WO2014123125A1 - カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置 - Google Patents

カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置 Download PDF

Info

Publication number
WO2014123125A1
WO2014123125A1 PCT/JP2014/052585 JP2014052585W WO2014123125A1 WO 2014123125 A1 WO2014123125 A1 WO 2014123125A1 JP 2014052585 W JP2014052585 W JP 2014052585W WO 2014123125 A1 WO2014123125 A1 WO 2014123125A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
color filter
resin composition
solvent
general formula
Prior art date
Application number
PCT/JP2014/052585
Other languages
English (en)
French (fr)
Inventor
裕史 大島
義人 前野
Original Assignee
株式会社Dnpファインケミカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Dnpファインケミカル filed Critical 株式会社Dnpファインケミカル
Priority to CN201480002384.9A priority Critical patent/CN104641266B/zh
Priority to KR1020157006610A priority patent/KR20150115719A/ko
Publication of WO2014123125A1 publication Critical patent/WO2014123125A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a colored resin composition for a color filter, a color material dispersion, a color filter, a liquid crystal display device, and an organic light emitting display device.
  • a backlight is used as a light source, the amount of light is controlled by electrically driving the liquid crystal, and color expression is performed by the light passing through a color filter. Therefore, a color filter must be present in the color representation of a liquid crystal television and plays a major role in determining the performance of the display.
  • a color filter In an organic light emitting display device, when a color filter is used for a white light emitting organic light emitting element, a color image is formed in the same manner as in a liquid crystal display device.
  • An image display device including a color filter affects the design and performance of a mobile terminal in order to directly relate to the usable time and charging frequency of the mobile terminal.
  • the color filter is generally formed on a transparent substrate, a transparent layer formed on the transparent substrate, and composed of a colored layer of three primary colors of red, green, and blue, and on the transparent substrate so as to partition each colored pattern. And a light shielding portion formed.
  • a colored layer forming resin composition having a pigment or a dye as a colorant is used.
  • the pigment is generally excellent in various resistances such as heat resistance as compared with the dye, but the brightness of the manufactured color filter may be insufficient.
  • a dye is used as the color material, a color filter with high luminance can be manufactured, but there is a problem that various resistances and contrast are insufficient.
  • Patent Document 1 describes that a colored photosensitive resin composition containing a blue organic pigment and an organic solvent-soluble dye having a specific structure having xanthene as a basic skeleton is used for the purpose of increasing the brightness of a color filter.
  • a colored photosensitive resin composition described in Patent Document 1 it is difficult to obtain a color filter having sufficient light resistance, and since a polar solvent is used to dissolve the dye, the stability is poor. It was. Furthermore, further improvement in the luminance of the color filter is also demanded.
  • the present invention has been made in view of the above problems, and a color resin composition for a color filter capable of forming a colored layer excellent in luminance and light resistance, and a color capable of forming a coating film excellent in luminance and light resistance.
  • An object is to provide a material dispersion, a high-intensity color filter formed using the colored resin composition for a color filter, a liquid crystal display device having the color filter, and an organic light-emitting display device.
  • the colored resin composition for a color filter according to the present invention contains a colorant, a binder component, and a solvent, and the colorant comprises a color material and a blue color material represented by the following general formula (I): It is characterized by including.
  • R 1 and R 2 are each independently an alkyl group or an aryl group, and R 3 and R 4 are each independently an aryl group or a heteroaryl group.
  • the colored resin composition for a color filter according to the present invention can be obtained by dispersing the color material represented by the general formula (I) in a solvent with a dispersant having an amine value.
  • a polar solvent for dissolving the coloring material so that it has excellent stability.
  • the formed coating film is preferable from the point which has solvent re-dissolution property.
  • the colored resin composition for a color filter according to the present invention is represented by the general formula (I) when R 3 and R 4 are different from each other in the color material represented by the general formula (I). Since the molecular design range of the color material to be expanded and the adjustment range of the spectral characteristics are widened, it is preferable from the viewpoint that the color material can be brought close to the target chromaticity and the luminance can be easily improved.
  • the blue color material includes a triarylmethane color material from the viewpoint of excellent luminance and contrast.
  • the blue color material contains a copper phthalocyanine pigment from the viewpoint of excellent resistance such as heat resistance.
  • the color material dispersion according to the present invention is characterized in that a color material represented by the following general formula (I) is dispersed in a solvent by a dispersant having an amine value.
  • R 1 and R 2 are each independently an alkyl group or an aryl group, and R 3 and R 4 are each independently an aryl group or a heteroaryl group.
  • the color filter according to the present invention is a color filter comprising at least a transparent substrate and a colored layer provided on the transparent substrate, wherein at least one of the colored layers is a colored resin for a color filter according to the present invention. It is a colored layer formed by curing the composition.
  • the liquid crystal display device includes the color filter according to the present invention, a counter substrate, and a liquid crystal layer formed between the color filter and the counter substrate.
  • An organic light emitting display device includes the color filter according to the present invention and an organic light emitter.
  • a colored resin composition for a color filter capable of forming a colored layer excellent in luminance and light resistance, a colorant dispersion capable of forming a coating film excellent in luminance and light resistance, and coloring for the color filter A high-luminance color filter formed using a resin composition, a liquid crystal display device having the color filter, and an organic light-emitting display device can be provided.
  • the light includes electromagnetic waves having wavelengths in the visible and non-visible regions, and further includes radiation, and the radiation includes, for example, microwaves and electron beams. Specifically, it means an electromagnetic wave having a wavelength of 5 ⁇ m or less and an electron beam.
  • (meth) acryl represents each of acryl and methacryl
  • (meth) acrylate represents each of acrylate and methacrylate.
  • pigment blue may be abbreviated as “PB”, basic blue as “BB”, pigment violet as “PV”, and acid red as “AR”.
  • Colored resin composition for color filter contains a colorant, a binder component, and a solvent, and the colorant is represented by the following general formula (I). And a blue color material.
  • R 1 and R 2 are each independently an alkyl group or an aryl group, and R 3 and R 4 are each independently an aryl group or a heteroaryl group.
  • the colored resin composition for a color filter according to the present invention forms a colored layer excellent in luminance and light resistance by using a combination of the color material represented by the general formula (I) and the blue color material as a colorant. can do.
  • a xanthene dye having xanthene as a basic skeleton for the purpose of increasing luminance or the like has been performed as a color material used in combination with a blue color material.
  • xanthene dyes that have been specifically described heretofore have poor light resistance.
  • the colorant represented by the general formula (I) used in the present invention has xanthene as a basic skeleton, and has only one functional group containing SO 2 and is bonded to a nitrogen atom. None of 1 to R 4 is a hydrogen atom, and R 3 and R 4 are an aryl group or a heteroaryl group. Therefore, only a saturated hydrocarbon group is not bonded to a nitrogen atom, and an alkali metal ion is present. It is characterized by not.
  • the colored resin composition for a color filter according to the present invention is a colored layer further than when a conventional xanthene dye is used. The brightness and light resistance of the can be improved.
  • the colorant represented by the general formula (I) has a cationic xanthene skeleton and one anionic —SO 3 — group, and is electrically stabilized. Therefore, even if dispersed in a solvent, it is presumed to be excellent in stability without dissociating.
  • the nitrogen atom has an aromatic substituent such as an aryl group or a heteroaryl group, the lone electron pair of the nitrogen atom resonates with the aryl group or heteroaryl group as well as the xanthene skeleton. Therefore, it is presumed that the molecule becomes more stable.
  • the color material represented by the general formula (I) is stable even under light irradiation and has excellent light resistance. By using the color material, a colored layer having excellent light resistance can be formed. It becomes. Further, as a result of suppressing the fading of the color material, the luminance of the colored layer can be improved. Further, since the colorant represented by the general formula (I) can have different R 3 and R 4 from each other, the molecular design range is wide, and thus the adjustment range of spectral characteristics and the like is wide.
  • the colorant represented by the general formula (I) has only a cationic xanthene skeleton and one anionic —SO 3 — group, and has only an inner salt, and therefore has an alkali metal ion. Does not contain.
  • the colorant represented by the general formula (I) has only a cationic xanthene skeleton and one anionic —SO 3 — group, and has only an inner salt, and therefore has an alkali metal ion. Does not contain.
  • the coloring material represented by the general formula (I) has only one functional group containing SO 2 , the coloring material has an affinity for a low polarity solvent such as PGMEA as compared with a conventional xanthene dye. Get higher.
  • a solvent having a polarity lower than that of a conventionally used polar solvent can be used.
  • the resin composition is excellent in stability.
  • the colorant used in the present invention includes a color material represented by the following general formula (I) and a blue color material, and may contain other color materials as necessary. Each color material will be described below.
  • R 1 and R 2 are each independently an alkyl group or an aryl group, and R 3 and R 4 are each independently an aryl group or a heteroaryl group.
  • the alkyl group in R 1 and R 2 is not particularly limited, and examples thereof include an optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms. Among them, a linear or branched alkyl group having 1 to 8 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 5 carbon atoms is more preferable.
  • the substituent that the alkyl group may have is not particularly limited.
  • the aryl group in R 1 to R 4 is not particularly limited, and examples thereof include an aryl group having 6 to 20 carbon atoms which may have a substituent. Among them, a group having a phenyl group, a naphthyl group, or the like Is preferred.
  • the heteroaryl group in R 3 and R 4 is not particularly limited, and examples thereof include a heteroaryl group having 5 to 20 carbon atoms which may have a substituent. Examples of the hetero atom include a nitrogen atom and an oxygen atom. And those containing sulfur atoms are preferred. Specific examples of the heteroaryl group include furan, thiophene, pyrrole, and pyridine.
  • the substituent that the aryl group or heteroaryl group may have is not particularly limited, and examples thereof include an alkyl group, a halogen atom, an alkoxy group, a hydroxyl group, a carbamoyl group, and a monovalent group represented by —CO—O—R a.
  • a monovalent group represented by —O—CO—R a ′ a monovalent group represented by —SO 2 —R a ′′
  • a monovalent group represented by —R b —CO—O—R c group -R b '-O-CO- R c' monovalent group represented by a monovalent group represented by -R b "-SO 2 -R c" and the like.
  • R a, R a ′ , R a ′′ , R b , R b ′ , R b ′′ , R c , R c ′ and R c ′′ represent an alkyl group.
  • These substituents are preferably used because they do not adversely affect heat resistance and the like. It is possible to adjust the spectral characteristics by adjusting the electron withdrawing property and electron donating property by these substituents.
  • the alkyl group in R 1 to R 4 is preferably unsubstituted or the substituent is an aryl group, and the substituent of the aryl group or heteroaryl group is preferably an alkyl group.
  • R 1 to R 4 may be the same or different, and R 1 to R 4 of the coloring material represented by the general formula (I) are symmetrical with respect to the xanthene ring. May be asymmetric.
  • the range of molecular design of the color material represented by the general formula (I) is widened, and the adjustment range of spectral characteristics is also widened. Is preferable from the viewpoint that it is easy to bring the value closer to the target chromaticity and to further improve the luminance.
  • the substitution position of the —SO 3 — group of the benzene ring bonded to the xanthene skeleton is not particularly limited, but is preferably in the ortho position or the para position with respect to the xanthene skeleton.
  • the —SO 3 — group is preferably substituted in the ortho position relative to the xanthene skeleton from the viewpoint of heat resistance and light resistance.
  • the colorant represented by the general formula (I) can be used by converting a —SO 3 — group into a —SO 3 H group.
  • the method for converting the —SO 3 — group to the —SO 3 H group is not particularly limited.
  • an acid treatment method using a weak acid liberation reaction, a method using a cation exchange resin, and the like can be mentioned.
  • the acid treatment method for example, there is a method in which the coloring material is dissolved in a good solvent such as methanol and a solvent in which the acid is dissolved, and an —SO 3 — group is converted to a —SO 3 H group by adding an acid. Can be mentioned.
  • the acid used in the acid treatment method is not particularly limited as long as it is an acid having a higher acidity than an acid obtained by converting a —SO 3 — group into a —SO 3 H group.
  • highly versatile acids include hydrochloric acid, sulfuric acid, nitric acid, p-toluenesulfonic acid (PTS), trifluoromethanesulfonic acid, and the like.
  • examples of the ion exchange resin used in the method using the cation exchange resin include cation exchange resins terminated with sulfonic acid such as Diaion PK-216H (trade name, manufactured by Mitsubishi Chemical Corporation).
  • the sulfonation treatment for converting the —SO 3 — group of the color material into —SO 3 H group is performed after the color material is dissolved in a good solvent, and the color material has a sulfonic acid group (—SO 3 H) as a solid. It may be carried out when preparing a colored resin composition for a color filter, such as adding PGMEA or a dispersing agent without taking out the above. Alternatively, after the color material is sulfonated, a color material having a sulfonic acid group as a solid is taken out by a reprecipitation method or a recrystallization method, and then a colored resin composition for a color filter may be prepared. Among these, the former method is preferable from the viewpoint of the color material recovery rate. Moreover, the color material represented by the general formula (I) may be used alone or in combination of two or more.
  • the manufacturing method of the coloring material represented by the general formula (I) is not particularly limited, specific examples thereof include the following methods.
  • the sulfofluorane compound and the corresponding amine compound are refluxed in a solvent, the reaction solution is filtered at 60 ° C. to remove insoluble matters, a part of the solvent is removed, and the mixture is poured into 6% hydrochloric acid.
  • the wet cake is collected by filtration. The wet cake is washed with water or hot water and then dried to obtain the colorant of the above general formula (I).
  • the corresponding half of the amine compound is added. Add a small amount to the highly diluted sulfofluorane compound methanol solution and drop the remaining amine compound after the reaction, or slowly add a 1: 1 solution of each amine compound to the sulfofluorane compound methanol solution. By doing so, the asymmetric coloring material of the general formula (I) can be obtained with high yield.
  • Blue color material It does not specifically limit as a blue color material used for the colored resin composition for color filters of this invention, A well-known blue organic pigment, a blue dye, a blue lake pigment, etc. can be used.
  • the blue organic pigment is excellent in various resistances such as heat resistance and light resistance compared to the dye and the lake pigment, and the blue dye is soluble and therefore has a higher transmittance than the organic pigment.
  • the lake pigment is an organic pigment in which a water-soluble dye is precipitated with a lake agent (precipitating agent) to make it insoluble. Since the lake pigment is derived from a dye, the transmittance is higher than that of a normal pigment, and it is possible to achieve the demand for higher brightness.
  • blue organic pigment examples include C.I. I. Pigment blue 15, C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. And CI Pigment Blue 60.
  • a copper phthalocyanine-based blue pigment is preferable from the viewpoint of relatively excellent luminance.
  • blue dye examples include methine dyes, anthraquinone dyes, azo dyes, triarylmethane dyes, phthalocyanine dyes, anthraquinone dyes, and the like.
  • blue lake pigment examples include those obtained by rakeizing the above blue dye with a lake agent.
  • the rake agent is not particularly limited.
  • phosphotungstic acid, phosphomolybdic acid, phosphotungstic molybdic acid, tannic acid, lauric acid, 3,4,5-trihydroxybenzoic acid, ferricyanide, ferrocyanide Etc. can be used.
  • blue lake pigments examples include C.I. I. Pigment blue 1, C.I. I. Pigment blue 1: 2, C.I. I. Pigment blue 2, C.I. I. Pigment blue 3, C.I. I. Pigment blue 8, C.I. I. Pigment blue 9, C.I. I. Pigment blue 10, C.I. I. Pigment blue 12, C.I. I. Pigment blue 14, C.I. I. Pigment blue 17: 1, C.I. I. Pigment blue 18, C.I. I. Pigment blue 19, C.I. I. Pigment blue 24, C.I. I. Pigment blue 24: 1, C.I. I. Pigment blue 53, C.I. I. Pigment blue 56, C.I. I. Pigment blue 56: 1, C.I. I. Pigment blue 61, C.I. I. Pigment blue 61: 1, C.I. I. Pigment blue 62, C.I. I. Pigment blue 63, C.I. I. And CI Pigment Blue 78.
  • the blue dye and the blue lake pigment are not particularly limited, but among them, a triarylmethane colorant containing triarylmethane as a basic skeleton is preferable from the viewpoint of improving the brightness and contrast of the colored layer.
  • a triarylmethane colorant containing triarylmethane as a basic skeleton is preferable from the viewpoint of improving the brightness and contrast of the colored layer.
  • the triarylmethane-based blue color material include triarylmethane-based dyes having a triarylmethane skeleton represented by the following general formula (II), and triarylmethane-based lake pigments.
  • R i to R vi each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and R i and R ii , R iii and R iv , R v and R vi may combine to form a ring structure, and Ar i represents a divalent aromatic group which may have a substituent.
  • i to R vi and Ar i may be the same or different.
  • the alkyl group in R i to R vi is not particularly limited, and examples thereof include straight-chain or branched alkyl groups having 1 to 20 carbon atoms. It is preferably a straight-chain or branched alkyl group having 8 and more preferably a straight-chain or branched alkyl group having 1 to 5 carbon atoms from the viewpoint of ease of production and raw material procurement. Groups and methyl groups are preferred.
  • the substituent that the alkyl group may have is not particularly limited, and examples thereof include an aryl group, a halogen atom, and a hydroxyl group, and examples of the substituted alkyl group include a benzyl group.
  • the aryl group in R i to R vi is not particularly limited, and examples thereof include an aryl group having 6 to 12 carbon atoms, and specific examples include a phenyl group and a naphthyl group. Examples of the substituent that the aryl group may have include an alkyl group and a halogen atom.
  • R i and R ii , R iii and R iv , and R v and R vi are combined to form a ring structure.
  • R i and R ii , R iii and R iv , R v and R vi are nitrogen A ring structure is formed through an atom.
  • the ring structure is not particularly limited, and examples thereof include a pyrrolidine ring, a piperidine ring, and a morpholine ring.
  • Divalent aromatic group in Ar i is not particularly limited, other aromatic hydrocarbon radical consisting of carbon ring may be a heterocyclic group.
  • aromatic hydrocarbon in the aromatic hydrocarbon group in addition to a benzene ring, condensed polycyclic aromatic hydrocarbons such as naphthalene ring, tetralin ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring; biphenyl, terphenyl, Examples thereof include chain polycyclic hydrocarbons such as diphenylmethane, triphenylmethane, and stilbene.
  • the chain polycyclic hydrocarbon may have O, S, and N in the chain skeleton such as diphenyl ether.
  • the heterocyclic ring in the heterocyclic group includes 5-membered heterocycles such as furan, thiophene, pyrrole, oxazole, thiazole, imidazole, and pyrazole; And condensed polycyclic heterocycles such as benzofuran, thionaphthene, indole, carbazole, coumarin, benzo-pyrone, quinoline, isoquinoline, acridine, phthalazine, quinazoline, quinoxaline and the like.
  • These aromatic groups may have a substituent. Examples of the substituent that the aromatic group may have include an alkyl group having 1 to 5 carbon atoms and a halogen atom.
  • Ar i is preferably an aromatic group having 6 to 20 carbon atoms, more preferably an aromatic group composed of a condensed polycyclic carbocycle having 10 to 14 carbon atoms, particularly a phenylene group or a naphthylene group. It is preferable.
  • a plurality of R i to R vi and Ar i in one molecule may be the same or different.
  • triarylmethane dye represented by the general formula (II) include, for example, basic blue 7, basic blue 26, and the like.
  • the triarylmethane lake pigment is one or more elements selected from molybdenum, tungsten, silicon, and phosphorus, which are basic triarylmethane dyes represented by the following general formula (II ′). And a lake pigment made of an anion containing oxygen as an essential element is preferably used from the viewpoint of achieving high brightness of the colored layer.
  • each of R I to R VI independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a group having 7 to 16 carbon atoms.
  • X ⁇ represents an anion containing one or more elements selected from molybdenum, tungsten, silicon and phosphorus and oxygen as essential elements.
  • the anion X - include, among others, is preferably the anion of a heteropolyacid or isopolyacid containing as at least one essential elements molybdenum and tungsten. Among these, one or more selected from the group consisting of phosphotungstic acid, silicotungstic acid, phosphotungstomolybdic acid, and cytungstomolybdic acid is preferably used.
  • Such lake pigments can be prepared with reference to, for example, International Publication No. 2012/039416 and International Publication No. 2012/039417.
  • triarylmethane lake pigment those represented by the following general formula (II ′′) are also preferably used from the viewpoint of achieving high brightness of the colored layer.
  • A is an a-valent organic group in which the carbon atom directly bonded to N has no ⁇ bond, and the organic group is saturated aliphatic at least at the terminal directly bonded to N.
  • R c- R XI to R XV each independently represents a hydrogen atom, an alkyl group which may have a substituent or an aryl group which may have a substituent, and R XII , R XIII and R XIV good .
  • Ar 1 be R XV combine to form a ring structure represents a divalent aromatic group which may have a substituent.
  • each plurality of R XI ⁇ R XV and Ar 1 are the same Or different.
  • a and c represent an integer of 2 or more
  • b and d represent an integer of 1 or more.
  • e is 0 or 1, and when e is 0, there is no bond.
  • a plurality of e may be the same or different. )
  • a in the general formula (II ′′) is an a-valent organic group in which the carbon atom directly bonded to N (nitrogen atom) has no ⁇ bond, and the organic group is saturated at least at the terminal directly bonded to N.
  • An aliphatic hydrocarbon group having an aliphatic hydrocarbon group or an aromatic group having the aliphatic hydrocarbon group is represented, and O (oxygen atom), S (sulfur atom), and N (nitrogen atom) are present in the carbon chain. Since the carbon atom directly bonded to N does not have a ⁇ bond, the color characteristics such as the color tone and transmittance of the cationic color development site are different from those of the linking group A and other color development sites.
  • an aliphatic hydrocarbon group having a saturated aliphatic hydrocarbon group at the terminal directly bonded to N is linear, branched or cyclic unless the terminal carbon atom directly bonded to N has a ⁇ bond.
  • the carbon atom other than the terminal may have an unsaturated bond, may have a substituent, and the carbon chain contains O, S, and N. Also good.
  • a carbonyl group, a carboxy group, an oxycarbonyl group, an amide group or the like may be contained, and a hydrogen atom may be further substituted with a halogen atom or the like.
  • the aromatic group having an aliphatic hydrocarbon group in A is a monocyclic or polycyclic aromatic group having an aliphatic hydrocarbon group having a saturated aliphatic hydrocarbon group at the terminal directly bonded to N. And may have a substituent, and may be a heterocyclic ring containing O, S, and N. Especially, it is preferable that A contains a cyclic
  • the cyclic aliphatic hydrocarbon groups a bridged alicyclic hydrocarbon group is preferable from the viewpoint of skeleton fastness.
  • the bridged alicyclic hydrocarbon group means a polycyclic aliphatic hydrocarbon group having a bridged structure in the aliphatic ring and having a polycyclic structure, for example, norbornane, bicyclo [2,2,2]. Examples include octane and adamantane.
  • norbornane is preferable.
  • the group containing a benzene ring and a naphthalene ring is mentioned, for example, Among these, the group containing a benzene ring is preferable.
  • A is a divalent organic group, a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, or an aromatic group substituted with two alkylene groups having 1 to 20 carbon atoms such as a xylylene group Etc.
  • the valence a in A is the number of chromogenic cation sites constituting the cation, and a is an integer of 2 or more.
  • the cation valence a is preferably 3 or more.
  • the upper limit of a is not particularly limited, but a is preferably 4 or less, and more preferably 3 or less, from the viewpoint of ease of production.
  • Ar 1 and R XI to R XV in the general formula (II ′′) include those described in International Publication No. 2012/144520 pamphlet.
  • the anion part (B c ⁇ ) is not particularly limited, and may be an organic anion or an inorganic anion. Represents an anion containing at least one atom, and an inorganic anion represents an anion not containing a carbon atom.
  • B c- is an inorganic anion from the viewpoint of high brightness and excellent heat resistance. It is preferable.
  • Specific examples of the organic anion and the inorganic anion include those described in International Publication No. 2012/144520 pamphlet. Especially, it is preferable that it is an anion of the inorganic acid containing at least 1 sort (s) of tungsten (W) and molybdenum (Mo) from the point which is excellent in heat resistance with high brightness
  • b represents the number of cations
  • d represents the number of anions in the molecular aggregate
  • b and d represent an integer of 1 or greater.
  • a plurality of cations may be used alone or in combination of two or more, and when d is 2 or more, a plurality of anions in the molecular aggregate may be used alone.
  • Two or more kinds may be combined, and an organic anion and an inorganic anion may be used in combination.
  • E in the general formula (II ′′) is an integer of 0 or 1.
  • a plurality of e may be the same or different.
  • those containing at least a triarylmethane skeleton are preferably used.
  • a lake pigment represented by general formula (II ") it can prepare with reference to international publication 2012/144520 pamphlet, for example.
  • the colored resin composition for a color filter of the present invention may be blended with other color materials as needed for the purpose of controlling the color tone.
  • other colorants for example, conventionally known organic pigments, lake pigments, dyes, inorganic pigments, and the like can be selected according to the purpose, and one or more can be used.
  • organic pigments used as other colorants include C.I. I. Pigment violet 19, C.I. I. Pigment violet 23, C.I. I. Pigment violet 29, C.I. I. Pigment violet 32, C.I. I. Pigment violet 36, C.I. I. Pigment violet 38 and the like.
  • lake pigments used as other colorants include C.I. I. Pigment violet 1, C.I. I. Pigment violet 2, C.I. I. Pigment violet 3, C.I. I. Pigment violet 3: 1, C.I. I. Pigment violet 3: 3, C.I. I. Pigment violet 4, C.I. I. Pigment violet 5, C.I. I. Pigment violet 5: 1, C.I. I. Pigment violet 6: 1, C.I. I. Pigment violet 7: 1, C.I. I. Pigment violet 9, C.I. I. Pigment violet 12, C.I. I. Pigment violet 20, C.I. I. Pigment violet 26, C.I. I. Pigment violet 27, C.I. I. And CI Pigment Violet 39.
  • dyes used as other colorants include red dyes such as xanthene dyes, azo dyes, anthraquinone dyes, perinone dyes, and dipyrromethene dyes.
  • the amount of the color material is not particularly limited as long as the effects of the present invention are not impaired.
  • the color material represented by the general formula (I) and the blue color material I s preferably 99: 1 to 30:70, more preferably 99: 1 to 50:50, and most preferably 99: 1 to 60:50. 40 is particularly preferred. Within this range, the color tone can be controlled without impairing the effects of the present invention.
  • the colored resin composition for a color filter of the present invention contains a binder component in order to impart film formability and adhesion to the surface to be coated.
  • a curable binder component in order to impart film formability and adhesion to the surface to be coated.
  • the curable binder component used in forming the coloring layer of a conventionally well-known color filter can be used suitably.
  • the curable binder component include a photocurable binder component containing a photocurable resin that can be polymerized and cured by visible light, ultraviolet light, electron beam, and the like, and a thermosetting resin that can be polymerized and cured by heating. What contains the thermosetting binder component to contain can be used.
  • the colored resin composition for a color filter according to the present invention can be selectively adhered in a pattern on a substrate to form a colored layer, for example, when used in an inkjet method, the developability of the curable binder component Is not necessary.
  • a well-known thermosetting binder component, a photosensitive binder component, etc. which are used when forming a color filter colored layer by an inkjet system etc. can be used suitably.
  • the thermosetting binder a combination of a compound having two or more thermosetting functional groups in one molecule and a curing agent is usually used, and a catalyst capable of promoting a thermosetting reaction may be added.
  • thermosetting functional group examples include an epoxy group, an oxetanyl group, an isocyanate group, and an ethylenically unsaturated bond.
  • An epoxy group is preferably used as the thermosetting functional group.
  • Specific examples of the thermosetting binder component include those described in International Publication No. 2012/144521 pamphlet.
  • the photosensitive binder component which has alkali developability is used suitably.
  • the photosensitive binder component include a positive photosensitive binder component and a negative photosensitive binder component.
  • the positive photosensitive binder component include a system containing an alkali-soluble resin and an o-quinonediazide group-containing compound as a photosensitizing component.
  • the negative photosensitive binder component a system containing at least an alkali-soluble resin, a polyfunctional monomer, and a photoinitiator is preferably used.
  • a negative photosensitive binder component is preferable because a pattern can be easily formed by an existing process by a photolithography method.
  • the alkali-soluble resin, the polyfunctional monomer, and the photoinitiator constituting the negative photosensitive binder component will be specifically described.
