WO2014119398A1 - ガス充填装置およびガス充填方法 - Google Patents

ガス充填装置およびガス充填方法 Download PDF

Info

Publication number
WO2014119398A1
WO2014119398A1 PCT/JP2014/050863 JP2014050863W WO2014119398A1 WO 2014119398 A1 WO2014119398 A1 WO 2014119398A1 JP 2014050863 W JP2014050863 W JP 2014050863W WO 2014119398 A1 WO2014119398 A1 WO 2014119398A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
filling
container
temporary storage
vaporized
Prior art date
Application number
PCT/JP2014/050863
Other languages
English (en)
French (fr)
Inventor
尚登 上羽
渡邉 聡
Original Assignee
岩谷産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社 filed Critical 岩谷産業株式会社
Publication of WO2014119398A1 publication Critical patent/WO2014119398A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an apparatus for filling various kinds of gas into a filling container, and more specifically, a gas filling apparatus suitably used for filling hydrogen gas required for, for example, a fuel cell vehicle or a hydrogen engine vehicle. About.
  • Patent Document 1 As a gas filling apparatus for filling hydrogen gas into a filling container, an apparatus disclosed in Patent Document 1 below is disclosed.
  • This gas filling device has a configuration in which a low-temperature high-pressure hydrogen gas and a room-temperature high-pressure hydrogen gas are mixed and filled into a filling container.
  • the low-temperature and high-pressure hydrogen gas is obtained by compressing liquid hydrogen with a pressure pump and increasing the pressure, and then evaporating and raising the temperature with a heating means.
  • the room temperature and high pressure hydrogen gas is supplied from an air reservoir filled with room temperature and high pressure hydrogen gas.
  • the filling is performed by mixing the low-temperature and high-pressure hydrogen gas and the normal-temperature and high-pressure hydrogen gas, because the hydrogen gas becomes a high temperature close to 100 ° C. due to compression when filling. This is because there is a possibility that it cannot withstand heat.
  • the temperature of the hydrogen gas to be filled is lowered to, for example, -40 ° C to -20 ° C by mixing the low-temperature and high-pressure hydrogen gas with the normal-temperature and high-pressure hydrogen gas, the temperature of the filling container can be reduced even if rapid filling is performed. For example, it is supposed to be suppressed to about 80 ° C.
  • the apparatus becomes large.
  • the booster pump can increase the filling speed as the capacity increases, a large pump is required for rapid filling, and the size of the apparatus is unavoidable.
  • problems such as inability to effectively use the space are likely to occur particularly in a hydrogen supply station.
  • the main object of the present invention is to enable the filling in a shorter time in addition to the miniaturization of the filling device.
  • the means for that is a gas filling device that fills the filling container with a predetermined pressure so that the filling container has a predetermined pressure, which is suitable for filling the filling container with the vaporization gas of the predetermined pressure at room temperature.
  • a temporary storage heat insulating container having a heat insulating function for storing an amount of liquefied gas, and a vaporized gas from the temporary storage heat insulating container to the filling container by connecting between the fluid outlet of the temporary storage heat insulating container and the fluid inlet of the filling container
  • a communication passage serving as a passage for introducing gas, and the communication passage includes an opening / closing means for opening and closing the fluid outlet, a buffer means for reducing the momentum of the gas flow passing through, and a liquefied gas.
  • It is a gas filling device including an introduction vaporization section having a warming section for heating and vaporization, and an attachment / detachment section for detachably connecting the filling container.
  • Another means for solving the problem is a gas filling method for filling a filling container with a vaporized gas so as to have a predetermined pressure, provided with a temporary storage heat insulation container having a heat insulation function, and for the temporary storage heat insulation container Supply an amount of liquefied gas commensurate with filling the vaporized gas at the predetermined pressure at room temperature, and open the openable and closable communication passage detachably communicating with the liquefied gas to the filling container.
  • the liquefied gas introduced into the filling container is relaxed by the buffer means provided in the communication path, and the liquefied gas is introduced into the filling container by the warm air portion formed in the communication path.
  • vaporization is performed to fill the filling container with the vaporized gas in a low temperature state, and the communication path is closed when the inside of the temporary storage heat insulation container and the filling container become the same pressure.
  • the “predetermined pressure” is a predetermined pressure, and in the case of a hydrogen gas filled container, for example, there are 150 atm (15 MPa), 350 atm (35 MPa), and 700 atm (70 MPa).
  • the “liquefied gas” is a liquid gas
  • the “vaporized gas” is a gas in a state where the liquefied gas is vaporized.
  • the term simply “gas” indicates a meaning including at least one of a vaporized gas and a liquefied gas, or both.
  • the amount of the liquefied gas supplied to the temporary storage insulation container is an amount suitable for filling the filling container and the temporary storage insulation container with a gas of a predetermined pressure at room temperature.
  • the amount of vaporized gas in the container is a predetermined amount.
  • the filling of the vaporized gas is not performed by the booster pump, but the movement of the liquefied gas and the moving liquefied gas are rapidly vaporized, so that a booster pump or an air reservoir is not necessary. Therefore, the size of the entire apparatus can be reduced. Moreover, the configuration is simple and can be manufactured at low cost.
  • Schematic configuration diagram of gas filling device Sectional drawing of an introduction vaporization part.
  • the control circuit block diagram of a gas filling apparatus The partially broken sectional view of the introduction vaporization part and filling container concerning other examples. Sectional drawing of the introduction vaporization part which concerns on another example.
  • the partially broken side view of the heating means which concerns on another example. Sectional drawing of the introduction vaporization part which concerns on another example.
  • the schematic block diagram of the gas filling apparatus which concerns on another example.
  • FIG. 1 is a schematic configuration diagram of a gas filling device 11 for filling a vaporized gas.
  • a gas filling device 11 for filling hydrogen gas as a vaporized gas will be described.
  • This gas filling device 11 is a device for filling hydrogen gas into the filling container 12 at a predetermined pressure, and vaporizing liquefied hydrogen as a liquefied gas into hydrogen gas and filling it.
  • the predetermined pressure is a numerical value that is appropriately determined according to a desired usage form of the filling container 12. For example, in the filling container 12 of 700 atm (70 MPa) mounted on the fuel cell vehicle, hydrogen gas is set to 700 atm. Compress to fill.
  • the gas filling device 11 includes a low-temperature storage tank 13 having a heat insulation function, a temporary storage heat insulation container 14 having the same heat insulation function, and a communication path 15 that communicates the temporary storage heat insulation container 14 and the filling container 12. .
  • the low temperature storage tank 13 is a part for storing the liquefied hydrogen X, and the liquefied hydrogen X is usually kept in a saturated state, for example, about 28K.
  • the capacity of the low temperature storage tank 13 is set as appropriate.
  • the temporary storage heat insulation container 14 is a part for temporarily storing the amount of liquefied hydrogen X necessary for one filling of the filling container 12.
  • the necessary amount is an amount commensurate with bringing the filling container 12 and the temporary storage heat insulation container 14 into the state filled with the hydrogen gas of the predetermined pressure when the liquefied hydrogen X reaches room temperature.
  • capacitance of the temporary storage heat insulation container 14 is set according to this quantity.
