를 제작하는 단계;
c)교반기를 이용하여 상기 분쇄된 이산화망간 종자와 황산을 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
d)또한, 교반기를 이용하여 황산망간과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
e)이에 더하여 교반기를 이용하여 염소산나트륨과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
f)상기 c)단계와 d)단계의 혼합물을 먼저 일정한 온도로 혼합시키는 단계;
g)상기 f)단계의 혼합물과 함께 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 1차로 CMD1과 반응여액으로 분리하는 단계;
h)상기 고액 분리된 일정온도의 반응여액의 내부에 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 2차로 CMD2와 반응여액으로 고액 분리시키는 단계;
i)상기 h)단계의 고액 분리 과정에서 분리된 반응여액을 재차 상기 h)단계의 여액으로 재순환하여, 재순환된 반응여액 내부에 재차 상기 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 3차로 CMD3와 반응여액으로 고액 분리시키는 단계;를 포함하여 제조되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 이산화망간 제조방법을 마련함에 의한다.
또한, 본 발명은 상기 a)단계의 과정에서 공업용 탄산망간을 5℃/min으로 점차 승온 시키며, 상기 b)단계의 과정에서 마찰 분쇄용 세라믹 볼은 그 크기가 2Φ, 3Φ, 10Φ로 서로 다른 크기의 직경을 갖고, 그 비율이, 2Φ: 3Φ: 10Φ = 2.5: 2.5: 5의 비율로 이루어진 것을 특징으로 한다.
또한, 본 발명은 상기 b)단계의 과정에서 이산화망간 종자를 어트리션 밀 분쇄기에서 12시간 동안 500rpm으로 분쇄되고, 상기 b)단계의 과정에서 이산화망간 종자 분쇄물은 오븐에서 80℃의 온도로 건조되는 것을 특징으로 한다.
또한, 상기 c)단계의 과정에서 이산화망간 종자와 황산의 혼합 비율은 분쇄된 이산화망간 종자 18~24wt%에 대하여 황산 76~82wt%이며, 상기 c)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지고, 상기 이산화망간 종자와 황산은 교반기에서 30분간 혼합하는 것을 특징으로 한다.
이에 더하여, 본 발명은 상기 d)단계의 과정에서 황산망간과 증류수의 혼합 비율이, 황산망간 5~10 wt%에 대하여 증류수 90~95 wt%로 이루어지며, 상기 d)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지고, 상기 황산망간과 증류수는 교반기에서 10분간 혼합하는 것을 특징으로 한다.
또한, 상기 e)단계의 과정에서 염소산나트륨과 증류수의 혼합 비율은, 염소산나트륨 20~30 wt%에 대하여 증류수 70~80 wt%의 비율로 혼합되며, 상기 e)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지고, 상기 염소산나트륨과 증류수는 교반기에서 10분간 혼합한다. 이때 상기 e)단계의 과정에서 증류수 70~80wt%와 함께 혼합되어 교반되는 염소산나트륨(NaClO3) 대신에, 염소산칼륨(KClO3), 과산화 수소(H2O2), 과황산나트륨(Na2S2O8), 과황산암모늄[(NH4)2S2O8], 과황산칼륨(K2S2O8)중 어느 하나가 선택될 수 있는 것을 특징으로 한다.
또한, 본 발명은 상기 f)단계에서 c)단계와 d)단계의 혼합물이 95℃의 온도로 혼합되고, 상기 f)단계의 혼합된 혼합물 내에는 나노 크기의 이산화망간 종자 입자와 황산망간의 Mn2+ 이온이 존재하는 것을 특징으로 한다.
또한, 상기 g)단계의 과정에서 혼합되어 교반되는 혼합물은 상기 c)단계의 이산화망간 종자와 황산 혼합물 26wt%에 대하여, d)단계의 황산망간과 증류수 혼합물 46wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 28wt%의 비율로 혼합되며, 상기 g)단계의 혼합물은 95℃의 온도로 5분 동안 혼합되고, 상기 e)단계의 염소산나트륨 혼합물을 넣어주면 염소산나트륨이 산화제 역할을 하여 반응모재에 존재하는 황산망간의 Mn2+ 이온이 산화되면서 CMD가 나노 이산화망간 종자위에서 동종결정성장 되며, 약 95% 이상의 수율로 CMD를 얻을 수 있는 것을 특징으로 한다.