  • the alkali-soluble resin in the present invention has a carboxyl group, acts as a binder resin, and is suitably selected and used as long as it is soluble in a developer used for pattern formation, particularly preferably an alkali developer. be able to.
  • a preferable alkali-soluble resin in the present invention is a resin having a carboxyl group, and specific examples thereof include an acrylic copolymer having a carboxyl group and an epoxy (meth) acrylate resin having a carboxyl group.
  • particularly preferred are those having a carboxyl group in the side chain and further having a photopolymerizable functional group such as an ethylenically unsaturated group in the side chain. This is because the film strength of the cured film formed by containing the photopolymerizable functional group is improved.
  • These acrylic copolymers and epoxy acrylate resins may be used as a mixture of two or more.
  • the acrylic copolymer having a carboxyl group is obtained by copolymerizing a carboxyl group-containing ethylenically unsaturated monomer and an ethylenically unsaturated monomer.
  • the acrylic copolymer having a carboxyl group may further contain a structural unit having an aromatic carbocyclic ring.
  • the aromatic carbocycle functions as a component that imparts coating properties to the colored resin composition.
  • the acrylic copolymer having a carboxyl group may further contain a structural unit having an ester group.
  • the structural unit having an ester group not only functions as a component that suppresses alkali solubility of the colored resin composition, but also functions as a component that improves the solubility in a solvent and further the solvent re-solubility.
  • acrylic copolymer having a carboxyl group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec- Butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 1-adamantyl (meth) acrylate, allyl (meth
  • a polymer having an ethylenically unsaturated bond introduced by adding an ethylenically unsaturated compound having a reactive functional group such as a glycidyl group or a hydroxyl group to the above copolymer can be exemplified, but the present invention is not limited thereto. Is not to be done.
  • a polymer or the like into which an ethylenically unsaturated bond is introduced may be polymerized with a polyfunctional monomer described later at the time of exposure. This is particularly preferable in that it becomes possible and the colored layer becomes more stable.
  • the copolymerization ratio of the carboxyl group-containing ethylenically unsaturated monomer in the carboxyl group-containing copolymer is usually 5 to 50% by weight, preferably 10 to 40% by weight.
  • the copolymerization ratio of the carboxyl group-containing ethylenically unsaturated monomer is less than 5% by weight, the solubility of the resulting coating film in an alkaline developer is lowered, and pattern formation becomes difficult.
  • the copolymerization ratio exceeds 50% by weight, there is a tendency that the formed pattern is easily detached from the substrate or the pattern surface is roughened during development with an alkali developer.
  • the acid value of the carboxyl group-containing copolymer is preferably 30 to 200 mgKOH / g.
  • the acid value means the number of mg of potassium hydroxide required to neutralize the acid component contained in 1 g of the solid content of the polymer, and can be measured by the method defined in JIS-K0070.
  • the weight average molecular weight of the carboxyl group-containing copolymer is preferably in the range of 1,000 to 50,000, more preferably 4,000 to 25,000. If it is less than 1,000, the binder function after curing is remarkably lowered, and if it exceeds 50,000, pattern formation may be difficult during development with an alkaline developer.
  • the weight average molecular weight here is calculated
  • epoxy (meth) acrylate resin which has a carboxyl group
  • Acrylate compounds are suitable.
  • unsaturated group-containing monocarboxylic acids examples include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl phthalic acid, (meth) acryloyloxyethyl hexahydrophthalic acid, (Meth) acrylic acid dimer, ⁇ -furfurylacrylic acid, ⁇ -styrylacrylic acid, cinnamic acid, crotonic acid, ⁇ -cyanocinnamic acid and the like. These unsaturated group-containing monocarboxylic acids may be used alone or in combination of two or more.
  • Acid anhydrides include maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendo Dibasic acid anhydrides such as methylenetetrahydrophthalic acid, chlorendic anhydride, methyltetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, biphenyl Aromatic polycarboxylic acid anhydrides such as ether tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, endobicycl
  • the weight average molecular weight Mw of the epoxy (meth) acrylate compound having a carboxyl group thus obtained is not particularly limited, but is preferably 1000 to 40000, more preferably 2000 to 5000.
  • the alkali-soluble resin used in the colored resin composition for a color filter of the present invention may be used alone or in combination of two or more, and the content thereof is a colored resin for a color filter.
  • the amount is usually in the range of 10 to 1000 parts by weight, preferably in the range of 20 to 500 parts by weight, with respect to 100 parts by weight of the color material contained in the composition. If the content of the alkali-soluble resin is too small, sufficient alkali developability may not be obtained, and if the content of the alkali-soluble resin is too large, the ratio of the colorant becomes relatively low and sufficient. The coloring density may not be obtained.
  • the polyfunctional monomer used in the colored resin composition for a color filter of the present invention is not particularly limited as long as it can be polymerized by a photoinitiator described later, and usually has two ethylenically unsaturated double bonds.
  • a compound having the above is used, and it is particularly preferably a polyfunctional (meth) acrylate having two or more acryloyl groups or methacryloyl groups.
  • polyfunctional (meth) acrylates examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, propylene glycol di (meth) acrylate, and glycerol di (meth).
  • trifunctional or higher polyfunctional (meth) acrylate examples include, for example, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, succinic anhydride-modified pentaerythritol tetra (meth) acrylate, tri (meth) acrylate phosphate, tris (acryloxyethyl) isocyanurate, tris ( Methacryloxyethyl) isocyanurate, dipentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, alkyl-modified dipentaerythrito
  • polyfunctional (meth) acrylates may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, when the photocurability (high sensitivity) is requested
  • the content of the polyfunctional monomer used in the colored resin composition for a color filter of the present invention is not particularly limited, but is usually about 5 to 500 parts by weight, preferably 20 parts per 100 parts by weight of the alkali-soluble resin. It is in the range of up to 300 parts by weight. If the content of the polyfunctional monomer is less than the above range, the photocuring may not sufficiently proceed and the exposed part may be eluted, and if the content of the polyfunctional monomer is more than the above range, the alkali developability may be deteriorated. There is.
  • Photoinitiator There is no restriction
  • aromatic ketones such as benzophenone, Michler ketone, 4,4′-bisdiethylaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2-ethylanthraquinone, phenanthrene, benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether, etc.
  • Benzoin ethers such as methylbenzoin, ethylbenzoin, 2- (o-chlorophenyl) -4,5-phenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) Imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4,5-tria Reel imidazole dimer 2- (o-chlorophenyl) -4,5-di (m-methylphenyl) imidazole dimer, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2-trichloromethyl- 5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (p-cyanostyryl) -1
  • photoinitiators may be used individually by 1 type, and may be used in combination of 2 or more type. Among them, from the viewpoint of luminance and heat resistance, it contains at least one selected from 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one and 2,4-diethylthioxanthone. Is preferred.
  • the content of the photoinitiator used in the colored resin composition for a color filter of the present invention is usually about 0.01 to 100 parts by weight, preferably 5 to 60 parts by weight with respect to 100 parts by weight of the polyfunctional monomer. is there. If the content is less than the above range, the polymerization reaction cannot be sufficiently caused, so that the hardness of the colored layer may not be sufficient. In some cases, the content of the coloring material or the like in the solid content is relatively small, and a sufficient coloring density cannot be obtained.
  • the solvent contained in the colored resin composition for color filter of the present invention is not particularly limited as long as it is an organic solvent that does not react with each component in the colored resin composition for color filter and can dissolve or disperse them. Is not to be done.
  • a solvent capable of dispersing the color material represented by the general formula (I) can be used together with the dispersant described later.
  • the solvent whose solubility of the coloring material represented by the said general formula (I) at 23 degreeC is 0.2 (g / 100g solvent) or less is mentioned, for example.
  • the colored resin composition for a color filter according to the present invention has the general formula
  • the colorant represented by (I) can be used as fine particles dispersed.
  • the solvent used in the present invention is preferably a solvent having a solubility of the coloring material represented by the general formula (I) at 23 ° C. of 0.1 (g / 100 g solvent) or less.
  • the solubility of the coloring material in the mixed solvent at 23 ° C. is 0.2 (g / 100 g). Solvent) or less is preferable.
  • the solvent whose solubility of the coloring material represented by the said general formula (I) at 23 degreeC is 0.2 (g / 100g solvent) or less is simply determined with the following evaluation methods. Can do. First, it is possible to determine whether or not the solvent does not substantially dissolve the color material represented by the general formula (I) by the following method. Into a 20 mL sample tube bottle, 0.1 g of the colorant represented by the above general formula (I) is added, and the solvent S is added using a 10 ml hole pipette, and further covered with an ultrasonic wave for 3 minutes. The obtained liquid is stored in a 23 ° C. water bath for 60 minutes.
  • the solubility is further determined by the following evaluation method.
  • a good solvent for the color material for example, alcohol such as methanol
  • a filtrate is similarly obtained, and a color material solution in which the color material is dissolved is prepared.
  • the solution is appropriately diluted to about 1 to 100000 times, and the absorbance at the maximum absorption wavelength of the coloring material is measured in the same manner.
  • the solubility of the coloring material in the solvent S is calculated from the absorbance and dilution ratio of the coloring material solution of the solvent S and the coloring material solution of the good solvent.
  • a solvent whose solubility of the coloring material is 0.2 (g / 100 g solvent) or less is determined that the coloring material is a poorly soluble solvent.
  • the solubility at 23 ° C. of the color material is 0.2 (g / g).
  • a solvent exceeding 100 g solvent) is preferably used.
  • the color material represented by the general formula (I) used in the present invention can be dissolved in a solvent having a lower polarity than conventional ones.
  • the colorant represented by the general formula (I) has a higher solubility in a solvent used for dissolving a conventional xanthene dye than that of a conventional xanthene dye. Processability is improved.
  • the solvent contained in the colored resin composition for a color filter of the present invention is preferably selected from ester solvents and used from the viewpoint of stability.
  • ester solvent include ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl lactate, methoxyethyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-3-methyl-1-butyl acetate, 3-methoxybutyl acetate, methoxybutyl acetate, ethoxyethyl acetate, ethyl cellosolve acetate, dipropylene glycol methyl ether acetate, propylene glycol diacetate, 1,3-butylene glycol diacetate, cyclohexanol acetate, 1,6-hexanediol di Examples include acetate, diethylene glycol monoethyl ether acetate, diethylene
  • propylene glycol monomethyl ether acetate examples include ethyl lactate in the ester solvent.
  • a solvent other than the ester solvent for example, a ketone solvent such as cyclohexanone, an alcohol solvent such as diacetone alcohol, or the like can be used.
  • the solvent used in the present invention it is preferable that the solvent of which the solubility of the coloring material represented by the general formula (I) is 0.2 (g / 100 g solvent) or less is 50% by weight or more in the total solvent, Furthermore, it is preferable to contain 70% by weight or more, and further more preferably 80% by weight or more is preferable from the viewpoint of stability.
  • the solvent is 100% by weight in the total solvent.
  • the said solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the colored resin composition for a color filter according to the present invention can contain a dispersant and other optional additive components as necessary.
  • the colored resin composition for a color filter according to the present invention may be prepared by dissolving the colorant in the solvent, but may be prepared by dispersing in a solvent by using it together with a dispersant described later.
  • Dispersant a known dispersant can be appropriately selected and used.
  • cationic, anionic, nonionic, amphoteric, silicone, and fluorine-based surfactants can be used.
  • a polymer surfactant polymer dispersant is preferable because it can be uniformly and finely dispersed.
  • polymer dispersant examples include polymer dispersants such as modified polyurethane, modified polyacrylate, modified polyester, and modified polyamide.
  • polymer dispersants such as modified polyurethane, modified polyacrylate, modified polyester, and modified polyamide.
  • polymers of unsaturated carboxylic acid esters such as polyacrylic acid esters;
  • partial) ammonium Salts partial) alkylamine salts;
  • polymers of unsaturated carboxylic acid esters such as polyacrylic acid esters having amino groups, (partial) acid-modified products of amino groups of the polymers; hydroxyl group-containing polyacrylic acid
  • Co polymers of hydroxyl-containing unsaturated carboxylic acid esters such as esters and their modified products; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; poly (lower alky
  • the dispersant used in the present invention is preferably a dispersant having an amine value from the viewpoint that the colorant can be suitably dispersed and the dispersion stability is good.
  • the amine value is 5 to 200 mgKOH / g. It is preferably 5 to 150 mgKOH / g.
  • the amine value represents the weight (mg) of potassium hydroxide (KOH) equivalent to the amount of hydrochloric acid necessary to neutralize 1 g of solid content, and is measured by the method described in JIS K7237. be able to.
  • a polymer dispersant is preferable, a polymer dispersant having a nitrogen atom is more preferable, and a polymer dispersant having an amine or an ammonium salt is more preferable.
  • the amine or ammonium salt is preferably present in the side chain or the resin terminal.
  • polymer dispersant having an amine or ammonium salt examples include (partial) amine salts, (partial) ammonium salts, and (partial) alkylamine salts of (co) polymers of unsaturated carboxylic acids such as polyacrylic acid; Polyurethanes; unsaturated polyamides; polyethyleneimine derivatives; polyallylamine derivatives and the like.
  • Examples of commercially available products used as a dispersant in the present invention include EFKA-4046, EFKA-4047, EFKA polymer 10, EFKA polymer 400, EFKA polymer 401, EFKA polymer 4300, EFKA polymer 4310, EFKA polymer 4320, and EFKA polymer.
  • the dispersant used for dispersing the colorant represented by the general formula (I) is, among others, a polymer dispersant made of a polymer containing a repeating unit having a tertiary amine, or a urethane-based dispersion. Being an agent, good dispersibility and excellent brightness can be realized, and foreign matter is not deposited during the formation of the colored layer, and a colored layer with excellent resolubility in a solvent and excellent heat resistance is formed. It is preferable from the point of possible.
  • the two types of dispersants preferable as the dispersant for the color material represented by the general formula (I) will be described in detail.
  • the repeating unit having a tertiary amine is a site having an affinity for the colorant represented by the general formula (I).
  • the tertiary amine of the repeating unit and the —SO 3 — group or —SO 3 H group of the coloring material are stabilized by causing an acid-base interaction.
  • the polymer dispersant made of a polymer containing a repeating unit having a tertiary amine usually contains a repeating unit that becomes a site having an affinity for a solvent.
  • Examples of the polymer containing a repeating unit having a tertiary amine include (a) a block copolymer having a block part composed of a repeating unit having a tertiary amine and a block part having a solvent affinity, and (b) 3 A graft copolymer containing a repeating unit having a secondary amine and a repeating unit having a polymer chain having solvent affinity is preferably used.
  • the repeating unit having a tertiary amine may be contained in a polymer chain corresponding to a branch part, and the solvent affinity with the repeating unit having a polymer chain containing a repeating unit having a tertiary amine It may be a graft copolymer containing a repeating unit having a polymer chain.
  • the repeating unit having a tertiary amine only needs to have a tertiary amine, and the tertiary amine may be contained in the side chain of the block polymer or may constitute the main chain.
  • a repeating unit having a tertiary amine in the side chain is preferable, and among them, the structure represented by the following general formula (III) is preferable because the main chain skeleton is hardly thermally decomposed and has high heat resistance. Is more preferable.
  • R 15 is a hydrogen atom or a methyl group
  • Q is a direct bond or a divalent linking group
  • R 16 is an alkylene group having 1 to 8 carbon atoms
  • R 17 and R 18 each independently represent a optionally substituted linear or cyclic hydrocarbon group, R 17 and R 18 form a ring structure by bonding with each other .
  • R 20 and R Each 21 is independently a hydrogen atom or a methyl group.
  • x represents an integer of 1 to 18, y represents an integer of 1 to 5, and
  • z represents an integer of 1 to 18.
  • Examples of the divalent linking group Q in the general formula (III) include, for example, an alkylene group having 1 to 10 carbon atoms, an arylene group, a —CONH— group, a —COO— group, an ether group having 1 to 10 carbon atoms (— R′—OR ′′ —: R ′ and R ′′ are each independently an alkylene group) and combinations thereof.
  • Q is preferably a —COO— group from the viewpoint of heat resistance of the obtained polymer, solubility in PGMEA, and a relatively inexpensive material.
  • the divalent organic group R 16 in the general formula (III) is an alkylene group having 1 to 8 carbon atoms, — [CH (R 20 ) —CH (R 21 ) —O] x —CH (R 20 ) —CH (R 21 ) — or — [(CH 2 ) y —O] z — (CH 2 ) y —.
  • the alkylene group having 1 to 8 carbon atoms may be linear or branched. For example, methylene group, ethylene group, trimethylene group, propylene group, various butylene groups, various pentylene groups, various hexylenes. Groups, various octylene groups and the like.
  • R 20 and R 21 are each independently a hydrogen atom or a methyl group.
  • R 16 is preferably an alkylene group having 1 to 8 carbon atoms from the viewpoint of dispersibility. Among them, R 16 is more preferably a methylene group, an ethylene group, a propylene group, or a butylene group. Groups are more preferred.
  • Examples of the cyclic structure formed by combining R 17 and R 18 in the general formula (III) include a 5- to 7-membered nitrogen-containing heterocyclic monocycle or a condensed ring formed by condensing two of these. It is done.
  • the nitrogen-containing heterocycle preferably has no aromaticity, more preferably a saturated ring.
  • repeating unit represented by the general formula (III) examples include (meth) acryloyloxypropyldimethylamine, (meth) acryloyloxyethyldimethylamine, (meth) acryloyloxypropyldiethylamine, (meth) acryloyloxyethyldiethylamine, and the like. Examples include, but are not limited to, derived repeating units.
  • Block copolymer The block copolymer having a solvent affinity in the block copolymer having a block unit composed of a repeating unit having a tertiary amine and a block unit having a solvent affinity has a solvent affinity.
  • the repeating unit derived from a non-basic monomer is appropriately selected according to the solvent so as to have solvent affinity.
  • the non-basic monomer gives a solution having a pH lower than 7.1 when dissolved in water at 25 ° C. at a concentration of 0.1 N (saturation concentration when the saturation concentration is less than 0.1 N).
  • a polymerizable monomer A polymerizable monomer.
  • the polymer of unsaturated carboxylic acid esters such as polyacrylic acid ester, unsaturated carboxylic acid polymers, such as polyacrylic acid, etc. are mentioned, for example.
  • a polymer having a repeating unit represented by the following general formula (IV) is improved in heat resistance while improving dispersibility and dispersion stability of the color material represented by the general formula (I). It is preferable from the point which improves.
  • R 22 is a hydrogen atom or a methyl group
  • A is a direct bond or a divalent linking group
  • R 23 is an alkyl group having 1 to 18 carbon atoms
  • R 24 and R 25 are each independently a hydrogen atom or a methyl group
  • R 26 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an aralkyl group
  • X is an integer from 1 to 18, and y is an integer from 1 to 5.
  • z is an integer of 1 ⁇ 18 .m's 3-200 integer
  • n is an integer of 10 to 200.
  • a block copolymer having a block part composed of a repeating unit having a tertiary amine and a block part having a solvent affinity for example, a block copolymer described in Japanese Patent No. 4911253 is used. It can be mentioned as a suitable thing.
  • the repeating unit having a polymer chain having solvent affinity may be:
  • the structural unit represented by the following general formula (V) is mentioned.
  • R 15 ′ represents a hydrogen atom or a methyl group
  • L represents a direct bond or a divalent linking group
  • Polymer represents a polymer chain.
  • L is a direct bond or a divalent linking group.
  • the divalent linking group in L is not particularly limited as long as it can link an ethylenically unsaturated double bond and a polymer chain.
  • Examples of the divalent linking group for L include an alkylene group, an alkylene group having a hydroxyl group, an arylene group, a —CONH— group, a —COO— group, a —NHCOO— group, an ether group (—O— group), and a thioether group. (—S— group), and combinations thereof.
  • the direction of bonding of the divalent linking group is arbitrary.
  • -CO when -CONH- is contained in the divalent linking group, -CO may be on the carbon atom side of the main chain and -NH may be on the side of the polymer chain. On the carbon atom side, —CO may be the polymer chain side chain.
  • the polymer chain may be appropriately selected so as to have solubility in a solvent.
  • the polymer is used so that the solubility of the graft copolymer at 23 ° C. with respect to the solvent used is 50 (g / 100 g solvent) or more. It is preferred to select a chain.
  • the polymer chain preferably has at least one structural unit represented by the following general formula (VI) and general formula (VII) from the viewpoint of solubility in a solvent.
  • R 28 is a hydrogen atom or a methyl group
  • R 29 is an alkyl group having 1 to 18 carbon atoms, a benzyl group, a phenyl group, a biphenyl group, a cyano group, — [CH (R 30 ) —CH (R 31 ) —O] x —R 32 , — [(CH 2 ) y —O] z —R 32 , — [CO— (CH 2 ) y —O] z — A monovalent group represented by R 32 , —CO—O—R 33 or —O—CO—R 34.
  • R 30 and R 31 each independently represents a hydrogen atom or a methyl group.
  • R 32 is a hydrogen atom or a monovalent group represented by a C 1-18 alkyl group, benzyl group, phenyl group, biphenyl group, —CHO, —CH 2 CHO or —CH 2 COOR 35 ;
  • 33 is an alkyl group having 1 to 18 carbon atoms, benzyl group, phenyl group, biphenyl group, cyano group, — [CH (R 30 ) —CH (R 31 ) —O] x —R 32 , — [(CH 2 ) Y —O] z —R 32 or a monovalent group represented by — [CO— (CH 2 ) y —O] z —R 32 .
  • R 34 represents an alkyl group having 1 to 18 carbon atoms
  • R 35 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 to 5
  • n and n ′ represent an integer of 5 to 200
  • graft copolymer containing such a repeating unit having a tertiary amine and a repeating unit having a polymer chain having a solvent affinity include, for example, the graft copolymer described in Japanese Patent No. 4911256. It can be mentioned as a suitable thing.
  • the urethane-based dispersant suitably used as a dispersant having excellent dispersibility of the colorant represented by the general formula (I) is a compound having one or more urethane bonds (—NH—COO—) in one molecule. It is a dispersing agent which consists of.
  • the urethane-based dispersant is preferable from the viewpoint that good dispersion can be achieved with a small amount of the dispersant. By making the amount of the dispersant small, it is possible to relatively increase the amount of the curing component and the like, and as a result, it is possible to form a colored layer having excellent heat resistance.
  • the urethane-based dispersant is particularly preferable in terms of excellent dispersibility of the color material represented by the general formula (I).
  • the urethane dispersant is preferably a reaction product of a polyisocyanate having two or more isocyanate groups in one molecule and a polyester having a hydroxyl group at one or both ends.
  • the polyisocyanate preferably has at least one isocyanate compound selected from diisocyanates and triisocyanates, and is a polymer having a main chain skeleton obtained by polymerizing at least one of diisocyanates and triisocyanates. May be.
  • the main chain structure in which at least one of diisocyanates and triisocyanates is polymerized includes a molecular structure in which isocyanate groups are bonded to each other and polymerized between the above polyisocyanates. Further, the chain structure of the main chain skeleton may contain a ring structure such as an aromatic ring or a heterocyclic ring which may have a substituent.
  • Diisocyanates used in the urethane-based dispersant may be aliphatic diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate, but aromatic diisocyanates are preferable from the viewpoint of heat resistance.
  • benzene-1,3-diisocyanate Benzene diisocyanates such as benzene-1,4-diisocyanate; toluene diisocyanates such as toluene-2,4-diisocyanate, toluene-2,5-diisocyanate, toluene-2,6-diisocyanate, toluene-3,5-diisocyanate 1,2-xylene-3,5-diisocyanate, 1,2-xylene-3,6-diisocyanate, 1,2-xylene-4,6-diisocyanate, 1,3-xylene-2,4-diisocyanate 1,3-xylene-2,4-diisocyanate 1,3-xylene-2,5-diisocyanate, 1,3-xylene-2,6-diisocyanate, 1,3-xylene-4,6-diisocyanate, 1,4-xylene-2,
  • triisocyanates examples include benzene triisocyanates such as benzene-1,2,4-triisocyanate, benzene-1,2,5-triisocyanate, and benzene-1,3,5-triisocyanate; -2,3,5-triisocyanate, toluene-2,3,6-triisocyanate, toluene-2,4,5-triisocyanate, toluene-2,4,6-triisocyanate, toluene-3,4,6 -Toluene isocyanates such as triisocyanate, toluene-3,5,6-triisocyanate, 1,2-xylene-3,4,6-triisocyanate, 1,2-xylene-3,5,6-triisocyanate 1,3-xylene-2,4,5-triisocyanate, 1,3-xylene-2,4,6 Xylene such as triisocyanate, 1,3-xylene-3,4,5-triisocyanate, 1,3
  • toluene diisocyanates are preferred from the viewpoint of high heat resistance.
  • These diisocyanates and triisocyanates can be used alone or in admixture of two or more.
  • polyesters having a hydroxyl group at one end or both ends among them, from the viewpoint of dispersibility, — (O—R j CO) n— (R j is an alkylene group having 1 to 20 carbon atoms, and n is 2 or more. It is preferable that it is a compound containing the polyester chain represented by this.
  • Specific examples of the polyester chain include polylactones such as polycaprolactone, polyvalerolactone and polypropiolactone, and polycondensation polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • polylactones such as polycaprolactone, polyvalerolactone and polypropiolactone
  • polycondensation polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • the urethane-based dispersant does not have an acidic functional group from the viewpoint of dispersibility.
  • the acidic functional group include a carboxyl group, a sulfo group, and a phosphoric acid group, and a representative example is a carboxyl group.
  • a urethane type dispersing agent does not contain the polyether chain
  • the polyether chain means a structure represented by — (O—R i ) n— (R i is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 2 or more).
  • the molecular weight of the urethane-based dispersant is preferably in the range of 500 to 30,000 in terms of polystyrene-equivalent weight average molecular weight from the viewpoints of heat resistance, electrical reliability, and dispersibility.
  • the dispersant may be used alone or in combination of two or more.
  • a different dispersant may be used.
  • the colored resin composition for a color filter of the present invention may contain various additives as long as the object of the present invention is not impaired.
  • the additive include a polymerization terminator, a chain transfer agent, a leveling agent, a plasticizer, a surfactant, an antifoaming agent, a silane coupling agent, an ultraviolet absorber, and an adhesion promoter.
  • the total content of the colorant represented by the general formula (I), the blue color material, and other colorants blended as necessary is the total solid content of the color resin composition for color filters. Therefore, it is preferably 5 to 65% by weight, more preferably 8 to 55% by weight. If it is at least the above lower limit, the color density of the colored layer is excellent when the colored resin composition for a color filter is applied to a predetermined film thickness (usually 1.0 to 5.0 ⁇ m). Moreover, if it is below the said upper limit, while being excellent in the dispersibility and dispersion stability, the colored layer excellent in hardness and adhesiveness with a board
  • solid content is all things other than the solvent mentioned above, and the polyfunctional monomer etc. which are melt
  • the total amount of the binder component is preferably 24 to 94% by weight, and more preferably 40 to 87% by weight, based on the total solid content of the colored resin composition for color filters. If it is more than the said lower limit, the colored layer excellent in hardness and the adhesiveness with a board
  • the content of the solvent may be set as appropriate as long as the colored layer can be formed with high accuracy, but it should be in the range of 65 to 95% by weight with respect to the total amount of the colored resin composition for the color filter. In particular, it is preferably in the range of 75 to 88% by weight. When the content of the solvent is within the above range, the coating property can be excellent.
  • the content of the dispersant is not particularly limited as long as the colorant can be uniformly dispersed.
  • the content of the dispersant is 1 to 100 parts by weight based on 100 parts by weight of the color resin colored resin composition. 50 parts by weight can be used.
  • it is preferably blended in a proportion of 2 to 30 parts by weight, particularly preferably 2 to 15 parts by weight, based on 100 parts by weight of the solid content of the colored resin composition for color filters. If it is more than the said lower limit, it is excellent in the dispersibility and dispersion stability of a coloring agent, and is excellent in storage stability. Moreover, if it is below the said upper limit, developability will become favorable.
  • the manufacturing method of the colored resin composition for color filters which concerns on this invention is a method which can melt
  • it can be prepared by mixing using a known mixing means.
  • a method for preparing a colored resin composition for a color filter according to the present invention for example, (i) In the solvent, various color materials used for the colorant are separately dispersed together with the dispersant, or without using the dispersant.
  • a colorant dispersion or a colorant solution is prepared by dissolving each, while a binder resin composition is prepared by adding a binder component in another solvent, and the colorant dispersion and / or the colorant is prepared.
  • a colorant dispersion or a colorant solution is prepared by simultaneously dissolving without using an agent, while a binder resin composition is prepared by adding a binder component in another solvent, and the colorant
  • a method of mixing the dispersion or colorant solution, the binder resin composition, and various additive components used as required (iii) a colorant, a binder component, and various additive components used as desired in the solvent; And (iv) a method in which a binder component and various additive components used as desired are added to a solvent, mixed, and then added with a colorant and mixed.