  • the liquefied hydrogen supply path 16 has a liquefied hydrogen supply valve 17a composed of an electromagnetic valve, and the temporary storage heat insulation container 14 is provided with a liquid level gauge 18 for detecting the amount of liquefied hydrogen X supplied.
  • the communication path 15 is a path for connecting the fluid outlet 14a of the temporary storage heat insulation container 14 and the fluid inlet 12a of the filling container 12 to introduce hydrogen gas from the temporary storage heat insulation container 14 to the filling container 12. is there.
  • the communication path 15 does not have a heat insulating function.
  • an opening / closing valve 15 a as an opening / closing means for opening / closing the fluid outlet 14 a of the temporary storage heat insulating container 14 and an opening / closing valve 15 b as an opening / closing means for opening / closing the fluid inlet 12 a of the filling container 12 are provided.
  • a part of the communication passage 15 on the side of the opening / closing valve 15b of the fluid inlet 12a is provided with an attaching / detaching portion 15c for detachably connecting the filling container 12.
  • the attaching / detaching portion 15c is configured by an appropriate connecting member (coupler, coupling member).
  • an appropriate connecting member coupled, coupling member
  • the communication passage 15 includes a pressure gauge 15d, a thermometer 15e, and an introduction vaporization section 15f.
  • the pressure gauge 15d detects the pressure inside the communication path 15, and the thermometer 15e detects the temperature inside the communication path 15.
  • the introduction vaporization section 15f is a warming section having a buffer means 21 for reducing the momentum of the passing liquefied hydrogen X and hydrogen gas, and a heating means 23 for heating and vaporizing the liquefied hydrogen. 22.
  • the buffer means 21 is provided so as to block the communication path 15. That is, the communication path 15 has a step portion 25 formed to have a larger diameter on the downstream side (fluid inlet 12a side) than on the upstream side (fluid outlet 14a side). It has a plate-like main body portion 21 a that abuts on the step portion 25 and closes the communication passage 15.
  • the buffer means 21 is movable in the communication passage 15 in the longitudinal direction of the communication passage 15 and is urged by the spring 24 toward the upstream side, that is, toward the fluid outlet 14a.
  • the lower end of the spring 24 is supported by a support portion 26 formed intermittently. As shown in FIG. 2B, when the buffer means 21 is lowered against the urging force of the spring 24, the liquefied hydrogen X flows from the temporary storage heat insulating container 14 toward the filling container 12.
  • a through hole 21b is formed in the center of the main body 21a so as to extend in the longitudinal direction of the communication passage 15 and allow the liquefied hydrogen X and hydrogen gas to pass therethrough.
  • a cylindrical nozzle portion 21 c is formed on the upstream surface (in the direction of the fluid outlet 14 a) of the main body portion 21 a so that the through hole 21 b extends in the longitudinal direction of the communication passage 15. This nozzle part 21c injects the hydrogen gas which blows off from the downstream (filling container 12 side) as shown in FIG.2 (c).
  • Such a buffer means 21 is desirably light in weight so that it can be quickly moved because the flow of the liquefied hydrogen X is hindered if the resistance is too large.
  • the warm air portion 22 is a space composed of a gas phase in the vicinity of the buffer means 21 set to a temperature at which the liquefied hydrogen X having a temperature lower than the critical temperature is vaporized.
  • the critical temperature of hydrogen is about 33K, and is kept at a temperature of, for example, about 28K in the low temperature storage tank 13, so that the warm air section 22 has a temperature (about 5-6 ° C) that makes 28K liquefied hydrogen about 34K. Temperature difference).
  • the warming means 23 is provided below the buffer means 21.
  • the heating means 23 is composed of appropriate means. For example, as shown to Fig.2 (a), it can comprise with the heat-medium coil etc. which let a heat medium pass. Any appropriate heat medium can be used.
  • Hydrogen gas recovery paths 33 and 32 are connected to the upper portions of the low temperature storage tank 13 and the temporary storage heat insulation container 14, respectively.
  • the hydrogen gas recovery path 33 of the low temperature storage tank 13 recovers a gas that is vaporized by natural heat input or the like, that is, a boil off gas, and is connected to the hydrogen gas recovery tank 34.
  • the hydrogen gas recovery path 32 of the temporary storage heat insulation container 14 recovers the boil-off gas and the hydrogen gas remaining after the filling of the filling container 12 with hydrogen gas, and is also connected to the hydrogen gas recovery tank 34.
  • the hydrogen gas recovery path 32 has an electromagnetic valve 17c.
  • a communication path 32a communicating with the low temperature storage tank 13 is provided in the middle of the hydrogen gas recovery path 32, and the communication path 32a is also provided with an electromagnetic valve 17b.
  • the hydrogen gas recovered in the hydrogen gas recovery tank 34 by the hydrogen gas recovery paths 32 and 33 is used for filling the same filling container 12 as the filling container 12 with hydrogen gas. That is, the hydrogen gas recovery paths 32 and 33 and the hydrogen gas recovery tank 34 constitute a part of the auxiliary filling device 31.
  • a hydrogen gas recovery path 35 extending downstream from the hydrogen gas recovery tank 34 of the auxiliary filling device 31 is provided with a compressor 36 for compressing hydrogen gas, and the hydrogen gas recovery path 35 is filled with hydrogen gas at the tip thereof.
  • a connecting portion 37 is provided which is detachably connected to the filling container 12.
  • the connection part 37 is composed of an appropriate connecting member (coupler, coupling member) in the same manner as the attaching / detaching part.
  • a liquefied hydrogen introduction path 38 for mixing the liquefied hydrogen X with the hydrogen gas sent is connected.
  • the liquefied hydrogen introduction path 38 extends from the bottom of the low temperature storage tank 13.
  • the liquefied hydrogen introduction path 38 is provided with a booster pump 38a and a flow rate adjusting valve 39 composed of an electromagnetic valve.
  • thermometer 40 for detecting the temperature of the hydrogen gas filled in the filling container 12 is provided ahead of the connecting portion of the hydrogen gas recovery passage 35 with the liquefied hydrogen introduction passage 38.
  • the units of the gas filling device 11 and the auxiliary filling device 31 are driven and controlled by a control unit 41 composed of a microcomputer or the like as shown in the control circuit block diagram of FIG.
  • the control unit 41 includes the volume of the filling container 12 and the predetermined capacity of the filling container 12.
  • a storage unit 42 for storing information related to the pressure, the volume of the temporary storage and thermal insulation container 14, physical properties of hydrogen gas, and the like, an input unit 43 for performing an input operation, and the like are also connected.
  • the control unit 41 operates each unit such as the liquefied hydrogen supply valve 17a based on a program stored in advance according to the detection results of the liquid level gauge 18, the pressure gauge 15d, and the thermometers 15e and 40 and the input operation from the input unit 43. To control.
  • the drive control by the control unit 41 is as follows.
  • the control unit 41 includes necessary information stored in the storage unit 42, information input from the input unit 43, a pressure gauge 15d, Based on the information detected by the thermometer 15e, the amount of liquefied hydrogen X to be supplied is calculated. Thereafter, the detection value of the flow meter 18 is set based on the calculation result, and the liquefied hydrogen supply valve 17a is driven. When the level gauge 18 detects a predetermined detection value, the liquefied hydrogen supply valve 17a is closed.