또한, 상기 h) 및 i)단계의 고액 분리 과정에서 분리된 반응여액을 재차 상기 각 단계의 반응모액으로 재순환하여 재순환된 반응모액 내부에 재차 상기 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 CMD2와 CMD3 및 반응여액으로 고액 분리시키는 것을 특징으로 한다.
한편, 상기 재순환 공정을 이용한 이차전지 양극재용 이산화망간 제조방법을 통하여 제조되는 CMD를 마련함을 특징으로 한다.
또한, 본 발명은 상기 CMD는 입자의 크기가 0.1~0.2 ㎛의 크기이고 이산화망간 종자위에 로드형태로 형성되는 것을 특징으로 한다.
본 발명인 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법 및 이를 통해 제조된 나노 이산화망간(CMD)에 의하면, 공업용 탄산망간를 열처리 하여 분말상의 이산화망간 종자로 제작한 후, 상기 이산화망간 종자를 1차 입자가 나노 크기인 나노분말의 이산화망간 종자로 분쇄하고, 산처리하여, 불순물이 제거된 보다 균질한 분말 형태의 이산화망간 종자로 제조한 후, 이차전지 양극재의 전구체로 사용되는 이산화망간(CMD)을 나노 이산화망간 종자 표면위에 동종결정성장 시켜 1차로 제조하며(CMD1), 이때 분말상의 1차 이산화망간(CMD1)을 얻기 위해 분리된 반응여액을 재순환시켜, 2차 및 3차 이산화망간(CMD2 및 CMD3)을 제조하기위한 반응모액으로 활용함으로써, 전체 반응공정에서의 단위시간당 이산화망간의 수율이 향상될 수 있도록 하며, 또한 상기 이산화망간을 대량생산 할 수 있도록 함은 물론, 리튬이차전지의 양극재의 전구체로서 사용할 수 있도록 하고, 이를 양극재로 사용하는 리튬이차전지의 충,방전 효율이 더욱 향상될 수 있는 우수한 효과가 있다.
도 1은 본 발명에 의한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법을 설명하기 위한 제조 공정도.
도 2는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)의 입도 분포.
도 3는 본 발명에 의한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법에 사용되는 반응기의 모식도.
도 4a, 도 4b 및 도 4c 는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)의 전자 현미경 사진.
도 5은 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)의 X-선 회절(X-ray diffraction; XRD) 패턴 그래프.
도 6는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)을 리튬과 합성하여 리튬이차전지로 제조되는 리튬-망간 산화물(LiMn2O4)의 X-선 회절(X-ray diffraction; XRD) 패턴 그래프.
도 7a~도 7c는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)을 리튬이차전지로 제조하여 전압에 따른 방전 용량(容量: specific capacity)을 나타내는 곡선 그래프.
도 8a, 도 8b, 도 8c는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)을 각각 리튬이차전지로 제조하여 리튬이차전지의 충,방전 횟수에 따른 방전용량(discharge capacity)을 각각 나타내는 수명 특성 그래프.
이하, 본 발명인 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법의 실시예를 상세하게 설명하면 다음과 같다.
도 1은 본 발명에 의한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법을 설명하기 위한 제조 공정도로서, a)공업용 탄산망간을 Air 분위기하에 300~450℃의 온도로 30분~10시간 유지시킨 후 냉각하여 이산화망간종자를 생성하는 단계와, b)상기 a)단계에서 생성된 이산화망간 종자를 어트리션 밀 분쇄기에서 이산화망간 종자 10~13wt%에 대하여 마찰 분쇄용의 다수의 세라믹 볼 67wt% 및 증류수를 10~20wt% 혼합하여 분쇄하고, 상기 세라믹 볼을 제거한 분쇄물을 건조하여 분말상의 나노 크기의 이산화망간 종자를 제작하는 단계와, c)교반기를 이용하여 상기 분쇄된 이산화망간 종자와 황산을 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계와, d)교반기를 이용하여 황산망간과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계와, e)이에 더하여 교반기를 이용하여 염소산나트륨과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계와, f)상기 