  • the method (i) or (ii) is preferable from the viewpoint that the aggregation of the colorant can be effectively prevented and dispersed uniformly.
  • the disperser for performing the dispersion treatment is not particularly limited.
  • roll mills such as two rolls and three rolls, ball mills, vibration ball mills and the like.
  • examples thereof include a ball mill, a paint shaker, a continuous disk type bead mill, and a bead mill such as a continuous annular type bead mill.
  • the bead diameter to be used is preferably 0.03 to 2 mm, more preferably 0.05 to 1 mm.
  • preliminary dispersion is performed with 1 to 2 mm zirconia beads having a relatively large bead diameter, and further main dispersion is performed with 0.03 to 0.1 mm zirconia beads having a relatively small bead diameter.
  • Color material dispersion The color material dispersion according to the present invention is characterized in that the color material represented by the general formula (I) is dispersed in a solvent by a dispersant having an amine value.
  • the colorant represented by the general formula (I) and the dispersant having an amine value used in the colorant dispersion according to the present invention are used in the above-described colored resin composition for color filters of the present invention. The thing similar to a thing can be used.
  • the color material affinity portion of the dispersant surrounds the color material, centering on the color material represented by the general formula (I), and the solvent affinity of the dispersant is outside of the color material. It is presumed that the sex site is arranged, that is, a micelle of a colorant and a dispersant is formed. In this manner, in the color material dispersion of the present invention, the color material can be uniformly dispersed in the solvent as fine particles surrounded by the dispersant in a miniaturized state. In this case, it is not necessary to use a polar solvent for dissolving the coloring material, so that it has excellent stability. Also in the formed coating film, since the fine color material exists as fine particles surrounded by the dispersant, it is preferable from the viewpoint of having solvent re-solubility.
  • the average dispersed particle size of the micelles of the colorant and dispersant used in the present invention is not particularly limited as long as it can produce a desired color when used as a colored layer of a color filter. From the standpoint of avoiding this, it is preferably in the range of 10 to 100 nm, more preferably in the range of 10 to 80 nm. When the average dispersed particle size of the micelles of the colorant and the dispersant is in the above range, the liquid crystal display device and the organic light emitting display device manufactured using the colorant dispersion liquid of the present invention may be of high quality. it can.
  • the average dispersion particle size of the micelles of the colorant and the dispersant in the colorant dispersion is a dispersion particle size of the micelle particles of the colorant and the dispersant dispersed in the dispersion medium containing at least the solvent, and the laser It is measured by a light scattering particle size distribution meter.
  • the color material dispersion is appropriately diluted to a concentration that can be measured with a laser light scattering particle size distribution meter (for example, 1000 times). Etc.) and can be measured at 23 ° C.
  • the average dispersed particle diameter here is a volume average diameter.
  • the solvent used in the color material dispersion according to the present invention is not particularly limited as long as it can disperse the color material represented by the general formula (I).
  • the general formula at 23 ° C. A solvent having a solubility of the coloring material represented by (I) of 0.2 (g / 100 g solvent) or less can be used, and a solvent having a solubility of 0.1 (g / 100 g solvent) or less can be preferably used.
  • the method for determining the solubility of the colorant represented by the general formula (I) at 23 ° C. of the solvent is the same as that described in the colored resin composition for color filters of the present invention, and is therefore omitted here.
  • the solubility of the coloring material represented by the said general formula (I) in 23 degreeC used for the colored resin composition for color filters of this invention mentioned above is 0.2 (g / 100g).
  • Solvents The following solvents can be mentioned.
  • the content of the solvent with respect to the total amount of the color material dispersion containing the solvent is usually 50 to 95% by weight, preferably 60 to 85% by weight.
  • a viscosity will rise and a dispersibility will fall easily.
  • concentration will fall and it may be difficult to achieve the chromaticity coordinate which makes a resin composition the target after preparation.
  • the said solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the color material other than the color material represented by the general formula (I) is not particularly limited.
  • the blue color material and other color materials used in the above-described colored resin composition for a color filter of the present invention may be used.
  • the dispersion auxiliary resin include alkali-soluble resins exemplified by the above-described colored resin composition for color filter of the present invention.
  • the steric hindrance of the alkali-soluble resin makes it difficult for the colorant particles to come into contact with each other, and may have the effect of stabilizing the dispersion or reducing the dispersant due to the dispersion stabilizing effect.
  • Other components include, for example, surfactants for improving wettability, silane coupling agents for improving adhesion, antifoaming agents, repellency inhibitors, antioxidants, anti-aggregation agents, and UV absorbers.
  • the method for producing a colorant dispersion of the present invention includes, for example, (i) mixing and stirring the dispersant in a solvent to prepare a dispersant solution, and then adding the dispersant solution to the dispersant solution represented by the general formula (I).
  • the coloring material and other components as necessary may be mixed and dispersed using a known stirrer or disperser.
  • a dispersant solution A color material solution in which the color material represented by the general formula (I) is dissolved in a good solvent is prepared, and the dispersant solution and the color material solution are mixed and stirred using a known stirrer or disperser. If necessary, heat treatment may be performed, and after completion of the reaction, the colorant good solvent may be separated to prepare a colorant dispersion.
  • the color material dispersion of the present invention comprises (iii) a small amount of a color material and a dispersant represented by the general formula (I), a small amount of the solvent and the good solvent of the color material, and a known stirrer or dispersion.
  • the dispersion may be carried out by a machine, and after completion of the reaction, a good solvent for the color material may be separated to prepare a color material dispersion.
  • a disperser for performing the dispersion treatment used in the production of the color material dispersion of the present invention the same dispersers as those used for the preparation of the colored resin composition for a color filter of the present invention described above can be used. Can be mentioned.
  • the preparation method is not specifically limited, For example, the following method is mentioned.
  • the color material represented by the general formula (I) is dissolved in a good solvent for the color material such as methanol and ethanol, and an acid used for the acid treatment method such as concentrated hydrochloric acid is added.
  • a good solvent for the color material such as methanol and ethanol
  • an acid used for the acid treatment method such as concentrated hydrochloric acid is added.
  • PGMEA propylene glycol monomethyl ether acetate
  • the colorant dispersion according to the present invention can be prepared by removing the good solvent of the colorant such as methanol and filtering the precipitates to obtain a filtrate.
  • the color material dispersion according to the present invention can be used as a preliminary preparation for preparing the above-described colored resin composition for a color filter according to the present invention, which is excellent in color material dispersibility. That is, the colorant dispersion is preliminarily prepared (weight of the colorant component in the composition) / (other than the colorant component in the composition) in the previous stage of preparing the above-described color resin composition for a color filter. This is a colorant dispersion having a high solid content weight ratio. Specifically, the ratio of (weight of colorant component in composition) / (weight of solid content other than colorant component in composition) is usually 1.0 or more.
  • a colored resin composition having excellent dispersibility can be prepared.
  • the color filter according to the present invention is a color filter comprising at least a transparent substrate and a colored layer provided on the transparent substrate, wherein at least one of the colored layers is for the color filter according to the present invention. It is a colored layer formed by curing a colored resin composition. Since the color filter according to the present invention has a colored layer formed by curing the colored resin composition for a color filter according to the present invention, the color filter is excellent in luminance and light resistance.
  • FIG. 1 is a schematic sectional view showing an example of the color filter of the present invention.
  • the color filter 10 of the present invention has a transparent substrate 1, a light shielding part 2, and a colored layer 3.
  • At least one of the colored layers used in the color filter of the present invention is a colored layer formed by curing the colored resin composition for a color filter according to the present invention.
  • the colored layer is usually formed in an opening of a light shielding part on a transparent substrate, which will be described later, and is usually composed of a colored pattern of three or more colors.
  • the arrangement of the colored layers is not particularly limited, and for example, a general arrangement such as a stripe type, a mosaic type, a triangle type, or a four-pixel arrangement type can be used.
  • variety, area, etc. of a colored layer can be set arbitrarily.
  • the thickness of the colored layer is appropriately controlled by adjusting the coating method, the solid content concentration, the viscosity, and the like of the colored resin composition, but is usually preferably in the range of 1 to 5 ⁇ m.
  • the colored layer can be formed by the following method.
  • the above-described colored resin composition for a color filter of the present invention is applied onto a transparent substrate described later using an application means such as a spray coating method, a dip coating method, a bar coating method, a coal coating method, or a spin coating method.
  • an application means such as a spray coating method, a dip coating method, a bar coating method, a coal coating method, or a spin coating method.
  • a wet paint film After drying the wet coating film using a hot plate or oven, it is exposed through a mask having a predetermined pattern, and an alkali-soluble resin and a polyfunctional monomer are subjected to a photopolymerization reaction. It is set as the coating film of a colored resin composition.
  • Examples of the light source used for exposure include ultraviolet rays such as a low-pressure mercury lamp, a high-pressure mercury lamp, and a metal halide lamp, and an electron beam.
  • the exposure amount is appropriately adjusted depending on the light source used, the thickness of the coating film, and the like.
  • the heating conditions are appropriately selected depending on the blending ratio of each component in the colored resin composition to be used, the thickness of the coating film, and the like.
  • a coating film is formed with a desired pattern by melt
  • a solution in which an alkali is dissolved in water or a water-soluble solvent is usually used.
  • An appropriate amount of a surfactant or the like may be added to the alkaline solution.
  • a general method can be employ
  • the developer is usually washed and the cured coating film of the colored resin composition is dried to form a colored layer.
  • the light shielding part in the color filter of the present invention is formed in a pattern on a transparent substrate described later, and can be the same as that used as a light shielding part in a general color filter.
  • the pattern shape of the light shielding portion is not particularly limited, and examples thereof include a stripe shape and a matrix shape.
  • Examples of the light-shielding portion include those obtained by dispersing or dissolving a black pigment in a binder resin, and metal thin films such as chromium and chromium oxide.
  • This metal thin film may be a laminate of a CrOx film (x is an arbitrary number) and a Cr film, or a CrOx film (x is an arbitrary number) with a reduced reflectance, CrNy A film (y is an arbitrary number) and three layers of Cr films may be laminated.
  • the method for forming the light-shielding part is not particularly limited as long as the light-shielding part can be patterned. For example, a photolithography method, a printing method, an ink jet method and the like using the colored resin composition for the light shielding part can be exemplified.
  • examples of the binder resin include polymethyl methacrylate resin, polyacrylate resin, polycarbonate resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, hydroxy
  • examples thereof include ethyl cellulose resin, carboxymethyl cellulose resin, polyvinyl chloride resin, melamine resin, phenol resin, alkyd resin, epoxy resin, polyurethane resin, polyester resin, maleic acid resin, polyamide resin and the like.
  • the binder resin may be, for example, an acrylate-based, methacrylate-based, polyvinyl cinnamate-based, or cyclized rubber-based reactive material.
  • a photosensitive resin having a vinyl group is used.
  • a photopolymerization initiator may be added to the colored resin composition for a light shielding part containing a black colorant and a photosensitive resin, and further, a sensitizer, a coating property improver, and a development as necessary. You may add an improving agent, a crosslinking agent, a polymerization inhibitor, a plasticizer, a flame retardant, etc.
  • the method for forming the light shielding part is not particularly limited as long as the light shielding part can be patterned, and for example, photolithography, vapor deposition using a mask. Method, printing method and the like.
  • the thickness of the light shielding part is set to about 0.2 to 0.4 ⁇ m in the case of a metal thin film, and about 0.5 to 2 ⁇ m in the case where a black colorant is dispersed or dissolved in a binder resin. Is set.
  • the transparent substrate in the color filter of the present invention is not particularly limited as long as it is a base material transparent to visible light, and a transparent substrate used for a general color filter can be used.
  • transparent flexible rigid materials such as quartz glass, alkali-free glass, and synthetic quartz plates, or transparent flexible flexible materials such as transparent resin films, optical resin plates, and flexible glasses. Materials.
  • the thickness of the transparent substrate is not particularly limited, but a substrate having a thickness of, for example, about 100 ⁇ m to 1 mm can be used depending on the use of the color filter of the present invention.
  • the color filter of the present invention may be one in which, for example, an overcoat layer, a transparent electrode layer, an alignment film, a columnar spacer, or the like is formed in addition to the transparent substrate, the light shielding portion, and the colored layer. .
  • FIG. 2 is a schematic view showing an example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 40 of the present invention includes a color filter 10, a counter substrate 20 having a TFT array substrate and the like, and a liquid crystal layer formed between the color filter 10 and the counter substrate 20. 30.
  • the liquid crystal display device of the present invention is not limited to the configuration shown in FIG. 2, and can be a configuration generally known as a liquid crystal display device using a color filter.
  • the driving method of the liquid crystal display device of the present invention is not particularly limited, and a driving method generally used for a liquid crystal display device can be employed. Examples of such a drive method include a TN method, an IPS method, an OCB method, and an MVA method. In the present invention, any of these methods can be preferably used. Further, the counter substrate can be appropriately selected and used according to the driving method of the liquid crystal display device of the present invention. Furthermore, as the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy and mixtures thereof can be used according to the driving method of the liquid crystal display device of the present invention.
  • a method generally used as a method for manufacturing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method.
  • a vacuum injection method for example, a liquid crystal cell is prepared in advance using a color filter and a counter substrate, and the liquid crystal is heated to obtain an isotropic liquid, and the liquid crystal is applied to the liquid crystal cell using the capillary effect.
  • the liquid crystal layer can be formed by injecting in this state and sealing with an adhesive. Thereafter, the sealed liquid crystal can be aligned by slowly cooling the liquid crystal cell to room temperature.
  • liquid crystal dropping method for example, a sealant is applied to the periphery of the color filter, the color filter is heated to a temperature at which the liquid crystal becomes isotropic, and the liquid crystal is dropped in an isotropic liquid state using a dispenser or the like. Then, the color filter and the counter substrate are overlapped with each other under a reduced pressure, and bonded through a sealant, whereby a liquid crystal layer can be formed. Thereafter, the sealed liquid crystal can be aligned by slowly cooling the liquid crystal cell to room temperature.
  • FIG. 3 is a schematic view illustrating an example of the organic light emitting display device of the present invention.
  • the organic light emitting display device 100 of the present invention includes a color filter 10 and an organic light emitter 80.
  • An organic protective layer 50 and an inorganic oxide film 60 may be provided between the color filter 10 and the organic light emitter 80.
  • the transparent anode 71, the hole injection layer 72, the hole transport layer 73, the light emitting layer 74, the electron injection layer 75, and the cathode 76 are sequentially formed on the upper surface of the color filter. Examples thereof include a method and a method in which an organic light emitter 80 formed on another substrate is bonded onto the inorganic oxide film 60.
  • the transparent anode 71, the hole injection layer 72, the hole transport layer 73, the light emitting layer 74, the electron injection layer 75, the cathode 76, and other configurations in the organic light emitting body 80 known structures can be appropriately used.
  • the organic light emitting display device 100 manufactured as described above can be applied to, for example, a passive drive type organic EL display or an active drive type organic EL display.
  • the organic light emitting display device of the present invention is not limited to the configuration shown in FIG. 3, and may be a known configuration as an organic light emitting display device that generally uses a color filter.
  • Color material A represented by the following structural formula was synthesized by the following procedure. In a 500 ml four-necked flask, 40.2 parts by weight of a sulfofluorane compound of the following formula (A), 312 parts by weight of methanol, 6.8 parts by weight of N-methyl-2,6-xylidine and N-methyl-o- 6.0 parts by weight of toluidine was charged and refluxed for 30 hours. The reaction solution was filtered at 60 ° C. to remove insoluble components, and then the solvent was removed under reduced pressure until the reaction solution was about 70 ml, and the mixture was poured into 200 parts by weight of 6% hydrochloric acid.
  • A sulfofluorane compound of the following formula (A)
  • 0.1 parts by weight of the obtained blue pigment dispersion (A) was diluted with 9.9 parts by weight of PGMEA, and the particle size distribution was measured using a Microtrac UPA particle size distribution meter (manufactured by Nikkiso Co., Ltd.). The evaluation was performed with a 50% average particle diameter, and was 47 nm in terms of volume (MV).
  • a dispersing agent BYK-LPN6919 (trade name, manufactured by Big Chemie Co., Ltd., block polymer including a block part composed of a repeating unit having a tertiary amine, nonvolatile content 60% by weight, amine value 120 mgKOH / g, weight average molecular weight 8000) was added and stirred. Thereafter, a reflux condenser was connected, the temperature was raised to 80 ° C. with a water bath, and the reaction was performed for 4 hours after reaching 80 ° C.
  • a dispersing agent BYK-LPN6919 trade name, manufactured by Big Chemie Co., Ltd., block polymer including a block part composed of a repeating unit having a tertiary amine, nonvolatile content 60% by weight, amine value 120 mgKOH / g, weight average molecular weight 8000
  • Example 1 Preparation of colorant dispersion (F)
  • color material A was used in the same manner except that color material A was used instead of AR289, the concentration of concentrated hydrochloric acid was 19 parts by weight, and the amount of BYK-LPN6919 was 331 parts by weight.
  • a dispersed colorant dispersion (F) was obtained.
  • Example 2 Preparation of colorant dispersion (G)
  • color material B is used in place of AR289
  • the amount of concentrated hydrochloric acid is 18 parts by weight
  • the amount of BYK-LPN6919 is 316 parts by weight.
  • a dispersed colorant dispersion (G) was obtained.
  • Example 3 Preparation of colorant dispersion (H)
  • 1000 parts by weight of methanol was added to 100 parts by weight of coloring material A to the flask and dissolved with a magnetic stirrer. After confirming dissolution, 1000 parts by weight of PGMEA was added.
  • 333 parts by weight of a dispersant Disperbyk-161 (trade name, manufactured by Big Chemie, polyurethane dispersant, nonvolatile content 30 wt%, amine value 11 mg KOH / g) was added and stirred. Thereafter, a reflux condenser was connected, the temperature was raised to 80 ° C. with a water bath, and the reaction was performed for 4 hours after reaching 80 ° C.
  • Example 4 Preparation of colorant dispersion (I)
  • the color material B was used instead of the color material A, and the amount of Disperbyk-161 was changed to 317 parts by weight, the color material dispersion liquid (I) in which the color material B was uniformly dispersed Got.
  • Color Material Dispersibility The average dispersed particle size of the particles contained in the colorant dispersions (F) to (I) obtained in Examples 1 to 4 was measured. The said particle size is estimated as the average dispersed particle size of the micelle of the color material A or the color material B and the dispersant. The average dispersed particle size was measured by diluting 1000 times with PGMEA and using a laser light scattering particle size distribution analyzer (Nanotrack particle size distribution measuring device UPA-EX150 manufactured by Nikkiso Co., Ltd.) at 23 ° C. by a dynamic light scattering method. It was measured.
  • a laser light scattering particle size distribution analyzer Neanotrack particle size distribution measuring device UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • the color material dispersion (F) was 41 nm
  • the color material dispersion (I) 49 nm
  • the average dispersed particle diameter is a volume average diameter (MV).
  • a colorant solution was prepared by dissolving 1.00 parts by weight of the colorant A obtained in Synthesis Example 1 in 10.0 parts by weight of ethyl lactate, while the photosensitive binder component (CR--) obtained in Production Example 3 was prepared. 1) 27.4 parts by weight, silane coupling agent KBM-503 (manufactured by Shin-Etsu Silicone) 0.2 part by weight, surfactant MegaFac R08MH (manufactured by DIC) 0.02 part by weight, and PGMEA 61.1 parts by weight are mixed.
  • the colored resin composition of Reference Example 1 was obtained by further mixing the color material solution.
  • Reference Example 2 Reference Comparative Examples 1 and 2: Preparation of colored resin composition
  • Colored resin compositions of Reference Example 2, Reference Comparative Example 1, and Reference Comparative Example 2 were obtained in the same manner except that Color Material B, AR289, and AR52 were used instead of Color Material A in Reference Example 1, respectively.
  • the film thickness (T; ⁇ m) after post-baking was set to 1.5.
  • a sample in the atmosphere uses a xenon lamp (Ci4000 weatherometer manufactured by Atlas, inner filter: quartz, outer filter: soda lime & infrared absorption coating (CIRA)), a wavelength of 420 nm, an illuminance of 1.2 mW / m 2 , 70
  • the ⁇ Eab value was measured before and after time (equivalent to 300 kJ / m 2 ). It can be said that the smaller the absolute value of the ⁇ Eab value, the better the light resistance.
  • L, a, and b of the colored film that was post-baked were measured and designated as L 1 , a 1 , and b 1 .
  • L, a, and b of the colored film after the light resistance test were measured again to obtain L 3 , a 3 , and b 3 .
  • Example 5 Preparation of colored resin composition
  • a color material solution is prepared by dissolving 0.70 parts by weight of the color material A obtained in Synthesis Example 1 in 7.0 parts by weight of ethyl lactate, while the blue pigment dispersion (A) obtained in Production Example 1 is prepared.
  • a colored resin composition of Example 5 was obtained by mixing 0.04 parts by weight of Rough R08MH (manufactured by DIC) and 24.1 parts by weight of PGMEA, and further mixing the color material solution thereto.
  • Example 6 Preparation of colored resin composition
  • the colorant B 0.52 parts by weight of the colorant B was used instead of the colorant A
  • the blending amount of ethyl lactate was 5.2 parts by weight
  • the blending amount of the blue pigment dispersion (A) was 34.6 parts by weight.
  • the colored resin composition of Example 6 was obtained in the same manner except that the blending amount of CR-1 was 34.6 parts by weight and the blending amount of PGMEA was 24.6 parts by weight.
  • Example 7 Preparation of colored resin composition
  • Ingredient (CR-1) 31.4 parts by weight, silane coupling agent KBM-503 (manufactured by Shin-Etsu Silicone) 0.4 part by weight, surfactant MegaFac R08MH (manufactured by DIC) 0.04 part by weight, PGMEA 19.7 The weight part was mixed and the colored resin composition of Example 7 was obtained.
  • Example 8 Preparation of colored resin composition
  • Example 7 11.5 parts by weight of the color material dispersion (G) was used in place of the color material dispersion (F), the amount of the blue pigment dispersion (A) was 34.6 parts by weight, and CR- A colored resin composition of Example 8 was obtained in the same manner except that the amount of 1 was 32.2 parts by weight and the amount of PGMEA was 21.2 parts by weight.
  • Example 9 Preparation of colored resin composition
  • Example 7 instead of the color material dispersion (F), 16.2 parts by weight of the color material dispersion (H) was used, and the blending amount of the blue pigment dispersion (A) was 32.9 parts by weight.
  • a colored resin composition of Example 9 was obtained in the same manner except that the amount of 1 was 33.2 parts by weight and the amount of PGMEA was 17.3 parts by weight.
  • Example 10 Preparation of colored resin composition
  • Example 7 12.0 parts by weight of the color material dispersion (I) was used in place of the color material dispersion (F), the amount of the blue pigment dispersion (A) was 34.6 parts by weight, and CR- A colored resin composition of Example 10 was obtained in the same manner except that the amount of 1 was 33.4 parts by weight and the amount of PGMEA was 19.5 parts by weight.
  • Comparative Example 1 Preparation of colored resin composition
  • Example 7 10.1 parts by weight of the purple pigment dispersion (C) obtained in Comparative Production Example 1 was used in place of the color material dispersion (F), and the blending amount of the blue pigment dispersion (A) was 29.
  • a colored resin composition of Comparative Example 1 was obtained in the same manner except that the amount of CR-1 was changed to 33.9 parts by weight, and the amount of PGMEA was changed to 25.9 parts by weight.
  • Comparative Example 2 Preparation of colored resin composition
  • D red dye dispersion
  • F colorant dispersion
  • a colored resin composition of Comparative Example 2 was obtained in the same manner except that the amount of 1 was 32.5 parts by weight and the amount of PGMEA was 21.2 parts by weight.
  • Comparative Example 3 Preparation of colored resin composition
  • E red dye dispersion
  • F colorant dispersion
  • a colored resin composition of Comparative Example 3 was obtained in the same manner except that the amount of 1 was 31.0 parts by weight and the amount of PGMEA was 18.6 parts by weight.
  • optical characteristic evaluation test 1 The optical property evaluation was performed as follows.
  • the colored resin compositions of Examples 5 to 10 and Comparative Examples 1 to 3 were each applied onto a glass substrate having a thickness of 0.7 mm (“NA35” manufactured by NH Techno Glass Co., Ltd.) using a spin coater. Then, it heat-dried for 3 minutes on an 80 degreeC hotplate.
  • a cured film blue colored film was obtained by irradiating ultraviolet rays of 60 mJ / cm 2 using an ultrahigh pressure mercury lamp without passing through a photomask.
  • the glass plate on which the colored film was formed was post-baked for 30 minutes in a 230 ° C. clean oven, and the chromaticity (x, y) and luminance (Y) of the obtained colored film were measured.
  • the chromaticity and luminance were measured using “Microspectrophotometer OSP-SP200” manufactured by Olympus Corporation.
  • the luminance is ⁇ when the Y value is 9.70 or more, ⁇ when the Y value is 9.35 or more and less than 9.70, ⁇ when it is 9.00 or more and less than 9.35, and less than 9.00.
  • the case is evaluated as x.
  • ⁇ Light resistance test 1> A post-baked substrate prepared in the same manner as in the optical property evaluation 1 was prepared separately, and L 0 , a 0 , and b 0 of the colored film were measured. Then, using a xenon lamp (Atlas Ci4000 Weathermeter, inner filter: quartz, outer filter: soda lime & infrared absorption coating (CIRA)) under atmospheric pressure, with a wavelength of 420 nm and an illuminance of 1.2 W / m 2 For 70 hours (equivalent to 300 kJ / m 2 ). L, a, and b of the obtained colored film were measured again to obtain L 1 , a 1 , and b 1 .
  • the light resistance is evaluated as ⁇ when the value of ⁇ Eab calculated from the following formula is less than 5, ⁇ when it is 5 or more and less than 10, and ⁇ when it is 10 or more.
  • ⁇ Eab ⁇ (L 1 ⁇ L 0 ) 2 + (a 1 ⁇ a 0 ) 2 + (b 1 ⁇ b 0 ) 2 ⁇ 1/2
  • Example 11 to 12 Preparation of colored resin composition
  • Colored resin compositions of Examples 11 to 12 were obtained in the same manner as in Examples 9 to 10, except that the blue color material dispersion (B) was used instead of the blue pigment dispersion (A).
  • Comparative Examples 4 to 6 Preparation of colored resin composition
  • the colored resin compositions of Comparative Examples 4 to 6 were obtained in the same manner except that the blue color material dispersion (B) was used instead of the blue pigment dispersion (A) in Comparative Examples 1 to 3.
  • ⁇ Light resistance test 2> A post-baked substrate prepared in the same manner as in the optical property evaluation test 2 was separately prepared, and ⁇ Eab was determined in the same manner as in the light resistance test 1 described above. In the light resistance test 2, the light resistance is evaluated as ⁇ when the value of ⁇ Eab is less than 7, ⁇ when the value is 7 or more and 15 or less, and ⁇ when it exceeds 15. The evaluation results are shown in Table 5.
  • the colored resin compositions obtained in Examples 5 to 12 contained the color material having the structure specified in the present invention, the blue color material, the binder component, and the solvent, the formed colored film was It was excellent in luminance and light resistance.
  • the colored resin compositions obtained in Comparative Examples 1 and 4 were inferior in luminance because PV23 was used instead of the color material having the structure specified in the present invention.
  • the colored resin compositions obtained in Comparative Example 2 and Comparative Example 5 were inferior in luminance and light resistance because AR289 was used instead of the color material having the structure specified in the present invention. This is considered to be because AR289 has two functional groups containing SO 2 and has hydrogen directly bonded to the nitrogen atom.
  • the colored resin compositions obtained in Comparative Example 3 and Comparative Example 6 were inferior in luminance and light resistance because AR52 was used instead of the color material having the structure specified in the present invention. This is presumably because AR52 has two functional groups containing SO 2 and only a saturated hydrocarbon group is bonded to the nitrogen atom.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 輝度及び耐光性に優れた着色層を形成可能なカラーフィルタ用着色樹脂組成物を提供する。着色剤と、バインダー成分と、溶剤とを含有し、前記着色剤が、下記一般式(I)で表される色材と青色色材とを含む、カラーフィルタ用着色樹脂組成物。 (一般式(I)中の各符号は、明細書に記載の通りである。)

