WO2014119778A1 - 粉末充填装置 - Google Patents

粉末充填装置 Download PDF

Info

Publication number
WO2014119778A1
WO2014119778A1 PCT/JP2014/052411 JP2014052411W WO2014119778A1 WO 2014119778 A1 WO2014119778 A1 WO 2014119778A1 JP 2014052411 W JP2014052411 W JP 2014052411W WO 2014119778 A1 WO2014119778 A1 WO 2014119778A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
powder
hopper
grid
filling
Prior art date
Application number
PCT/JP2014/052411
Other languages
English (en)
French (fr)
Inventor
眞人 佐川
修 板谷
吉川 紀夫
Original Assignee
インターメタリックス株式会社
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメタリックス株式会社, 大同特殊鋼株式会社 filed Critical インターメタリックス株式会社
Priority to EP14745964.8A priority Critical patent/EP2952436B1/en
Priority to EP17182752.0A priority patent/EP3260380B1/en
Priority to JP2014559798A priority patent/JP5852752B2/ja
Priority to KR1020157023040A priority patent/KR101587395B1/ko
Priority to CN201480007428.7A priority patent/CN104981404B/zh
Priority to US14/765,130 priority patent/US9384890B2/en
Publication of WO2014119778A1 publication Critical patent/WO2014119778A1/ja
Priority to US15/168,555 priority patent/US9449758B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/04Methods of, or means for, filling the material into the containers or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B1/16Methods of, or means for, filling the material into the containers or receptacles by pneumatic means, e.g. by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/16Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
    • B65B7/28Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • the present invention relates to a powder filling apparatus for filling powder into a container.
  • a powder filling device When a compact is obtained from a powdered material by compression, sintering, or the like, a powder filling device is used that fills a container (shaped container) for molding (shaped) powder.
  • a powder filling apparatus is required to uniformly fill a container with powder at a predetermined density.
  • the packing density of the powder is required to be higher than when the powder is simply put into the container (this is referred to as “natural filling”).
  • high density filling filling at a density higher than the filling density of natural filling.
  • Patent Document 1 discloses an apparatus for filling a container with powder using an air tapping method.
  • a hopper having an opening in the lower part is detachably and hermetically attached to the container so as to communicate with the powder-filled container at the opening.
  • the apparatus also includes a powder supply unit that supplies powder into the hopper and a gas supply unit that introduces compressed gas into the hopper.
  • the compressed gas air may be used when filling a powder that is difficult to oxidize, but an inert gas such as nitrogen gas or argon gas is used when filling a powder that easily oxidizes.
  • a planar grid member having a grid of eyes of a predetermined size is provided.
  • the grid is composed of a mesh, wires arranged in parallel at regular intervals, a thin plate punched with a large number of holes, and the like.
  • the grid size is adjusted so that the powder supplied to the container does not fall naturally and falls when pressure is applied by compressed gas as will be described later.
  • the size of the grid is larger than the size of the individual particles constituting the powder (hereinafter referred to as powder particles).
  • the grid has to be much larger than the size of the powder particles.
  • the cohesiveness of the powder particles depends on the moisture adhering to the surface of the powder particles, the electric charge (static electricity) of the powder particles, the magnetism, and the shape of the powder particles, etc. It has strong cohesiveness.
  • the powder filling device of Patent Document 1 is used as follows. First, powder is supplied into the hopper from the powder supply unit. At this time, since the grid size is set as described above, the powder does not fall from the hopper. Next, the hopper is attached to the container and sealed. And compressed gas is rapidly introduce
  • the powder passes through the grid member and falls into the container. Then, after the powder is sufficiently supplied into the container, the hopper is removed from the container in a state where the upper surface of the powder is above the grid member. Thereby, the powder filled in the container and the powder remaining in the hopper are separated from each other with the grid member as a boundary.
  • the problem to be solved by the present invention is to provide a powder filling apparatus capable of filling a container with powder at a nearly uniform packing density.
  • the present inventor has come to the conclusion that the cohesive force of the powder particles is involved in the non-uniformity. That is, since the cohesive force works between the powder particles, the side wall side of the hopper is lower than the center side of the hopper. If the cohesive force is strong, the fluidity is low, and the powder fluidity is higher on the side of the hopper than on the center of the hopper. When a downward pressure is applied to the powder in the hopper having such fluidity by air tapping, the powder tends to fall into the container through the grid member on the side wall side rather than the center side of the hopper. Become. As a result, in the container, it is considered that a density distribution having a higher packing density occurs at a position near the side wall of the hopper opening than at a position near the center away from the side wall.
  • the inventors of the present application further studied the configuration of a powder filling apparatus using an air tapping method so as to prevent such a distribution of the packing density from occurring, and reached the present invention.
  • the powder filling apparatus made to solve the above problems is an apparatus for filling a container with powder, a) a hopper for containing the powder, the hopper having an opening for supplying the powder to the container, and being sealed and detachably attached to the container so as to communicate with the container at the opening; b) powder supply means for supplying the powder to the hopper; c) a gas supply means for repeatedly supplying a compressed gas in the form of a pulse in the hopper in a state where the hopper and the container are communicated and sealed; d) a grid member provided in the opening, in which a finer grid is formed on the side wall side than the center side of the hopper; It is characterized by providing.
  • grid refers to a member provided with a number of eyes or holes.
  • the grid may include a square or rectangular eye formed by intersecting a large number of linear members such as wires arranged in parallel, but is not limited thereto.
  • the present invention includes a grid in which a large number of linear members are arranged in parallel (not crossed) and a plate-shaped member having a large number of holes.
  • “To supply compressed gas into the hopper in a pulsed manner” means to repeatedly press the compressed gas into the hopper and discharge the compressed gas from the hopper.
  • the compressed gas may be discharged forcibly using a means for sucking the gas or may be discharged naturally.
  • the powder and the hopper are sealed by attaching the hopper to the container after the powder is supplied to the hopper by the powder supply means. Then, the compressed gas is repeatedly supplied into the hopper by the gas supply means to fill the container with the powder in the hopper through the grid member.
  • the grid member is formed with finer mesh at the position facing the side wall side than the center side of the hopper, the filling density is increased in the conventional air tapping. The powder particles near the side wall are difficult to fall into the container. Thereby, an increase in the packing density in the vicinity of the side wall can be suppressed, and the packing density of the powder in the entire container can be made closer to the uniform.
  • a container filled with powder only one space (cavity) for filling powder may be provided in one container, or a plurality of cavities may be provided.
  • the plurality of cavities may be sealed in a state where they are communicated with a common (one) hopper. In this state, the compressed gas is repeatedly injected into and discharged from the hopper, whereby each cavity is filled with powder.
  • the cavity near the side wall of the opening of the hopper has a higher packing density than the cavity near the center.
  • the powder filling apparatus can be suitably used, for example, for producing a sintered magnet, particularly for producing a sintered magnet by a pressless method.
  • the pressless method is to fill a container with an alloy powder obtained by pulverizing an alloy as a raw material of a sintered magnet (filling step), without applying pressure while the alloy powder is contained in the container, This is a method for obtaining a sintered magnet by orienting in a magnetic field (orienting step) and heating for sintering (sintering step).
  • the powder filling device according to the present invention can be used as a device for filling the cavity with alloy powder.
  • an inert gas is used as the gas supplied from the gas supply means to the hopper.
  • the sintered magnet manufacturing apparatus is 1) A means for filling a container with alloy powder as a raw material of a sintered magnet, a) A hopper containing the alloy powder, the hopper having an opening for supplying the alloy powder to the container, and being detachably mounted on the container so as to communicate with the container at the opening
  • Powder supply means for supplying the alloy powder to the hopper
  • a gas supply means for repeatedly supplying a compressed inert gas in a pulsed manner into the hopper in a state where the hopper and the container are communicated and sealed
  • a grid member provided in the opening, in which a finer grid is formed on the side wall side than the center side of the hopper
  • a powder filling means comprising: 2) An orientation means for orienting the alloy powder by applying a magnetic field to the alloy powder without applying mechanical pressure while the alloy powder is filled in the container; 3) Sintering means for sintering the alloy powder by heating without applying mechanical pressure while the alloy powder is