c)단계와 d)단계의 혼합물을 먼저 혼합하여 일정한 온도로 혼합시키는 단계 및 g)상기 f)단계의 혼합물과 함께 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 1차 나노 이산화망간(CMD1)과 반응여액으로 고액 분리과정을 거치는 단계와, 상기 g)단계에서 고액 분리된 반응여액은 h)단계에서 상기 일정온도의 반응여액 63wt%에 대하여 c)단계의 이산화망간 종자와 황산 혼합물 18wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합한 후, 이를 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 2차 나노 이산화망간(CMD2)와 반응여액으로 고액 분리시키는 단계와, 상기 h)단계의 고액 분리 과정에서 고액 분리된 반응여액은 i) 단계에서 재차 상기 h)단계의 반응모액으로 재순환하여, 상기 재순환된 반응여액 내부에 재차 상기 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 3차 나노 이산화망간(CMD3)와 반응여액으로 고액 분리시키는 단계;를 포함하는 구성으로 이루어진다.
상기와 같이 구성된 본 발명의 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조과정을 구성하는 각각의 구성을 상세하게 살펴보면 다음과 같다.
먼저, a)단계에서 공업용 탄산망간을 전기로에서 Air 분위기하에 300~450℃ 까지 5℃/min으로 승온시킨 후, 상기 온도를 30분~15시간 유지시켜 가열한다. 이 과정에서 탄산망간의 탄산염은 CO2로 전환되어 제거되고 망간은 산화되어 이산화망간 종자가 생성된다. 이때 상기 공업용 탄산망간의 가열온도가 300℃ 이하일 경우에는 탄산염의 제거가 어렵게 되고, 상기 공업용 탄산망간의 가열온도가 450℃ 이상일 경우에는 높은 온도에 의해 Mn3O4가 생성되는데, 이는 나노 이산화망간(CMD)이 양극재로 제작될 경우 전지의 성능을 크게 저하시키는 원인이 되므로, 본 발명에서와 같이 상기 공업용 탄산망간을 300~450℃까지 5℃/min으로 가열기에서 점차적으로 승온시키는 것이 가장 바람직하다.
다음으로 본 발명의 b)단계의 과정은, 상기 a)단계에서 생성된 이산화망간 종자를 어트리션 밀 분쇄기에서 이산화망간 종자 10~13wt%에 대하여 분쇄용의 서로 다른 크기의 직경을 갖는 세라믹 볼 67t% 및 증류수를 10~20wt% 혼합하여, 12시간 500rpm 으로 분쇄한다. 이때 상기 어트리션 밀 분쇄기의 분쇄효과를 높이기 위하여, 세라믹 볼의 크기를 2Φ, 3Φ, 10Φ로 분할 구성하고, 상기 2Φ, 3Φ, 10Φ 크기의 세라믹 볼은 2Φ, 3Φ, 10Φ = 2.5: 2.5 : 5의 비율로 설정하여, 상기 이산화망간 종자가 나노 크기의 1차입자를 갖는 분말상태로 분쇄될 수 있도록 한다.
이때, 상기 이산화망간 종자를 세라믹 볼과 증류수에 대하여 10wt% 이하로 혼합할 경우에는, 상기 이산화망간 종자와 혼합되는 증류수에 의해 나노크기의 분말상태로 제대로 분쇄가 이루어지지 않게 되며, 상기 이산화망간을 세라믹 볼과 증류수에 대하여 13wt% 이상으로 혼합할 경우에는, 입자간의 응집에 의해 분말의 분쇄효과가 떨어지게 되므로, 상기 이산화망간 종자를 세라믹 볼과 증류수에 대하여 10~13wt% 혼합함이 바람직하다.
상기와 같이 분쇄된 이산화망간 종자는 세라믹 볼을 제거한 후 오븐에서 80℃의 온도로 건조하여, 나노분말상의 이산화망간 종자로 얻어진다.
한편, 상기와 같은 나노분말상의 이산화망간 종자를 불순물이 제거된 보다 균질한 나노분말 형태의 이산화망간 종자로 제조하기 위하여, 우선 c)단계의 과정에서 이산화망간 종자 18~24wt%에 대하여 황산을 76~82 wt%를 교반기에 넣고 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 30분간 혼합한다. 이때 상기 분쇄된 이산화망간 종자가 18wt% 이하일 경우 상기 이산화망간 종자가 반응용액 중에 너무 적게 되어, 후술하는 불순물이 제거된 나노 이산화망간(CMD)의 제조시 많은 시간이 소요되며, 상기 분쇄된 이산화망간 종자가 24wt% 이상일 경우에는 황산에 의한 이산화망간 종자의 불순물제거 효과가 작아지게 되어 균질한 이산화망간 종자의 생성이 어렵게 된다.
다른 한편, d)단계에서는, 이산화망간 종자위에서 성장하는 망간산화물의 원료인 망간이온이 존재하는 반응모액을 제조 한다. 교반기를 이용하여 황산망간 5~10wt%에 대하여 증류수 90~95 wt% 의 비율로 희석하여 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 10분간 혼합한다.