  • the control unit 41 When the liquefied hydrogen X is supplied to the temporary storage insulation container 14 and then filled with the filling container 12, the control unit 41 performs the filling container 12 based on the information detected by the pressure gauge 15 d and the thermometer 15 e. It is determined whether the filling amount is the initially set filling amount.
  • the control unit 41 drives the compressor 36 according to the input from the input unit 43, and based on the detection result from the thermometer 40 and necessary information read from the storage unit 42.
  • the amount of liquefied hydrogen X to be mixed is calculated.
  • the flow rate adjustment valve 39 is driven to mix a predetermined amount of liquefied hydrogen X with the hydrogen gas sent by the compressor 36.
  • the gas filling device 11 configured as described above is used as follows.
  • the filling container 12 is connected to the temporary storage heat insulating container 14 via the attachment / detachment portion 15 c of the communication path 15. At this time, the on-off valves 14a and 12a are closed.
  • liquefied hydrogen X is supplied from the low-temperature storage tank 13 to the temporary storage insulation container 14.
  • the liquefied hydrogen X in the low temperature storage tank 13 and the liquefied hydrogen X supplied to the temporary storage adiabatic container 14 are at a low temperature lower than the critical temperature and at a low pressure.
  • the supply amount of liquefied hydrogen X is calculated by the control unit 41 according to conditions such as the capacity of the temporary storage heat insulating container 14, the filling container 12, and the communication path 15, the predetermined pressure required for the filling container 12, and the like.
  • the liquid level gauge 18, the liquefied hydrogen supply valve 17a, and the electromagnetic valves 17b and 17c are operated based on the calculation result, and a predetermined amount of liquefied hydrogen X is supplied.
  • the supply of the liquefied hydrogen X and the connection between the filling container 12 and the temporary storage insulation container 14 may be performed in the reverse order.
  • the two on-off valves 15 a and 15 b of the communication path 15 are both opened, and the temporary storage heat insulating container 14 and the filling container 12 are communicated with each other via the communication path 15. Then, the liquefied hydrogen X in the temporary storage heat insulation container 14 flows out and enters the communication path 15. Since the communication path 15 does not have a heat insulating function, the liquid hydrogen X rises in temperature and vaporizes.
  • the introduction vaporization part 15f of the communication passage 15 has the warming part 22 that maintains the temperature at which the liquefied hydrogen X is vaporized, all of the liquefied hydrogen X is vaporized in the warming part 22 to become hydrogen gas.
  • the buffer means 21 elastically blocks and suppresses the instantaneous movement so as to block the communication path 15. To do. For this reason, an instantaneous pressure rise is suppressed, and the temperature applied to the filling container 12 or the like and the shock caused by the wave are alleviated.
  • Hydrogen gas immediately flows into the filling container 12 at the pressure at the time of vaporization and fills the filling container 12.
  • the hydrogen gas that has flowed in first is heated in the filling container 12 at room temperature that does not have a heat insulation function, returns to the communication path 15, and moves toward the temporary storage heat insulation container 14.
  • the hydrogen gas to be returned enters the through hole 21b of the buffer means 21, passes through the nozzle portion 21c, and vigorously enters the temporary storage heat insulating container 14.
  • the liquefied hydrogen X in the temporary storage heat insulation container 14 is agitated and heated, and pushed out from the fluid outlet 14a. Therefore, the liquefied hydrogen X is vaporized in a very short time. To do.
  • the hydrogen gas fills the communication path 15 and the filling container 12 from the temporary storage insulation container 14, and the same low-pressure low-temperature state in any part. It is.
  • the temperature is about 34K, which is slightly higher than the critical temperature.
  • the amount of hydrogen gas X supplied to the temporary storage thermal insulation container 14 at the beginning of the filling operation is such that the filling container 12 and the temporary storage thermal insulation container 14 are filled with gas of a predetermined pressure when the room temperature is reached. Therefore, the amount of hydrogen gas in the filling container 12 is a predetermined amount. This can be confirmed because the control unit 41 determines the comparison between the calculation result based on the detection values of the pressure gauge 15d and the thermometer 15e provided in the communication passage 15 and the initially set value.
  • the opening / closing valve 15a of the fluid outlet 14a of the temporary storage heat insulating container 14 and the opening / closing valve 15b of the fluid inlet 12a of the filling container 12 are closed. Then, it isolate
  • the hydrogen gas in the filling container 12 is at low temperature and low pressure as described above, but the temperature rises due to natural heat input at normal temperature, and the pressure increases as the temperature approaches from the low temperature to the normal temperature.
  • a predetermined pressure set in advance is obtained, and a filling container 12 filled with hydrogen gas in a predetermined filling state is obtained.
  • the filling is performed as described above.
  • the operation of making the pressure is the same as in the case of the hydrogen gas that flows into the filling container 12 and is heated to return, and the hydrogen gas to be blown into the temporary storage heat insulating container 14 is injected into the nozzle portion of the buffer means 21. Since it passes through 21c and enters into the temporary storage heat insulation container 14 vigorously and smoothly, it is performed quickly.
  • a predetermined amount of liquefied hydrogen X is supplied from the low-temperature storage tank 13 to the temporary storage insulation container 14.
  • the predetermined amount is controlled according to conditions such as the capacity of the temporary storage heat insulating container 14, the filling container 12, and the communication passage 15, the predetermined pressure required for the filling container 12, and the residual pressure. It is obtained by the operation of the unit 41.
  • the on-off valves 15a and 15b are opened to allow the communication passage 15 to communicate.
  • the subsequent steps are the same as described above.
  • the filling by the auxiliary filling device 31 is performed as follows.
  • the hydrogen gas recovered in the hydrogen gas recovery tank 34 from the low-temperature storage tank 13 and the temporary storage insulation container 14 through the hydrogen gas recovery paths 32 and 33 is compressed by the compressor 36 based on the operation from the input unit 43 and is at room temperature. It becomes high-pressure hydrogen gas.
  • This hydrogen gas is filled into the filling container 12 using the connecting portion 37.
  • the liquefied hydrogen X introduced from the liquefied hydrogen introduction passage 38 is prevented. Is mixed to lower the hydrogen gas temperature before filling.
  • control unit 41 detects the temperature of the hydrogen gas to be filled with the thermometer 40 provided in the vicinity of the connection unit 37, and considers the filling speed and the like so as to be a predetermined temperature, The amount of liquefied hydrogen X to be mixed is calculated, and the flow rate adjusting valve 39 is driven based on the calculation result.
  • Liquefied hydrogen X mixed with high-pressure hydrogen gas at normal temperature is heated and vaporized immediately, the temperature of hydrogen gas is lowered, and high-pressure hydrogen gas is filled into a filling container at a relatively low temperature. Since the hydrogen gas to be filled is at a low temperature, the filling container 12 is not overheated by the compression heat.
  • the gas filling device 11 and the auxiliary filling device 31 are configured as described above. As a result of the gas filling as described above, the following effects are obtained.
  • the filling of the hydrogen gas into the filling container 12 by the gas filling device 11 is not performed by using a booster pump, but is performed by vaporizing liquefied hydrogen. Therefore, unlike the prior art, the booster pump and the liquefied hydrogen to be filled are not charged. An air reservoir for adjusting the temperature is not required. As a result, the apparatus can be reduced in size. Since the configuration is also simple, manufacturing costs and running costs can be suppressed. Maintenance is also easy.