Description

カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置
 本発明は、カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置に関するものである。
 近年、ディスプレイ等に代表される薄型画像表示装置、いわゆるフラットパネルディスプレイは、その市場価格が生産技術の進化と共に年々手ごろになり、さらに需要が拡大され、生産量も増加しており、特にカラー液晶テレビは、テレビのメインストリームに到達した。また、最近においては、自発光により視認性が高い有機ELディスプレイのような有機発光表示装置も、次世代画像表示装置として注目されている。これらの画像表示装置の性能においては、コントラストや色再現性の向上といったさらなる高画質化や消費電力の低減が強く望まれている。
 これらの液晶表示装置や有機発光表示装置には、カラーフィルタが用いられる。例えばカラー液晶ディスプレイの場合は、バックライトを光源とし、電気的に液晶を駆動させることで光量を制御し、その光がカラーフィルタを通過することで色表現を行っている。よって液晶テレビの色表現にはカラーフィルタは無くてはならず、またディスプレイの性能を左右する大きな役目を担っている。有機発光表示装置では、白色発光の有機発光素子にカラーフィルタを用いた場合、液晶表示装置と同様にカラー画像を形成する。
 近年の傾向として、画像表示装置の省電力化が求められており、バックライトの利用効率を向上させるためにカラーフィルタの高輝度化が求められている。特にモバイルディスプレイ(携帯電話、スマートフォン、タブレットPC)では大きな課題である。また、このような画像表示装置では、コントラストや色再現性の向上といったさらなる高画質化も求められている。
 技術進化により電池容量が大きくなったとは言え、モバイルの蓄電量は有限であることに変わりはなく、その一方で画面サイズの拡大に伴い消費電力は増加する傾向にある。モバイル端末の使用可能時間や充電頻度に直結するために、カラーフィルタを含む画像表示装置は、モバイル端末の設計や性能を左右する。
 ここで、カラーフィルタは、一般的に、透明基板と、透明基板上に形成され、赤、緑、青の三原色の着色パターンからなる着色層と、各着色パターンを区画するように透明基板上に形成された遮光部とを有している。
 カラーフィルタの着色層には、着色剤として顔料や染料を有する着色層形成用樹脂組成物が用いられる。顔料は染料と比較して、一般に、耐熱性等、諸耐性に優れているが、製造されたカラーフィルタの輝度が不十分となる場合があった。
 一方、色材として染料を用いる場合には、輝度の高いカラーフィルタを製造し得るが、各種耐性やコントラストが不十分となる問題があった。
 そこで、近年では、着色層形成用樹脂組成物において、異なる種類の色材を組み合わせて用いることが行われている。例えば特許文献1には、カラーフィルタの高明度化を目的として、青色有機顔料と、キサンテンを基本骨格として有する特定構造の有機溶剤可溶性染料とを含んだ着色感光性樹脂組成物を用いる旨が記載されている。
 しかしながら、特許文献1に記載の着色感光性樹脂組成物では、十分な耐光性を有するカラーフィルタを得ることが困難であり、また、染料を溶解させるために極性溶剤を用いるため、安定性が悪かった。さらに、カラーフィルタの輝度の更なる向上も求められている。
特開2010-32999号公報
 本発明は上記問題点に鑑みてなされたものであり、輝度及び耐光性に優れた着色層を形成可能なカラーフィルタ用着色樹脂組成物、輝度及び耐光性に優れた塗膜を形成可能な色材分散液、前記カラーフィルタ用着色樹脂組成物を用いて形成された高輝度なカラーフィルタ、当該カラーフィルタを有する液晶表示装置及び有機発光表示装置を提供することを目的とする。
 本発明に係るカラーフィルタ用着色樹脂組成物は、着色剤と、バインダー成分と、溶剤とを含有し、前記着色剤が、下記一般式(I)で表される色材と青色色材とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000003
(一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
 本発明に係るカラーフィルタ用着色樹脂組成物は、前記一般式(I)で表される色材が、アミン価を有する分散剤により、溶剤に分散されてなるものとすることができる。この場合には、前記色材を溶解させるための極性溶剤を用いなくても良いので、優れた安定性を有するようになる。また、形成された塗膜が溶剤再溶解性を有する点から好ましい。
 本発明に係るカラーフィルタ用着色樹脂組成物は、前記一般式(I)で表される色材において、R及びRが互いに異なるものとする場合には、前記一般式(I)で表される色材の分子設計の幅が広がり、分光特性の調整幅も広くなるため、当該色材を目標色度に近づけ、さらに輝度を向上することが容易になる点から好ましい。
 本発明に係るカラーフィルタ用着色樹脂組成物は、前記青色色材がトリアリールメタン系色材を含むことが、輝度及びコントラストに優れる点から好ましい。
 本発明に係るカラーフィルタ用着色樹脂組成物は、前記青色色材が銅フタロシアニン顔料を含むことが、耐熱性等の諸耐性に優れる点から好ましい。
 本発明に係る色材分散液は、下記一般式(I)で表される色材が、アミン価を有する分散剤により、溶剤に分散されてなることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
 本発明に係るカラーフィルタは、透明基板と、当該透明基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、前記着色層の少なくとも1つが、前記本発明に係るカラーフィルタ用着色樹脂組成物を硬化させて形成されてなる着色層であることを特徴とする。
 本発明に係る液晶表示装置は、前記本発明に係るカラーフィルタと、対向基板と、前記カラーフィルタと前記対向基板との間に形成された液晶層とを有することを特徴とする。
 本発明に係る有機発光表示装置は、前記本発明に係るカラーフィルタと、有機発光体とを有することを特徴とする。
 本発明によれば、輝度及び耐光性に優れた着色層を形成可能なカラーフィルタ用着色樹脂組成物、輝度及び耐光性に優れた塗膜を形成可能な色材分散液、前記カラーフィルタ用着色樹脂組成物を用いて形成された高輝度なカラーフィルタ、当該カラーフィルタを有する液晶表示装置及び有機発光表示装置を提供することができる。
本発明のカラーフィルタの一例を示す概略断面図である。 本発明の液晶表示装置の一例を示す概略断面図である。 本発明の有機発光表示装置の一例を示す概略断面図である。
 以下、本発明に係るカラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置及び有機発光表示装置について順に説明する。
 なお、本発明において光には、可視及び非可視領域の波長の電磁波、さらには放射線が含まれ、放射線には、例えばマイクロ波、電子線が含まれる。具体的には、波長5μm以下の電磁波、及び電子線のことをいう。また本発明において(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
 また、ピグメントブルーを「PB」と、ベーシックブルーを「BB」と、ピグメントバイオレットを「PV」と、アシッドレッドを「AR」とそれぞれ略することがある。
1.カラーフィルタ用着色樹脂組成物
 本発明に係るカラーフィルタ用着色樹脂組成物は、着色剤と、バインダー成分と、溶剤とを含有し、前記着色剤が、下記一般式(I)で表される色材と青色色材とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
 本発明に係るカラーフィルタ用着色樹脂組成物は、着色剤として上記一般式(I)で表される色材と青色色材とを組み合わせて用いることにより、輝度及び耐光性に優れる着色層を形成することができる。
 従来、青色色材に組み合わせて用いる色材として、高輝度化等を目的としてキサンテンを基本骨格として有するキサンテン系染料を採用することは、特許文献1にも記載されるように行われていた。しかし、従来具体的に記載されていたキサンテン系染料は耐光性が劣るものであった。
 一方、本発明に用いられる上記一般式(I)で表される色材は、キサンテンを基本骨格として有することの他、SOを含む官能基を1つのみ有し、窒素原子と結合するR~Rのいずれも水素原子ではなく、R及びRがアリール基又はヘテロアリール基であるので、窒素原子に飽和炭化水素基のみが結合していることがなく、アルカリ金属イオンを有しないことを特徴とする。このような特徴を有する上記一般式(I)で表される色材を用いることにより、本発明に係るカラーフィルタ用着色樹脂組成物は、従来のキサンテン系染料を用いた場合よりもさらに着色層の輝度及び耐光性を向上させることができる。
 上記効果が得られる作用は、未解明の部分はあるが、以下のように考えられる。上記一般式(I)で表される色材は、カチオン性のキサンテン骨格と、アニオン性の-SO 基1個とを有するため、電気的に安定化する。そのため、溶剤中に分散させても、解離することなく安定性に優れているものと推定される。また、窒素原子が、アリール基又はヘテロアリール基のような芳香族性の置換基を有するため、当該窒素原子が有する孤立電子対が、キサンテン骨格のみならず当該アリール基又はヘテロアリール基とも共鳴することにより、分子がより安定化するものと推定される。更に、窒素原子は直接水素原子と結合していないため、窒素原子から水素原子が脱離して当該色材が不安定化することはない。これらのことから、前記一般式(I)で表される色材は、光照射下でも安定で、耐光性に優れており、当該色材を用いることにより耐光性に優れた着色層が形成可能となる。また、色材の退色が抑制される結果、着色層の輝度を向上することができる。
 また、上記一般式(I)で表される色材は、R及びRを互いに異なるものとすることができるため、分子設計の幅が広く、これにより分光特性等の調整幅も広いため、当該色材を目標色度に近づけ、さらに輝度を向上することが容易である。
 また、上記一般式(I)で表される色材は、カチオン性のキサンテン骨格と、アニオン性の-SO 基を1個のみ有し、分子内塩のみを有するため、アルカリ金属イオンを含有しない。これにより、本発明に係るカラーフィルタ用着色樹脂組成物を用いて着色層を形成する場合、液晶パネルとしたときに着色層から液晶層へのアルカリ金属イオンの溶出がなく、容易に電気信頼性に優れる着色層を得ることができる。
 さらに、上記一般式(I)で表される色材は、SOを含む官能基が1つのみであることから、従来のキサンテン系染料に比べてPGMEA等の低極性溶媒との親和性が高くなる。また、上記一般式(I)で表される色材を溶剤に溶解させる場合にも従来用いられていた極性溶媒よりは極性の低い溶媒を用いることができるので、本発明に係るカラーフィルタ用着色樹脂組成物は安定性に優れる。
<着色剤>
 本発明に用いられる着色剤は、下記一般式(I)で表される色材と、青色色材とを含み、必要に応じて他の色材を配合してもよい。各色材について、以下に説明する。
Figure JPOXMLDOC01-appb-C000006
(一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
 前記一般式(I)において、R及びRにおけるアルキル基とは、特に限定されないが、例えば、置換基を有していてもよい炭素数1~20の直鎖又は分岐状アルキル基等が挙げられ、中でも、炭素数が1~8の直鎖又は分岐のアルキル基であることが好ましく、炭素数が1~5の直鎖又は分岐のアルキル基であることがより好ましい。アルキル基が有してもよい置換基としては、特に限定されないが、例えば、ハロゲン原子、アリール基、カルバモイル基、-CO-O-Rで示される一価の基、-O-CO-Ra’で示される一価の基、-SO-Ra”で示される一価の基、-R-CO-O-Rで示される一価の基、-Rb’-O-CO-Rc’で示される一価の基、及び-Rb”-SO-Rc”で示される一価の基等が挙げられる。
 R~Rにおけるアリール基とは、特に限定されないが、例えば、置換基を有していてもよい炭素数6~20のアリール基が挙げられ、中でも、フェニル基、ナフチル基等を有する基が好ましい。
 R及びRにおけるヘテロアリール基とは、特に限定されないが、置換基を有していてもよい炭素数5~20のヘテロアリール基が挙げられ、ヘテロ原子として、例えば、窒素原子、酸素原子、硫黄原子を含むものが好ましい。また、ヘテロアリール基として具体的には例えば、フラン、チオフェン、ピロール、ピリジン等が挙げられる。
 アリール基又はヘテロアリール基が有してもよい置換基としては、特に限定されないが、例えば、アルキル基、ハロゲン原子、アルコキシ基、水酸基、カルバモイル基、-CO-O-Rで示される一価の基、-O-CO-Ra’で示される一価の基、-SO-Ra”で示される一価の基、-R-CO-O-Rで示される一価の基、-Rb’-O-CO-Rc’で示される一価の基、-Rb”-SO-Rc”で示される一価の基等が挙げられる。前記R、Ra’、Ra”、R、Rb’、Rb”、R、Rc’及びRc”は、アルキル基を示す。これらの置換基は、耐熱性等に悪影響を及ぼさない点から好適に用いられる。これらの置換基による電子吸引性及び電子供与性を調整することにより、分光特性の調整をすることが可能である。
 なお、R~Rにおけるアルキル基は、無置換であるか、置換基がアリール基であることが好ましく、アリール基又はヘテロアリール基の置換基は、アルキル基であることが好ましい。このような場合、前記一般式(I)で表される色材は極性が低下するため、PGMEA等の低極性溶媒に対する親和性が向上するからである。また、前記色材を溶剤に溶解させる場合においてもより低極性溶媒を用いることができ、低極性溶媒を用いることで本発明のカラーフィルタ用着色樹脂組成物の安定性が向上する。
 また、R~Rは、それぞれ同一であっても異なっていても良く、前記一般式(I)で表される色材のR~Rは、キサンテン環に対して対称であっても非対称であっても良い。中でも、R及びRが互いに異なるものとする場合には、前記一般式(I)で表される色材の分子設計の幅が広がり、分光特性の調整幅も広くなるため、当該色材を目標色度に近づけ、さらに輝度を向上することが容易になる点から好ましい。
 また、前記一般式(I)において、キサンテン骨格に結合したベンゼン環が有する-SO 基の置換位置は、特に限定されないが、キサンテン骨格に対して、オルト位又はパラ位であることが好ましく、-SO 基がキサンテン骨格に対してオルト位に置換されていることが、耐熱性と耐光性の点から好ましい。その作用機構は明らかではないが、-SO 基がオルト位にあると、ベンゼン環が結合しているキサンテン骨格の炭素原子と共鳴して環構造を形成でき、そのために耐熱性と耐光性が向上すると推定される。
 また、前記一般式(I)で表される色材は、-SO 基を-SOH基に変換して用いることができる。-SO 基を-SOH基に変換する方法は特に限定されない。例えば、弱酸遊離反応を利用する酸処理法、陽イオン交換樹脂を利用する方法等が挙げられる。
 酸処理法としては、例えば、前記色材をメタノール等の良溶媒で且つ酸が溶解する溶媒に溶解し、酸を加えることにより、-SO 基を-SOH基に変換する方法が挙げられる。当該酸処理法に用いる酸は、-SO 基を-SOH基に変換した酸よりも酸性度の高い酸であれば特に限定されない。汎用性の高い酸としては、例えば、塩酸、硫酸、硝酸、p-トルエンスルホン酸(PTS)、トリフルオロメタンスルホン酸等が挙げられる。
 一方、陽イオン交換樹脂を利用する方法に用いられるイオン交換樹脂としては、ダイヤイオンPK-216H(三菱化学社製 商品名)等のスルホン酸末端の陽イオン交換樹脂等が挙げられる。
 なお、色材の-SO 基を-SOH基に変換するスルホン酸化処理は、色材を良溶媒に溶かした後に行い、固体としてスルホン酸基(-SOH)を有する色材を取り出すことなく、続いてPGMEAや分散剤を加える等、カラーフィルタ用着色樹脂組成物の調製をする際に行ってもよい。あるいは、色材のスルホン酸化を行った後、再沈殿法や再結晶法により固体としてスルホン酸基を有する色材を取り出してから、カラーフィルタ用着色樹脂組成物を調製してもよい。中でも、色材の回収率の観点から、前者の方法が好ましい。
 また、前記一般式(I)で表される色材は、一種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 前記一般式(I)で表される色材の製造方法は、特に限定されないが、具体的には例えば下記の方法が挙げられる。
 スルホフルオラン化合物と対応するアミン化合物を溶媒中で還流させ、この反応液を60℃でろ過して不溶解分を除いた後、溶媒の一部を除き、6%塩酸に注ぐ。次いで、大量の水を加えて室温で30分間攪拌した後、ウェットケーキをろ取する。このウェットケーキを水やお湯で洗浄後、乾燥させることにより上記一般式(I)の色材が得られる。また、R及びRとR及びRの一部の構造が異なり、キサンテン環に対して非対称である一般式(I)の色材を製造する場合は、対応する半分のアミン化合物を、大希釈のスルホフルオラン化合物メタノール溶液に、少量ずつ滴下し、反応後、残る一方のアミン化合物を滴下したり、各アミン化合物の1:1溶液をスルホフルオラン化合物メタノール溶液にゆっくり滴下したりすることにより、高収率で非対称の一般式(I)の色材を得ることができる。
(青色色材)
 本発明のカラーフィルタ用着色樹脂組成物に用いられる青色色材としては、特に限定されず、公知の青色有機顔料、青色染料及び青色レーキ顔料等を用いることができる。ここで、青色有機顔料は、染料やレーキ顔料に比べ、耐熱性や耐光性等の諸耐性に優れ、青色染料は、可溶性のため有機顔料に比べて透過性が高い。また、レーキ顔料とは、水に可溶性の染料をレーキ化剤(沈殿剤)で沈殿して不溶性にした有機顔料をいう。レーキ顔料は、染料由来のため、通常の顔料に比べて透過率が高く、高輝度化の要求を達成することが可能である。
 前記青色有機顔料としては、例えば、C.I.ピグメントブルー15、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー60等が挙げられる。中でも、比較的輝度に優れる点から、銅フタロシアニン系の青色顔料が好ましい。
 前記青色染料としては、例えば、メチン系染料、アントラキノン系染料、アゾ系染料、トリアリールメタン系染料、フタロシアニン系染料、アントラキノン系染料等が挙げられる。
 前記青色レーキ顔料としては、例えば、上記のような青色染料をレーキ化剤によりレーキ化したもの等が挙げられる。
 レーキ化剤としては、特に限定されないが、例えば、リンタングステン酸、リンモリブデン酸、リンタングステンモリブデン酸、タンニン酸、ラウリン酸、3,4,5-トリヒドロキシ安息香酸、フェリシアン化物、フェロシアン化物等を用いることができる。
 青色レーキ顔料としては、例えば、C.I.ピグメントブルー1、C.I.ピグメントブルー1:2、C.I.ピグメントブルー2、C.I.ピグメントブルー3、C.I.ピグメントブルー8、C.I.ピグメントブルー9、C.I.ピグメントブルー10、C.I.ピグメントブルー12、C.I.ピグメントブルー14、C.I.ピグメントブルー17:1、C.I.ピグメントブルー18、C.I.ピグメントブルー19、C.I.ピグメントブルー24、C.I.ピグメントブルー24:1、C.I.ピグメントブルー53、C.I.ピグメントブルー56、C.I.ピグメントブルー56:1、C.I.ピグメントブルー61、C.I.ピグメントブルー61:1、C.I.ピグメントブルー62、C.I.ピグメントブルー63、C.I.ピグメントブルー78等が挙げられる。
 前記青色染料及び前記青色レーキ顔料としては、特に限定されないが、中でも、着色層の輝度及びコントラストを向上する点から、トリアリールメタンを基本骨格として含むトリアリールメタン系色材が好ましい。
 トリアリールメタン系の青色色材としては、例えば、下記一般式(II)で表されるトリアリールメタン骨格を有するトリアリールメタン系染料、及びトリアリールメタン系レーキ顔料等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(一般式(II)中、R~Rviは各々独立に水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表し、RとRii、RiiiとRiv、RとRviが結合して環構造を形成してもよい。Arは置換基を有していてもよい2価の芳香族基を表す。複数あるR~Rvi及びArはそれぞれ同一であっても異なっていてもよい。)
 前記一般式(II)において、R~Rviにおけるアルキル基は、特に限定されず、例えば、炭素数1~20の直鎖又は分岐状アルキル基等が挙げられ、中でも、炭素数が1~8の直鎖又は分岐のアルキル基であることが好ましく、炭素数が1~5の直鎖又は分岐のアルキル基であることが、製造及び原料調達の容易さの点からより好ましく、中でも特にエチル基及びメチル基が好ましい。アルキル基が有してもよい置換基としては、特に限定されないが、例えば、アリール基、ハロゲン原子、水酸基等が挙げられ、置換されたアルキル基としては、ベンジル基等が挙げられる。
 R~Rviにおけるアリール基は、特に限定されないが、例えば、炭素数6~12のアリール基等が挙げられ、具体的には例えば、フェニル基、ナフチル基等が挙げられる。アリール基が有してもよい置換基としては、例えばアルキル基、ハロゲン原子等が挙げられる。
 RとRii、RiiiとRiv、RとRviが結合して環構造を形成しているとは、RとRii、RiiiとRiv、RとRviが窒素原子を介して環構造を形成していることをいう。環構造は特に限定されないが、例えばピロリジン環、ピペリジン環、モルホリン環等が挙げられる。
 Arにおける2価の芳香族基は特に限定されず、炭素環からなる芳香族炭化水素基の他、複素環基であってもよい。芳香族炭化水素基における芳香族炭化水素としては、ベンゼン環の他、ナフタレン環、テトラリン環、インデン環、フルオレン環、アントラセン環、フェナントレン環等の縮合多環芳香族炭化水素;ビフェニル、ターフェニル、ジフェニルメタン、トリフェニルメタン、スチルベン等の鎖状多環式炭化水素が挙げられる。当該鎖状多環式炭化水素においては、ジフェニルエーテル等のように鎖状骨格中にO、S、Nを有していてもよい。一方、複素環基における複素環としては、フラン、チオフェン、ピロール、オキサゾール、チアゾール、イミダゾール、ピラゾール等の5員複素環;ピラン、ピロン、ピリジン、ピロン、ピリダジン、ピリミジン、ピラジン等の6員複素環;ベンゾフラン、チオナフテン、インドール、カルバゾール、クマリン、ベンゾ-ピロン、キノリン、イソキノリン、アクリジン、フタラジン、キナゾリン、キノキサリン等の縮合多環式複素環が挙げられる。これらの芳香族基は置換基を有していてもよい。
 芳香族基が有していてもよい置換基としては、炭素数1~5のアルキル基、ハロゲン原子等が挙げられる。
 Arは炭素数が6~20の芳香族基であることが好ましく、炭素数が10~14の縮合多環式炭素環からなる芳香族基がより好ましく、中でも特にフェニレン基やナフチレン基であることが好ましい。
 また、1分子内に複数あるR~Rvi及びArは、同一であっても異なっていてもよい。
 前記一般式(II)で表されるトリアリールメタン系染料の具体例としては、例えば、ベーシック ブルー7、ベーシック ブルー26等が挙げられる。
 また、前記トリアリールメタン系レーキ顔料としては、下記一般式(II’)で表される、塩基性トリアリールメタン系染料の、モリブデン、タングステン、ケイ素、リンから選ばれる1つないしは複数の元素と、酸素とを必須元素として含有するアニオンからなるレーキ顔料が、着色層の高輝度化を達成する点から好適に用いられる。
Figure JPOXMLDOC01-appb-C000008
(一般式(II’)中、R~RVIは各々独立に、水素原子、炭素原子数1~12のアルキル基、炭素原子数6~12のアリール基、もしくは炭素原子数7~16のアラルキル基を表し、Xは、モリブデン、タングステン、ケイ素、リンから選ばれる1つないしは複数の元素と、酸素とを必須元素として含有するアニオンである。)
 上記アニオンXとしては、中でも、モリブデン及びタングステンの少なくとも1つを必須元素として含有するヘテロポリ酸もしくはイソポリ酸のアニオンであることが好ましい。その中でも、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸、及びケイタングストモリブデン酸よりなる群から選択される1種以上が好適に用いられる。
 上記アニオンXとしては、その中でも特に、(PMo12-x403-/3(ここで、x=1、2、又は3の整数)、(SiMoW11404-/4、(PMo18-y626-/6(ここで、y=1、2、又は3の整数)が好適に用いられる。(SiMoW11404-/4及び(PMo18-y626-/6(ここで、y=1、2、又は3の整数)の少なくとも1つを用いる場合には、耐熱性が向上する点から好ましい。
 このようなレーキ顔料は、例えば国際公開第2012/039416号パンフレット及び国際公開第2012/039417号パンフレットを参考にして調製することができる。
 また、トリアリールメタン系レーキ顔料としては、下記一般式(II”)で表されるものも、着色層の高輝度化を達成する点から好適に用いられる。
Figure JPOXMLDOC01-appb-C000009
(一般式(II”)中、Aは、Nと直接結合する炭素原子がπ結合を有しないa価の有機基であって、当該有機基は、少なくともNと直接結合する末端に飽和脂肪族炭化水素基を有する脂肪族炭化水素基、又は当該脂肪族炭化水素基を有する芳香族基を表し、炭素鎖中にO、S、Nが含まれていてもよい。Bc-はc価のアニオンを表す。RXI~RXVは各々独立に水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表し、RXIIとRXIII、RXIVとRXVが結合して環構造を形成してもよい。Arは置換基を有していてもよい2価の芳香族基を表す。複数あるRXI~RXV及びArはそれぞれ同一であっても異なっていてもよい。
 a及びcは2以上の整数、b及びdは1以上の整数を表す。eは0又は1であり、eが0のとき結合は存在しない。複数あるeは同一であっても異なっていてもよい。)
 一般式(II”)におけるAは、N(窒素原子)と直接結合する炭素原子がπ結合を有しないa価の有機基であって、当該有機基は、少なくともNと直接結合する末端に飽和脂肪族炭化水素基を有する脂肪族炭化水素基、又は当該脂肪族炭化水素基を有する芳香族基を表し、炭素鎖中にO(酸素原子)、S(硫黄原子)、N(窒素原子)が含まれていてもよいものである。Nと直接結合する炭素原子がπ結合を有しないため、カチオン性の発色部位が有する色調や透過率等の色特性は、連結基Aや他の発色部位の影響を受けず、単量体と同様の色を保持することができる。
 Aにおいて、少なくともNと直接結合する末端に飽和脂肪族炭化水素基を有する脂肪族炭化水素基は、Nと直接結合する末端の炭素原子がπ結合を有しなければ、直鎖、分岐又は環状のいずれであってもよく、末端以外の炭素原子が不飽和結合を有していてもよく、置換基を有していてもよく、炭素鎖中に、O、S、Nが含まれていてもよい。例えば、カルボニル基、カルボキシ基、オキシカルボニル基、アミド基等が含まれていてもよく、水素原子が更にハロゲン原子等に置換されていてもよい。
 また、Aにおいて上記脂肪族炭化水素基を有する芳香族基は、少なくともNと直接結合する末端に飽和脂肪族炭化水素基を有する脂肪族炭化水素基を有する、単環又は多環芳香族基が挙げられ、置換基を有していてもよく、O、S、Nが含まれる複素環であってもよい。
 中でも、骨格の堅牢性の点から、Aは、環状の脂肪族炭化水素基又は芳香族基を含むことが好ましい。
 環状の脂肪族炭化水素基としては、中でも、有橋脂環式炭化水素基が、骨格の堅牢性の点から好ましい。有橋脂環式炭化水素基とは、脂肪族環内に橋かけ構造を有し、多環構造を有する多環状脂肪族炭化水素基をいい、例えば、ノルボルナン、ビシクロ[2,2,2]オクタン、アダマンタン等が挙げられる。有橋脂環式炭化水素基の中でも、ノルボルナンが好ましい。また、芳香族基としては、例えば、ベンゼン環、ナフタレン環を含む基が挙げられ、中でも、ベンゼン環を含む基が好ましい。例えば、Aが2価の有機基の場合、炭素数1~20の直鎖、分岐、又は環状のアルキレン基や、キシリレン基等の炭素数1~20のアルキレン基を2個置換した芳香族基等が挙げられる。
 Aにおける価数aは、カチオンを構成する発色性カチオン部位の数であり、aは2以上の整数である。このレーキ顔料においては、カチオンの価数aが2以上であるため、耐熱性に優れており、中でも、カチオンの価数aが3以上であることが好ましい。aの上限は特に限定されないが、製造の容易性の点から、aが4以下であることが好ましく、3以下であることがより好ましい。
 一般式(II”)中のAr及びRXI~RXVの具体例としては、国際公開第2012/144520号パンフレットに記載のものが挙げられる。
 一般式(II”)で表されるレーキ顔料において、アニオン部(Bc-)は、特に限定されず、有機アニオンであっても無機アニオンであってもよい。ここで有機アニオンとは、炭素原子を少なくとも1つ含有するアニオンを表す。また、無機アニオンとは、炭素原子を含有しないアニオンを表す。本発明においては、高輝度で耐熱性に優れる点から、Bc-が無機アニオンであることが好ましい。
 有機アニオン及び無機アニオンの具体例としては、国際公開第2012/144520号パンフレットに記載のものが挙げられる。