또한, e)단계의 과정에서는 d)단계의 반응모액중에 존재하는 망간이온들을 산화시키기 위한 산화제용액을 제조 한다. 교반기를 이용하여 염소산나트륨 20~30 wt%에 대하여 증류수 70~80wt%의 비율로 희석하여, 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 10분간 혼합한다.
이때, 상기 이산화망간 종자와 황산을 혼합하여 교반시키는 온도와, 황산망간에 증류수를 혼합하여 교반시키는 온도 및 염소산나트륨과 증류수를 혼합하여 교반시키는 온도가 상호 95℃를 유지함으로써, 후술하는 불순물이 제거된 CMD를 제조하기 위하여 상기 혼합물들이 같이 혼합된 후 에도 항상 95℃의 일정한 온도를 유지할 수 있도록 하여 전체 반응계에서의 온도변수를 통제하였다.
상기 e)단계의 과정에서 교반기를 이용하여 증류수 70~80wt%와 함께 혼합되는 염소산나트륨 대신에, 염소산칼륨(KClO3), 과산화 수소(H2O2), 과황산나트륨(Na2S2O8), 과황산암모늄[(NH4)2S2O8], 과황산칼륨(K2S2O8)중 어느 하나를 혼합하여도 무방하다.
상기와 같이, c)단계와 d)단계 및 e)단계의 과정에서 각각 혼합된 혼합물은, f)단계의 과정에서 우선 c)단계와 d)단계의 과정에서 생성된 이산화망간 종자와 황산혼합물 및 황산망간과 증류수의 혼합물을 혼합기 내부에서 혼합한다. 이때 상기 c)단계와 d)단계의 과정에서 생성되는 혼합물 내에는 나노 크기의 이산화망간 종자 입자와, 황산망간의 Mn2+ 이온이 존재하게 된다.
따라서, 상기와 같은 Mn2+를 Mn4+로 산화시키기 위하여, g)단계의 과정에서, 상기 f)단계의 과정에서 혼합된 혼합물에 상기 e)단계에서 혼합된 염소산나트륨과 증류수 혼합물을 투입하고, 95℃의 온도로 5분 동안 혼합 및 교반한 후 이를 고액 분리기에서 분리하여 1차 나노 이산화망간(CMD1)을 제조하게 된다.
이때, 상기 g)단계의 과정에서 혼합되어 교반되는 혼합물의 조성은, c)단계의 이산화망간 종자와 황산 혼합물 26wt%에 대하여, d)단계의 황산망간과 증류수 혼합물 46wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 28wt%의 비율로 구성된다. 상기 g)단계의 과정에서 상기 e)단계의 혼합물인 염소산나트륨 혼합물을 넣어주면 염소산나트륨이 산화제 역할을 하여, 반응모재에 존재하는 MnSO4의 Mn2+가 Mn4+로 산화되면서 나노 이산화망간 표면위에서 동종결정성장 하여 고순도의 1차 나노 이산화망간(CMD1)을 얻을 수 있다.
또한, 상기와 같이 고액 분리기를 이용한 분리과정을 거쳐 분리된 반응여액은 h)단계에서, 반응모액으로 재순환되고, 이 반응모액 63wt%에 대하여 c)단계의 이산화망간 종자와 황산 혼합물 18wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합한 후, 이를 95℃의 온도로 5분 동안 교반 한 후, 고액 분리기를 통한 분리과정을 거쳐 2차 나노 이산화망간(CMD2)을 제조한다.
계속해서, 상기 h)단계의 고액 분리 과정에서 분리된 반응여액은 i) 단계에서 재차 상기 h)단계의 반응모액으로 재순환하여, 재순환된 반응모액 63wt%에 대하여 c)단계의 이산화망간 종자와 황산 혼합물 18wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합한 후, 이를 95℃의 온도로 5분 동안 교반 및 고액 분리기를 통한 분리과정을 거쳐 3차 나노 이산화망간(CMD3)을 제조한다.
한편, 상기와 같이 재순환 공정을 통하여 제조된 이차전지 양극재용 CMD(CMD1~CMD3)의 입자크기는, 나노 입도분석기( nano particle sizer)를 이용하여 측정할시, 0.1~0.2 ㎛의 입자의 크기로 형성된다(표1).
표 1
크기(㎛) CMD1 CMD2 CMD3
나노입도분석 중앙값 0.185 0.214 0.208
평균값 0.193 0.221 0.214
상기 표1에서 확인되는 바와같이, 나노 입도 분석기를 이용하여 측정한 1차~3차 CMD(CMD1~CMD3)의 입도는 100~200 나노미터(nm)로서 나노사이즈의 CMD가 제조되었음을 확인할 수 있다.
도 2는 본 발명의 1차 이산화망간(CMD1)과 재순환 과정을 통해 순차로 제조된 2차 및 3차 이산화망간(CMD2 및 CMD3)의 입도분포로서, 비교적 일정한 크기의 입도를 가진 CMD가 제조되었음을 확인할 수 있다.