  • the packing density of the alloy powder in the container can be made closer to the uniform, and thereby the characteristics of the sintered magnets are also improved. It can be made to be uniform regardless of the position in the sintered magnet.
  • only one space (cavity) for filling the alloy powder may be provided in one container, or a plurality of cavities may be provided.
  • the packing density of the alloy powder for each cavity can be made uniform, and the magnetic properties of the obtained sintered magnets can also be made uniform.
  • the powder filling apparatus according to the present invention can fill the container with powder with a nearly uniform packing density.
  • a sintered magnet having nearly uniform magnetic properties can be obtained by the sintered magnet manufacturing apparatus according to the present invention using the powder filling apparatus according to the present invention.
  • the schematic block diagram which shows one Example of the powder filling apparatus which concerns on this invention.
  • the longitudinal cross-sectional view (a) and top view (b) which show an example of the container with which a powder is filled with the powder filling apparatus of a present Example.
  • the top view (a) which shows the grid member provided in the powder filling apparatus of a present Example, and the top view (b) which shows the area
  • the longitudinal cross-sectional view (a) and top view (b) which show the modification of a container, and the top view (c) which shows the example of the grid member used in order to fill this container with powder.
  • the schematic block diagram which shows one Example of the sintered magnet manufacturing apparatus which concerns on this invention.
  • the residual magnetic flux of the sintered magnet (a) produced using the sintered magnet manufacturing apparatus of the present Example which has the grid member shown in FIG. 3, and the sintered magnet manufactured using the sintered magnet manufacturing apparatus of the comparative example The graph (b) which shows the measurement result of density Br .
  • a powder filling apparatus 10 shown in FIG. 1 is used for filling a container 30 with alloy powder as a raw material of a sintered magnet in a sintered magnet manufacturing apparatus 20 of the present embodiment described later.
  • the powder can be used as it is for filling the container.
  • the container 30 has two substantially rectangular parallelepiped cavities 301 having a long side of 95.2 mm, a short side of 17.9 mm, and a depth of 7.7 mm arranged in the direction of the short side of the cavity. What was provided in was used.
  • the powder filling device 10 includes a hopper 11, a powder supply unit 12 that supplies alloy powder to the hopper 11, a gas supply unit 13 that supplies compressed gas to the hopper 11, and a hopper.
  • Moving means (not shown) for moving the hopper 11 to communicate / disconnect the container 11 with the container 30 is provided.
  • the container 30 is carried in directly under the hopper 11 by the container conveyance apparatus 24 (refer FIG. 1, FIG. 6) which the sintered magnet manufacturing apparatus 20 mentioned later has, and is carried out from this hopper 11 directly under.
  • the hopper 11 has a shape similar to a funnel and has a cross-sectional area that decreases from the upper opening 111 toward the lower opening 112.
  • the lower opening 112 side of the hopper 11 is detachably attached to the container 30 so as to seal the upper part of the container 30.
  • the lower opening 112 has a rectangular shape corresponding to the shape of the upper surface of the container 30, and is surrounded on all sides by vertically extending side walls.
  • the lower opening 112 is provided with a plate-like grid member 113 shown in FIG.
  • the grid 114 is provided in two substantially rectangular areas (grid forming areas) in the plate so as to correspond to the two cavities 301 of the container 30.
  • the plate material is made of SUS304, and the grid 114 is formed by drilling a large number of substantially rectangular holes (eyes) in the plate material so as to be aligned in the long side direction and the short side direction of the grid formation region.
  • the size of the grid 114 is set so that the end side of the long side of the grid formation region (side wall side of the lower opening 112 of the hopper 11) is finer than the center side.
  • the grid 114 is divided into seven virtual regions in the long side direction, the virtual region at the center in the long side direction is “region A”, the virtual regions on both sides of region A are “region B”, and both sides thereof Is “region C”, the virtual regions at both ends in the long side direction are “region D” (FIG. 3B), and the grid 114 has an eye size of 8.6 ⁇ 2.5 mm in region A and 8.6 ⁇ in region B. It is 2.2 mm, region C is 8.6 ⁇ 2.0 mm, and region D is 8.6 ⁇ 1.8 mm.
  • the average particle size of the alloy powder which is the raw material of the sintered magnet, is usually about several ⁇ m to 10 ⁇ m, and the grid 114 is three orders of magnitude larger than that, but the alloy powder particles are magnetized. Due to the aggregation, the alloy powder in the hopper 11 does not easily pass through the grid 114.
  • the powder supply unit 12 includes a storage unit 121 that stores the alloy powder, and a powder discharge port 122 that discharges the alloy from the lower portion of the storage unit 121.
  • the powder supply unit 12 is provided with moving means (not shown) for moving the powder discharge port 122 on the upper opening 111 of the hopper 11.
  • the gas supply unit 13 includes a compressed gas source 131 that generates compressed gas, a lid member 132 that seals the upper opening 111 of the hopper 11, and a gas supply pipe 133 described later.
  • the gas supply unit 13 is provided with moving means (not shown) for attaching the lid member 132 to the upper surface of the hopper 11 or moving the lid member 132 so as to be detached from the upper surface.
  • nitrogen gas which is an inert gas
  • an inert gas other than nitrogen gas such as argon gas, or a mixture of a plurality of types of inert gases may be used.
  • air may be used when filling a container with a powder that is difficult to oxidize (although it is not used in the production of a sintered magnet).
  • the gas supply pipe 133 has one end connected to the compressed gas source 131 and the other end (end on the lid side) connected to a hole penetrating the lid member 132.
  • a branch pipe 134 branches from a first branch portion 136 in the middle of the gas supply pipe 133, and an aspirator (ejector) 135 is connected to the branch pipe 134.
  • the aspirator 135 is provided with a narrowed portion in the middle of the passage tube 135A and a suction tube 135B branched from the narrowed portion.
  • the aspirator 135 passes through the suction tube 135B by allowing compressed gas to pass through the passage tube 135A. The pressure can be reduced.
  • the suction pipe 135 ⁇ / b> B is connected to the gas supply pipe 133 at the second branch portion 137 provided on the lid member 132 side with respect to the first branch portion 136.
  • a first valve 138 is provided in the gas supply pipe 133 between the first branch part 136 and the second branch part 137, and a second valve 139 is provided in the branch pipe 134.
  • the compressed gas can be repeatedly discharged and sucked (attached to the lid) from the end of the gas supply pipe 133 on the lid side in a pulsed manner. it can.
  • the container 30 is transported directly below the hopper 11 by the transport means. Then, the hopper 11 is lowered, the lower surface thereof is brought into contact with the container 30, and the lower opening 112 is sealed. At the same time, the lid member 132 of the gas supply unit 13 is attached to the upper surface of the hopper 11 to seal the upper opening 111. Thereby, the inside of the hopper 11 and the cavity 301 of the container 30 are sealed in the state which made both communicate (b).
  • the first valve 138 and the second valve 139 are alternately opened and closed in a state where the compressed gas is supplied from the compressed gas source 131 to the gas supply pipe 133, thereby closing the lid of the gas supply pipe 133.
  • the discharge and suction of compressed gas are repeated from the end on the side.
  • the compressed gas is repeatedly supplied in a pulsed manner, and the alloy powder in the hopper 11 is pushed in the direction of the grid member 113 and falls into the cavity 301 of the container 30 through the eyes of the grid 114 (c ).
  • the grid 114 is formed with eyes that become smaller from the vicinity of the center in the long side direction (region A) toward both ends (region D), so that the alloy powder easily falls by conventional air tapping.
  • the fine grid 114 prevents the alloy powder from dropping from the hopper 11 to the container 30.
  • the filling density of the entire cavity 301 can be made nearly uniform.
  • the container 30 is removed from the hopper 11 after the container 30 is filled with a predetermined amount of alloy powder (d). Thereby, the powder filled in the container 30 is separated from the powder remaining in the hopper 11 with the grid member 113 as a boundary, and the filling of the alloy powder into one container 30 is completed.
  • FIG. 5 ( 1-3) Modified Example of Grid A modified grid member 1131 will be described with reference to FIG.
  • the grid member 1131 is used to fill the container 30A shown in FIGS. 5A and 5B with alloy powder.
  • approximately rectangular parallelepiped cavities 3011 having a long side of 23.8 mm, a short side of 17.0 mm, and a depth of 4.6 mm are arranged at regular intervals of four rows in the long side direction and three rows in the short side direction.
  • a total of 12 are provided (FIG. 5B).
  • the grid member 1131 is provided with a total of 12 grids 1141 corresponding to the cavities 3011, each having four rows 114 in the long side direction and three rows in the short side direction (FIG. 5 ( c)).
  • the sizes of the twelve grids 1141 are uniform in each grid 1141, but depending on the distance from the long side and short side of the grid member 1131, in other words, above the long side and short side.