  • the introduction vaporization part 15f which introduces hydrogen gas into the filling container 12 has the buffer means 21, the rapid movement of the liquefied hydrogen X can be buffered, so that the safety of the apparatus can be ensured.
  • the warming part 22 of the introduction vaporization part 15f is provided with the heating means 23, the liquefied hydrogen X can be heated without being influenced by the ambient temperature and the difference in season. Therefore, desired vaporization can be performed reliably.
  • auxiliary filling device 31 is provided and the boil-off gas and the hydrogen gas in the temporary storage insulation container 14 are effectively used, it is possible to prevent waste. Efficient hydrogen supply can be performed by using the gas filling device 11 for quick filling and the auxiliary filling device 31 for filling with sufficient time.
  • FIG. 4 is a cross-sectional view showing a schematic structure of the introduction vaporization section 15f and the filling container 12 according to another example.
  • the heating means 23 that forms the warm air portion 22 of the introduction vaporization portion 15 f is provided on the inner peripheral surface of the filling container 12. Since the filling container 12 and the introduction vaporization part 15f are connected, the warming part 22 can also be formed by the heating means 23 in the filling container 12. That is, the heating means 23 may be formed in a portion other than the warm air portion 22.
  • the heating means 23 is constituted by a heating layer 12c formed on the inner peripheral surface of the filling container 12 with a gap 12b.
  • the heating layer 12c is formed in a shape substantially similar to the entire inner peripheral surface of the filling container 12, and has a large number of ventilation portions 12d that communicate with the inside and outside and allow hydrogen gas to pass through the gap 12b on the outer periphery side, and for heat exchange. It has a heat exchange coil 12e.
  • the gas filling device 11 having such a configuration achieves the same effects as described above.
  • the filling container 12 has the heating means 23, even when the filling container 12 is a heat insulating container, it is possible to positively raise the temperature to room temperature after filling with low-temperature and low-pressure hydrogen gas. There is an effect that a predetermined filling state can be obtained smoothly.
  • the heating means 23 formed of the heating layer 12c is formed on the inner peripheral surface of the filling container 12, even when the vaporized hydrogen gas flows into the filling container 12 at once, the filling container due to a temperature difference or an impact. The load on 12 is reduced. As a result, it is possible to prevent the filling container 12 from being accidentally damaged.
  • the heating means 23 may be provided in both the introduction vaporization section 15f and the filling container 12.
  • FIG. 5 is a sectional view showing another example of the buffer means 21, and the buffer means 21 is formed in a substantially conical shape.
  • the outer peripheral surface has a tapered surface 21d that narrows toward the tip side.
  • a portion of the inner surface of the communication path 15 facing the tapered surface 21 d has an inclined surface 28.
  • the buffer means 21 does not have a portion protruding in a flat plate shape, so that the size of the buffer member 21 can be made as small as possible. Since the size can be suppressed, the resistance to the liquefied gas is prevented from becoming too large, and the filling rate can be maintained.
  • FIG. 6 is a partially broken side view showing another example of the heating means 23 provided in the introduction vaporization section 15f.
  • the heating means 23 has a structure in which a plurality of fins 23c are provided on the outer periphery of a nozzle portion 23b having a through hole 23a at the center, and a heat exchange coil 23d is held at the root portion of the fins 23c.
  • the heating means 23 When the heating means 23 is provided with the nozzle portion 23b as described above, the heating means 23 can smoothly eject the hydrogen gas blown from the filling container 12 or the liquefied hydrogen X in the temporary storage heat insulation container 14 as described above. Can be stirred.
  • FIG. 7 is a cross-sectional view showing a buffer means 21 according to another example, and the buffer means 21 also has the function of the warming means 23.
  • the buffer means 21 has a plate-like main body portion 21a having a shape that closes the communication passage 15, and has a nozzle portion 21c that protrudes in the double-side direction at the center of the main body portion. Below the main body 21a in the nozzle portion 21c, there are a plurality of fins 23c projecting radially in the outer circumferential direction, and a long hole 21f that is long in the longitudinal direction of the nozzle portion 21c is provided at the root of these fins 23c.
  • the long hole 21f is a part that holds the heat exchange coil 23d so as to be movable relative to the buffer means 21 in the vertical direction. That is, when the buffer means 21 is moved upward by the biasing force of the spring 24 as shown in FIG. 7A, the communication path is closed, and the biasing force of the spring 24 is reduced as shown in FIG. When the buffer means 21 is pushed down and moves down, the communication path 15 is in a communication state.
  • FIG. 8 shows an example in which the gas filling device 11 is connected to the existing gas filling device 51.
  • the existing gas filling device 51 includes a booster pump 53 and a vaporizer 54 in a gas filling path 52 extending from the bottom of the low temperature storage tank 13.
  • the booster pump 53 compresses and boosts the supplied liquefied hydrogen X.
  • the vaporizer 54 vaporizes the pressurized liquid hydrogen X into hydrogen gas.
  • the hydrogen gas obtained through the vaporizer 54 has a high pressure at room temperature.
  • a liquefied hydrogen mixing path 55 for mixing the liquefied hydrogen X passed through the booster pump 53 with the hydrogen gas passed through the vaporizer 54 is connected from the front stage to the rear stage of the vaporizer 54.
  • the gas recovery path 35 extending from the hydrogen gas recovery tank 34 that recovers boil-off gas and the like is connected to the downstream side of the connection portion between the vaporizer 54 and the liquefied hydrogen mixing path 55 in the gas filling path 52.
  • the vaporized gas of the present invention corresponds to the hydrogen gas
  • the liquefied gas corresponds to liquefied hydrogen X
  • the opening / closing means corresponds to the opening / closing valves 15a, 15b
  • the vaporized gas recovery path corresponds to the hydrogen gas recovery paths 32, 33, 35
  • the present invention is not limited to the above configuration, and other configurations can be adopted.
  • the vaporized gas or the liquefied gas may be helium, oxygen, nitrogen or the like in addition to hydrogen.
  • Any order of the arrangement of the buffer means 21 and the warming means 23 may be first.
  • the buffer means 21 may not be movable but may be fixedly present so as to simply block the communication path.