도 3은 본 발명에 의한 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법에 사용되는 반응기의 모식도로서, 필터에 의해 분리된 반응여액(황산용액)은 펌프를 사용하여 본 반응의 반응모액으로서 재활용되고 반응에서 소모된 반응 원료(이산화망간 종자, 염소산나트륨)은 추가적으로 투입된다.
또한, 도 4a, 도 4b 및 도 4c 는 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된 CMD2 및 CMD3의 전자 현미경 사진으로서, 상기 도 4a, 도 4b 및 도 4c에서와같이 CMD1과 반응후의 여액을 재순환하여 제조된 CMD2 및 CMD3의 같은 형태 및 크기를 갖는 입자로서, 상기 이산화망간 종자의 표면위에 나노 크기의 로드형태로 형성되어 있음을 확인할 수 있다.
이에 더하여, 도 5은 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된 CMD2 및 CMD3의 X-선 회절 그래프로서, 상기 X-선 회절은 일본 리가쿠(Rigaku)사의 D/Max-2500을 사용하여 측정하였다.
상기 도 5에서 확인되는 바와 같이, 본 발명에 의해 제조된 CMD1, CMD2, CMD3은 모두 동일한 -MnO2의 결정상을 가짐을 확인할 수 있다.
이에 더하여, 도 6는 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된CMD2 및 CMD3을 이용해 제조된 리튬-망간 산화물의 X-선 회절 그래프로서, 상기 X-선 회절은 일본 리가쿠(Rigaku)사의 D/Max-2500을 사용하여 측정하였다.
상기 도 6에서 확인되는 바와 같이, 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된 CMD2 및 CMD3를 이용하여 각각 제조된 리튬-망간 산화물은 전체적으로 동일하고, 균일한 리튬-망간 산화물의 결정상을 나타냄을 알수 있다.
한편, 도 7a~도 7c는 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된 CMD2 및 CMD3을 리튬이차전지로 제조하여 전압에 따른 방전 용량(容量: specific capacity)을 나타내는 그래프로서, 상기 도 7a~도 7c에서와 같이 본 발명의 CMD1, CMD2, CMD3등을 사용하여 이루어진 양극재를 사용한 경우, 상온(25℃)에서의 충방전 테스트에서, 리튬이차전지의 첫 번째 충방전 1회의 방전용량은 112mAh/g로 CMD1, CMD2, CMD3 모두 비슷한 용량을 나타내었음을 확인할 수 있다.
또한, 도 8a, 도 8b, 도 8c는 본 발명의 CMD1과 재순환 과정을 통해 순차로 제조된 CMD2 및 CMD3을 각각 리튬이차전지로 제조하여 리튬이차전지의 충,방전 횟수에 따른 방전용량(discharge capacity)을 각각 나타내는 수명 특성 그래프로서, 상기 도 8a, 도 8b, 도 8c에서와 같이, 본 발명의 CMD1, CMD2, CMD3을 사용하여 이루어진 양극재를 사용한 경우에는 고온(55℃)에서 100회의 충,방전테스트 후 리튬이차전지의 방전용량의 감소율이 각각 첫 번째 충,방전 1회의 방전용량과 대비하여 약 86% 를 유지하였음을 확인할 수 있다.
〈실시예1〉
① 이산화망간 종자의 제조단계(분쇄전)
공업용 탄산망간을 전기로에서 Air 분위기하에 300~450℃ 까지 5℃/min으로 승온시킨 후, 상기 온도를 30분~15시간 유지시켜 가열하였다. 이 과정에서 탄산망간의 탄산염은 CO2로 전환되어 제거되고 망간은 산화되었다.
② 나노분말상의 이산화망간 종자의 제조단계(분쇄)
상기 이산화망간 종자의 제조단계(분쇄전)에서 생성된 이산화망간 종자를 나노크기의 입자로 제조하기 위하여, 어트리션 밀 분쇄기에서 이산화망간 종자 20~30vol%에 대하여 서로 다른 크기의 직경을 갖는 세라믹 볼 62vol% 및 증류수를 8~18 vol% 혼합하여, 12시간 500rpm 으로 이산화망간 종자를 분쇄 하였다. 이때 상기 어트리션 밀 분쇄기의 분쇄효과를 높이기 위하여, 서로 다른 크기의 직경(2Φ, 3Φ, 10Φ)을 갖는 세라믹볼로 분할 구성하고, 각 세라믹볼의 구성비는 2Φ, 3Φ, 10Φ = 2.5: 2.5 : 5로 설정하였다.
분쇄된 이산화망간 종자는 상기 세라믹 볼과 분리하여 오븐에서 80℃의 온도로 건조하여, 1차입자가 나노 크기인 나노분말상의 이산화망간 종자로 회수 되었다.
③ 나노분말상의 이산화망간 종자에 존재하는 불순물의 제거단계(액상반응)
상기와 같은 나노분말상의 이산화망간 종자를 불순물이 제거된 보다 균질한 나노분말 형태의 이산화망간 종자로 제조하기 위하여 이산화망간 종자 18~24wt%에 대하여 황산을 76~82 wt%를 교반기에 넣고 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 30분간 혼합 하여 이산화망간 종자를 정제 하였다.