  • the grid 1141 is set differently. Specifically, the grid 1141 has a grid size that is not adjacent to either the long side or the short side and is separated from the side wall of the lower opening 112 (2 in FIG. 5C). 8 x 2.0 mm for the grid (hereinafter referred to as “grid A”), and 8.0 x 1.8 mm for the one adjacent to the long side (one side of the side wall) (grid B. 4).
  • Grid D: (X, Y) (1,1), (1,3), (4,1) and (4,3)
  • the packing density is highest in the cavity D adjacent to the two sides of the side wall of the lower opening 112.
  • the cavity C adjacent to one side of the side wall on the short side is long.
  • the filling density decreases in the order of cavity B adjacent to one side of the side wall and cavity A away from the side wall.
  • the packing density is higher on the side wall than the center of the hopper opening in one cavity, the closer the powder is in the hopper 11 to the cavity 3011, the closer to the side wall of the hopper opening.
  • the distance between the cavity B and the cavity C is the same as the side wall of the re-adjacent lower opening 112 (long side on the cavity B and short side on the cavity C). The distance between the short side and the long side of the cavity C) is closer to the cavity C than to the cavity B. For this reason, it is considered that the cavity C is more susceptible to the influence of the side wall than the cavity B, and the packing density is increased.
  • the cavity in which the alloy powder easily moves into the hopper 11 has a finer grid in contact with the cavity, so that the alloy powder can be prevented from moving into the hopper 11. .
  • the filling density for every cavity 3011 can be made uniform.
  • the sintered magnet manufacturing apparatus 20 of the present embodiment is an apparatus for manufacturing a sintered magnet by a pressless method in which an alloy powder that is a raw material of a sintered magnet is sintered without compression molding.
  • the sintered magnet manufacturing device 20 includes a powder filling device 10, a lid attachment portion 21, an orientation portion 22, and a sintering portion 23.
  • the sintered magnet manufacturing apparatus 20 is provided with a container transport device (belt conveyor) 24 that transports the container 30 in the order of the powder filling device 10, the lid mounting portion 21, the orientation portion 22, and the sintering portion 23.
  • the powder filling device 10, the lid mounting portion 21, and the orientation portion 22 are housed in a sealed chamber 25 that can be filled with an inert gas such as argon gas or nitrogen gas.
  • an inert gas such as argon gas or nitrogen gas.
  • a part of the powder filling device 10 is disposed outside the sealed chamber 25 as described later.
  • the sintered part 23 is disposed outside the sealed chamber 25, the interior can be filled with an inert gas independently of the sealed chamber 25 as described later.
  • the configuration of the powder filling apparatus 10 is as described above. Note that in the gas supply unit 13, components other than the entire lid member 132 and a part of the gas supply pipe 133 do not directly affect the oxidation of the alloy powder, and thus are disposed outside the sealed chamber 25. Has been.
  • the lid attaching part 21 is an apparatus for attaching a lid 302 (different from the lid member 132 of the powder filling apparatus 10) to the container 30 filled with the alloy powder by the powder filling apparatus 10.
  • the lid 302 is used to prevent the alloy powder from scattering from the container 30 due to a magnetic field in the orientation portion 22 or gas convection in the sintered portion 23.
  • the orientation unit 22 includes a coil 221 and a container lifting device 222.
  • the coil 221 has a substantially vertical (up and down) axis, and is disposed above the container lifting device 222.
  • the container lifting / lowering device 222 is a device that lifts and lowers the container 30 that has been transported by the container transporting device 24 between the coil 221 and the container 30.
  • the magnetic field application direction that is, the coil axis direction is set according to the shape of the cavity and the application of the magnet to be manufactured.
  • the above-described configuration is adopted in order to apply a magnetic field to the container 30 in a substantially vertical direction.
  • the container 30 may be directly conveyed into the coil 221A by the container conveying device 24.
  • the sintering section 23 includes a sintering chamber 231 that accommodates a large number of containers 30, a door having heat insulation properties, a carry-in port 232 that carries the container 30 from the sealed chamber 25 into the sintering chamber 231, and a sintering chamber 30. It has a carry-out port (not shown) for carrying out from the binding chamber 231 and a heating part (not shown) for heating the inside of the sintering chamber 231.
  • the sealed chamber 25 and the sintering chamber 231 communicate with each other at the carry-in port 232, but are thermally separated by closing the door having heat insulation properties.
  • the interior of the sintering chamber 231 is filled with an inert gas (independently of the sealed chamber 25). In the sintering chamber 231, a vacuum may be used instead of filling the interior with an inert gas.
  • the container 30 to which the lid 302 is attached is conveyed onto the stage 2221 of the orientation unit 22 by the container conveying device 24. Subsequently, the container 30 placed on the table 2221 is raised by the container lifting / lowering device 222 and disposed in the coil 221. Then, a magnetic field in the vertical direction is applied by the coil 221, whereby the alloy powder particles in the cavity 301 are oriented in one direction.
  • the container 30 used in this embodiment is formed with a cavity 301 whose direction corresponding to the thickness of the plate is the vertical direction, so that it is substantially perpendicular to the plate. A magnetic field is applied in the direction. When this magnetic field is applied, mechanical pressure is not applied to the alloy powder in the cavity 301.
  • the container 30 is lowered from the inside of the coil 221 to the height of the container conveying device 24 by the container lifting device 222 and is carried into the sintering chamber 231 by the container conveying device 24. Then, after a predetermined number of containers 30 are carried into the sintering chamber 231, the door of the carry-in port 232 is closed, and the heating chamber causes the sintering chamber 231 to have a predetermined sintering temperature (usually 900 to 1100 ° C.). To be heated. Thereby, the alloy powder in the cavity 301 is sintered and a sintered magnet is obtained. In the sintered part 23 as well, mechanical pressure is not applied to the alloy powder in the cavity 301.
  • a predetermined sintering temperature usually 900 to 1100 ° C.
  • the packing density of the alloy powder into the cavity 301 can be made to be uniform, so that the finally obtained sintered magnet These characteristics can also be made uniform regardless of the position in the sintered magnet.
  • Example 1 a sintered magnet was produced using the grid member 113 and the container 30 (Example 1).
  • a sintered magnet was manufactured using a grid member having the same size of the grid (8.6 ⁇ 2.2 mm) and the container 30 (Comparative Example 1).
  • the size of the sintered magnet obtained was about 80 mm ⁇ about 15 mm ⁇ about 5 mm, which is slightly smaller than the size of the cavity 301 because shrinkage occurs during sintering. It was.
  • the obtained sintered magnets of Example 1 and Comparative Example 1 were cut into 6 equal parts in the longitudinal direction to obtain 6 pieces of sintered magnet pieces (FIG. 8 (a)).
  • the residual magnetic flux density Br was measured for each of these sintered magnet pieces. The result is shown in FIG.
  • Comparative Example 1 before cutting longitudinally sintered magnet piece that was near the center of the (see FIG. 8 (a) that reference numeral 3, 4 in) has the highest remanence B r, longitudinal sintered magnet piece that was in both ends (code 1,6) is most remanence B r is lower. Since the residual magnetic flux density Br decreases as the packing density increases as described above, in Comparative Example 1, a density distribution is formed in which the packing density is higher at both ends than in the vicinity of the center in the longitudinal direction. .
  • Example 1 mean that the packing density of the alloy powder into the cavity 301 at the time of production is closer to that of the comparative example. This result is consistent with the explanation based on the influence of the side wall of the hopper described above.
  • the residual magnetic flux density B r is, A grid (FIG. 5 (c)) to the highest sintered magnet made from the alloy powder filled in the corresponding cavity, then B and C (the experiment the accuracy, it was not possible to find a difference between the B and C), that the order and D, the distribution of the remanence B r was observed. Therefore, the cavity D has the highest filling density in the cavity D, and then the cavities B and C and the cavity A have the lowest density.
  • Example 2 the residual magnetic flux density Br was almost the same in the cavity A as in the comparative example 2, and higher in the cavities B to D than in the comparative example.
  • the variance of the distribution of the remanence B r than Comparative Example 2 is smaller. Therefore, it can be said that the variation of the filling density for each cavity is smaller in the second embodiment than in the second comparative example.
  • Container lifting device 2221 ... Container lifting device base 23 ... Sintering part 231 ... Sintering chamber 232 ... Carrying in port 24 ... Container transporting device 25 ... Sealed chamber 30, 30A ... Container 301, 3011 ... Cavity 3011 ... Cavity 302 ... Container lid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 本発明は、均一に近い充填密度で容器に粉末を充填する粉末充填装置を提供することを課題とする。粉末を容器30に供給する開口112を有し、開口112において容器30と連通するように容器30に密閉且つ着脱自在に装着されるホッパ11と、ホッパ11に粉末を供給する粉末供給部12と、ホッパ11と容器30を連通させて密閉した状態で、ホッパ11内に圧縮気体をパルス状に繰り返し供給する気体供給部13と、開口112に設けられた、ホッパ11の中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材113を備える。ホッパ11から容器30に粉末が落下し易いホッパ11の側壁側のグリッドを細かくすることにより、そこでの粉末の落下を抑え、全体的に充填密度を均一にする。