  • the heating means 23 can be omitted depending on the surrounding environment of the communication path 15 because the communication path 15 does not have a heat insulating function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 昇圧ポンプを必要としないガス充填を実現し、装置の小型化と充填時間の短縮化を図る。 気化ガスを充填容器12に所定圧力となるように充填するガス充填装置11において、常温において充填容器12に対して前記所定圧力の気化ガスを充填した状態とするのに見合った量の液化ガスを貯留する断熱機能を有した一時貯留断熱容器14と、一時貯留断熱容器14の流体出口14aと充填容器12の流体入口12aとの間を連結して一時貯留断熱容器14から充填容器12に水素ガスを導入するための通路となる連通路15とを備える。連通路15には、流体出口14aと流体入口12aを開閉する開閉手段15a,15bと、通過するガス流の勢いを緩和する緩衝手段21、及び液化水素を気化する温度を有する暖気部22を備えた導入気化部15fと、充填容器12を切り離し可能に連結する着脱部15cとを備える。

Description

ガス充填装置およびガス充填方法
 この発明は、充填容器に対して各種のガスを充填するための装置に関し、より詳しくは、例えば燃料電池自動車や水素エンジン自動車などに必要とされる水素ガスの充填に好適に用いられるガス充填装置に関する。
 水素ガスを充填容器に充填するガス充填装置として、下記特許文献1の装置が開示されている。
 このガス充填装置は、低温高圧の水素ガスと常温高圧の水素ガスを混合して充填容器に充填する構成である。低温高圧の水素ガスは、液体水素を昇圧ポンプで圧縮して昇圧させたのち加熱手段で気化昇温させて得る。常温高圧の水素ガスは、常温高圧の水素ガスを充填した気蓄器から供給する。
 このようにして低温高圧の水素ガスと常温高圧の水素ガスを混合して充填を行うのは、充填するときに圧縮により水素ガスが100℃近い高温となるため、カーボンファイバー製の充填容器がその熱に耐えられないおそれがあるからである。低温高圧の水素ガスと常温高圧の水素ガスを混合することにより、充填する水素ガスの温度を例えば-40℃~-20℃に下げておけば、急速に充填を行っても充填容器の温度を例えば80℃程度に抑えられるとされている。
 しかし、昇圧ポンプや気蓄器などが必要となるため装置は大型化してしまう。特に昇圧ポンプは、容量が大きいほど充填速度を上げることができるので、急速充填のためには大きなものが必要となり、装置の大型化は避けられない。装置が大きいと、特に水素供給ステーションなどではスペースの有効利用を図れないなどの問題が生じやすい。
 また、昇圧ポンプの大型化も前記スペースの面から制限がある為、充填の短時間化にもおのずと限界がある。
特開2008-196590号公報
 そこで、この発明は、充填装置の小型化を図れるうえに、より短時間での充填を可能にすることを主な目的とする。
 そのための手段は、気化ガスを充填容器に所定圧力となるように充填するガス充填装置であって、常温において前記充填容器に対して前記所定圧力の気化ガスを充填した状態とするのに見合った量の液化ガスを貯留する断熱機能を有した一時貯留断熱容器と、該一時貯留断熱容器の流体出口と前記充填容器の流体入口との間を連結して一時貯留断熱容器から充填容器に気化ガスを導入するための通路となる連通路とを備え、該連通路には、前記流体出口と前記流体入口を開閉する開閉手段と、通過するガス流の勢いを緩和する緩衝手段、及び液化ガスを加熱し気化する暖気部を有した導入気化部と、前記充填容器を切り離し可能に連結する着脱部とを備えたガス充填装置である。
 課題を解決するための別の手段は、気化ガスを充填容器に所定圧力となるように充填するガス充填方法であって、断熱機能を有する一時貯留断熱容器を設け、該一時貯留断熱容器に対して、常温において前記所定圧力の気化ガスを充填した状態とするのに見合った量の液化ガスを供給し、該液化ガスを、前記充填容器に着脱可能に連通した開閉可能な連通路を開放して、充填容器に導入するとともに、該充填容器に導入する液化ガスに対して、前記連通路に設けた緩衝手段によるガス流の勢いの緩和と、前記連通路に形成した暖気部による液化ガスの気化とを行って、気化ガスを低温の状態のまま充填容器に充填し、前記一時貯留断熱容器と充填容器の内部が同圧になったところで連通路を閉止するガス充填方法である。
 前記「所定圧力」とは、あらかじめ定められた圧力のことで、例えば水素ガス充填容器の場合には、150気圧(15MPa)や350気圧(35MPa)、700気圧(70MPa)がある。
 前記「液化ガス」とは液状のガスのことで、前記「気化ガス」とは液化ガスが気化した状態のガスのことである。単に「ガス」と表記した語は、気化ガスと液化ガスの少なくともいずれか一方、または双方を含む意味を指す。
 これらの構成では、一時貯留断熱容器に供給した液化ガスを充填容器と連通する連通路に導入すると、臨界温度以上に加温された液化ガスは即座に気化し、気化ガスはこの時の圧力で充填容器に流れ込む。液化ガスや気化ガスが流れ込む時にはガス流の勢いを緩衝手段により緩和して、急激な圧力上昇にも関わらず、充填容器にかかる温度や波動による衝撃を和らげる。一時貯留断熱容器内の液化ガスはすべて気化ガスとなり、気化ガスは一時貯留断熱容器内から充填容器内にかけて同じ圧力状態となる。この時の気化ガスの温度は臨界温度より僅かに高い温度である。一時貯留断熱容器に供給した液化ガスの量は、常温において充填容器及び一時貯留断熱容器に対して所定圧力のガスを充填した状態とするのに見合った量であるので、充填容器及び一時貯留断熱容器内の気化ガス量は所定量である。充填後、一時貯留断熱容器の流体出口と充填容器の流体入口を閉止する。充填後、充填容器内の気化ガスの温度は上昇し、低温の状態から常温の状態に近づくにつれて圧力が高まり、常温になるとあらかじめ定めた所定圧力となる。
 この発明によれば、気化ガスの充填は昇圧ポンプで行うのではなく、液化ガスの移動と移動する液化ガスを急激に気化させて行うので、昇圧ポンプや気蓄器などは不要である。そのため、装置全体の大きさを小さくすることができる。しかも、構成は簡素で、安価に製造できる。
 所定圧力にする為に必要なガス量を液化ガス状態で移動し気化させるので、より短時間で充填・昇圧することができる。この結果、特に水素供給ステーションのような場所での利用に際して、少なくともガソリンの充填と同等またはそれ以上に迅速な充填が可能であり、今後の水素エネルギー利用に大きく貢献する。
ガス充填装置の概略構成図 導入気化部の断面図。 ガス充填装置の制御回路ブロック図。 他の例に係る導入気化部と充填容器の一部破断断面図。 他の例に係る導入気化部の断面図。 他の例に係る加温手段の一部破断側面図。 他の例に係る導入気化部の断面図。 他の例に係るガス充填装置の概略構成図。
 この発明を実施するための一形態を、以下図面を用いて説明する。 
 図1は、気化ガスを充填するためのガス充填装置11の概略構成図であり、この例では、気化ガスとして水素ガスを充填するガス充填装置11を説明する。
 このガス充填装置11は、水素ガスを充填容器12に所定圧力となるように充填するもので、液化ガスとしての液化水素を水素ガスに気化させて充填する装置である。