 中でも、高輝度で耐熱性に優れる点から、タングステン(W)及びモリブデン(Mo)の少なくとも1種を含む無機酸のアニオンであることが好ましい。
 一般式(II”)におけるbはカチオンの数を、dは分子会合体中のアニオンの数を示し、b及びdは1以上の整数を表す。bが2以上の場合、分子会合体中に複数あるカチオンは、1種単独であっても、2種以上が組み合わされていてもよい。また、dが2以上の場合、分子会合体中に複数あるアニオンは、1種単独であっても、2種以上が組み合わされていてもよく、有機アニオンと無機アニオンを組み合わせて用いることもできる。
 一般式(II”)におけるeは、0又は1の整数である。e=0はトリアリールメタン骨格を表し、e=1はキサンテン骨格を表す。複数あるeは同一であっても異なっていてもよい。本発明に用いられる一般式(II”)で表されるレーキ顔料においては、少なくともトリアリールメタン骨格を含むものが好適に用いられる。
 なお、一般式(II”)で表されるレーキ顔料としては、例えば、国際公開第2012/144520号パンフレットを参考にして調製することができる。
(他の色材)
 本発明のカラーフィルタ用着色樹脂組成物は、色調の制御を目的として、必要に応じて他の色材を配合してもよい。他の色材としては、例えば、従来公知の有機顔料、レーキ顔料、染料、無機顔料等を目的に応じて選択することができ、1種又は2種以上用いることができる。
 他の色材として用いられる有機顔料としては、例えば、C.I.ピグメントバイオレット19、C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット29、C.I.ピグメントバイオレット32、C.I.ピグメントバイオレット36、C.I.ピグメントバイオレット38等が挙げられる。
 他の色材として用いられるレーキ顔料としては、例えば、C.I.ピグメントバイオレット1、C.I.ピグメントバイオレット2、C.I.ピグメントバイオレット3、C.I.ピグメントバイオレット3:1、C.I.ピグメントバイオレット3:3、C.I.ピグメントバイオレット4、C.I.ピグメントバイオレット5、C.I.ピグメントバイオレット5:1、C.I.ピグメントバイオレット6:1、C.I.ピグメントバイオレット7:1、C.I.ピグメントバイオレット9、C.I.ピグメントバイオレット12、C.I.ピグメントバイオレット20、C.I.ピグメントバイオレット26、C.I.ピグメントバイオレット27、C.I.ピグメントバイオレット39等を挙げることができる。
 他の色材として用いられる染料としては、例えば、キサンテン系染料、アゾ系染料、アントラキノン系染料、ペリノン系染料、ジピロメテン系染料等の赤色染料等が挙げられる。
 前記他の色材を用いる場合、その配合量は、本発明の効果が損なわれない範囲であれば特に限定されないが、例えば、前記一般式(I)で表される色材と前記青色色材との合計重量と、他の色材の重量との比が、99:1~30:70であることが好ましく、99:1~50:50であることが更に好ましく、99:1~60:40であることが特に好ましい。この範囲内であれば、前記本発明の効果を損なうことなく、色調の制御が可能となる。
<バインダー成分>
 本発明のカラーフィルタ用着色樹脂組成物は、成膜性や被塗工面に対する密着性を付与するためにバインダー成分を含有する。塗膜に充分な硬度を付与するために、硬化性バインダー成分を含有することが好ましい。硬化性バインダー成分としては、特に限定されず、従来公知のカラーフィルタの着色層を形成するのに用いられる硬化性バインダー成分を適宜用いることができる。
 硬化性バインダー成分としては、例えば、可視光線、紫外線、電子線等により重合硬化させることができる光硬化性樹脂を含む光硬化性バインダー成分や、加熱により重合硬化させることができる熱硬化性樹脂を含む熱硬化性バインダー成分を含むものを用いることができる。
 本発明に係るカラーフィルタ用着色樹脂組成物を、例えばインクジェット方式で用いる場合など、基板上にパターン状に選択的に付着させて着色層を形成可能な場合には、硬化性バインダー成分に現像性は必要がない。この場合、インクジェット方式等でカラーフィルタ着色層を形成する場合に用いられる、公知の熱硬化性バインダー成分や、感光性バインダー成分等を適宜用いることができる。
 熱硬化性バインダーとしては、1分子中に熱硬化性官能基を2個以上有する化合物と硬化剤の組み合わせが通常用いられ、更に、熱硬化反応を促進できる触媒を添加しても良い。熱硬化性官能基としては、エポキシ基、オキセタニル基、イソシアネート基、エチレン性不飽和結合等が挙げられる。熱硬化性官能基としてはエポキシ基が好ましく用いられる。熱硬化性バインダー成分の具体例としては、例えば、国際公開第2012/144521号パンフレットに記載のものを挙げることができる。
 一方、着色層を形成する際にフォトリソグラフィー工程を用いる場合には、アルカリ現像性を有する感光性バインダー成分が好適に用いられる。なお、感光性バインダー成分に、熱硬化性バインダー成分を更に用いてもよい。
 感光性バインダー成分としては、ポジ型感光性バインダー成分とネガ型感光性バインダー成分が挙げられる。ポジ型感光性バインダー成分としては、例えば、アルカリ可溶性樹脂と、感光性付与成分としてo-キノンジアジド基含有化合物とを含んだ系等が挙げられる。
 一方、ネガ型感光性バインダー成分としては、アルカリ可溶性樹脂と、多官能モノマーと、光開始剤を少なくとも含有する系が好適に用いられる。
 本発明に係るカラーフィルタ用着色樹脂組成物においては、ネガ型感光性バインダー成分であることが、フォトリソグラフィー法によって既存のプロセスを用いて簡便にパターンを形成できる点から好ましい。
 以下、ネガ型感光性バインダー成分を構成する、アルカリ可溶性樹脂と、多官能モノマーと、光開始剤について、具体的に説明する。
(アルカリ可溶性樹脂)
 本発明におけるアルカリ可溶性樹脂はカルボキシル基を有するものであり、バインダー樹脂として作用し、かつパターン形成する際に用いられる現像液、特に好ましくはアルカリ現像液に可溶性である限り、適宜選択して使用することができる。
 本発明における好ましいアルカリ可溶性樹脂は、カルボキシル基を有する樹脂であり、具体的には、カルボキシル基を有するアクリル系共重合体、カルボキシル基を有するエポキシ(メタ)アクリレート樹脂等が挙げられる。これらの中で特に好ましいものは、側鎖にカルボキシル基を有するとともに、さらに側鎖にエチレン性不飽和基等の光重合性官能基を有するものである。光重合性官能基を含有することにより形成される硬化膜の膜強度が向上するからである。また、これらアクリル系共重合体、及びエポキシアクリレート樹脂は、2種以上混合して使用してもよい。
 カルボキシル基を有するアクリル系共重合体は、カルボキシル基含有エチレン性不飽和モノマーとエチレン性不飽和モノマーを共重合して得られる。
 カルボキシル基を有するアクリル系共重合体は、更に芳香族炭素環を有する構成単位を含有していてもよい。芳香族炭素環は着色樹脂組成物に塗膜性を付与する成分として機能する。
 カルボキシル基を有するアクリル系共重合体は、更にエステル基を有する構成単位を含有していてもよい。エステル基を有する構成単位は、着色樹脂組成物のアルカリ可溶性を抑制する成分として機能するだけでなく、溶剤に対する溶解性、さらには溶剤再溶解性を向上させる成分としても機能する。
 カルボキシル基を有するアクリル系共重合体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、2,2’-オキシビス(メチレン)ビス-2-プロペノエート、スチレン、γ-メチルスチレン、グリシジル(メタ)アクリレート、2-ヒドロキシルエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、N-ビニル-2-ピロリドン、N-メチルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-フェニルマレイミドなどの中から選ばれる1種以上と、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、アクリル酸の二量体(例えば、東亞合成(株)製M-5600)、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸、これらの無水物の中から選ばれる1種以上とからなるコポリマーを例示できる。また、上記のコポリマーに、例えばグリシジル基、水酸基等の反応性官能基を有するエチレン性不飽和化合物を付加させるなどして、エチレン性不飽和結合を導入したポリマー等も例示できるが、これらに限定されるものではない。
 これらの中で、コポリマーにグリシジル基又は水酸基を有するエチレン性不飽和化合物を付加等することにより、エチレン性不飽和結合を導入したポリマー等は、露光時に、後述する多官能モノマーと重合することが可能となり、着色層がより安定なものとなる点で、特に好適である。
 カルボキシル基含有共重合体におけるカルボキシル基含有エチレン性不飽和モノマーの共重合割合は、通常、5~50重量%、好ましくは10~40重量%である。この場合、カルボキシル基含有エチレン性不飽和モノマーの共重合割合が5重量%未満では、得られる塗膜のアルカリ現像液に対する溶解性が低下し、パターン形成が困難になる。また、共重合割合が50重量%を超えると、アルカリ現像液による現像時に、形成されたパターンの基板からの脱落やパターン表面の膜荒れを来たしやすくなる傾向がある。
 カルボキシル基含有共重合体の酸価としては、30~200mgKOH/gであることが好ましい。本発明において酸価とは、重合体の固形分1g中に含まれる酸成分を中和するのに要する水酸化カリウムのmg数をいい、JIS-K0070に定義された方法により測定することができる。
 カルボキシル基含有共重合体の重量平均分子量は、好ましくは1,000~50,000の範囲であり、さらに好ましくは4,000~25,000である。1,000未満では硬化後のバインダー機能が著しく低下し、50,000を超えるとアルカリ現像液による現像時に、パターン形成が困難となる場合がある。なお、ここでいう重量平均分子量とは、ゲル・パーミエーション・クロマトグラフィー(GPC)により、標準ポリスチレン換算値として求めたものである。
 カルボキシル基を有するエポキシ(メタ)アクリレート樹脂としては、特に限定されるものではないが、エポキシ化合物と不飽和基含有モノカルボン酸との反応物を酸無水物と反応させて得られるエポキシ(メタ)アクリレート化合物が適している。
 エポキシ化合物としては、特に限定されるものではないが、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、脂肪族エポキシ化合物、またはビスフェノールフルオレン型エポキシ化合物などのエポキシ化合物が挙げられる。これらは単独で使用してもよいし、二種以上を併用してもよい。
 不飽和基含有モノカルボン酸としては、例えば(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、(メタ)アクリル酸ダイマー、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等が挙げられる。これら不飽和基含有モノカルボン酸は、単独で使用してもよいし、二種以上を併用してもよい。
 酸無水物としては、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、メチルヘキサヒドロ無水フタル酸、無水エンドメチレンテトラヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水クロレンド酸、メチルテトラヒドロ無水フタル酸等の二塩基性酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ビフェニルエーテルテトラカルボン酸等の芳香族多価カルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、エンドビシクロ-[2,2,1]-ヘプト-5-エン-2,3-ジカルボン酸無水物のような多価カルボン酸無水物誘導体等が挙げられる。これらは単独で使用してもよいし、二種以上を併用してもよい。
 このようにして得られるカルボキシル基を有するエポキシ(メタ)アクリレート化合物の重量平均分子量Mwは特に制限されないが、好ましくは1000~40000、より好ましくは2000~5000である。
 本発明のカラーフィルタ用着色樹脂組成物において用いられるアルカリ可溶性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよく、その含有量としては、カラーフィルタ用着色樹脂組成物に含まれる色材100重量部に対して、通常、10~1000重量部の範囲内、好ましくは20~500重量部の範囲内である。アルカリ可溶性樹脂の含有量が少な過ぎると、充分なアルカリ現像性が得られない場合があり、また、アルカリ可溶性樹脂の含有量が多すぎると着色剤の割合が相対的に低くなって、充分な着色濃度が得られない場合がある。
(多官能モノマー)
 本発明のカラーフィルタ用着色樹脂組成物において用いられる多官能モノマーは、後述する光開始剤によって重合可能なものであればよく、特に限定されず、通常、エチレン性不飽和二重結合を2つ以上有する化合物が用いられ、特にアクリロイル基又はメタクリロイル基を2つ以上有する、多官能(メタ)アクリレートであることが好ましい。
 このような多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、メトキシ化シクロヘキシルジ(メタ)アクリレート、アクリル化イソシアヌレート、ビス(アクリロキシネオペンチルグリコール)アジペート、ビスフェノールAジ(メタ)アクリレート、テトラブロモビスフェノールAジ(メタ)アクリレート、ビスフェノールSジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、フタル酸ジ(メタ)アクリレート、リン酸ジ(メタ)アクリレート、亜鉛ジ(メタ)アクリレート等の二官能(メタ)アクリレートが挙げられる。
 また、三官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、無水コハク酸変性ペンタエリスリトールテトラ(メタ)アクリレート、リン酸トリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、アルキル変性ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、無水コハク酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ウレタントリ(メタ)アクリレート、エステルトリ(メタ)アクリレート、ウレタンヘキサ(メタ)アクリレート、エステルヘキサ(メタ)アクリレート等が挙げられる。
 これらの多官能(メタ)アクリレートは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明のカラーフィルタ用着色樹脂組成物に優れた光硬化性(高感度)が要求される場合には、多官能モノマーが、重合可能な二重結合を3つ(三官能)以上有するものであるものが好ましく、3価以上の多価アルコールのポリ(メタ)アクリレート類やそれらのジカルボン酸変性物が好ましく、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートのコハク酸変性物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートのコハク酸変性物、ジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましい。
 本発明のカラーフィルタ用着色樹脂組成物において用いられる上記多官能モノマーの含有量は、特に制限はないが、上記アルカリ可溶性樹脂100重量部に対して、通常5~500重量部程度、好ましくは20~300重量部の範囲である。多官能モノマーの含有量が上記範囲より少ないと十分に光硬化が進まず、露光部分が溶出する場合があり、また、多官能モノマーの含有量が上記範囲より多いとアルカリ現像性が低下するおそれがある。
(光開始剤)
 本発明のカラーフィルタ用着色樹脂組成物において用いられる光開始剤としては、特に制限はなく、従来知られている各種光開始剤の中から、適宜選択して用いることができる。例えばベンゾフェノン、ミヒラーケトン、4,4’-ビスジエチルアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-エチルアントラキノン、フェナントレン等の芳香族ケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル類、メチルベンゾイン、エチルベンゾイン等のベンゾイン、2-(o-クロロフェニル)-4,5-フェニルイミダゾール2量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール2量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体、2,4,5-トリアリールイミダゾール2量体、2-(o-クロロフェニル)-4,5-ジ(m-メチルフェニル)イミダゾール2量体、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2-トリクロロメチル-5-スチリル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-シアノスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-メトキシスチリル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物、2,4-ビス(トリクロロメチル)-6-p-メトキシスチリル-S-トリアジン、2,4-ビス(トリクロロメチル)-6-(1-p-ジメチルアミノフェニル-1,3-ブタジエニル)-S-トリアジン、2-トリクロロメチル-4-アミノ-6-p-メトキシスチリル-S-トリアジン、2-(ナフト-1-イル)-4,6-ビス-トリクロロメチル-S-トリアジン、2-(4-エトキシ-ナフト-1-イル)-4,6-ビス-トリクロロメチル-S-トリアジン、2-(4-ブトキシ-ナフト-1-イル)-4,6-ビス-トリクロロメチル-S-トリアジン等のハロメチル-S-トリアジン系化合物、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパノン、1,2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、1-ヒドロキシ-シクロヘキシル-フェニルケトン、ベンジル、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジルメチルケタール、ジメチルアミノベンゾエート、p-ジメチルアミノ安息香酸イソアミル、2-n-ブトキシエチル-4-ジメチルアミノベンゾエート、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)、4-ベンゾイル-メチルジフェニルサルファイド、2-ベンジル-2-(ジメチルアミノ)-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン、α-ジメトキシ-α-フェニルアセトフェノン、フェニルビス(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、2-メチル-1-(4-メチルチオフェニル) -2-モルフォリノプロパン-1-オンなどが挙げられる。これらの光開始剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、輝度、耐熱性の点から、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、及び2、4-ジエチルチオキサントンより選択される1種以上を含むことが好ましい。
 本発明のカラーフィルタ用着色樹脂組成物において用いられる光開始剤の含有量は、上記多官能モノマー100重量部に対して、通常0.01~100重量部程度、好ましくは5~60重量部である。この含有量が上記範囲より少ないと十分に重合反応を生じさせることができないため、着色層の硬度を十分なものとすることができない場合があり、一方上記範囲より多いと、着色樹脂組成物の固形分中の色材等の含有量が相対的に少なくなり、十分な着色濃度が得られない場合がある。
<溶剤>
 本発明のカラーフィルタ用着色樹脂組成物に含まれる溶剤としては、カラーフィルタ用着色樹脂組成物中の各成分とは反応せず、これらを溶解もしくは分散可能な有機溶剤であればよく、特に限定されるものではない。
 本発明のカラーフィルタ用着色樹脂組成物においては、後述する分散剤とともに、前記一般式(I)で表される色材を分散することができる溶剤を用いることができる。当該溶剤としては、例えば23℃における前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下の溶剤が挙げられる。前記一般式(I)で表される色材に対してこのような実質的に溶解しない溶剤又は難溶性の溶剤を用いることにより、本発明に係るカラーフィルタ用着色樹脂組成物は、前記一般式(I)で表される色材を微細な粒子として分散させて用いることができる。本発明において用いられる溶剤は、更に、23℃における前記一般式(I)で表される色材の溶解度が0.1(g/100g溶剤)以下の溶剤であることが好ましい。
 なお、一般式(I)で表される色材を分散させる場合において、2種以上溶剤を混合して用いる場合、当該混合溶剤に対する前記色材の23℃における溶解度が0.2(g/100g溶剤)以下であることが好ましい。
 なお、本発明において、23℃における前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下である溶剤は、以下の評価方法により簡易的に判定することができる。
 まず、下記の方法により、前記一般式(I)で表される色材を実質的に溶解しない溶剤であるか否かを判断することができる。
 20mLサンプル管瓶に前記一般式(I)で表される色材0.1gを投入し、溶剤Sを10mlホールピペットを用いて投入し、更にふたをした後に超音波で3分間処理する。得られた液は23℃のウォーターバスで60分間静置保管する。この上澄み液5mlをPTFE5μmメンブレンフィルターでろ過し、さらに0.25μmメンブレンフィルターでろ過し、不溶物を除く。得られたろ液の吸光スペクトルを紫外可視分光光度計(例えば、島津製作所社製 UV-2500PC)で1cmセルを用いて測定し、前記色材の極大吸収波長における吸光度(abs)を求める。このとき、吸光度(abs)が測定上限値の40%未満(島津製作所社製 UV-2500PCの場合、吸光度(abs)が2未満)であれば当該溶剤Sは、前記色材を実質的に溶解しない溶剤であると評価できる。このとき、吸光度(abs)が測定上限値の40%以上の場合には、更に次の評価方法により、溶解度を求める。
 まず、前記溶剤Sの代わりに、前記色材の良溶剤(例えばメタノール等のアルコール)を用いて、同様にろ液を得て、前記色材を溶解させた色材溶液を作製し、その後10000倍~100000倍程度に適宜希釈し、同様に前記色材の極大吸収波長における吸光度を測定する。前記溶剤Sの色材溶液と良溶剤の色材溶液の吸光度と希釈倍率から上記溶剤Sに対する色材の溶解度を算出する。
 その結果、前記色材の溶解度が0.2(g/100g溶剤)以下である溶剤は、前記色材が難溶性の溶剤であると判断される。
 一方、本発明のカラーフィルタ用着色樹脂組成物において、前記一般式(I)で表される色材を溶解して用いる場合には、当該色材の23℃の溶解度が0.2(g/100g溶剤)を超える溶剤が好適に用いられる。本発明に用いられる前記一般式(I)で表される色材は、前述のように従来よりも低極性溶剤に溶解することが可能である。また、前記一般式(I)で表される色材は、従来のキサンテン系染料を溶解するために用いられていた溶剤に対する溶解度が、従来のキサンテン系染料に比べて高いため、溶剤の使用量を減らすことができる等、加工性が向上する。
 本発明のカラーフィルタ用着色樹脂組成物に含まれる溶剤としては、エステル系溶剤の中から適宜選択して用いることが安定性の点から好ましい。
 エステル系溶剤としては、例えば、酢酸エチル、酢酸ブチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、乳酸エチル、メトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-3-メチル-1-ブチルアセテート、3-メトキシブチルアセテート、メトキシブチルアセテート、エトキシエチルアセテート、エチルセロソルブアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、シクロヘキサノールアセテート、1,6-ヘキサンジオールジアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等が挙げられる。
 中でも、人体への危険性が低いこと、室温付近での揮発性が低いが加熱乾燥性が良い点から、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を用いることが好ましい。
 また、前記一般式(I)で表される色材を溶解させるために用いられる溶剤としては、例えば、前記エステル系溶剤の中では、乳酸エチル等が挙げられる。また、エステル系溶剤以外の溶剤としては、例えば、シクロヘキサノン等ケトン系の溶剤、ジアセトンアルコール等アルコール系の溶剤等を用いることもできる。
 本発明で用いられる溶剤としては、前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下である溶剤を全溶剤中50重量%以上含むことが好ましく、更に70重量%以上含むことが好ましく、より更に80重量%以上含むことが、安定性の点から好ましい。
 また、本発明のカラーフィルタ用着色樹脂組成物を、前記一般式(I)で表される色材が溶剤に分散されてなるものとする場合は、前記溶剤は、全溶剤中100重量%が、前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下である溶剤であることが特に好ましい。
 前記溶剤は、1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 また、本発明に係るカラーフィルタ用着色樹脂組成物は、必要に応じて、分散剤及びその他の任意添加成分を含有することができる。本発明に係るカラーフィルタ用着色樹脂組成物は、前記着色剤を前記溶剤に溶解して調製しても良いが、後述する分散剤とともに用いることにより溶剤に分散させて調製しても良い。
<分散剤>
 分散剤としては、公知の分散剤の中から適宜選択して用いることができ、例えば、カチオン系、アニオン系、ノニオン系、両性、シリコーン系、フッ素系等の界面活性剤を使用できる。界面活性剤の中でも、均一に、微細に分散し得る点から、高分子界面活性剤(高分子分散剤)が好ましい。
 高分子分散剤としては、例えば、変性ポリウレタン、変性ポリアクリレート、変性ポリエステル、変性ポリアミド等の高分子分散剤を挙げることができる。具体的には、ポリアクリル酸エステル等の不飽和カルボン酸エステルの(共)重合体類;ポリアクリル酸等の不飽和カルボン酸の(共)重合体の(部分)アミン塩、(部分)アンモニウム塩や(部分)アルキルアミン塩類;アミノ基を有するポリアクリル酸エステル等の不飽和カルボン酸エステルの(共)重合体、当該重合体のアミノ基の(部分)酸変性物;水酸基含有ポリアクリル酸エステル等の水酸基含有不飽和カルボン酸エステルの(共)重合体やそれらの変性物;ポリウレタン類;不飽和ポリアミド類;ポリシロキサン類;長鎖ポリアミノアミドリン酸塩類;ポリ(低級アルキレンイミン)と遊離カルボキシル基含有ポリエステルとの反応により得られるアミドやそれらの塩類等を挙げることができる。
 また、本発明に用いられる分散剤としては、中でも前記着色剤を好適に分散でき、分散安定性が良好である点から、アミン価を有する分散剤が好ましく、特にアミン価が5~200mgKOH/gであることが好ましく、5~150mgKOH/gであることが更に好ましい。本発明においてアミン価とは、固形分1gを中和するのに必要な塩酸量に対して当量となる水酸化カリウム(KOH)の重量(mg)を表し、JIS K7237に記載の方法により測定することができる。
 アミン価を有する分散剤としては、中でも、高分子分散剤が好ましく、窒素原子を有する高分子分散剤がより好ましく、アミン又はアンモニウム塩を有する高分子分散剤が更に好ましい。アミン又はアンモニウム塩を有する高分子分散剤を用いる場合、アミン又はアンモニウム塩は、側鎖、又は樹脂末端に存在するものが好ましい。
 アミン又はアンモニウム塩を有する高分子分散剤としては、例えば、ポリアクリル酸等の不飽和カルボン酸の(共)重合体の(部分)アミン塩、(部分)アンモニウム塩や(部分)アルキルアミン塩類;ポリウレタン類;不飽和ポリアミド類;ポリエチレンイミン誘導体;ポリアリルアミン誘導体等が挙げられる。