④ 망간이온이 존재하는 반응모액의 제조단계(액상반응)
초미립 이산화망간(CMD)의 제조단계에 앞서, 먼저 이산화망간 종자위에서 성장하는 망간산화물의 원료인 망간이온이 존재하는 반응모액을 제조 하였다. 교반기를 이용하여 황산망간 5~10wt%에 대하여 증류수 90~95 wt% 의 비율로 희석하여 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 10분간 혼합하여 반응모액을 제조 하였다.
⑤ 망간이온을 산화시키기 위한 산화제용액의 제조단계(액상반응)
다음 단계로, 상기의 반응모액중에 존재하는 망간이온들을 산화시키기 위한 산화제용액을 제조 하였다. 교반기를 이용하여 염소산나트륨 20~30 wt%에 대하여 증류수 70~80wt%의 비율로 희석하여, 교반기 내부의 온도를 95℃로 유지하면서 약 300rpm의 속도로 30분간 혼합 하였다.
이때, 상기 ③번의 이산화망간 종자와 황산을 혼합하여 교반시키는 온도와, ④번의 황산망간에 증류수를 혼합하여 교반시키는 온도 및 ⑤번의 염소산나트륨과 증류수를 혼합하여 교반시키는 온도가 상호 95℃를 유지함으로써, 초미립 이산화망간(CMD)를 제조하기 위하여 상기 혼합물들이 같이 혼합된 후 에도 전체 반응 용액의 온도가 항상 95℃의 일정한 온도를 유지할 수 있도록 하여 전체 반응계에서의 온도변수를 통제 하였다.
상기의 과정에서 교반기를 이용하여 증류수 70~80wt%와 함께 혼합되는 염소산나트륨 대신에, 염소산칼륨(KClO3), 과산화 수소(H2O2), 과황산나트륨(Na2S2O8), 과황산암모늄[(NH4)2S2O8], 과황산칼륨(K2S2O8)중 어느 하나를 혼합하여도 무방하다.
⑥ 초미립 이산화망간(CMD)의 제조단계(액상반응)
상기의 이산화망간 종자와 황산혼합물 및 반응모액의 혼합물을 반응기에 같이 주입하여 혼합한다. 이때 반응기 내에는 나노 크기의 이산화망간 종자 입자와, 황산망간의 Mn2+ 이온이 존재하게 된다.
따라서, 상기와같은 불순물인 Mn2+ 이온을 제거하기 위하여, 본 발명의 마지막 단계에서, 이산화망간 종자와 황산혼합물 및 반응모액의 혼합물에 염소산나트륨과 증류수 혼합물을 투입하여, 95℃의 온도로 1분동안 교반 하여, 불순물이 제거된 CMD을 제조 하였다.
이때, 최종단계에서 혼합되어 교반되는 혼합물의 조성은, 이산화망간 종자와 황산 혼합물 26wt%에 대하여, 황산망간과 증류수 혼합물 46wt% 및 염소산나트륨과 증류수 혼합물 28wt%의 비율로 구성된다. 상기 최종 단계의 과정에서 염소산나트륨 혼합물을 넣어주면 염소산나트륨이 산화제 역할을 하여, 반응모재에 존재하는 MnSO4의 Mn2+가 Mn4+로 산화되면서 나노 이산화망간 표면위에서 동종결정성장 하여 고순도의 CMD를 얻을 수 있다.
상기와 같이 공업용 탄산망간의 화학적 처리를 통해 얻어진 이산화망간 종자를 이용하여 제조된 분말 형태의 CMD의 입자 모양은 로드 형태이며, 이를 나노 입도분석기(nano particle sizer)를 이용하여 측정 시, 0.1~0.2 ㎛ 크기를 갖는 한편, 이산화망간 종자위에 로드형태로 형성되며, 반응시간 5분에서의 CMD 수율은 약 95%이상 이다.
⑦ 1차 반응여액의 재순환 단계(액상반응)
또한, 상기와 같이 고액 분리기를 이용한 분리과정을 거쳐 분리된 반응여액은 ⑥단계의 반응모액으로 재순환되었고, 이 반응모액 63wt%에 대하여 ③단계의 이산화망간 종자와 황산 혼합물 18wt% 및 ⑤단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합한 후, 이를 95℃의 온도로 5분 동안 교반 한 후, 고액 분리기를 통한 분리과정을 거쳐 2차 CMD(CMD2)을 제조하였다.
⑧ 2차 반응여액의 재순환 단계(액상반응)
상기 ⑦단계의 고액 분리 과정에서 분리된 반응여액은 재차 상기 ⑦단계의 반응모액으로 재순환하여, 재순환된 반응모액 63wt%에 대하여 ③단계의 이산화망간 종자와 황산 혼합물 18wt% 및 ⑤단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합한 후, 이를 95℃의 온도로 5분 동안 교반 및 고액 분리기를 통한 분리과정을 거쳐 3차 CMD(CMD3)를 제조하였다.
상기와 같이 공업용 탄산망간의 화학적 처리를 통해 얻어진 이산화망간 종자를 이용하여 제조된 분말 형태의 CMD의 입자 모양은 로드 형태이며, 이를 나노 입도분석기(nano particle sizer)를 이용하여 측정 시, 0.1~0.2 ㎛ 크기를 갖는 한편, 이산화망간 종자위에 로드형태로 형성되며, 반응시간 5분에서의 CMD 수율은 약 95% 이상 이다.