 前記所定圧力とは、所望する充填容器12の利用形態に応じて適宜定められる数値で、燃料電池自動車に搭載される例えば700気圧(70MPa)の充填容器12では、水素ガスを700気圧になるように圧縮して充填する。
 ガス充填装置11は、断熱機能を有した低温貯留槽13と、同じく断熱機能を有した一時貯留断熱容器14と、この一時貯留断熱容器14と前記充填容器12とを連通する連通路15を有する。
 前記低温貯留槽13は、液化水素Xを貯留する部分であり、通常、液化水素Xは飽和状態、例えば28K程度に保たれる。低温貯留槽13の容量は適宜設定される。
 前記一時貯留断熱容器14は、充填容器12に対する一回の充填に必要な量の液化水素Xを一時的に貯留する部分である。必要な量とは、液化水素Xが常温になった際に、充填容器12及び一時貯留断熱容器14が前記所定圧力の水素ガスを充填した状態とするのに見合った量である。この量に合わせて一時貯留断熱容器14の容量は設定される。
 液化水素Xを前記低温貯留槽13から供給するため、低温貯留槽13の底部と一時貯留断熱容器14との間は液化水素供給路16で接続されている。液化水素供給路16には電磁弁からなる液化水素供給弁17aを有し、一時貯留断熱容器14には供給される液化水素Xの量を検出する液面計18を備える。
 前記連通路15は、一時貯留断熱容器14の流体出口14aと充填容器12の流体入口12aとの間を連結して、一時貯留断熱容器14から充填容器12に水素ガスを導入するための通路である。連通路15は断熱機能を有しない。
 この連通路15の両端部には、一時貯留断熱容器14の流体出口14aを開閉する開閉手段としての開閉弁15aと、充填容器12の流体入口12aを開閉する開閉手段としての開閉弁15bを備える。連通路15のうち流体入口12aの開閉弁15b側の部位には、充填容器12を切り離し可能に連結する着脱部15cを備える。
 着脱部15cは、適宜の連結部材(カプラ、カップリング部材)で構成される。着脱部15cで接続され、前記2個の開閉弁15a,15bが共に開いたときが、一時貯留断熱容器14の内部と充填容器12の内部が連通状態となるときである。
 このほか連通路15には、圧力計15dと温度計15eと導入気化部15fとを備える。
 圧力計15dは連通路15内部の圧力を検出するもので、温度計15eは連通路15内部の温度を検出するものである。
 導入気化部15fは、図2(a)に示したように、通過する液化水素Xや水素ガスの勢いを緩和する緩衝手段21と、液化水素を加熱し気化する加温手段23を有する暖気部22を備える。
 緩衝手段21は、連通路15内を塞ぐように設けられている。つまり、連通路15は、上流側(流体出口14a側)に比べて下流側(流体入口12a側)のほうが大径となるように形成された段差部25を有し、緩衝手段21は、この段差部25に当接して連通路15を閉塞するする板状の本体部21aを有する。この緩衝手段21は連通路15内で連通路15の長手方向に移動可能であり、ばね24によって上流側、つまり流体出口14a方向に向けて付勢されている。
 ばね24の下端は、間欠形成された支持部26によって支持されている。図2(b)に示したように、緩衝手段21がばね24の付勢力に抗して下がると、液化水素Xが一時貯留断熱容器14から充填容器12に向けて流入する。
 本体部21aの中央には連通路15の長手方向に延びて液化水素Xや水素ガスを通す貫通穴21bが形成されている。この貫通穴21bが連通路15の長手方向に延びるように、本体部21aにおける上流側(流体出14a口方向)の面には筒状のノズル部21cが形成されている。このノズル部21cは、図2(c)に示したように下流側(充填容器12側)から吹き出す水素ガスを噴射するものである。
 このような緩衝手段21は、抵抗が大きすぎると液化水素Xの流れを妨げることから、迅速に移動できるように軽量であるのが望ましい。
 暖気部22は、臨界温度より低温の液化水素Xを気化する温度に設定された、前記緩衝手段21近傍の気相からなる空間である。水素の臨界温度は約33Kであり、低温貯留槽13では例えば28Kくらいの温度で保持されているので、暖気部22は28Kの液化水素を34Kくらいにする程度の温度(約5~6℃程度の温度差)があればよい。
 この暖気部22を形成するため、緩衝手段21より下方には、前記加温手段23が設けられている。加温手段23は、適宜の手段で構成される。例えば図2(a)に示したように、熱媒体を通す熱媒体コイル等で構成できる。熱媒体には適宜のものが使用可能である。
 前記低温貯留槽13と前記一時貯留断熱容器14の上部には、それぞれ水素ガス回収路33,32が接続されている。低温貯留槽13の水素ガス回収路33は、自然入熱などにより気化するガス、つまりボイルオフガス(boil off gas)を回収するもので、水素ガス回収タンク34に接続されている。
 一時貯留断熱容器14の水素ガス回収路32は、ボイルオフガスと、充填容器12に対する水素ガスの充填後に残留する水素ガスを回収するもので、同じく前記水素ガス回収タンク34に接続されている。水素ガス回収路32には電磁弁17cを有する。また水素ガス回収路32の途中には、低温貯留槽13に対して連通する連通路32aが設けられており、この連通路32aにも電磁弁17bを備えている。
 これら水素ガス回収路32,33によって水素ガス回収タンク34に回収された水素ガスは、前記充填容器12と同様の充填容器12に水素ガスを充填するために用いられる。すなわち、水素ガス回収路32,33と水素ガス回収タンク34は、補助充填装置31の一部を構成する。
 補助充填装置31の水素ガス回収タンク34から後段に延びる水素ガス回収路35には、水素ガスを圧縮する圧縮機36を備え、この水素ガス回収路35の先端には、水素ガスを充填容器12に充填するために充填容器12に着脱可能に接続される接続部37を備えている。接続部37は前記着脱部と同様に適宜の連結部材(カプラ、カップリング部材)で構成される。
 水素ガス回収路35における圧縮機36と接続部37の間には、送られてくる水素ガスに液化水素Xを混合する液化水素導入路38が接続されている。液化水素導入路38は、前記低温貯留槽13の底部から延びている。液化水素導入路38には、昇圧ポンプ38aと、電磁弁からなる流量調整弁39が設けられる。
 水素ガス回収路35における前記液化水素導入路38との接続部分より先には、充填容器12に充填される水素ガスの温度を検知する温度計40が設けられている。
 前記ガス充填装置11と補助充填装置31の各部は、図3の制御回路ブロック図に示したように、マイクロコンピュータ等で構成される制御部41によって駆動制御される。
 制御部41には、前記液面計18と圧力計15d、温度計15e,40、液化水素供給弁17a、圧縮機36、流量調整弁39のほか、充填容器12の容積や充填容器12の所定圧力、一時貯留断熱容器14の容積、水素ガスの物性に係る情報等を記憶するための記憶部42、入力操作を行う入力部43等も接続されている。制御部41は、液面計18や圧力計15d、温度計15e,40の検出結果や入力部43からの入力操作に従って、予め記憶させたプログラムに基づいて液化水素供給弁17a等の各部の動作を制御する。
 制御部41による駆動制御は、以下のとおりである。 
 低温貯留槽13から一時貯留断熱容器14に液化水素Xを供給するときには、制御部41は、記憶部42に記憶させた必要な情報と、入力部43から入力された情報と、圧力計15dおよび温度計15eにより検出された情報に基づいて、供給する液化水素Xの量を演算する。その後、演算結果に基づいて流量計18の検出値を設定し、液化水素供給弁17aを駆動する。液面計18が所定の検出値を検出すると液化水素供給弁17aを閉じる。