 本発明において、分散剤として用いられる市販品としては、例えば、EFKA-4046、EFKA-4047、EFKAポリマー10、EFKAポリマー400、EFKAポリマー401、EFKAポリマー4300、EFKAポリマー4310、EFKAポリマー4320、EFKAポリマー4330(以上、BASFジャパン(株)製)、Disperbyk111、Disperbyk161、Disperbyk165、Disperbyk167、Disperbyk182、Disperbyk2000、Disperbyk2001、BYK-LPN6919、BYK-LPN21116(以上、ビックケミー・ジャパン(株)製)、SOLSPERSE24000、SOLSPERSE27000、SOLSPERSE28000(以上、ルーブリゾール社製)、アジスパー(登録商標)PB821、PB822(味の素ファインテクノ(株)製)等が挙げられる。
 また、前記一般式(I)で表される色材を分散させるのに用いる分散剤としては、中でも、3級アミンを有する繰り返し単位を含む重合体からなる高分子分散剤、又は、ウレタン系分散剤であることが、分散性が良好で優れた輝度を実現でき、また、着色層形成時に異物を析出せず、溶剤への再溶解性に優れ、且つ、耐熱性に優れた着色層を形成可能な点から好ましい。以下、前記一般式(I)で表される色材の分散剤として好ましい上記2種類の分散剤について詳細に説明する。
(3級アミンを有する繰り返し単位を含む重合体)
 3級アミンを有する繰り返し単位は、前記一般式(I)で表される色材と親和性を有する部位である。特に、当該繰り返し単位が有する3級アミンと前記色材が有する-SO 基又は-SOH基とは、酸塩基相互作用を生じて安定化する。3級アミンを有する繰り返し単位を含む重合体からなる高分子分散剤は、通常、溶剤と親和性を有する部位となる繰り返し単位を含む。
 3級アミンを有する繰り返し単位を含む重合体としては、(a)3級アミンを有する繰り返し単位からなるブロック部と、溶剤親和性を有するブロック部とを有するブロック共重合体や、(b)3級アミンを有する繰り返し単位と、溶剤親和性を有するポリマー鎖を有する繰り返し単位とを含むグラフト共重合体が好適に用いられる。グラフト共重合体において、3級アミンを有する繰り返し単位は、枝部に相当するポリマー鎖中に含まれていても良く、3級アミンを有する繰り返し単位を含むポリマー鎖を有する繰り返し単位と溶剤親和性を有するポリマー鎖を有する繰り返し単位とを含むグラフト共重合体であっても良い。
 3級アミンを有する繰り返し単位は、3級アミンを有していれば良く、該3級アミンは、ブロックポリマーの側鎖に含まれていても、主鎖を構成するものであっても良い。
 中でも、側鎖に3級アミンを有する繰り返し単位であることが好ましく、中でも、主鎖骨格が熱分解し難く、耐熱性が高い点から、下記一般式(III)で表される構造であることが、より好ましい。
Figure JPOXMLDOC01-appb-C000010
(一般式(III)中、R15は、水素原子又はメチル基、Qは、直接結合又は2価の連結基、R16は、炭素数1~8のアルキレン基、-[CH(R20)-CH(R21)-O]-CH(R20)-CH(R21)-又は-[(CH-O]-(CH-で示される2価の有機基、R17及びR18は、それぞれ独立に、置換されていてもよい鎖状又は環状の炭化水素基を表すか、R17及びR18が互いに結合して環状構造を形成する。R20及びR21は、それぞれ独立に水素原子又はメチル基である。
 xは1~18の整数、yは1~5の整数、zは1~18の整数を示す。)
 上記一般式(III)の2価の連結基Qとしては、例えば、炭素数1~10のアルキレン基、アリーレン基、-CONH-基、-COO-基、炭素数1~10のエーテル基(-R’-OR”-:R’及びR”は、各々独立にアルキレン基)及びこれらの組み合わせ等が挙げられる。中でも、得られたポリマーの耐熱性やPGMEAに対する溶解性、また比較的安価な材料である点から、Qは、-COO-基であることが好ましい。
 上記一般式(III)の2価の有機基R16は、炭素数1~8のアルキレン基、-[CH(R20)-CH(R21)-O]-CH(R20)-CH(R21)-又は-[(CH-O]-(CH-である。上記炭素数1~8のアルキレン基は、直鎖状、分岐状のいずれであってもよく、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、各種ブチレン基、各種ペンチレン基、各種へキシレン基、各種オクチレン基などである。
 R20及びR21は、それぞれ独立に水素原子又はメチル基である。
 上記R16としては、分散性の点から、炭素数1~8のアルキレン基が好ましく、中でも、R16がメチレン基、エチレン基、プロピレン基、ブチレン基であることが更に好ましく、メチレン基及びエチレン基がより好ましい。
 上記一般式(III)のR17、R18が互いに結合して形成する環状構造としては、例えば5~7員環の含窒素複素環単環又はこれらが2個縮合してなる縮合環が挙げられる。該含窒素複素環は芳香性を有さないものが好ましく、飽和環であればより好ましい。
 上記一般式(III)で表される繰り返し単位としては、(メタ)アクリロイルオキシプロピルジメチルアミン、(メタ)アクリロイルオキシエチルジメチルアミン、(メタ)アクリロイルオキシプロピルジエチルアミン、(メタ)アクリロイルオキシエチルジエチルアミン等から誘導される繰り返し単位が挙げられるが、これらに限定されない。
(a)ブロック共重合体
 前記3級アミンを有する繰り返し単位からなるブロック部と溶剤親和性を有するブロック部とを有するブロック共重合体における、溶剤親和性を有するブロック部としては、溶剤親和性を良好にし、分散性を向上する点から、非塩基性モノマーから誘導される繰り返し単位の中から、溶剤親和性を有するように溶剤に応じて適宜選択して用いられることが好ましい。ここで非塩基性モノマーとは、25℃の水に0.1Nの濃度(飽和濃度が0.1N未満の時は、飽和濃度)で溶解した時、7.1より低いpHを有する溶液を与える重合性モノマーをいう。溶剤親和性を有するブロック部としては、例えば、ポリアクリル酸エステル等の不飽和カルボン酸エステルの重合体、ポリアクリル酸等の不飽和カルボン酸の重合体等が挙げられる。中でも、下記一般式(IV)で表される、繰り返し単位を有する重合体であることが、前記一般式(I)で表される色材の分散性及び分散安定性を向上させながら、耐熱性も向上する点から好ましい。
Figure JPOXMLDOC01-appb-C000011
(一般式(IV)中、R22は、水素原子又はメチル基、Aは、直接結合又は2価の連結基、R23は、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、アラルキル基、アリール基、-[CH(R24)-CH(R25)-O]-R26又は-[(CH-O]-R26で示される1価の基である。R24及びR25は、それぞれ独立に水素原子又はメチル基であり、R26は、水素原子、あるいは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、アラルキル基、アリール基、-CHO、-CHCHO、又は-CHCOOR27で示される1価の基であり、R27は水素原子又は炭素数1~5の直鎖状、分岐状、又は環状のアルキル基である。xは1~18の整数、yは1~5の整数、zは1~18の整数を示す。mは3~200の整数、nは10~200の整数を示す。)
 このような3級アミンを有する繰り返し単位からなるブロック部と溶剤親和性を有するブロック部とを有するブロック共重合体の具体例としては、例えば、特許第4911253号公報に記載のブロック共重合体を好適なものとして挙げることができる。
(b)グラフト共重合体
 前記3級アミンを有する繰り返し単位と溶剤親和性を有するポリマー鎖を有する繰り返し単位とを含むグラフト共重合体において、溶剤親和性を有するポリマー鎖を有する繰り返し単位としては、例えば下記一般式(V)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(一般式(V)中、R15’は、水素原子又はメチル基、Lは、直接結合又は2価の連結基、Polymerは、ポリマー鎖を表す。)
 前記一般式(V)において、Lは、直接結合又は2価の連結基である。Lにおける2価の連結基としては、エチレン性不飽和二重結合とポリマー鎖を連結可能であれば、特に制限はない。Lにおける2価の連結基としては、例えば、アルキレン基、水酸基を有するアルキレン基、アリーレン基、-CONH-基、-COO-基、-NHCOO-基、エーテル基(-O-基)、チオエーテル基(-S-基)、及びこれらの組み合わせ等が挙げられる。なお、本発明において、2価の連結基の結合の向きは任意である。すなわち、2価の連結基に-CONH-が含まれる場合、-COが主鎖の炭素原子側で-NHが側鎖のポリマー鎖側であっても良いし、反対に、-NHが主鎖の炭素原子側で-COが側鎖のポリマー鎖側であっても良い。
 ポリマー鎖は、溶剤への溶解性を有するように、適宜選択されれば良い。
 目安としては、溶剤親和性を良好にして分散性を向上する点から、用いられる溶剤に対して、グラフト共重合体の23℃における溶解度が50(g/100g溶剤)以上になるように、ポリマー鎖を選択することが好ましい。
 前記ポリマー鎖は、中でも、下記一般式(VI)及び一般式(VII)で表される構成単位を少なくとも1種有するものであることが、溶剤への溶解性の点から好ましい。
Figure JPOXMLDOC01-appb-C000013
(一般式(VI)及び、一般式(VII)中、R28は水素原子又はメチル基であり、R29は炭素数1~18のアルキル基、ベンジル基、フェニル基、ビフェニル基、シアノ基、-[CH(R30)-CH(R31)-O]-R32、-[(CH-O]-R32、-[CO-(CH-O]-R32、-CO-O-R33又は-O-CO-R34で示される1価の基である。R30及びR31は、それぞれ独立に水素原子又はメチル基である。
 R32は、水素原子、あるいは炭素数1~18のアルキル基、ベンジル基、フェニル基、ビフェニル基、-CHO、-CHCHO又は-CHCOOR35で示される1価の基であり、R33は、炭素数1~18のアルキル基、ベンジル基、フェニル基、ビフェニル基、シアノ基、-[CH(R30)-CH(R31)-O]-R32、-[(CH-O]-R32、又は-[CO-(CH-O]-R32で示される1価の基である。R34は、炭素数1~18のアルキル基であり、R35は水素原子又は炭素数1~5のアルキル基を示す。
 mは1~5の整数、n及びn’は5~200の整数を示す。xは1~18の整数、yは1~5の整数、zは1~18の整数を示す。)
 このような3級アミンを有する繰り返し単位と溶剤親和性を有するポリマー鎖を有する繰り返し単位とを含むグラフト共重合体の具体例としては、例えば、特許第4911256号公報に記載のグラフト共重合体を好適なものとして挙げることができる。
(ウレタン系分散剤)
 前記一般式(I)で表される色材の分散性に優れる分散剤として好適に用いられるウレタン系分散剤は、1分子内に1個以上のウレタン結合(-NH-COO-)を有する化合物からなる分散剤である。
 ウレタン系分散剤は、少量の分散剤で良好な分散が可能な点から好ましい。分散剤を少量とすることにより、相対的に硬化成分等の配合量を増やすことができ、その結果、耐熱性に優れた着色層を形成することができる。
 また、ウレタン系分散剤は、特に、前記一般式(I)で表される色材の分散性に優れている点においても好ましい。
 本発明においてウレタン系分散剤としては、中でも、1分子中にイソシアネート基を2個以上有するポリイソシアネート類と、片末端又は両末端に水酸基を有するポリエステル類との反応生成物であることが好ましい。
 ポリイソシアネート類としては、ジイソシアネート類及びトリイソシアネート類から選択される1種以上のイソシアネート化合物を有することが好ましく、ジイソシアネート類及びトリイソシアネート類の少なくとも1種が重合した主鎖骨格を有する重合体であってもよい。
 ジイソシアネート類及びトリイソシアネート類の少なくとも1種が重合した主鎖構造としては、上記ポリイソシアネート類の分子間でイソシアネート基同士が結合して重合した分子構造が挙げられる。また、主鎖骨格の連鎖構造内には、置換基を有していても良い芳香環や複素環等の環構造が含まれていても良い。
 ウレタン系分散剤に用いられるジイソシアネート類としては、ヘキサメチレンジイソシアネートや、イソホロンジイソシアネートのような脂肪族ジイソシアネートでもよいが、耐熱性の点から芳香族ジイソシアネート類が好ましく、例えば、ベンゼン-1,3-ジイソシアネート、ベンゼン-1,4-ジイソシアネート等のベンゼンジイソシアネート類;トルエン-2,4-ジイソシアネート、トルエン-2,5-ジイソシアネート、トルエン-2,6-ジイソシアネート、トルエン-3,5-ジイソシアネート等のトルエンジイソシアネート類;1,2-キシレン-3,5-ジイソシアネート、1,2-キシレン-3,6-ジイソシアネート、1,2-キシレン-4,6-ジイソシアネート、1,3-キシレン-2,4-ジイソシアネート、1,3-キシレン-2,5-ジイソシアネート、1,3-キシレン-2,6-ジイソシアネート、1,3-キシレン-4,6-ジイソシアネート、1,4-キシレン-2,5-ジイソシアネート、1,4-キシレン-2,6-ジイソシアネート等のキシレンジイソシアネート類等の芳香族ジイソシアネート類を挙げられる。
 また前記トリイソシアネート類としては、例えば、ベンゼン-1,2,4-トリイソシアネート、ベンゼン-1,2,5-トリイソシアネート、ベンゼン-1,3,5-トリイソシアネート等のベンゼントリイソシアネート類;トルエン-2,3,5-トリイソシアネート、トルエン-2,3,6-トリイソシアネート、トルエン-2,4,5-トリイソシアネート、トルエン-2,4,6-トリイソシアネート、トルエン-3,4,6-トリイソシアネート、トルエン-3,5,6-トリイソシアネート等のトルエントリイソシアネート類、1,2-キシレン-3,4,6-トリイソシアネート、1,2-キシレン-3,5,6-トリイソシアネート、1,3-キシレン-2,4,5-トリイソシアネート、1,3-キシレン-2,4,6-トリイソシアネート、1,3-キシレン-3,4,5-トリイソシアネート、1,4-キシレン-2,3,5-トリイソシアネート、1,4-キシレン-2,3,6-トリイソシアネート等のキシレントリイソシアネート類等の芳香族トリイソシアネート類を挙げられる。中でも高い耐熱性の点から、トルエンジイソシアネート類が好ましい。これらのジイソシアネート類およびトリイソシアネート類は、それぞれ単独でまたは2種以上を混合して使用することができる。中でも、トルエンジイソシアネート類が単独で重合した主鎖構造を有することが高い耐熱性の点から好ましい。
 片末端又は両末端に水酸基を有するポリエステル類としては、中でも、分散性の点から、-(O-RCO)n-(Rは、炭素数1~20のアルキレン基、nは2以上の整数)で表されるポリエステル鎖を含む化合物であることが好ましい。ポリエステル鎖の具体例としては、ポリカプロラクトン、ポリバレロラクトン、ポリプロピオラクトン等のポリラクトン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の重縮合系ポリエステル類が挙げられる。中でも耐熱性の点から、ポリラクトン類、中でも、ポリカプロラクトンを含むことが好ましい。
 また、ウレタン系分散剤は、分散性の点から、酸性官能基を有しないことが好ましい。酸性官能基としては、例えばカルボキシル基、スルホ基、リン酸基等が挙げられるが、代表的にはカルボキシル基である。
 更に、ウレタン系分散剤は、耐熱性の点から、加熱により切断され易いポリエーテル鎖を含まないことが好ましい。ここでポリエーテル鎖とは、-(O-R)n-(Rは、炭素数1~10のアルキレン基、nは2以上の整数)で表される構造をいう。具体的には、-(O-CHCH)n-、-(O-CHCHCH)n-、-(O-CHCHCHCH)n-、-(O-CHCHCHCHCH)n-、-(O-CHCHCHCHCHCH)n-が挙げられる。
 更に、ウレタン系分散剤の分子量は、耐熱性、電気信頼性、分散性の点から、ポリスチレン換算の重量平均分子量で500~30000の範囲が好ましい。
 前記分散剤は、1種単独で用いても良いし、2種以上を組み合わせて使用しても良い。また、色材ごとに異なる分散剤を用いて各々色材分散液を調製する場合は、各々異なる分散剤を使用しても良い。
<任意添加成分>
 本発明のカラーフィルタ用着色樹脂組成物には、本発明の目的が損なわれない範囲で、各種添加剤を含むものであってもよい。
 添加剤としては、例えば重合停止剤、連鎖移動剤、レベリング剤、可塑剤、界面活性剤、消泡剤、シランカップリング剤、紫外線吸収剤、密着促進剤等が挙げられる。
<カラーフィルタ用着色樹脂組成物における各成分の配合割合>
 一般式(I)で表される色材、青色色材及び必要に応じて配合される他の色材を合計した着色剤の含有量は、カラーフィルタ用着色樹脂組成物の固形分全量に対して、5~65重量%が好ましく、8~55重量%の割合で配合することがより好ましい。上記下限値以上であれば、カラーフィルタ用着色樹脂組成物を所定の膜厚(通常は1.0~5.0μm)に塗布した際の着色層の色濃度に優れる。また、上記上限値以下であれば、分散性及び分散安定性に優れると共に、硬度や、基板との密着性に優れた着色層を得ることができる。
 尚、本発明において固形分とは、上述した溶剤以外のもの全てであり、溶剤中に溶解している多官能モノマー等も含まれる。
 バインダー成分は、これらの合計量が、カラーフィルタ用着色樹脂組成物の固形分全量に対して24~94重量%が好ましく、40~87重量%の割合で配合するのがより好ましい。上記下限値以上であれば、硬度や、基板との密着性に優れた着色層を得ることができる。また上記上限値以下であれば、現像性に優れ、熱収縮による微小なシワの発生も抑制される。
 溶剤の含有量は、着色層を精度良く形成することができる範囲で適宜設定すればよいが、カラーフィルタ用着色樹脂組成物の全量に対して、65~95重量%の範囲内であることが好ましく、中でも75~88重量%の範囲内であることが好ましい。上記溶剤の含有量が、上記範囲内であることにより、塗布性に優れたものとすることができる。
 分散剤の含有量は、着色剤を均一に分散することができるものであれば特に限定されるものではないが、例えば、カラーフィルタ用着色樹脂組成物の固形分100重量部に対して1~50重量部用いることができる。更に、カラーフィルタ用着色樹脂組成物の固形分100重量部に対して2~30重量部の割合で配合するのが好ましく、特に2~15重量部の割合で配合するのが好ましい。上記下限値以上であれば、着色剤の分散性及び分散安定性に優れ、保存安定性に優れている。また、上記上限値以下であれば、現像性が良好なものとなる。
<カラーフィルタ用着色樹脂組成物の製造方法>
 本発明に係るカラーフィルタ用着色樹脂組成物の製造方法は、前述した着色剤と、バインダー成分と、所望により用いられる各種添加成分とを、溶剤中に均一に溶解又は分散させ得る方法であればよく、特に制限されず、公知の混合手段を用いて混合することにより、調製することができる。
 本発明に係るカラーフィルタ用着色樹脂組成物の調製方法としては、例えば(i)溶剤中に、着色剤に用いられる各種色材を各々別に、分散剤とともに分散させるか又は分散剤を用いずに溶解させることによって、各々色材分散液又は色材溶液を調製し、一方で、別の溶剤中にバインダー成分を添加した、バインダー樹脂組成物を調製し、前記色材分散液及び/又は色材溶液と、前記バインダー樹脂組成物と、所望により用いられる各種添加成分とを混合する方法、(ii)溶剤中に、着色剤に用いられる各種色材を同時に、分散剤とともに共分散させるか又は分散剤を用いずに同時に溶解させることによって、色材分散液又は色材溶液を調製し、一方で、別の溶剤中にバインダー成分を添加した、バインダー樹脂組成物を調製し、前記色材分散液又は色材溶液と、前記バインダー樹脂組成物と、所望により用いられる各種添加成分とを混合する方法、(iii)溶剤中に、着色剤と、バインダー成分と、所望により用いられる各種添加成分とを同時に投入し、混合する方法、及び(iv)溶剤中に、バインダー成分と、所望により用いられる各種添加成分とを添加し、混合したのち、これに着色剤を加えて混合する方法などを挙げることができる。
 これらの方法の中でも、着色剤を溶剤中に分散させる場合は、前記(i)又は(ii)の方法が、着色剤の凝集を効果的に防ぎ、均一に分散させ得る点から好ましい。
 本発明に係るカラーフィルタ用着色樹脂組成物の製造において、分散処理を行うための分散機としては、特に限定されないが、例えば、2本ロール、3本ロール等のロールミル、ボールミル、振動ボールミル等のボールミル、ペイントシェーカー、連続ディスク型ビーズミル、連続アニュラー型ビーズミル等のビーズミル等が挙げられる。ビーズミルの好ましい分散条件として、使用するビーズ径は0.03~2mmが好ましく、より好ましくは0.05~1mmである。具体的には、ビーズ径が比較的大きめな1~2mmジルコニアビーズで予備分散を行い、更にビーズ径が比較的小さめな0.03~0.1mmジルコニアビーズで本分散することが挙げられる。また、分散性の観点から、分散後、5.0~0.2μm程度のメンブランフィルタで濾過することが好ましい。
2.色材分散液
 本発明に係る色材分散液は、前記一般式(I)で表される色材が、アミン価を有する分散剤により、溶剤に分散されてなることを特徴とする。
 本発明に係る色材分散液に用いられる、前記一般式(I)で表される色材、及びアミン価を有する分散剤としては、上述した本発明のカラーフィルタ用着色樹脂組成物に用いられるものと同様のものを用いることができる。
 本発明の色材分散液においては、前記一般式(I)で表される色材を中心に、分散剤の色材親和性部位が該色材を取り囲み、その外側に、分散剤の溶剤親和性部位が配置された状態、すなわち色材と分散剤のミセルを形成していると推定される。このようにして、本発明の色材分散液においては、色材を、微細化された状態で分散剤に取り囲まれた微粒子として、溶剤中に均一に分散させることができる。この場合には、前記色材を溶解させるための極性溶剤を用いなくても良いので、優れた安定性を有するようになる。また、形成された塗膜においても、微細化された色材が分散剤に取り囲まれた微粒子として存在するため、溶剤再溶解性を有する点から好ましい。
 本発明に用いられる色材と分散剤のミセルの平均分散粒径としては、カラーフィルタの着色層とした場合に、所望の発色が可能なものであればよく、特に限定されないが、コントラストを低下させない点から、10~100nmの範囲内であることが好ましく、10~80nmの範囲内であることがより好ましい。色材と分散剤のミセルの平均分散粒径が上記範囲であることにより、本発明の色材分散液を用いて製造された液晶表示装置、有機発光表示装置を高品質なものとすることができる。
 色材分散液中の色材と分散剤のミセルの平均分散粒径は、少なくとも溶剤を含有する分散媒体中に分散している色材と分散剤のミセル粒子の分散粒径であって、レーザー光散乱粒度分布計により測定されるものである。レーザー光散乱粒度分布計による粒径の測定としては、色材分散液に用いられている溶剤で、色材分散液をレーザー光散乱粒度分布計で測定可能な濃度に適宜希釈(例えば、1000倍など)し、レーザー光散乱粒度分布計(例えば、日機装社製ナノトラック粒度分布測定装置UPA-EX150)を用いて動的光散乱法により23℃にて測定することができる。ここでの平均分散粒径は、体積平均径である。
 本発明に係る色材分散液に用いられる溶剤としては、前記一般式(I)で表される色材を分散することができる溶剤であれば特に限定されないが、例えば、23℃における前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下の溶剤を用いることができ、溶解度が0.1(g/100g溶剤)以下の溶剤を好ましく用いることができる。
 溶剤の23℃における前記一般式(I)で表される色材の溶解度の判定方法は、本発明のカラーフィルタ用着色樹脂組成物において説明した通りであるのでここでは省略する。
 また、前記溶剤の具体例としては、上述した本発明のカラーフィルタ用着色樹脂組成物に用いられる23℃における前記一般式(I)で表される色材の溶解度が0.2(g/100g溶剤)以下の溶剤と同様のものが挙げられる。
 本発明の色材分散液は、溶剤を含む色材分散液の全量に対する当該溶剤の含有量が、通常50~95重量%であり、好ましくは60~85重量%である。溶剤が少なすぎると、粘度が上昇し、分散性が低下しやすい。また、溶剤が多すぎると、色材濃度が低下し、樹脂組成物を調製後目標とする色度座標に達成することが困難な場合がある。
 前記溶剤は、1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 また、本発明の色材分散液には、本発明の効果が損なわれない限り、更に必要に応じて、前記一般式(I)で表される色材以外の色材や分散補助樹脂、その他の成分を配合してもよい。
 前記一般式(I)で表される色材以外の色材としては、特に限定されないが、例えば、上述した本発明のカラーフィルタ用着色樹脂組成物に用いられる青色色材及びその他の色材が挙げられる。
 分散補助樹脂としては、例えば上述した本発明のカラーフィルタ用着色樹脂組成物で例示されるアルカリ可溶性樹脂が挙げられる。アルカリ可溶性樹脂の立体障害によって色材粒子同士が接触しにくくなり、分散安定化することやその分散安定化効果によって分散剤を減らす効果がある場合がある。
 また、その他の成分としては、例えば、濡れ性向上のための界面活性剤、密着性向上のためのシランカップリング剤、消泡剤、ハジキ防止剤、酸化防止剤、凝集防止剤、紫外線吸収剤などが挙げられる。
 本発明の色材分散液の製造方法は、例えば、(i)前記分散剤を溶剤に混合、撹拌し、分散剤溶液を調製した後、当該分散剤溶液に、前記一般式(I)で表される色材と必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散させる方法が挙げられる。
 また、(ii)前記一般式(I)で表される色材を実質的に溶解しない溶剤又は難溶性の溶剤に前記分散剤を混合、撹拌し、分散剤溶液を調製し、一方で、前記一般式(I)で表される色材を良溶剤に溶解させた色材溶液を調製し、前記分散剤溶液と前記色材溶液とを混合し、公知の攪拌機又は分散機を用いて攪拌させ、必要に応じて加熱処理し、反応終了後、前記色材の良溶剤を分離して色材分散液を調製してもよい。
 また、本発明の色材分散液は、(iii)前記一般式(I)で表される色材と分散剤、及び前記溶剤と前記色材の良溶剤を少量混合し、公知の攪拌機又は分散機で分散処理し、反応終了後、前記色材の良溶剤を分離して色材分散液を調製してもよい。
 なお、本発明の色材分散液の製造に際に用いられる分散処理を行うための分散機としては、上述した本発明のカラーフィルタ用着色樹脂組成物の調製に用いられるものと同様のものが挙げられる。
 また、前記一般式(I)で表される色材の-SO 基を、色材分散液調製時に-SOH基に変換する調製方法もある。その調製方法は特に限定されないが、例えば、以下の方法が挙げられる。
 例えば、前記一般式(I)で表される色材をメタノール、エタノール等の色材の良溶媒に溶かし、例えば濃塩酸等の前記酸処理法に用いる酸を加える。当該溶液に、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等、23℃における色材の溶解度が0.2(g/100g溶媒)以下の溶媒と、前記分散剤とを加えて加熱した後、減圧蒸留等によりメタノール等の色材の良溶媒を除去し、更に、析出物を濾別し、ろ液を得ることにより、本発明に係る色材分散液を調製することができる。
 本発明に係る色材分散液は、色材分散性に優れた上述の本発明に係るカラーフィルタ用着色樹脂組成物を調製するための予備調製物として用いることができる。すなわち、色材分散液とは、上述のカラーフィルタ用着色樹脂組成物を調製する前段階において、予備調製される(組成物中の着色剤成分重量)/(組成物中の着色剤成分以外の固形分重量)比の高い色材分散液である。具体的には、(組成物中の着色剤成分重量)/(組成物中の着色剤成分以外の固形分重量)比は通常1.0以上である。色材分散液と少なくともバインダー成分を混合することにより、分散性に優れた着色樹脂組成物を調製することができる。
3.カラーフィルタ
 本発明に係るカラーフィルタは、透明基板と、当該透明基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、前記着色層の少なくとも1つが、前記本発明に係るカラーフィルタ用着色樹脂組成物を硬化させて形成されてなる着色層であることを特徴とする。
 本発明に係るカラーフィルタは、前記本発明に係るカラーフィルタ用着色樹脂組成物を硬化させて形成されてなる着色層を有するため、輝度及び耐光性に優れる。
 このような本発明に係るカラーフィルタについて、図を参照しながら説明する。図1は、本発明のカラーフィルタの一例を示す概略断面図である。図1によれば、本発明のカラーフィルタ10は、透明基板1と、遮光部2と、着色層3とを有している。
<着色層>
 本発明のカラーフィルタに用いられる着色層は、少なくとも1つが、前記本発明に係るカラーフィルタ用着色樹脂組成物を硬化させて形成されてなる着色層である。
 着色層は、通常、後述する透明基板上の遮光部の開口部に形成され、通常3色以上の着色パターンから構成される。
 また、当該着色層の配列としては、特に限定されず、例えば、ストライプ型、モザイク型、トライアングル型、4画素配置型等の一般的な配列とすることができる。また、着色層の幅、面積等は任意に設定することができる。