Description

粉末充填装置
 本発明は、粉末を容器に充填するための粉末充填装置に関する。
 粉末状の材料から圧縮や焼結等により成形体を得る際、粉末を成形(賦形)するための容器(賦形容器)に粉末を充填する粉末充填装置が用いられている。このような粉末充填装置では、所定の密度で均一に粉末を容器に充填することが求められる。そして、多くの場合、粉末の充填密度は、単に粉末を容器に投入しただけの場合(これを「自然充填」と呼ぶ。)よりも高くすることが求められる。以下、自然充填の充填密度よりも高い密度に充填することを「高密度充填」と呼ぶ。
 そのような高密度充填を行う装置の一例として、特許文献1には、エアタッピング法を用いて容器に粉末を充填する装置が開示されている。この装置では、下部に開口が設けられたホッパが、その開口において粉末充填容器と連通するように、該容器に着脱可能且つ密閉可能に装着される。また、この装置は、ホッパ内に粉末を供給する粉末供給部と、ホッパ内に圧縮気体を導入する気体供給部を有している。圧縮気体には、酸化しにくい粉末を充填する場合には空気を用いてもよいが、酸化しやすい粉末を充填する場合には、窒素ガスやアルゴンガス等の不活性ガスを用いる。
 ホッパの下部の開口には、所定の大きさの目のグリッドが形成された、平面状のグリッド部材が設けられている。グリッドは、メッシュ、針金を一定間隔で平行に並べたもの、薄板に孔を多数パンチングしたもの等により構成される。グリッドの目の大きさは、容器に供給する粉末が自然には落下せず、且つ、後述のように圧縮気体により圧力を印加した際には落下するように調整する。ここで、グリッドの目の大きさは粉末を構成する個々の粒子(以下、粉末粒子)の大きさよりも大きくすることはもちろんであるが、粉末粒子の凝集性が高い場合は、個々の粉末粒子の通過ではなく、粉末粒子の集団としての粉末の通過の問題となるため、グリッドの目は粉末粒子の大きさよりも遙かに大きくする必要がある。粉末粒子の凝集性は、粉末粒子の表面に付着する水分や粉末粒子が有する電荷(静電気)、磁気、それに、粉末粒子の形状等に依存するが、一般的には、粉末粒子が細かくなるほど、強い凝集性を持つようになる。
 特許文献1の粉末充填装置は以下のように使用される。まず、粉末供給部からホッパ内に粉末を供給する。この時、グリッドの目の大きさは前述のように設定されているため、粉末はホッパから落下しない。次に、ホッパを容器に装着して密閉する。そして、気体導入口からホッパ内の粉末の上部の空間に圧縮気体を急速に導入し、短時間の後にホッパ内から圧縮気体を排出する。このような圧縮気体の導入及び排出を、1秒あたり数十回(数十Hz)の頻度で交互に繰り返し、ホッパ内の粉末の上面に圧縮気体による圧力をパルス状に繰り返し付与する。これにより、粉末がグリッド部材を通過して容器内に落下してゆく。そして、容器内に粉末が十分に供給された後、粉末の上面がグリッド部材よりも上にある状態で、ホッパを容器から取り外す。これにより、グリッド部材を境として、容器内に充填された粉末と、ホッパ内に残った粉末が分離される。
特開平11-049101号公報
 しかし、このようなエアタッピング法を用いて容器に粉末を充填すると、充填密度が容器内の位置によって異なる、すなわち充填密度が不均一になる、という問題が生じる。このような密度分布の不均一性は、当然、その充填物(賦形体)製品の様々な特性に影響を及ぼす。
 本発明が解決しようとする課題は、均一に近い充填密度で粉末を容器に充填することができる粉末充填装置を提供することである。
 本願発明者は、上記の充填密度の分布が生じる理由を検討した結果、粉末粒子の凝集力が不均一性に関与しているとの結論に至った。すなわち、凝集力は、粉末粒子間に働くものであるから、ホッパの中心側よりもホッパの側壁側の方が低くなる。そして、凝集力が強ければ流動性は低くなるため、粉末の流動性はホッパの中心側よりもホッパの側壁側の方が高くなる。このような流動性を有するホッパ内の粉末に、エアタッピングにより下方への圧力を与えると、ホッパの中心側よりも側壁側の方が、粉末はグリッド部材を通過して容器内に落下しやすくなる。その結果、容器内において、ホッパの開口の側壁に近い位置の方が、該側壁から離れた中心に近い位置よりも充填密度が高い密度分布が生じると考えられる。
 そこで、本願発明者はさらに、このような充填密度の分布が生じることを防ぐように、エアタッピング法を用いた粉末充填装置の構成を検討し、本発明に至った。
 上記課題を解決するために成された本発明に係る粉末充填装置は、容器に粉末を充填する装置であって、
 a) 前記粉末を収容するホッパであって、該粉末を前記容器に供給する開口を有し、該開口において該容器と連通するように、該容器に密閉且つ着脱自在に装着されるホッパと、
 b) 前記ホッパに前記粉末を供給する粉末供給手段と、
 c) 前記ホッパと前記容器を連通させて密閉した状態で、前記ホッパ内に圧縮気体をパルス状に繰り返し供給する気体供給手段と、
 d) 前記開口に設けられた、前記ホッパの中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材と、
を備えることを特徴とする。
 本願では、「グリッド」は、多数の目、あるいは孔が設けられた部材をいう。グリッドは、典型的には、針金等の線状の部材を平行に多数並べたものを交差させることにより正方形や長方形の目を形成したものが挙げられるが、それには限られない。例えば、線状部材を平行に多数並べただけ(交差させない)ものや、板状の部材に孔を多数設けたもの等も、本願ではグリッドに含まれる。
 「ホッパ内に圧縮気体をパルス状に供給する」とは、ホッパ内への圧縮気体の圧入と、ホッパ内からの圧縮気体の排出を繰り返し行うことをいう。圧縮気体の排出は、気体を吸引する手段を用いて強制的に行ってもよいし、自然に排出させるようにしてもよい。
 本発明に係る粉末充填装置では、粉末供給手段によってホッパに粉末を供給した後、ホッパを容器に装着することにより、容器及びホッパを密閉する。そして、気体供給手段によってホッパ内に圧縮気体をパルス状に繰り返し供給することにより、ホッパ内の粉末を、グリッド部材を通して容器に充填する。ここで、ホッパの中心側よりも側壁側に相対する位置の方がグリッド部材に細かい目が形成されているため、従来のエアタッピングでは充填密度が高くなる原因となっていた、ホッパの開口の側壁付近の粉末粒子が、容器に落下し難くなる。これにより、当該側壁付近における充填密度の上昇を抑えることができ、容器内全体の粉末の充填密度を均一に近づけることができる。
 粉末を充填する容器においては、1つの容器内に、粉末を充填する空間(キャビティ)を1個のみ設けてもよいし、キャビティを複数個設けてもよい。
 1つの容器内にキャビティを複数個設ける場合には、それら複数のキャビティを共通(1個)のホッパと連通させた状態で密閉すればよい。この状態でホッパ内に圧縮気体を繰り返し圧入及び排出することにより、各キャビティに粉末が充填される。その際、上記と同様の理由により、従来のエアタッピングではホッパの開口の側壁に近いキャビティの方が、中心に近いキャビティよりも充填密度が高くなっていた。そこで、ホッパの中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材を用いることにより、ホッパの開口の側壁に近いキャビティにおいて、ホッパからキャビティに粉末が落下し難くなるため、開口の側壁付近に配置されたキャビティの充填密度の上昇を抑えることができる。そのため、各キャビティの充填密度を均一に近づけることができる。
 本発明に係る粉末充填装置は、例えば焼結磁石を製造するため、特にプレスレス法により焼結磁石を製造するために、好適に用いることができる。プレスレス法とは、焼結磁石の原料となる合金を粉砕することにより得られた合金粉末を容器に充填し(充填工程)、該合金粉末を容器に収容したまま圧力を印加することなく、磁界中で配向する(配向工程)及び焼結のための加熱を行う(焼結工程)ことにより、焼結磁石を得る方法である。このプレスレス法によれば、充填工程後に粉末を圧縮成形するプレス法よりも、(i)合金粉末を磁界中で配向させる際に合金粉末の粒子が磁界の方向に沿って回動しやすくなるため配向度が向上すると共に、(ii)大型のプレス機を用いる必要がないことから充填から焼結までを密閉容器内で行うことができ、酸化を防止することができる、という2点により、最終的に得られる焼結磁石の磁気特性を向上させることができる。
 このようなプレスレス法で焼結磁石を製造する際に、キャビティに合金粉末を充填する装置として、本発明に係る粉末充填装置を用いることができる。ここで、合金粉末の酸化を防ぐために、気体供給手段からホッパに供給される気体には不活性ガスを用いる。
 すなわち、本発明に係る焼結磁石製造装置は、
 1) 焼結磁石の原料となる合金粉末を容器に充填する手段であって、
  a) 前記合金粉末を収容するホッパであって、該合金粉末を前記容器に供給する開口を有し、該開口において該容器と連通するように、該容器に密閉且つ着脱自在に装着されるホッパと、
  b) 前記ホッパに前記合金粉末を供給する粉末供給手段と、
  c) 前記ホッパと前記容器を連通させて密閉した状態で、前記ホッパ内に圧縮不活性ガスをパルス状に繰り返し供給する気体供給手段と、
  d) 前記開口に設けられた、前記ホッパの中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材と、
を有する粉末充填手段と、
 2) 前記合金粉末が前記容器に充填されたままの状態で機械的圧力を印加することなく、該合金粉末に磁界を印加させることにより、該合金粉末を配向させる配向手段と、
 3) 前記合金粉末が前記容器に充填されたままの状態で機械的圧力を印加することなく、該合金粉末を加熱することにより焼結させる焼結手段と、
 4) 前記粉末充填手段、前記配向手段及び前記焼結手段を無酸素雰囲気中に収容する収容手段と、
を備えることを特徴とする。
 このように本発明に係る粉末充填装置をプレスレス法での焼結磁石の製造に用いることにより、容器への合金粉末の充填密度を均一に近づけることができ、それによって焼結磁石の特性も、焼結磁石中の位置に依らずに、均一に近づけることができる。
 本発明に係る焼結磁石製造装置においても、1つの容器内に、合金粉末を充填する空間(キャビティ)を1個のみ設けてもよいし、キャビティを複数個設けてもよい。1つの容器内にキャビティを複数個設ける場合には、キャビティ毎の合金粉末の充填密度を均一に近づけることができ、それにより得られる複数個の焼結磁石の磁気特性も均一に近づけることができる。
 本発明に係る粉末充填装置により、均一に近い充填密度で粉末を容器に充填することができる。
 また、本発明に係る粉末充填装置を用いた、本発明に係る焼結磁石製造装置により、均一に近い磁気特性を有する焼結磁石が得られる。