Claims (21)

  1. 재순환 공정을 이용한 이차전지 양극재용 이산화망간 제조방법에 있어서,
    a)공업용 탄산망간을 Air 분위기하에 300~450℃의 온도로 30분~15시간 유지시킨 후 냉각하여 이산화망간 종자를 생성하는 단계;
    b)상기 a)단계에서 생성된 이산화망간 종자를 어트리션 밀 분쇄기에서 이산화망간 종자 10~13wt%에 대하여 마찰 분쇄용의 세라믹 볼 67wt% 및 증류수를 10~20wt% 혼합하여 1차입자가 나노 크기인 나노분말로 분쇄하고, 상기 세라믹 볼을 제거한 분쇄물을 건조하여 나노 크기 분말상의 이산화망간 소재를 제작하는 단계;
    c)교반기를 이용하여 상기 분쇄된 이산화망간 소재 와 황산을 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
    d)또한, 교반기를 이용하여 황산망간과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
    e)이에 더하여 교반기를 이용하여 염소산나트륨과 증류수를 혼합하여 교반기 내부에서 일정한 온도로 혼합하는 단계;
    f)상기 c)단계와 d)단계의 혼합물을 먼저 혼합하여 일정한 온도로 혼합시키는 단계;
    g)상기 f)단계의 혼합물과 함께 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 CMD1과 반응여액으로 분리하는 단계;
    h)상기 고액 분리된 일정온도의 반응여액의 내부에 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 CMD2와 반응여액으로분리시키는 단계;
    i)상기 h)단계의 고액 분리 과정에서 분리된 반응여액을 재차 상기 h)단계의 반응모액으로 재순환하여, 상기 재순환된 반응모액 내부에 재차 상기 c)단계와 e)단계의 혼합물을 일정한 온도로 혼합 및 교반한 후 이를 고액 분리기에서 CMD3와 반응여액으로 분리시키는 단계;를 포함하여 제조되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  2. 제 1항에 있어서, 상기 a)단계의 과정에서 공업용 탄산망간은 5℃/min으로 점차 승온시키는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  3. 제 1항에 있어서, 상기 b)단계의 과정에서 마찰 분쇄용 세라믹 볼은 그 크기가 2Φ, 3Φ, 10Φ로 서로 다른 크기의 직경을 갖는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  4. 제 3항에 있어서, 상기 b)단계의 과정에서 2Φ, 3Φ, 10Φ의 크기를 갖는 세라믹 볼(zirconia ball)은 그 비율이, 2Φ: 3Φ: 10Φ = 2.5: 2.5: 5의 비율로 이루어진 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  5. 제 1항에 있어서, 상기 b)단계의 과정에서 이산화망간 종자를 어트리션 밀(attrition mill) 분쇄기에서 12시간 동안 500rpm으로 분쇄하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  6. 제 1항에 있어서, 상기 b)단계의 과정에서 이산화망간 종자 분쇄물을 오븐에서 80℃의 온도로 건조하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  7. 제 1항에 있어서, 상기 c)단계의 과정에서 나노크기의 이산화망간 종자와 황산의 혼합 비율은 분쇄된 나노크기의 이산화망간 종자 18~24wt%에 대하여 황산을 76~82wt% 함유되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  8. 제 1항에 있어서, 상기 c)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지며, 상기 이산화망간 종자와 황산은 교반기에서 30분간 혼합하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 CMD 제조방법.
  9. 제 1항에 있어서, 상기 d)단계의 과정에서 황산망간과 증류수의 혼합 비율은, 황산망간 5~10 wt%에 대하여 증류수 90~95 wt%로 이루어진 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  10. 제 1항에 있어서, 상기 d)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지며, 상기 황산망간과 증류수는 교반기에서 10분간 혼합하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  11. 제 1항에 있어서, 상기 e)단계의 과정에서 염소산나트륨과 증류수의 혼합 비율은, 염소산나트륨 20~30wt%에 대하여 증류수 70~80wt%의 비율로 혼합되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  12. 제 1항에 있어서, 상기 e)단계의 과정에서 교반기 내부의 온도는 95℃로 이루어지며, 상기 염소산나트륨과 증류수는 교반기에서 10분간 혼합하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  13. 제 1항 또는 제 11항, 제 12항에 있어서, 상기 e)단계의 과정에서 증류수 70~80wt%와 함께 혼합되어 교반되는 염소산나트륨(NaClO3) 대신에, 염소산칼륨(KClO3), 과산화 수소(H2O2), 과황산나트륨(Na2S2O8), 과황산암모늄[(NH4)2S2O8], 과황산칼륨(K2S2O8)중 어느 하나가 선택될 수 있는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  14. 제 1항에 있어서, 상기 f)단계에서 c)단계와 d)단계의 혼합물은 95℃의 온도로 혼합시키는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  15. 제 1항 또는 제 14항에 있어서, 상기 f)단계의 혼합된 혼합물 내에는 나노 크기의 이산화망간 종자 입자와, 황산망간의 Mn2+ 이온이 존재하는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  16. 제 1항에 있어서, 상기 g)단계의 과정에서 혼합되어 교반되는 혼합물은, 상기 c)단계의 이산화망간 종자와 황산 혼합물 26wt%에 대하여, d)단계의 황산망간과 증류수 혼합물 46wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 28wt%의 비율로 혼합되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  17. 제 1항 또는 제 16항에 있어서, 상기 g)단계의 혼합물은, 95℃의 온도로 5분동안 혼합 및 건조되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  18. 제 1항에 있어서, 상기 g)단계의 염소산나트륨 혼합물을 넣어주면 상기 염소산나트륨이 산화제 역할을 하여, 모재인 이산화망간 종자에 황산망간의 Mn2+ 이온이 산화되면서 나노 이산화망간 표면위에서 동종결정성장 하여 CMD을 얻을 수있는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  19. 제 1항에 있어서, 상기 h)단계에서 고액 분리된 반응여액은 95℃를 유지하며, 이때 상기 고액분리된 반응여액 63wt%에 대하여 c)단계의 이산화망간 종자와 황산 혼합물 18wt% 및 e)단계의 염소산나트륨과 증류수 혼합물 19wt%의 비율로 혼합되는 것을 특징으로 하는 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(CMD) 제조방법.
  20. 제 1항의 제조방법을 통하여 제조되는 CMD.
  21. 제 20항에 있어서, 상기 CMD는 입자의 크기가 0.1~0.2 ㎛의 크기이고 이산화망간 종자위에 로드형태로 형성되는 것을 특징으로 하는 나노 이산화망간(CMD).
PCT/KR2013/001049 2013-02-06 2013-02-08 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법 및 이를 통해 제조된 나노 이산화망간(cmd) WO2014123265A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0013404 2013-02-06
KR20130013404A KR101480109B1 (ko) 2013-02-06 2013-02-06 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법