 当該着色層の厚みは、塗布方法、着色樹脂組成物の固形分濃度や粘度等を調整することにより、適宜制御されるが、通常、1~5μmの範囲であることが好ましい。
 当該着色層は、例えば、カラーフィルタ用着色樹脂組成物が感光性樹脂組成物の場合、下記の方法により形成することができる。
 まず、前述した本発明のカラーフィルタ用着色樹脂組成物を、スプレーコート法、ディップコート法、バーコート法、コールコート法、スピンコート法などの塗布手段を用いて後述する透明基板上に塗布して、ウェット塗膜を形成させる。
 次いで、ホットプレートやオーブンなどを用いて、該ウェット塗膜を乾燥させたのち、これに、所定のパターンのマスクを介して露光し、アルカリ可溶性樹脂及び多官能モノマー等を光重合反応させて、着色樹脂組成物の塗膜とする。露光に使用される光源としては、例えば低圧水銀灯、高圧水銀灯、メタルハライドランプなどの紫外線、電子線等が挙げられる。露光量は、使用する光源や塗膜の厚みなどによって適宜調整される。
 また、露光後に重合反応を促進させるために、加熱処理を行ってもよい。加熱条件は、使用する着色樹脂組成物中の各成分の配合割合や、塗膜の厚み等によって適宜選択される。
 次に、現像液を用いて現像処理し、未露光部分を溶解、除去することにより、所望のパターンで塗膜が形成される。現像液としては、通常、水や水溶性溶剤にアルカリを溶解させた溶液が用いられる。このアルカリ溶液には、界面活性剤などを適量添加してもよい。また、現像方法は一般的な方法を採用することができる。
 現像処理後は、通常、現像液の洗浄、着色樹脂組成物の硬化塗膜の乾燥が行われ、着色層が形成される。なお、現像処理後に、塗膜を十分に硬化させるために加熱処理を行ってもよい。加熱条件としては特に限定はなく、塗膜の用途に応じて適宜選択される。
<遮光部>
 本発明のカラーフィルタにおける遮光部は、後述する透明基板上にパターン状に形成されるものであって、一般的なカラーフィルタに遮光部として用いられるものと同様とすることができる。
 当該遮光部のパターン形状としては、特に限定されず、例えば、ストライプ状、マトリクス状等の形状が挙げられる。この遮光部としては、例えば、黒色顔料をバインダー樹脂中に分散又は溶解させたものや、クロム、酸化クロム等の金属薄膜等が挙げられる。この金属薄膜は、CrOx膜(xは任意の数)及びCr膜が2層積層されたものであってもよく、また、より反射率を低減させたCrOx膜(xは任意の数)、CrNy膜(yは任意の数)及びCr膜が3層積層されたものであってもよい。
 当該遮光部が黒色着色剤をバインダー樹脂中に分散又は溶解させたものである場合、この遮光部の形成方法としては、遮光部をパターニングすることができる方法であればよく、特に限定されず、例えば、遮光部用着色樹脂組成物を用いたフォトリソグラフィー法、印刷法、インクジェット法等を挙げることができる。
 上記の場合であって、遮光部の形成方法として印刷法やインクジェット法を用いる場合、バインダー樹脂としては、例えば、ポリメチルメタクリレート樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ヒドロキシエチルセルロース樹脂、カルボキシメチルセルロース樹脂、ポリ塩化ビニル樹脂、メラミン樹脂、フェノール樹脂、アルキッド樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、マレイン酸樹脂、ポリアミド樹脂等が挙げられる。
 また、上記の場合であって、遮光部の形成方法としてフォトリソグラフィー法を用いる場合、バインダー樹脂としては、例えば、アクリレート系、メタクリレート系、ポリ桂皮酸ビニル系、もしくは環化ゴム系等の反応性ビニル基を有する感光性樹脂が用いられる。この場合、黒色着色剤及び感光性樹脂を含有する遮光部用着色樹脂組成物には、光重合開始剤を添加してもよく、さらには必要に応じて増感剤、塗布性改良剤、現像改良剤、架橋剤、重合禁止剤、可塑剤、難燃剤等を添加してもよい。
 一方、遮光部が金属薄膜である場合、この遮光部の形成方法としては、遮光部をパターニングすることができる方法であればよく、特に限定されず、例えば、フォトリソグラフィー法、マスクを用いた蒸着法、印刷法等を挙げることができる。
 遮光部の膜厚としては、金属薄膜の場合は0.2~0.4μm程度で設定され、黒色着色剤をバインダー樹脂中に分散又は溶解させたものである場合は0.5~2μm程度で設定される。
<透明基板>
 本発明のカラーフィルタにおける透明基板としては、可視光に対して透明な基材であればよく、特に限定されず、一般的なカラーフィルタに用いられる透明基板を使用することができる。具体的には、石英ガラス、無アルカリガラス、合成石英板等の可撓性のない透明なリジッド材、あるいは、透明樹脂フィルム、光学用樹脂板、フレキシブルガラス等の可撓性を有する透明なフレキシブル材が挙げられる。
 当該透明基板の厚みは、特に限定されるものではないが、本発明のカラーフィルタの用途に応じて、例えば100μm~1mm程度のものを使用することができる。
 なお、本発明のカラーフィルタは、上記透明基板、遮光部及び着色層以外にも、例えば、オーバーコート層や透明電極層、さらには配向膜や柱状スペーサ等が形成されたものであってもよい。
4.液晶表示装置
 本発明の液晶表示装置は、前述した本発明に係るカラーフィルタと、対向基板と、前記カラーフィルタと前記対向基板との間に形成された液晶層とを有することを特徴とする。
 このような本発明の液晶表示装置について、図を参照しながら説明する。図2は、本発明の液晶表示装置の一例を示す概略図である。図2に例示するように本発明の液晶表示装置40は、カラーフィルタ10と、TFTアレイ基板等を有する対向基板20と、上記カラーフィルタ10と上記対向基板20との間に形成された液晶層30とを有している。
 なお、本発明の液晶表示装置は、この図2に示される構成に限定されるものではなく、一般的にカラーフィルタが用いられた液晶表示装置として公知の構成とすることができる。
 本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができる。このような駆動方式としては、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。本発明においてはこれらのいずれの方式であっても好適に用いることができる。
 また、対向基板としては、本発明の液晶表示装置の駆動方式等に応じて適宜選択して用いることができる。
 さらに、液晶層を構成する液晶としては、本発明の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。
 真空注入方式では、例えば、あらかじめカラーフィルタ及び対向基板を用いて液晶セルを作製し、液晶を加温することにより等方性液体とし、キャピラリー効果を利用して液晶セルに液晶を等方性液体の状態で注入し、接着剤で封止することにより液晶層を形成することができる。その後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
 また液晶滴下方式では、例えば、カラーフィルタの周縁にシール剤を塗布し、このカラーフィルタを液晶が等方相になる温度まで加熱し、ディスペンサー等を用いて液晶を等方性液体の状態で滴下し、カラーフィルタ及び対向基板を減圧下で重ね合わせ、シール剤を介して接着させることにより、液晶層を形成することができる。その後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。
5.有機発光表示装置
 本発明に係る有機発光表示装置は、前述した本発明に係るカラーフィルタと、有機発光体とを有することを特徴とする。
 このような本発明の有機発光表示装置について、図を参照しながら説明する。図3は、本発明の有機発光表示装置の一例を示す概略図である。図3に例示するように本発明の有機発光表示装置100は、カラーフィルタ10と、有機発光体80とを有している。カラーフィルタ10と、有機発光体80との間に、有機保護層50や無機酸化膜60を有していても良い。
 有機発光体80の積層方法としては、例えば、カラーフィルタ上面へ透明陽極71、正孔注入層72、正孔輸送層73、発光層74、電子注入層75、および陰極76を逐次形成していく方法や、別基板上へ形成した有機発光体80を無機酸化膜60上に貼り合わせる方法などが挙げられる。有機発光体80における、透明陽極71、正孔注入層72、正孔輸送層73、発光層74、電子注入層75、および陰極76、その他の構成は、公知のものを適宜用いることができる。このようにして作製された有機発光表示装置100は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。
 なお、本発明の有機発光表示装置は、この図3に示される構成に限定されるものではなく、一般的にカラーフィルタが用いられた有機発光表示装置として公知の構成とすることができる。
 以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。
(合成例1:色材Aの合成)
 以下の手順により、下記構造式で表される色材Aを合成した。
 500mlの4つ口フラスコに、下記式(A)のスルホフルオラン化合物40.2重量部、メタノール312重量部、N-メチル-2,6-キシリジン6.8重量部及びN-メチル-o-トルイジン6.0重量部を仕込み、30時間還流させた。この反応液を60℃でろ過して不溶解分を除いた後、反応液が約70mlになるまで減圧下で溶媒を除き、6%塩酸200重量部に注いだ。次いで、水600重量部を加えて室温で30分間攪拌した後、ウェットケーキをろ取した。このウェットケーキを100重量部の水に懸濁させて60℃で2時間攪拌した後、再びろ取して60℃の湯で水洗後、乾燥させることにより、色材A27.4重量部を得た。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(合成例2:色材Bの合成)
 以下の手順により、下記構造式で表される色材Bを合成した。
 合成例1において、N-メチル-o-トルイジン6.0重量部をN-メチルー2-メチルー6-エチルアニリン7.5重量部に変えた以外は同様にして、色材B24.7重量部を得た。
Figure JPOXMLDOC01-appb-C000016
<評価:溶媒への不溶性>
 上記合成した色材A、Bについて、以下の手順でプロピレングリコールモノメチルエーテルアセテート(以下PGMEA、ダイセル化学製)への不溶性の評価を行った。
 まず、20mLサンプル管瓶に、色材A又は色材Bを0.1g投入し、次いでPGMEA10mlをホールピペットを用いて投入し、密栓した後に超音波で3分間処理した。得られた液は23℃のウォーターバスで60分間静置保管した。この上澄み液5mlを孔径5μmのPTFE製メンブレンフィルターでろ過し、さらに孔径0.25μmのPTFE製メンブレンフィルターでろ過しPGMEA不溶物を除いた。得られたろ液の吸光スペクトルを紫外可視分光光度計(島津製作所社製 UV-2500PC)で1cmセルを用いて測定した。各色材A、Bの極大吸収波長における吸光度(abs)を求めた。このとき、吸光度が2未満であれば当該溶剤は、色材を実質的に溶解しない溶剤であると評価でき、色材の溶解度が0.2(g/100g溶媒)以下の有機溶媒の溶剤であると評価できる。色材A、Bの測定波長とその吸光度(abs)を下記に表1に示す。なお、本測定方法による吸光度の測定限界は、0.005であった。
Figure JPOXMLDOC01-appb-T000017
(合成例3:青色色材Cの合成)
 まず、13mol/lのHNO水溶液9.8mlに1mol/lのNaMoO水溶液16.4mlを加えた攪拌した。この溶液にInorganic Synthesis vol27 p85に記載の方法で調製したK(α型SiW1139)・13HO 16.4gを少量ずつ添加した。室温で4時間攪拌後、飽和KCl水溶液で洗浄した。得られた固体を室温で乾燥し、12.2gのK(SiMoW1140)を得た。
 次に、C.I.ベーシックブルー7(BB7、東京化成株式会社製)6.46gを精製水390mlに投入し、40℃で攪拌して溶解した。これとは別に、上記で調製したK(SiMoW1140) 12.2gを精製水50mlに溶解した。BB7溶液に、K(SiMoW1140)溶液を投入し、そのまま40℃で1時間攪拌した。次いで、内温を80℃に上げ、更に1時間攪拌しレーキ化を行った。冷却後濾過し、300mlの精製水で3回洗浄した。得られた固体を90℃で乾燥させることにより、黒青色固体で平均一次粒径が50nmの青色色材Cを13.4g得た。
(製造例1:青色顔料分散液(A)の調製)
 30mlマヨネーズ瓶に市販のピグメントブルー15:6顔料 3.0重量部、BYK-LPN21116(ビックケミー社製 不揮発分40重量%)を4.5重量部、PGMEA22.5重量部、径2mmのジルコニアビーズ30重量部を入れ、ペイントシェーカー(浅田鉄鋼製)にて1時間予備解砕した後、混合液を別の30mlマヨネーズ瓶に移し変え、径0.1mmのジルコニアビーズ30重量部を加えてペイントシェーカーにて5時間振とうし、製造例1の青色顔料分散液(A)を得た。得られた青色顔料分散液(A)0.1重量部をPGMEA9.9重量部で希釈し、マイクロトラックUPA粒度分布計(日機装社製)を用いて、粒度分布を測定した。評価は50%平均粒子径で行い、体積換算(MV)で47nmであった。
(製造例2:青色色材分散液(B)の調製)
 製造例1において、PB15:6の代わりに、青色色材Cを用いた以外は、製造例1と同様にして、製造例2の青色色材分散液(B)を得た。得られた青色色材分散液(B)についてそれぞれ0.1重量部をPGMEA9.9重量部で希釈し、マイクロトラックUPA粒度分布計(日機装社製)を用いて、粒度分布を測定した。評価は50%平均粒子径で行い、体積換算(MV)した結果は114nmmであった。
(比較製造例1:紫色顔料分散液(C)の調製)
 製造例1において、PB15:6の代わりに市販のピグメントバイオレット顔料(PV23)を用いた以外は、製造例1と同様にして、製造例3の紫色顔料分散液(C)を得た。得られた紫色顔料分散液(C)についてそれぞれ0.1重量部をPGMEA9.9重量部で希釈し、マイクロトラックUPA粒度分布計(日機装社製)を用いて、粒度分布を測定した。評価は50%平均粒子径で行い、体積換算(MV)した結果は87nmであった。
(比較製造例2:赤色染料分散液(D)の調製)
 フラスコに、下記化学式で表されるアシッドレッド289(AR289、東京化成社製)100重量部に対し、メタノールを1000重量部加えてマグネチックスターラーにて溶解させた。溶解を確認後、濃塩酸31重量部を加え攪拌して、スルホン酸塩をスルホン酸基(-SOH)に変換し、さらにPGMEA1000重量部を加えた。次いで分散剤BYK-LPN6919(商品名、ビックケミー社製、3級アミンを有する繰り返し単位からなるブロック部を含むブロックポリマー、不揮発分60重量%、アミン価 120mgKOH/g、重量平均分子量 8000)288重量部を加えて攪拌した。その後、還流冷却管を接続し、ウォーターバスにて80℃まで昇温させ、80℃到達後4時間反応させた。その後エバポレーターにより、ウォーターバス45℃でメタノールを溜去し、PGMEA1000重量部を加えた後16時間室温で冷却放置した。次いで析出物をろ別し、100重量部程度のPGMEAにてろ過物を洗浄し、得られたろ液を回収し、染料が均一に分散された赤色染料分散液(D)を得た。
Figure JPOXMLDOC01-appb-C000018
(比較製造例3:赤色染料分散液(E)の調製)
 比較製造例2においてAR289の代わりに、下記化学式で表されるアシッドレッド52(AR52、東京化成社製)を用い、濃塩酸の配合量を37重量部とし、BYK-LPN6919の配合量を336重量部とした以外は同様にして、染料が均一に分散された赤色染料分散液(E)を得た。
Figure JPOXMLDOC01-appb-C000019
(実施例1:色材分散液(F)の調製)
 比較製造例2においてAR289の代わりに色材Aを用い、濃塩酸の配合量を19重量部とし、BYK-LPN6919の配合量を331重量部とした以外は同様にして、色材Aが均一に分散された色材分散液(F)を得た。
(実施例2:色材分散液(G)の調製)
 比較製造例2においてAR289の代わりに色材Bを用い、濃塩酸の配合量を18重量部とし、BYK-LPN6919の配合量を316重量部とした以外は同様にして、色材Bが均一に分散された色材分散液(G)を得た。
(実施例3:色材分散液(H)の調製)
 フラスコに色材A100重量部に対し、メタノールを1000重量部加えてマグネチックスターラーにて溶解させた。溶解を確認後、PGMEA1000重量部を加えた。次いで分散剤Disperbyk-161(商品名、ビックケミー社製、ポリウレタン系分散剤、不揮発分30重量%、アミン価 11mgKOH/g)333重量部を加えて攪拌した。その後、還流冷却管を接続し、ウォーターバスにて80℃まで昇温させ、80℃到達後4時間反応させた。その後エバポレーターにより、ウォーターバス45℃でメタノールを溜去し、PGMEA1000重量部を加えた後16時間室温で冷却放置した。次いで析出物をろ別し、100重量部程度のPGMEAにてろ過物を洗浄し、得られたろ液を回収し、色材Aが均一に分散された色材分散液(H)を得た。
(実施例4:色材分散液(I)の調製)
 実施例3において色材Aの代わりに色材Bを用い、Disperbyk-161の配合量を317重量部とした以外は同様にして、色材Bが均一に分散された色材分散液(I)を得た。
<色材分散液の評価:色材分散性>
 実施例1~4で得られた色材分散液(F)~(I)中に含まれる粒子の平均分散粒径の測定を行った。当該粒径は、色材A又は色材Bと分散剤のミセルの平均分散粒径と推定される。平均分散粒径の測定としては、PGMEAで1000倍に希釈し、レーザー光散乱粒度分布計(日機装社製ナノトラック粒度分布測定装置UPA-EX150)を用いて動的光散乱法により23℃にて測定した。その結果、色材分散液(F):41nm、色材分散液(G):43nm、色材分散液(H):44nm、色材分散液(I):49nmとなった。ここでの平均分散粒径は、体積平均径(MV)である。
(製造例3:感光性バインダー成分(CR-1)の調製)
 アルカリ可溶性樹脂としてメタクリル酸/メタクリル酸メチル/メタクリル酸ベンジル共重合体(モル比:10/30/50、重量平均分子量:9000、酸価:70mgKOH/g、有効成分含量40重量%)68.0重量部、多官能性モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬社製、「KAYARAD  DPHA」)40.8重量部、光開始剤として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(BASFジャパン社製、「IRGACURE907」)9.0重量部、ジエチルチオキサントン(日本化薬社製、「DETX-S」)3.0重量部及び溶媒としてPGMEA79.2重量部を添加した後、均一になるまで混合し、感光性バインダー成分(CR-1)を得た。
(参考例1:着色樹脂組成物の調製)
 合成例1で得られた色材A1.00重量部を乳酸エチル10.0重量部に溶解して色材溶液を調製し、一方で、製造例3で得られた感光性バインダー成分(CR-1)27.4重量部、シランカップリング剤KBM-503(信越シリコーン製)0.2重量部、界面活性剤メガファックR08MH(DIC製)0.02重量部、PGMEA61.1重量部を混合し、これにさらに前記色材溶液を混合することにより、参考例1の着色樹脂組成物を得た。
 (参考例2、参考比較例1~2:着色樹脂組成物の調製)
 参考例1において色材Aの代わりにそれぞれ、色材B、AR289、AR52を用いた以外は同様にして、参考例2、参考比較例1、参考比較例2の着色樹脂組成物を得た。
<キサンテン骨格を有する色材単色での耐光性試験>
 参考例1~2及び参考比較例1~2の着色樹脂組成物をそれぞれ、厚み0.7mmのガラス基板(NHテクノグラス(株)製、「NA35」)上に、スピンコーターを用いて塗布した。その後、80℃のホットプレート上で3分間加熱乾燥を行った。フォトマスクを介さずに超高圧水銀灯を用いて60mJ/cmの紫外線を照射した。その後、着色膜が形成されたガラス板を230℃のクリーンオーブンで30分間ポストベークすることによって硬化膜(着色膜)を得た。それぞれ、ポストベーク後の膜厚(T;μm)が1.5となるようにした。
 大気下試料はキセノンランプ(アトラス社製Ci4000ウェザメータ、内側フィルター:石英、外側フィルター:ソーダライム&赤外線吸収コーティング(CIRA))を用い、420nmの波長で、照度を1.2mW/mとして、70時間(300kJ/m相当)した前後でΔEab値を測定した。ΔEab値の絶対値が小さいほど耐光性に優れているといえる。
 ポストベーク処理された着色膜のL、a、bを測定し、L、a、bとした。耐光試験後の着色膜のL、a、bを再び測定し、L、a、bとした。ΔEabは下記式より算出される。
 ΔEab={(L-L+(a-a+(b-b1/2
Figure JPOXMLDOC01-appb-T000020
(実施例5:着色樹脂組成物の調製)
 合成例1で得られた色材A0.70重量部を乳酸エチル7.0重量部に溶解して色材溶液を調製し、一方で、製造例1で得られた青色顔料分散液(A)32.9重量部、製造例3で得られた感光性バインダー成分(CR-1)34.9重量部、シランカップリング剤KBM-503(信越シリコーン製)0.4重量部、界面活性剤メガファックR08MH(DIC製)0.04重量部、PGMEA24.1重量部を混合し、これにさらに前記色材溶液を混合することにより、実施例5の着色樹脂組成物を得た。
(実施例6:着色樹脂組成物の調製)
 実施例5において、色材Aの代わりに色材B0.52重量部を用い、乳酸エチルの配合量を5.2重量部とし、青色顔料分散液(A)の配合量を34.6重量部とし、CR-1の配合量を34.6重量部とし、PGMEAの配合量を24.6重量部とした以外は同様にして、実施例6の着色樹脂組成物を得た。
(実施例7:着色樹脂組成物の調製)
 実施例1で得られた色材分散液(F)15.6重量部、製造例1で得られた青色顔料分散液(A)32.9重量部、製造例3で得られた感光性バインダー成分(CR-1)31.4重量部、シランカップリング剤KBM-503(信越シリコーン製)0.4重量部、界面活性剤メガファックR08MH(DIC製)0.04重量部、PGMEA 19.7重量部を混合し、実施例7の着色樹脂組成物を得た。
(実施例8:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに色材分散液(G)11.5重量部を用い、青色顔料分散液(A)の配合量を34.6重量部とし、CR-1の配合量を32.2重量部とし、PGMEAの配合量を21.2重量部とした以外は同様にして、実施例8の着色樹脂組成物を得た。
(実施例9:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに色材分散液(H)16.2重量部を用い、青色顔料分散液(A)の配合量を32.9重量部とし、CR-1の配合量を33.2重量部とし、PGMEAの配合量を17.3重量部とした以外は同様にして、実施例9の着色樹脂組成物を得た。
(実施例10:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに色材分散液(I)12.0重量部を用い、青色顔料分散液(A)の配合量を34.6重量部とし、CR-1の配合量を33.4重量部とし、PGMEAの配合量を19.5重量部とした以外は同様にして、実施例10の着色樹脂組成物を得た。
(比較例1:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに比較製造例1で得られた紫色顔料分散液(C)10.1重量部を用い、青色顔料分散液(A)の配合量を29.7重量部とし、CR-1の配合量を33.9重量部とし、PGMEAの配合量を25.9重量部とした以外は同様にして、比較例1の着色樹脂組成物を得た。
(比較例2:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに赤色染料分散液(D)11.0重量部を用い、青色顔料分散液(A)の配合量を34.8重量部とし、CR-1の配合量を32.5重量部とし、PGMEAの配合量を21.2重量部とした以外は同様にして、比較例2の着色樹脂組成物を得た。
(比較例3:着色樹脂組成物の調製)
 実施例7において、色材分散液(F)の代わりに赤色染料分散液(E)18.2重量部を用い、青色顔料分散液(A)の配合量を31.7重量部とし、CR-1の配合量を31.0重量部とし、PGMEAの配合量を18.6重量部とした以外は同様にして、比較例3の着色樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000021
 次に実施例5~10及び比較例1~3の着色樹脂組成物について、以下の光学特性評価及び耐光性試験を行った。評価結果を表4に示す。
<光学特性評価試験1>
 光学特性評価は以下のように行った。実施例5~10及び比較例1~3の着色樹脂組成物をそれぞれ、厚み0.7mmのガラス基板(NHテクノグラス(株)製、「NA35」)上に、スピンコーターを用いて塗布した。その後、80℃のホットプレート上で3分間加熱乾燥を行った。フォトマスクを介さずに超高圧水銀灯を用いて60mJ/cmの紫外線を照射することによって硬化膜(青色着色膜)を得た。乾燥硬化後の膜厚(T;μm)は後述のポストベーク後の色度がy=0.085となるようにした。着色膜が形成されたガラス板を230℃のクリーンオーブンで30分間ポストベークし、得られた着色膜の色度(x、y)及び輝度(Y)を測定した。色度及び輝度はオリンパス(株)社製「顕微分光測定装置OSP-SP200」を用いて測定した。輝度は、Y値が9.70以上である場合は◎、9.35以上9.70未満である場合は○、9.00以上9.35未満である場合は△、9.00未満である場合は×と評価される。
<耐光性試験1>
 上記光学特性評価1と同様に調製されたポストベーク処理された基板を別途用意して、着色膜のL、a、bを測定した。その後、大気圧下でキセノンランプ(アトラス社製Ci4000ウェザメータ、内側フィルター:石英、外側フィルター:ソーダライム&赤外線吸収コーティング(CIRA))を用い、420nmの波長で、照度を1.2W/mとして、70時間(300kJ/m相当)照射した。得られた着色膜のL、a、bを再び測定し、L、a、bとした。耐光性試験1において、耐光性は、下記式より算出されるΔEabの値が5未満である場合は○、5以上10未満である場合は△、10以上である場合は×と評価される。
ΔEab={(L-L+(a-a+(b-b1/2
Figure JPOXMLDOC01-appb-T000022
(実施例11~12:着色樹脂組成物の調製)
 実施例9~10において青色顔料分散液(A)の代わりに青色色材分散液(B)を用いたこと以外は同様にして実施例11~12の着色樹脂組成物を得た。
(比較例4~6:着色樹脂組成物の調製)
 比較例1~3において青色顔料分散液(A)の代わりに青色色材分散液(B)を用いたこと以外は同様にして比較例4~6の着色樹脂組成物を得た。
<光学特性評価試験2>
 実施例11~12及び比較例4~6で得られた着色樹脂組成物について、ポストベークの温度を170℃とし、ポストベーク後の色度がy=0.070となるようにしたこと以外は、上述の光学特性評価試験1と同様にして、得られた着色膜の光学特性評価試験2を行った。
 また、得られた着色膜のコントラストも測定した。コントラストの測定は、壺坂電気(株)社製「コントラスト測定装置CT-1B」を用いて行った。
 評価結果を表5に示す。
<耐光性試験2>
 上記光学特性評価試験2と同様に調製されたポストベーク処理された基板を別途用意して、上述の耐光性試験1と同様にして、ΔEabを求めた。耐光性試験2において、耐光性は、ΔEabの値が7未満である場合は○、7以上15以下である場合は△、15を超える場合は×と評価される。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000023
(結果のまとめ)
 実施例5~12で得られた着色樹脂組成物は、本発明で特定する構造を有する色材と、青色色材と、バインダー成分と、溶剤とを含有していたため、形成された着色膜は、輝度及び耐光性に優れていた。
 一方、比較例1及び比較例4で得られた着色樹脂組成物は、本発明で特定する構造を有する色材の代わりに、PV23を用いたため、輝度に劣っていた。
 比較例2及び比較例5で得られた着色樹脂組成物は、本発明で特定する構造を有する色材の代わりに、AR289を用いたため、輝度及び耐光性に劣っていた。これは、AR289は、SOを含有する官能基を2つ有し、且つ窒素原子と直接結合している水素を有することに起因すると考えられる。
 比較例3及び比較例6で得られた着色樹脂組成物は、本発明で特定する構造を有する色材の代わりに、AR52を用いたため、輝度及び耐光性に劣っていた。これは、AR52は、SOを含有する官能基を2つ有し、且つ窒素原子に飽和炭化水素基のみが結合していることに起因すると考えられる。
 1 透明基板
 2 遮光部
 3 着色層
 10 カラーフィルタ
 20 対向基板
 30 液晶層
 40 液晶表示装置
 50 有機保護層
 60 無機酸化膜
 71 透明陽極
 72 正孔注入層
 73 正孔輸送層
 74 発光層
 75 電子注入層
 76 陰極
 80 有機発光体
100 有機発光表示装置