本発明に係る粉末充填装置の一実施例を示す概略構成図。 本実施例の粉末充填装置により粉末が充填される容器の一例を示す縦断面図(a)及び上面図(b)。 本実施例の粉末充填装置に設けられたグリッド部材を示す上面図(a)、及びグリッドを仮想的に分割した領域A~Dを示す上面図(b)。 本実施例の粉末充填装置の動作を示す概略図。 容器の変形例を示す縦断面図(a)及び上面図(b)、並びに該容器に粉末を充填するために用いられるグリッド部材の例を示す上面図(c)。 本発明に係る焼結磁石製造装置の一実施例を示す概略構成図。 焼結磁石製造装置における配向部の変形例。 図3に示したグリッド部材を有する本実施例の焼結磁石製造装置を用いて作製した焼結磁石(a)、及び比較例の焼結磁石製造装置を用いて作製した焼結磁石の残留磁束密度Brの測定結果を示すグラフ(b)。 図5(c)に示したグリッド部材を有する本実施例の焼結磁石製造装置、及び比較例の焼結磁石製造装置を用いて作製した焼結磁石の残留磁束密度Brの測定結果を示すグラフ。
 本発明に係る粉末充填装置の実施例、及びその粉末充填装置を用いた焼結磁石製造装置の実施例を、図1~図9を用いて説明する。
(1) 粉末充填装置の実施例
 まず、本実施例の粉末充填装置10について説明する。図1に示す粉末充填装置10は、後述する本実施例の焼結磁石製造装置20において、焼結磁石の原料となる合金粉末を容器30に充填するために用いられるものであるが、それ以外の粉末を容器に充填する用途にもそのまま用いることができる。容器30は、本実施例では、図2に示すように、長辺95.2mm、短辺17.9mm、深さ7.7mmの略直方体状のキャビティ301が2個、キャビティの短辺の方向に並ぶように設けられたものを用いた。
(1-1) 粉末充填装置10の構成
 粉末充填装置10は、ホッパ11と、ホッパ11に合金粉末を供給する粉末供給部12と、ホッパ11に圧縮気体を供給する気体供給部13と、ホッパ11を容器30と連通/切り離しするためにホッパ11を移動させる移動手段(図示せず)を有する。なお、容器30は、後述の焼結磁石製造装置20が有する容器搬送装置24(図1、図6参照)によりホッパ11の直下に搬入され、該ホッパ11直下から搬出される。
 ホッパ11は漏斗に類似した、上部開口111から下部開口112に向かって横断面積が小さくなる形状を有する。ホッパ11の下部開口112側は、容器30の上部を密閉するように、容器30に着脱自在に装着される。下部開口112は、容器30の上面の形状に対応して長方形を呈しており、垂直に延びる側壁で四方を囲まれている。下部開口112には、図3(a)に示した板状のグリッド部材113が設けられている。グリッド部材113は、容器30の2個のキャビティ301に対応するように、グリッド114が板材中の2つの略長方形の領域(グリッド形成領域)に設けられたものである。前記板材はSUS304製であり、グリッド114は該板材に略長方形の孔(目)を多数、グリッド形成領域の長辺方向及び短辺方向に並ぶように穿孔することにより形成されている。
 グリッド114の目の大きさは、グリッド形成領域の長辺の端部側(ホッパ11の下部開口112の側壁側)の方が中心側よりも細かくなるように設定されている。具体的には、グリッド114を長辺方向に7つの仮想領域に分割して、長辺方向の中心の仮想領域を「領域A」、領域Aの両隣の仮想領域を「領域B」、その両隣を「領域C」、長辺方向の両端の仮想領域を「領域D」とし(図3(b))、グリッド114の目の大きさは、領域Aでは8.6×2.5mm、領域Bでは8.6×2.2mm、領域Cでは8.6×2.0mm、領域Dでは8.6×1.8mmである。なお、焼結磁石の原料である合金粉末の平均粒径は通常数μm~10μm程度であり、それよりもグリッド114の目は3桁大きいが、合金粉末の粒子が磁気を帯びていることで凝集するため、ホッパ11内の合金粉末は容易にはグリッド114の目を通過しない。
 粉末供給部12は、合金粉末を貯留する貯留部121と、粉末を貯留部121の下部から合金を排出する粉末排出口122を有する。また、粉末供給部12には、ホッパ11の上部開口111の上に粉末排出口122を移動させる移動手段(図示せず)が設けられている。
 気体供給部13は、圧縮気体を生成する圧縮気体源131と、ホッパ11の上部開口111を密閉する蓋部材132と、後述の気体供給管133を有する。また、気体供給部13には、蓋部材132をホッパ11の上面に装着し、あるいは該上面から離脱させるように蓋部材132を移動させる移動手段(図示せず)が設けられている。本実施例では、合金粉末の酸化を防ぐために、圧縮気体には、不活性ガスである窒素ガスを用いる。なお、アルゴンガス等、窒素ガス以外の不活性ガスや、複数種の不活性ガスを混合したものを用いてもよい。また、(焼結磁石の製造の際には用いないが)酸化し難い粉末を容器に充填する場合には、空気を用いてもよい。
 気体供給管133は、一端は圧縮気体源131に接続され、他端(蓋側の端部)は蓋部材132を貫通する孔に接続される。また、気体供給管133の途中の第1分岐部136から、分岐管134が分岐しており、その分岐管134にはアスピレータ(エゼクタ)135が接続されている。アスピレータ135は、通過管135Aの途中に狭窄部が設けられると共に、その狭窄部から分岐する吸引管135Bが設けられたものであり、通過管135Aに圧縮気体を通過させることにより吸引管135B内を減圧することができる。吸引管135Bは、第1分岐部136よりも蓋部材132側に設けられた第2分岐部137において、気体供給管133に接続される。第1分岐部136と第2分岐部137の間の気体供給管133には第1弁138が設けられ、分岐管134には第2弁139が設けられている。
 圧縮気体源131から気体供給管133に圧縮気体を供給した状態で、第1弁138を「開」、第2弁139を「閉」とすると、気体供給管133の蓋側の端部から圧縮気体が供給される。一方、第1弁138を「閉」、第2弁を139「開」とすると、分岐管134を介してアスピレータ135の通過管135Aに圧縮気体が供給され、それにより吸引管135B内が減圧され、吸引管135Bと連通する気体供給管133の蓋側の端部から気体が吸引される。従って、第1弁138と第2弁139を交互に繰り返し開閉すれば、気体供給管133の蓋側の端部から圧縮気体の放出と吸引(蓋が取り付けられる)をパルス状に繰り返し行うことができる。
(1-2) 粉末充填装置10の動作
 本実施例の粉末充填装置10の動作を、図4を用いて説明する。まず、粉末供給部12をホッパ11の上部開口111の上方に移動させ、合金粉末を粉末排出口122からホッパ11に供給する(a)。この時には、合金粉末の粒子が磁性を帯びていることで凝集するため、ホッパ11内の合金粉末はグリッド部材113の下にはほとんど落下しない。なお、1個の容器30におけるキャビティ301の容量よりも十分多い(例えば数十倍~数百倍の)合金粉末をホッパ11に供給しておけば、2個目以降の容器30に合金粉末を充填する際には、この操作を省略することができる。
 次に、搬送手段により、ホッパ11の直下に容器30を搬送する。そして、ホッパ11を降下させてその下面を容器30に接触させ、下部開口112を密閉する。それと共に、ホッパ11の上面に気体供給部13の蓋部材132を取り付け、上部開口111を密閉する。これにより、ホッパ11内及び容器30のキャビティ301は、両者を連通させた状態で密閉される(b)。
 続いて、上述のように、圧縮気体源131から気体供給管133に圧縮気体を供給した状態で、第1弁138と第2弁139を交互に繰り返し開閉することにより、気体供給管133の蓋側の端部から圧縮気体の放出と吸引を繰り返し行う。これにより、圧縮気体はがパルス状に繰り返し供給され、ホッパ11内の合金粉末がグリッド部材113の方向に押され、グリッド114の目を通過して容器30のキャビティ301に落下してゆく(c)。その際、グリッド114に、その長辺方向の中心付近(領域A)から両端(領域D)に向かって小さくなる目が形成されていることにより、従来のエアタッピングでは合金粉末が落下し易かった両端付近、すなわち上部開口111の側壁に近い位置において、目の細かいグリッド114により合金粉末がホッパ11から容器30に落下することが抑えられる。その結果、キャビティ301全体の充填密度を均一に近づけることができる。
 圧縮気体の圧入と排出の繰り返しを所定時間行うことにより、所定量の合金粉末が容器30内に充填された後、容器30をホッパ11から取り外す(d)。これにより、容器30内に充填された粉末が、グリッド部材113を境界として、ホッパ11内に残った粉末と分離され、1個の容器30に対する合金粉末の充填が完了する。
(1-3) グリッドの変形例
 図5を用いて、変形例のグリッド部材1131について説明する。グリッド部材1131は、図5(a)及び(b)に示す容器30Aに合金粉末を充填するために用いられる。容器30Aには、長辺23.8mm、短辺17.0mm、深さ4.6mmの略直方体状のキャビティ3011が、長辺方向に4列ずつ、短辺方向に3列ずつ等間隔に並ぶように、合計12個設けられている(図5(b))。これらキャビティ3011に対応して、グリッド部材1131には、グリッド1141が長辺方向に4列ずつ、短辺方向に3列ずつ、キャビティ3011に対応して合計12個設けられている(図5(c))。
 これら12個のグリッド1141の目の大きさは、個々のグリッド1141内では一様であるが、グリッド部材1131の長辺及び短辺からの距離によって、言い換えればそれら長辺及び短辺の上側に取り付けられるホッパ11の下部開口112の側壁からの距離によって、グリッド1141毎に異なるように設定されている。具体的には、グリッド1141の目の大きさは、長辺及び短辺のいずれにも隣接せず下部開口112の側壁から離れたグリッド1141(図5(c)中に符号Aを付した2個のグリッド。以下「グリッドA」とする。)ものでは8.0×2.0mm、長辺(側壁の1面)に隣接するもの(グリッドB。4個。)では8.0×1.8mm、短辺(他の側壁の1面)に隣接するもの(グリッドC。2個。)では8.0×1.6mm、長辺及び短辺の双方(側壁の2面)に隣接するもの(グリッドD。4個。)では8.0×1.4mmである。各グリッド1141の位置を、長辺方向の一方の端の列からX番目(X=1~4)、短辺方向の一方の端の列からY番目(Y=1~3)として定義すると、各グリッド1141の位置は以下のように表される。
 ・グリッドA:(X,Y)=(2,2)及び(3,2)
 ・グリッドB:(X,Y)=(2,1)、(2,3)、(3,1)及び(3,3)
 ・グリッドC:(X,Y)=(1,2)、(4,2)
 ・グリッドD:(X,Y)=(1,1)、(1,3)、(4,1)及び(4,3)
 なお、上記の説明では、グリッド1141に対して符号A~Dを付したが、以下の説明では、各グリッドに対応するキャビティ3011にも「キャビティA」~「キャビティD」との符号を付す。