 一時貯留断熱容器14に液化水素Xを供給したのち充填容器12と連通して充填を行ったときには、制御部41は、圧力計15dと温度計15eにより検出された情報に基づいて、充填容器12の充填量が、当初設定された充填量になっているかを判断する。
 補助充填を行う場合には、制御部41は、入力部43からの入力に従って圧縮機36を駆動するとともに、温度計40からの検出結果と、記憶部42から読み出した必要な情報を基にして、混合すべき液化水素Xの量を演算する。この演算結果に基づいて、流量調整弁39を駆動し、所定量の液化水素Xを、圧縮機36によって送られる水素ガスに混合する。
 以上のように構成されたガス充填装置11は、つぎのように使用される。
 水素ガスの充填をするには、まず、連通路15の着脱部15cを介して充填容器12を一時貯留断熱容器14に連結する。このとき、開閉弁14a,12aは閉止しておく。
 つづいて、一時貯留断熱容器14に対して低温貯留槽13から液化水素Xを供給する。低温貯留槽13の液化水素Xと、一時貯留断熱容器14に供給された液化水素Xは、臨界温度より低い低温で、低圧である。液化水素Xの供給量は、一時貯留断熱容器14と充填容器12と連通路15の容積や、充填容器12に必要とされる所定圧力等の条件に応じて前記制御部41が演算することで得られ、この演算結果に基づいて液面計18と液化水素供給弁17aと電磁弁17b,17cが作動し、所定量の液化水素Xが供給される。
 この液化水素Xの供給と、充填容器12と一時貯留断熱容器14との接続は、順序を逆にして行ってもよい。
 このあと、連通路15の2つの開閉弁15a,15bを共に開き、一時貯留断熱容器14と充填容器12とを連通路15を介して連通させる。すると、一時貯留断熱容器14内の液化水素Xは流れ出て、連通路15に入る。連通路15は断熱機能を有しないので液化水素Xは温度上昇し気化する。
 さらに、連通路15の導入気化部15fは、液化水素Xを気化させる温度を維持する暖気部22を有するので、液化水素Xは暖気部22においてすべて気化して水素ガスとなる。
 連通路15の導入気化部15fでは、液化水素Xや気化した水素ガスの移動が一気になされるが、緩衝手段21がその瞬間的な移動を、連通路15を塞ぐように弾性的に塞がって抑制する。このため、瞬間的な圧力上昇が起こるのを抑えて、充填容器12等にかかる温度や波動による衝撃を和らげる。
 水素ガスは気化する時の圧力で充填容器12内に対して即座に流れ込んで、充填容器12内を満たす。同時に、先に流れ込んだ水素ガスは、断熱機能を有しない常温下の充填容器12で昇温されて連通路15に戻り、一時貯留断熱容器14の方向に移動する。このとき、戻ろうとする水素ガスは、緩衝手段21の貫通穴21bに入り、ノズル部21cを抜けて一時貯留断熱容器14内に勢いよく進入する。このように水素ガスがノズル部21cから噴射することにより、一時貯留断熱容器14内の液化水素Xは撹拌され昇温されて、流体出口14aから押し出されるので、液化水素Xは極めて短時間で気化する。
 一時貯留断熱容器14内の液化水素Xがすべて気化して水素ガスとなると、水素ガスは一時貯留断熱容器14内から連通路15、充填容器12内に満ち、いずれの部分においても同じ低圧低温状態である。前記の例でいえば、温度は、臨界温度よりも僅かに高い34K程度である。
 また、充填作業のはじめに一時貯留断熱容器14に対して供給した水素ガスXの量は、常温にした際に充填容器12と一時貯留断熱容器14とが所定圧力のガスを充填した状態とするのに見合った量であるので、充填容器12内の水素ガスの量は所定量である。このことは、連通路15に設けた圧力計15dと温度計15eの検出値に基づく演算結果と、当初設定された値との対比で制御部41が判断するので、確認できる。
 この後、一時貯留断熱容器14の流体出口14aの開閉弁15aと、充填容器12の流体入口12aの開閉弁15bを閉じる。続いて、着脱部15cで分離して、充填容器12を外す。
 充填当初は充填容器12内の水素ガスは、前記のように低温低圧であるが、常温下における自然入熱によって温度が上昇し、低温の状態から常温の状態に近づくにつれて圧力が高まり、常温になるとあらかじめ定めた所定圧力となり、所定の充填状態に水素ガスが充填された充填容器12が得られる。
 充填する充填容器12に残圧がない場合は、前記のように充填がなされるが、充填を行う充填容器12に残圧がある場合には、連通路15を介して一時貯留断熱容器14と充填容器12を連通すると、充填容器12内の水素ガスが一時貯留断熱容器14に吹き込むことになるので、充填に際してはまず先に、連通して一時貯留断熱容器14と充填容器12を同圧にする必要がある。同圧にする作業は、前記した充填容器12に流れ込んで昇温されて戻ろうとする水素ガスの場合と同様に、一時貯留断熱容器14に吹き込もうとする水素ガスが緩衝手段21のノズル部21cを抜けて一時貯留断熱容器14内に勢いよく円滑に進入するので、迅速に行われる。
 つぎに、一時貯留断熱容器14に所定量の液化水素Xを低温貯留槽13から供給する。この所定量は、前記の場合と同様に、一時貯留断熱容器14と充填容器12と連通路15の容積や、充填容器12に必要とされる所定圧力、残圧等の条件に応じて前記制御部41が演算することで得られる。
 続いて開閉弁15a,15bを開いて連通路15を連通させる。この後の工程は前記と同様である。
 前記補助充填装置31による充填は次のように行われる。 
 低温貯留槽13と一時貯留断熱容器14から水素ガス回収路32,33を経て水素ガス回収タンク34に回収された水素ガスは、入力部43からの操作に基づいて圧縮機36で圧縮されて常温で高圧の水素ガスとなる。この水素ガスを、接続部37を利用して充填容器12に充填することになるが、充填する時に圧縮熱が生じて高温になるのを防ぐため、液化水素導入路38から導入した液化水素Xを混合させることで充填前の水素ガス温度を低下させる。
 すなわち制御部41が、接続部37の近傍に設けられた温度計40で、充填される水素ガスの温度を検出し、あらかじめ定めた所定の温度になるように、充填速度などを考慮して、混合する液化水素Xの量を演算し、この演算結果に基づいて流量調整弁39を駆動する。
 常温で高圧の水素ガスに混合された液化水素Xは昇温されて即座に気化し、水素ガスの温度を下げ、比較的低温で高圧の水素ガスを充填容器に充填する。充填される水素ガスは低温であるので、圧縮熱によって充填容器12が過熱することはない。
 ガス充填装置11と補助充填装置31は前記のような構成であり、前記のようにしてガスの充填がなされる結果、次のような効果が得られる。
 ガス充填装置11による充填容器12に対する水素ガスの充填は、昇圧ポンプを用いて行うのではなく、液化水素を気化させて行うので、従来技術とは異なって、昇圧ポンプや、充填する液化水素の温度を調整するための気蓄器が不要である。この結果、装置の小型化を図ることができる。構成も簡素であるので、製造コストやランニングコストを抑えることもできる。メンテナンスも容易である。
 水素ガスを充填容器12に導入する導入気化部15fは、緩衝手段21を有するので、液化水素Xの急激な移動を緩衝できるので装置としての安全性が確保できる。
 導入気化部15fの暖気部22は加温手段23を備えているので、周囲の温度や季節の違いに影響されずに液化水素Xの加温ができる。したがって、所望の気化を確実に行える。