Claims (9)

  1.  着色剤と、バインダー成分と、溶剤とを含有し、前記着色剤が、下記一般式(I)で表される色材と青色色材とを含む、カラーフィルタ用着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
  2.  前記一般式(I)で表される色材が、アミン価を有する分散剤により、溶剤に分散されてなる、請求項1に記載のカラーフィルタ用着色樹脂組成物。
  3.  前記一般式(I)で表される色材において、R及びRが互いに異なる、請求項1又は2に記載のカラーフィルタ用着色樹脂組成物。
  4.  前記青色色材が、トリアリールメタン系色材を含む、請求項1又は2に記載のカラーフィルタ用着色樹脂組成物。
  5.  前記青色色材が、銅フタロシアニン顔料を含む、請求項1又は2に記載のカラーフィルタ用着色樹脂組成物。
  6.  下記一般式(I)で表される色材が、アミン価を有する分散剤により、溶剤に分散されてなる、色材分散液。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(I)中、R及びRは各々独立にアルキル基又はアリール基であり、R及びRは各々独立にアリール基又はヘテロアリール基である。)
  7.  透明基板と、当該透明基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、前記着色層の少なくとも1つが、請求項1又は2に記載のカラーフィルタ用着色樹脂組成物を硬化させて形成されてなる着色層である、カラーフィルタ。
  8.  請求項7に記載のカラーフィルタと、対向基板と、前記カラーフィルタと前記対向基板との間に形成された液晶層とを有する、液晶表示装置。
  9.  請求項7に記載のカラーフィルタと、有機発光体とを有する、有機発光表示装置。
PCT/JP2014/052585 2013-02-08 2014-02-04 カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置 WO2014123125A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002384.9A CN104641266B (zh) 2013-02-08 2014-02-04 滤色器用着色树脂组合物、色材分散液、滤色器、液晶显示装置及有机发光显示装置
KR1020157006610A KR20150115719A (ko) 2013-02-08 2014-02-04 컬러 필터용 착색 수지 조성물, 색재 분산액, 컬러 필터, 액정 표시 장치 및 유기 발광 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023810 2013-02-08
JP2013023810A JP5646663B2 (ja) 2013-02-08 2013-02-08 カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置

Publications (1)

Publication Number Publication Date
WO2014123125A1 true WO2014123125A1 (ja) 2014-08-14

Family

ID=51299718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052585 WO2014123125A1 (ja) 2013-02-08 2014-02-04 カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置

Country Status (5)

Country Link
JP (1) JP5646663B2 (ja)
KR (1) KR20150115719A (ja)
CN (1) CN104641266B (ja)
TW (1) TWI630237B (ja)
WO (1) WO2014123125A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801620A (zh) * 2018-12-21 2020-10-20 株式会社Lg化学 感光性树脂组合物、感光材料、滤色器和显示装置
TWI726998B (zh) * 2016-02-24 2021-05-11 南韓商東友精細化工有限公司 著色固化性樹脂組合物、濾色器和液晶顯示裝置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092910B1 (ko) 2015-06-30 2020-03-24 동우 화인켐 주식회사 착색 경화성 수지 조성물, 컬러 필터 및 표시 장치
JP6651798B2 (ja) * 2015-11-12 2020-02-19 東洋インキScホールディングス株式会社 近赤外線吸収色素、およびその用途
CN106886126B (zh) * 2015-12-16 2021-09-14 张家港康得新石墨烯应用科技有限公司 非溶剂型的蓝膜组合物、未固化胶、蓝色基膜、其制备方法与其应用
KR102158230B1 (ko) * 2016-01-15 2020-09-21 토요잉크Sc홀딩스주식회사 고체 촬상 소자용 근적외선 흡수성 조성물 및 필터
JP6943558B2 (ja) * 2016-01-20 2021-10-06 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 着色硬化性樹脂組成物、カラーフィルタ、及び表示装置
JP6844121B2 (ja) * 2016-02-10 2021-03-17 Dic株式会社 着色硬化性樹脂組成物及びその硬化膜
KR20170101005A (ko) * 2016-02-26 2017-09-05 삼성에스디아이 주식회사 감광성 수지 조성물 및 이를 이용한 컬러필터
US10087170B2 (en) 2016-09-09 2018-10-02 Samsung Sdi Co., Ltd. Compound, photosensitive resin composition including the same, and color filter
JP6931575B2 (ja) * 2016-11-16 2021-09-08 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 着色組成物、着色硬化性樹脂組成物、カラーフィルタ及び液晶表示装置
JP6858545B2 (ja) * 2016-12-19 2021-04-14 株式会社Dnpファインケミカル 色素
JP6946792B2 (ja) * 2017-07-07 2021-10-06 三菱ケミカル株式会社 着色組成物、硬化物、及び画像表示装置
KR102025478B1 (ko) * 2017-11-28 2019-09-25 주식회사 엘지화학 착색제 조성물 제조방법, 이를 이용하여 제조된 착색제 조성물, 착색제 분산액, 감광성 수지 조성물, 컬러필터 및 액정 표시 장치
KR102027036B1 (ko) * 2017-11-28 2019-09-30 주식회사 엘지화학 착색제 조성물, 착색제 분산액, 감광성 수지 조성물, 컬러필터 및 액정 표시 장치
JP7346435B2 (ja) * 2018-10-02 2023-09-19 株式会社Dnpファインケミカル 色材分散液、着色樹脂組成物及びその硬化物、カラーフィルタ、並びに表示装置
CN109212901A (zh) * 2018-11-05 2019-01-15 江苏博砚电子科技有限公司 一种彩色滤光片用新型光刻胶及其制备方法
KR102467423B1 (ko) * 2019-03-11 2022-11-15 동우 화인켐 주식회사 청색 염료를 포함하는 착색 경화성 수지 조성물, 이를 이용하여 제조된 컬러필터 및 화상표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295312A (ja) * 1992-04-17 1993-11-09 Canon Inc インク、これを用いたインクジェット記録方法及びかかるインクを用いた機器
JPH05508883A (ja) * 1991-01-11 1993-12-09 ザール リミテッド インク組成物
JPH09157562A (ja) * 1995-12-05 1997-06-17 Konica Corp インクジェット記録液
JPH09255882A (ja) * 1996-03-22 1997-09-30 Konica Corp キサンテン系色素及びそれを含有するインクジェット記録液
WO2011037195A1 (ja) * 2009-09-25 2011-03-31 東洋インキ製造株式会社 着色組成物及びカラーフィルタ
WO2013001923A1 (ja) * 2011-06-30 2013-01-03 大日本印刷株式会社 染料分散液、カラーフィルター用感光性樹脂組成物、カラーフィルター、液晶表示装置、及び、有機発光表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111485B2 (ja) * 1988-10-24 1995-11-29 ポラロイド コーポレーシヨン カラーフィルターの製造方法
US5667920A (en) * 1996-03-11 1997-09-16 Polaroid Corporation Process for preparing a color filter
JP5092326B2 (ja) * 2005-09-26 2012-12-05 三菱化学株式会社 色材分散液、着色樹脂組成物、カラーフィルタ、及び液晶表示装置
JP2013050707A (ja) * 2011-08-02 2013-03-14 Nippon Kayaku Co Ltd 着色樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508883A (ja) * 1991-01-11 1993-12-09 ザール リミテッド インク組成物
JPH05295312A (ja) * 1992-04-17 1993-11-09 Canon Inc インク、これを用いたインクジェット記録方法及びかかるインクを用いた機器
JPH09157562A (ja) * 1995-12-05 1997-06-17 Konica Corp インクジェット記録液
JPH09255882A (ja) * 1996-03-22 1997-09-30 Konica Corp キサンテン系色素及びそれを含有するインクジェット記録液
WO2011037195A1 (ja) * 2009-09-25 2011-03-31 東洋インキ製造株式会社 着色組成物及びカラーフィルタ
WO2013001923A1 (ja) * 2011-06-30 2013-01-03 大日本印刷株式会社 染料分散液、カラーフィルター用感光性樹脂組成物、カラーフィルター、液晶表示装置、及び、有機発光表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726998B (zh) * 2016-02-24 2021-05-11 南韓商東友精細化工有限公司 著色固化性樹脂組合物、濾色器和液晶顯示裝置
CN111801620A (zh) * 2018-12-21 2020-10-20 株式会社Lg化学 感光性树脂组合物、感光材料、滤色器和显示装置

Also Published As

Publication number Publication date
CN104641266A (zh) 2015-05-20
TW201437289A (zh) 2014-10-01
JP2014153570A (ja) 2014-08-25
CN104641266B (zh) 2017-12-01
KR20150115719A (ko) 2015-10-14
JP5646663B2 (ja) 2014-12-24
TWI630237B (zh) 2018-07-21

Similar Documents

Publication Publication Date Title
JP5646663B2 (ja) カラーフィルタ用着色樹脂組成物、色材分散液、カラーフィルタ、液晶表示装置、及び有機発光表示装置
US9513418B2 (en) Color material dispersion liquid, color resin composition for color filters, color filter, liquid crystal display device, and organic light-emitting display device
JP5647279B2 (ja) 着色剤分散液、着色剤分散液の製造方法、カラーフィルタ用着色樹脂組成物、カラーフィルタ、液晶表示装置、及び有機発光表示装置
US11169308B2 (en) Color material dispersion liquid for color filters, color material, color filter, liquid crystal display device and organic light-emitting display device
JP4911253B1 (ja) 染料分散液、カラーフィルター用感光性樹脂組成物、カラーフィルター、液晶表示装置及び、有機発光表示装置
WO2012144521A1 (ja) 色材分散液、カラーフィルター用着色樹脂組成物、カラーフィルター、液晶表示装置及び有機発光表示装置
US10519313B2 (en) Color material dispersion liquid for color filter, color resin composition for color filter, color material, color filter, liquid crystal display device, and light-emitting display device
JP6256126B2 (ja) 色材分散組成物、カラーフィルタ、液晶表示装置、及び有機発光表示装置
KR101996743B1 (ko) 컬러 필터용 색재 분산액, 컬러 필터용 착색 수지 조성물, 컬러 필터용 색재, 컬러 필터, 액정 표시 장치 및 발광 표시 장치
JP6534523B2 (ja) カラーフィルタ用着色樹脂組成物、カラーフィルタ、及び表示装置
JP6091198B2 (ja) 感光性樹脂組成物、カラーフィルタ、液晶表示装置、及び有機発光表示装置
JP2013076760A (ja) カラーフィルタ用色材分散液、カラーフィルタ用着色樹脂組成物、カラーフィルタ、並びに、液晶表示装置及び有機発光表示装置
JP2017132930A (ja) 色材分散液、カラーフィルター用着色樹脂組成物、カラーフィルター、液晶表示装置、及び、発光表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006610

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748684

Country of ref document: EP

Kind code of ref document: A1