 変形例のグリッド部材1131の作用を説明する前に、比較のために、容器30Aに対して、全てのキャビティ3011に対して目の大きさが等しい従来のグリッド部材を用いる場合について説明する。このグリッド部材を用いてエアタッピングを行うと、下部開口112の側壁の2面に隣接するキャビティDにおいて最も充填密度が高くなり、以下、短辺側の側壁の1面に隣接するキャビティC、長辺側の側壁の1面に隣接するキャビティB、側壁から離れたキャビティAの順に充填密度が低くなる。これは、1個のキャビティにおいてホッパの開口の中心よりも側壁側の方が充填密度が高くなるのと同じ理由により、ホッパの開口の側壁に近いほど、ホッパ11内の粉末がキャビティ3011内に落下しやすくなるためである、と考えられる。なお、キャビティBとキャビティCとの間では、再隣接の下部開口112の側壁(キャビティBでは長辺側、キャビティCでは短辺側)との距離は等しいが、次隣接の側壁(キャビティBでは短辺側、キャビティCでは長辺側)との距離がキャビティBよりもキャビティCの方が近い。そのため、キャビティBよりもキャビティCの方が、側壁の影響を受けやすく、充填密度が高くなると考えられる。
 それに対して本変形例のグリッド部材1131を用いることにより、合金粉末がホッパ11内に移動し易いキャビティほど、それに接するグリッドの目が細かいため、合金粉末がホッパ11内に移動することが抑えられる。これにより、キャビティ3011毎の充填密度を均一にすることができる。
(2) 焼結磁石製造装置の実施例
 図6を用いて、本発明に係る焼結磁石製造装置の一実施例を説明する。本実施例の焼結磁石製造装置20は、焼結磁石の原料となる合金粉末を圧縮成形することなく焼結するプレスレス法により焼結磁石を製造するための装置である。
(2-1) 焼結磁石製造装置20の構成
 焼結磁石製造装置20は、粉末充填装置10と、蓋取付部21と、配向部22と、焼結部23を有する。また、焼結磁石製造装置20には、容器30を粉末充填装置10、蓋取付部21、配向部22、焼結部23の順に搬送する容器搬送装置(ベルトコンベア)24が設けられている。
 粉末充填装置10、蓋取付部21及び配向部22は、室内をアルゴンガスや窒素ガス等の不活性ガスで満たすことができる密閉室25内に収容されている。但し、粉末充填装置10の一部は、後述のように密閉室25の外に配置されている。焼結部23は、密閉室25の外に配置されているが、後述のように、密閉室25とは独立に内部を不活性ガスで満たすことができる。
 粉末充填装置10の構成は上記の通りである。なお、気体供給部13において、蓋部材132の全部と気体供給管133の一部以外の構成要素は、合金粉末の酸化に直接的に影響を及ぼすことがないため、密閉室25の外に配置されている。
 蓋取付部21は、粉末充填装置10により合金粉末が充填された容器30に蓋302(粉末充填装置10の蓋部材132とは異なる)を取り付ける装置である。蓋302は、配向部22における磁界や焼結部23におけるガスの対流等によって合金粉末が容器30から飛散することを防止するために用いられる。
 配向部22は、コイル221と容器昇降装置222を有する。コイル221は略鉛直方向(上下方向)の軸を有しており、容器昇降装置222の上方に配置されている。容器昇降装置222は、容器搬送装置24で搬送されてきた容器30を台2221に載置した状態で、コイル221内との間で昇降させる装置である。なお、キャビティ内の合金粉末を配向する際には、キャビティの形状や、製造しようとする磁石の用途に応じて、磁界の印加方向、すなわちコイルの軸の方向を設定する。本実施例では、容器30に対して略鉛直方向に磁界を印加するために上記の構成を取ったが、例えば略水平方向に磁界を印加する場合には、図7に示すように、コイル221Aの軸を略水平方向とし、容器搬送装置24により容器30が直接コイル221A内に搬送されるようにしてもよい。
 焼結部23は、容器30を多数収容する焼結室231と、断熱性を有する扉を有し、密閉室25から容器30を焼結室231に搬入する搬入口232と、容器30を焼結室231から搬出する搬出口(図示せず)と、焼結室231内を加熱する加熱部(図示せず)を有する。密閉室25と焼結室231は、搬入口232で連通しているが、断熱性を有する扉を閉鎖することによって熱的に分離される。なお、焼結室231の内部は(密閉室25とは独立に)不活性ガスで満たされる。焼結室231においても、内部を不活性ガスで満たす代わりに、真空にしてもよい。
(2-2) 焼結磁石製造装置20の動作
 焼結磁石製造装置20の動作を説明する。まず、容器搬送装置24により、容器30が粉末充填装置10に搬送され、上述のように、容器30のキャビティ301内に合金粉末が充填される。次に、容器30は、容器搬送装置24によって蓋取付部21に搬送され、蓋取付部21において蓋302が取り付けられる。
 次に、蓋302が取り付けられた容器30は、容器搬送装置24によって配向部22の台2221上に搬送される。続いて、台2221上に載置された容器30は、容器昇降装置222により上昇し、コイル221内に配置される。そして、コイル221により、上下方向の磁界が印加され、それによりキャビティ301内の合金粉末の粒子が1方向に配向する。本実施例で用いる容器30は、板状の焼結磁石を製造するために、その板の厚みに相当する方向が上下方向であるキャビティ301が形成されているため、その板に対して略垂直方向に磁界が印加される。この磁界の印加の際に、キャビティ301内の合金粉末には、機械的な圧力が印加されることはない。
 磁界の印加の終了後、容器30は容器昇降装置222によりコイル221内から容器搬送装置24の高さまで降下し、容器搬送装置24により焼結室231内に搬入される。そして、焼結室231内に所定数の容器30が搬入された後、搬入口232の扉が閉鎖され、加熱部により焼結室231内が所定の焼結温度(通常、900~1100℃)に加熱される。これにより、キャビティ301内の合金粉末が焼結し、焼結磁石が得られる。なお、焼結部23においても、キャビティ301内の合金粉末には、機械的な圧力が印加されることはない。
 ここまでの説明では容器30を使用する例を説明したが、上述の容器30Aを使用する場合においても、焼結磁石製造装置20の動作は同じである。
 本実施例の焼結磁石製造装置20によれば、粉末充填装置10を用いることにより、キャビティ301内への合金粉末の充填密度を均一に近づけることができるため、最終的に得られる焼結磁石の特性も、焼結磁石中の位置に依らずに均一に近づけることができる。
(3) 実験結果
 次に、本実施例の焼結磁石製造装置20を用いてRFeB(R2FeB14、Rは希土類)系焼結磁石を作製し、その残留磁束密度Brを測定した実験結果を、比較例と併せて示す。ここで、作製時の合金粉末の充填密度と残留磁束密度Brは、充填密度が高いほど合金粉末の粒子が配向し難いため残留磁束密度Brが低くなる、という関係を有する。なお、以下の実験ではR=NdであるNdFeB系焼結磁石を作製したが、それ以外のRFeB系焼結磁石を作製しても同様である。
(3-1) 実験1
 実験1では、グリッド部材113と容器30を用いて焼結磁石を作製した(本実施例1)。併せて、グリッド部材113の代わりに、グリッドが全て同じ大きさの目(8.6×2.2mm)を有するグリッド部材と容器30を用いて焼結磁石を作製した(比較例1)。本実施例1、比較例1のいずれにおいても、得られた焼結磁石の大きさは、焼結時に収縮が生じるため、キャビティ301の大きさよりもやや小さい約80mm×約15mm×約5mmであった。得られた本実施例1及び比較例1の焼結磁石を長手方向に6等分に切断することにより、それぞれ6個ずつの焼結磁石片を得た(図8(a))。これらの焼結磁石片につき、それぞれ残留磁束密度Brを測定した。その結果を図8(b)に示す。
 比較例1では、切断前に長手方向の中心付近にあった焼結磁石片(図8(a)中に符号3、4を付したもの)が最も残留磁束密度Brが高く、長手方向の両端にあった焼結磁石片(符号1、6)が最も残留磁束密度Brが低くなった。上記のように充填密度が高いほど残留磁束密度Brが低くなるため、比較例1では、長手方向の中心付近よりも両端の方が充填密度が高くなる密度分布が形成されていたことになる。
 それに対して本実施例1では、切断前に長手方向の中心付近にあった焼結磁石片(符号3、4)の残留磁束密度Brが比較例1のものとほぼ等しいのに対して、長手方向の両端にあった焼結磁石片(符号1、6)の残留磁束密度Brは比較例1のものよりも高く、符号3、4の焼結磁石片のものに近い値が得られた。また、符号2、5を付した焼結磁石片の残留磁束密度Brも、比較例の符号2、5の焼結磁石片におけるものよりも高い。そして、焼結磁石片毎の残留磁束密度Brのばらつきは、比較例よりも小さくなった。
 これら本実施例1の実験結果は、作製時のキャビティ301への合金粉末の充填密度が比較例よりも均一に近いことを意味する。この結果は、上述のホッパの側壁の影響を根拠とする説明と一致している。
(3-2) 実験2
 実験2では、グリッド部材1131と容器30Aを用いて焼結磁石を作製した(本実施例2)。併せて、グリッド部材1131の代わりに、グリッドが全て同じ大きさの目(8.0×2.0mm)を有するグリッド部材と容器30Aを用いて焼結磁石を作製した(比較例2)。本実施例2及び比較例2のいずれも、容器30Aが有する12個のキャビティに充填された合金粉末から、12個の焼結磁石が得られた。これら焼結磁石につき、残留磁束密度Brを測定した結果を図9に示す。
 比較例2では、残留磁束密度Brは、Aのグリッド(図5(c))に対応するキャビティに充填された合金粉末から作製された焼結磁石が最も高く、次いでB及びC(本実験の精度では、BとCの差を見いだすことはできなかった)、Dの順という、残留磁束密度Brの分布が見られた。従って、作製時のキャビティへの充填密度は、キャビティDが最も高く、次いでキャビティB及びC、そしてキャビティAが最も低い。
 それに対して本実施例2では、残留磁束密度Brは、キャビティAでは比較例2とほぼ同じであり、キャビティB~Dでは比較例よりも高くなった。そして、比較例2よりも残留磁束密度Brの分布の分散が小さくなった。従って、比較例2よりも本実施例2の方が、キャビティ毎の充填密度のばらつきが小さいといえる。この結果は、上述のホッパの側壁の影響を根拠とする説明と一致している。
10…粉末充填装置
11…ホッパ
111…上部開口
112…下部開口
113、1131…グリッド部材
114、1141…グリッド
12…粉末供給部
121…貯留部
122…粉末排出口
13…気体供給部
131…圧縮気体源
132…蓋部材
133…気体供給管
134…分岐管
135…アスピレータ
135A…通過管
135B…吸引管
136…第1分岐部
137…第2分岐部
138…第1弁
139…第2弁
20…焼結磁石製造装置
21…蓋取付部
22…配向部
221、221A…コイル
222…容器昇降装置
2221…容器昇降装置の台
23…焼結部
231…焼結室
232…搬入口
24…容器搬送装置
25…密閉室
30、30A…容器
301、3011…キャビティ
3011…キャビティ
302…容器の蓋