Publications (1)

Publication Number Publication Date
WO2014123265A1 true WO2014123265A1 (ko) 2014-08-14

Family

ID=51299854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001049 WO2014123265A1 (ko) 2013-02-06 2013-02-08 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법 및 이를 통해 제조된 나노 이산화망간(cmd)

Country Status (2)

Country Link
KR (1) KR101480109B1 (ko)
WO (1) WO2014123265A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088393A1 (zh) * 2021-11-18 2023-05-25 瑞海泊(青岛)能源科技有限公司 正极材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317637B1 (ko) * 2014-12-23 2021-10-25 재단법인 포항산업과학연구원 고순도 망간 산화물 제조 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956860A (en) * 1957-04-11 1960-10-18 Manganese Chemicals Corp Process for producing manganese dioxide
US20030027047A1 (en) * 1999-12-24 2003-02-06 Tokuo Suita Process for producing lithium manganate and lithium battery using the lithium manganate
KR101011260B1 (ko) * 2009-10-27 2011-01-26 주식회사 에코닉스 망간 및 아연을 함유하는 폐전지로부터의 cmd 제조방법
KR20120123898A (ko) * 2011-05-02 2012-11-12 삼성코닝정밀소재 주식회사 나노 구조체의 장단축비 제어방법, 이를 이용하여 나노 구조체의 제조방법 및 이의 방법으로 제조된 나노 구조체

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316620B1 (ko) * 2011-04-21 2013-10-18 한창산업 주식회사 고순도 나노입자 이산화망간 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956860A (en) * 1957-04-11 1960-10-18 Manganese Chemicals Corp Process for producing manganese dioxide
US20030027047A1 (en) * 1999-12-24 2003-02-06 Tokuo Suita Process for producing lithium manganate and lithium battery using the lithium manganate
KR101011260B1 (ko) * 2009-10-27 2011-01-26 주식회사 에코닉스 망간 및 아연을 함유하는 폐전지로부터의 cmd 제조방법
KR20120123898A (ko) * 2011-05-02 2012-11-12 삼성코닝정밀소재 주식회사 나노 구조체의 장단축비 제어방법, 이를 이용하여 나노 구조체의 제조방법 및 이의 방법으로 제조된 나노 구조체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088393A1 (zh) * 2021-11-18 2023-05-25 瑞海泊(青岛)能源科技有限公司 正极材料及其制备方法和应用

Also Published As

Publication number Publication date
KR101480109B1 (ko) 2015-01-07
KR20140100282A (ko) 2014-08-14

Similar Documents

Publication Publication Date Title
CN1208241C (zh) 一种制备磷酸铁锂的湿化学方法
CN101734637B (zh) 一种锂离子电池用正极材料磷酸钒锂粉体的制备方法
US9437868B2 (en) Iron (III) orthophosphate-carbon composite
WO2016035985A1 (ko) 이차전지용 양극소재 제조방법
CN115159491A (zh) 一种高安全高容量磷酸锰铁锂的制备方法
CN117865227A (zh) 一种利用硫铁矿原料合成硫化亚铁材料的方法及其应用
CN113745500B (zh) 一种高镍三元正极材料的制备方法
KR20220131830A (ko) 단결정 리튬망간산화물 재료의 제조 방법
WO2014123265A1 (ko) 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법 및 이를 통해 제조된 나노 이산화망간(cmd)
CN106477623A (zh) 一种制备绒球状钛酸锂的方法
CN111540901B (zh) 一种使用磷酸铁(ⅲ)锂制备磷酸铁锂(lep)的方法
CN116995227A (zh) 一种复合硫酸亚铁钠正极材料及其制备方法和应用
CN115285960B (zh) 梯度掺杂磷酸铁前驱体及其制备方法和应用
JP2023507812A (ja) 過酸化リチウムの粒度調節方法および粒度が調節されたリチウム酸化物の製造方法
CN115974036A (zh) 一种球形磷酸铁锰锂纳米颗粒及其制备方法
CN113716542B (zh) 一种高容量高压实密度高铁磷比的纳米磷酸铁锂及其制备方法
CN114933290A (zh) 无水磷酸铁和氧化铁混合物及其合成方法、磷酸铁锂及其制备方法和应用
CN114583158A (zh) 一种磷酸铁锂-石墨烯强耦合材料及其制备方法
JP4055269B2 (ja) マンガン酸化物及びその製造方法、並びにマンガン酸化物を用いたリチウムマンガン複合酸化物及びその製造方法
Hou et al. From Silica Leachate of Laterite Nickel Ore to Silicate Cathode Material: Preparation of Li2MnSiO4/C as Lithium-ion Battery Cathode Material by Two-Stage Roasting Method
CN105742617A (zh) 一种锂离子电池正极材料铜酸锂的制备方法
KR101480110B1 (ko) 동종결정성장을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법
CN117285087B (zh) 一种层状氧化物及其制备方法和钠电池
CN114524467B (zh) 一种高纯的微米级球形钠电材料的制备方法
CN116072861A (zh) 一种降低高镍正极材料表面残碱的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.12.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13874380

Country of ref document: EP

Kind code of ref document: A1