Claims (4)

  1.  容器に粉末を充填する装置であって、
     a) 前記粉末を収容するホッパであって、該粉末を前記容器に供給する開口を有し、該開口において該容器と連通するように、該容器に密閉且つ着脱自在に装着されるホッパと、
     b) 前記ホッパに前記粉末を供給する粉末供給手段と、
     c) 前記ホッパと前記容器を連通させて密閉した状態で、前記ホッパ内に圧縮気体をパルス状に繰り返し供給する気体供給手段と、
     d) 前記開口に設けられた、前記ホッパの中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材と、
    を備えることを特徴とする粉末充填装置。
  2.  前記容器が、前記粉末が充填されるキャビティを複数個有し、
     前記ホッパが前記複数個のキャビティと連通して密閉されるように前記容器に装着される
    ことを特徴とする請求項1に記載の粉末充填装置。
  3.  1) 焼結磁石の原料となる合金粉末を容器に充填する手段であって、
      a) 前記合金粉末を収容するホッパであって、該合金粉末を前記容器に供給する開口を有し、該開口において該容器と連通するように、該容器に密閉且つ着脱自在に装着されるホッパと、
      b) 前記ホッパに前記合金粉末を供給する粉末供給手段と、
      c) 前記ホッパと前記容器を連通させて密閉した状態で、前記ホッパ内に圧縮不活性ガスをパルス状に繰り返し供給する気体供給手段と、
      d) 前記開口に設けられた、前記ホッパの中心側よりも側壁側の方が細かいグリッドが形成されたグリッド部材と、
    を有する粉末充填手段と、
     2) 前記合金粉末が前記容器に充填されたままの状態で機械的圧力を印加することなく、該合金粉末に磁界を印加させることにより、該合金粉末を配向させる配向手段と、
     3) 前記合金粉末が前記容器に充填されたままの状態で機械的圧力を印加することなく、該合金粉末を加熱することにより焼結させる焼結手段と、
     4) 前記粉末充填手段、前記配向手段及び前記焼結手段を無酸素雰囲気中に収容する収容手段と、
    を備えることを特徴とする焼結磁石製造装置。
  4.  前記容器が、前記合金粉末が充填されるキャビティを複数個有し、
     前記ホッパが前記複数個のキャビティと連通して密閉されるように前記容器に装着される
    ことを特徴とする請求項3に記載の焼結磁石製造装置。
PCT/JP2014/052411 2013-02-04 2014-02-03 粉末充填装置 WO2014119778A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14745964.8A EP2952436B1 (en) 2013-02-04 2014-02-03 Powder filling device
EP17182752.0A EP3260380B1 (en) 2013-02-04 2014-02-03 Manufacturing method of a sintered magnet
JP2014559798A JP5852752B2 (ja) 2013-02-04 2014-02-03 粉末充填装置
KR1020157023040A KR101587395B1 (ko) 2013-02-04 2014-02-03 분말 충전 장치
CN201480007428.7A CN104981404B (zh) 2013-02-04 2014-02-03 粉末填充装置及烧结磁铁制造装置
US14/765,130 US9384890B2 (en) 2013-02-04 2014-02-03 Powder-filling system
US15/168,555 US9449758B1 (en) 2013-02-04 2016-05-31 Powder-filling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019891 2013-02-04
JP2013019891 2013-02-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/765,130 A-371-Of-International US9384890B2 (en) 2013-02-04 2014-02-03 Powder-filling system
US15/168,555 Continuation US9449758B1 (en) 2013-02-04 2016-05-31 Powder-filling system

Publications (1)

Publication Number Publication Date
WO2014119778A1 true WO2014119778A1 (ja) 2014-08-07

Family

ID=51262476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052411 WO2014119778A1 (ja) 2013-02-04 2014-02-03 粉末充填装置

Country Status (6)

Country Link
US (2) US9384890B2 (ja)
EP (2) EP2952436B1 (ja)
JP (2) JP5852752B2 (ja)
KR (1) KR101587395B1 (ja)
CN (2) CN104981404B (ja)
WO (1) WO2014119778A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141815A1 (ja) * 2016-02-18 2017-08-24 インターメタリックス株式会社 粉末充填装置、焼結磁石製造装置、及び焼結磁石製造方法
JP2018145512A (ja) * 2017-03-09 2018-09-20 大同特殊鋼株式会社 粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088656B (zh) * 2016-02-18 2019-06-28 大同特殊钢株式会社 粉末填充装置、烧结磁体制造设备和烧结磁体制造方法
EP3638346A1 (en) 2017-06-16 2020-04-22 Credence Medsystems, Inc. System and method for safety syringe
CN110871271B (zh) * 2018-08-29 2022-02-25 大同特殊钢株式会社 粉末填充装置、烧结磁体制造装置以及烧结磁体制造方法
CN110116204B (zh) * 2019-05-20 2021-06-18 江苏聚之再生科技有限公司 一种反推式粉末压坯成型装置
KR102224809B1 (ko) * 2019-10-16 2021-03-09 현대자동차주식회사 소결용 분말 충진 시스템
WO2021257911A1 (en) 2020-06-17 2021-12-23 Credence Medsystems, Inc. System and method for microdose injection
CN111974988B (zh) * 2020-07-10 2022-12-09 瑞声科技(南京)有限公司 用于制备薄片磁体的填充装置及填充方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149101A (ja) 1997-08-07 1999-02-23 Inter Metallics Kk 充填方法及びその装置
JPH1190694A (ja) * 1997-09-22 1999-04-06 Inter Metallics Kk 粉末圧縮成形装置
JP2000328102A (ja) * 1999-05-18 2000-11-28 Inter Metallics Kk 金型プレス機の粉末充填装置
JP2007501171A (ja) * 2003-08-06 2007-01-25 ファイザー・リミテッド 容器を充填する方法および装置
JP2008012741A (ja) * 2006-07-05 2008-01-24 Matsui Mfg Co 圧縮成形加工における粉粒体材料の充填装置
JP2010510069A (ja) * 2006-11-17 2010-04-02 ホガナス アクチボラゲット 充填シューと粉末を充填および固める方法
WO2011142321A1 (ja) * 2010-05-10 2011-11-17 インターメタリックス株式会社 NdFeB系焼結磁石製造装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932568Y2 (ja) * 1980-10-30 1984-09-12 三菱マテリアル株式会社 粉末充填装置
EP0900645A3 (en) 1997-08-07 1999-05-26 Intermetallics Co., Ltd. Method and apparatus for packing material
US6764643B2 (en) * 1998-09-24 2004-07-20 Masato Sagawa Powder compaction method
JP3992376B2 (ja) * 1998-09-24 2007-10-17 インターメタリックス株式会社 粉末成形方法
US6475430B1 (en) * 1998-09-24 2002-11-05 Intermetallics Co., Ltd. Method and apparatus for packing material including air tapping
US6656416B2 (en) * 2000-09-12 2003-12-02 Sumitomo Special Metals Co., Ltd. Powder feeding apparatus, pressing apparatus using the same, powder feeding method and sintered magnet manufacturing method
JP4759889B2 (ja) * 2000-09-12 2011-08-31 日立金属株式会社 粉末充填装置、それを用いたプレス成形装置および焼結磁石製造方法
JP2002158127A (ja) * 2000-11-17 2002-05-31 Sii Micro Parts Ltd 希土類磁石の製造装置及び希土類磁石の製造方法
JP4391897B2 (ja) * 2004-07-01 2009-12-24 インターメタリックス株式会社 磁気異方性希土類焼結磁石の製造方法及び製造装置
JP2006059994A (ja) * 2004-08-19 2006-03-02 Sumitomo Metal Mining Co Ltd 希土類−鉄−マンガン−窒素系磁石粉末とその製造方法
US7866312B2 (en) * 2006-12-18 2011-01-11 Bsh Home Appliances Corporation Ventilation hood and cooktop safety system and method
JP5695567B2 (ja) * 2009-08-28 2015-04-08 インターメタリックス株式会社 NdFeB系焼結磁石の製造方法、製造装置、及びNdFeB系焼結磁石製造用磁粉配向装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149101A (ja) 1997-08-07 1999-02-23 Inter Metallics Kk 充填方法及びその装置
JPH1190694A (ja) * 1997-09-22 1999-04-06 Inter Metallics Kk 粉末圧縮成形装置
JP2000328102A (ja) * 1999-05-18 2000-11-28 Inter Metallics Kk 金型プレス機の粉末充填装置
JP2007501171A (ja) * 2003-08-06 2007-01-25 ファイザー・リミテッド 容器を充填する方法および装置
JP2008012741A (ja) * 2006-07-05 2008-01-24 Matsui Mfg Co 圧縮成形加工における粉粒体材料の充填装置
JP2010510069A (ja) * 2006-11-17 2010-04-02 ホガナス アクチボラゲット 充填シューと粉末を充填および固める方法
WO2011142321A1 (ja) * 2010-05-10 2011-11-17 インターメタリックス株式会社 NdFeB系焼結磁石製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141815A1 (ja) * 2016-02-18 2017-08-24 インターメタリックス株式会社 粉末充填装置、焼結磁石製造装置、及び焼結磁石製造方法
JP2018145512A (ja) * 2017-03-09 2018-09-20 大同特殊鋼株式会社 粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法

Also Published As

Publication number Publication date
EP2952436A4 (en) 2016-03-02
US9449758B1 (en) 2016-09-20
KR101587395B1 (ko) 2016-01-20
US20160293329A1 (en) 2016-10-06
JPWO2014119778A1 (ja) 2017-01-26
US9384890B2 (en) 2016-07-05
EP3260380B1 (en) 2018-08-15
JP2016105482A (ja) 2016-06-09
EP3260380A1 (en) 2017-12-27
CN105719828B (zh) 2017-05-31
EP2952436B1 (en) 2017-08-09
CN105719828A (zh) 2016-06-29
CN104981404A (zh) 2015-10-14
KR20150102125A (ko) 2015-09-04
CN104981404B (zh) 2016-05-25
JP6280096B2 (ja) 2018-02-14
EP2952436A1 (en) 2015-12-09
US20150364252A1 (en) 2015-12-17
JP5852752B2 (ja) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6280096B2 (ja) 焼結磁石製造方法
JP6280137B2 (ja) 希土類焼結磁石の製造方法及び当該製法にて使用される製造装置
EP2597660A3 (en) Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
KR101735144B1 (ko) NdFeB계 소결자석 제조장치
JP5475325B2 (ja) 焼結磁石製造装置
JP6834249B2 (ja) 粉末充填装置及び焼結磁石製造装置
JP6848544B2 (ja) 粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法
EP2955731B1 (en) Sintered magnet production device and sintered magnet production method
CN107088656B (zh) 粉末填充装置、烧结磁体制造设备和烧结磁体制造方法
CN110871271B (zh) 粉末填充装置、烧结磁体制造装置以及烧结磁体制造方法
WO2017141815A1 (ja) 粉末充填装置、焼結磁石製造装置、及び焼結磁石製造方法
CN206936373U (zh) 一种用于等静压压制烧结钕铁硼初坯的模具
JPS58100403A (ja) 希土類コバルト系磁石の焼結方法
CN206300503U (zh) 磁体烧结石墨料盒和处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559798

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157023040

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014745964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014745964

Country of ref document: EP