 充填に昇圧ポンプを用いないため、機械的に行う充填とは異なって、短時間での迅速な充填作業が可能である。従来にない急速充填ができるので、自動車の駆動に用いる水素に用いるときには特に、水素ステーションでの利用が円滑に資する。つまり、将来期待されている水素エネルギーの利用に多大の貢献をすることができる。
 また、補助充填装置31を備えて、ボイルオフガスや一時貯留断熱容器14の水素ガスを有効利用しているので、無駄が生じないようにすることができる。急速充填はガス充填装置11で、時間に余裕がある充填は補助充填装置31で、というように使い分けを行うことで、効率の良い水素供給が行える。
 以下、その他の例について説明する。この説明において前記の構成と同一又は同等の部位については同一の符号を付してその詳しい説明を省略する。
 図4は他の例に係る導入気化部15fと充填容器12の概略構造を示す断面図である。この図に示すように、導入気化部15fの暖気部22を形成する加温手段23は、充填容器12の内周面に設けられている。充填容器12と導入気化部15fは連通するので、充填容器12内の加温手段23でも暖気部22を形成できる。つまり加温手段23は暖気部22以外の部分に形成してもよい。
 加温手段23は、充填容器12の内周面に、隙間12bをあけて形成した加温層12cで構成される。加温層12cは、充填容器12の内周面の全体と略相似形状に形成され、内外に連通して外周側の隙間12bに水素ガスを通す多数の通気部12dと、熱交換のための熱交換コイル12eを有する。
 加温手段23を充填容器12に備えた結果、導入気化部22には、実質的に緩衝手段21を形成すれば足りる。
 このような構成のガス充填装置11では、前記と同様の作用効果を達成する。そのほか、充填容器12に加温手段23を有するので、充填容器12が断熱容器である場合であっても、低温低圧の水素ガスを充填した後の常温への積極的な昇温ができるので、所定の充填状態が円滑に得られるという効果を有する。
 また、加温層12cからなる加温手段23は、充填容器12の内周面に形成されているので、気化した水素ガスが充填容器12内に一気に流れ込む場合でも、温度差や衝撃による充填容器12に対する負荷を軽減する。この結果、充填容器12が不測に損傷することを防止できる。
 加温手段23は、導入気化部15fと充填容器12の双方に備えてもよい。
 図5は緩衝手段21の他の例を示す断面図であり、緩衝手段21は略円錐形状に形成されている。外周面には先端側ほど狭まるテーパ面21dを有する。連通路15の内面におけるこのテーパ面21dに対向する部分は、傾斜面28を有する。
 緩衝手段21は前記の例の緩衝手段21とは異なって平板状に張り出す部分がないので、緩衝部材21の大きさを極力小さくすることができる。大きさを抑えられるので、液化ガスに対して抵抗が大きくなりすぎることを抑制し、充填速度の維持ができる。
 図6は、導入気化部15fに備える加温手段23の他の例を示す一部破断側面図である。この加温手段23は、中心に貫通穴23aを有するノズル部23bの外周に複数枚のフィン23cを備えた構造であり、フィン23cの根元部分に熱交換コイル23dを保持している。
 このように加温手段23にノズル部23bを備えると、加温手段23でも前記と同様に、充填容器12から吹き出す水素ガスを円滑に噴出させたり、一時貯留断熱容器14内の液化水素Xを撹拌したりすることができる。
 図7は、他の例に係る緩衝手段21を示す断面図であり、この緩衝手段21は加温手段23の機能を兼ね備えている。
 緩衝手段21は連通路15を塞ぐ形状である板状の本体部21aを有し、本体部の中央に両面方向に突出するノズル部21cを有する。ノズル部21cにおける本体部21aより下側には、外周方向に放射状に突出する複数枚のフィン23cを有し、これらフィン23cの根元部分にノズル部21cの長手方向に長い長穴21fを有する。この長穴21fは、熱交換コイル23dを緩衝手段21との間で上下方向に相対移動可能に保持する部分である。すなわち、図7(a)に示したように緩衝手段21がばね24の付勢力で上動したときには、連通路は閉塞され、図7(b)に示したように、ばね24の付勢力に抗して緩衝手段21が押し下げられて下動すると、連通路15が連通状態になる構成である。
 このような構成では、前記の作用効果を有するほかに、加温手段23を有しつつも導入気化部15fを小さく形成することができるという利点がある。
 図8は、ガス充填装置11を既設のガス充填装置51に接続した例を示している。
 既設のガス充填装置51は、低温貯留槽13の底部から延ばしたガス充填路52に昇圧ポンプ53と気化器54を備えている。昇圧ポンプ53は、供給する液化水素Xを圧縮して昇圧するものである。気化器54は昇圧された液体水素Xを気化して水素ガスとするものである。気化器54を経て得られた水素ガスは常温で高圧である。
 気化器54の前段から後段には、昇圧ポンプ53を経た液化水素Xを、気化器54を経た水素ガスに混合するための液化水素混合路55が接続されている。
 ボイルオフガス等を回収する水素ガス回収タンク34から延びるガス回収路35は、ガス充填路52における気化器54と、液化水素混合路55との接続部分との下流側に接続されている。
 このようにガス充填装置11を接続した既存のガス充填装置51では、ガス充填路52で常温高圧の水素ガスを充填容器12に充填するときに圧縮熱が生じることを考慮して、水素ガスを所定の低温状態にして充填を行う。
 このような装置でも、前記と同様の作用効果を得られる。特に、既存のガス充填装置51を活用できるので無駄が生じることはなく、急速充填と急を要しない充填とを使い分けて充填の効率化を図ることもできる。
 この発明の構成と、前記一形態の構成との対応において、 
この発明の気化ガスは、前記水素ガスに対応し、 
以下同様に、 
液化ガスは、液化水素Xに対応し、 
開閉手段は、前記開閉弁15a,15bに対応し、 
気化ガス回収路は、水素ガス回収路32,33,35に対応するも、 
この発明は、前記の構成のみに限定されるものではなく、その他の構成を採用することができる。
 例えば、気化ガスや液化ガスには、水素のほか、例えばヘリウムや酸素、窒素などであってもよい。
 緩衝手段21と加温手段23の配置の順序はいずれが先でもよい。
 緩衝手段21は、動くものではなく、単に連通路を塞ぐように固定的に存在するものであってもよい。
 加温手段23は、連通路15が断熱機能を有しないため、連通路15の周辺環境によっては省略することができる。
 11…ガス充填装置
 12…充填容器
 12a…流体入口
 12b…隙間
 12c…加温層
 14…一時貯留断熱容器
 14a…流体出口
 15…連通路
 15a,15b…開閉弁
 15c…着脱部
 15f…導入気化部
 21…緩衝手段
 21b…貫通穴
 21c…ノズル部
 22…暖気部
 23…加温手段
 23a…貫通穴
 23b…ノズル部
 24…ばね
 32,33,35…水素ガス回収路
 37…接続部
 38…液化水素導入路
 X…液化水素

Claims (9)

  1.  気化ガスを充填容器に所定圧力となるように充填するガス充填装置であって、
    常温において前記充填容器に対して前記所定圧力の気化ガスを充填した状態とするのに見合った量の液化ガスを貯留する断熱機能を有した一時貯留断熱容器と、
    該一時貯留断熱容器の流体出口と前記充填容器の流体入口との間を連結して一時貯留断熱容器から充填容器に気化ガスを導入するための通路となる連通路とを備え、
    該連通路には、前記流体出口と前記流体入口を開閉する開閉手段と、
    通過するガス流の勢いを緩和する緩衝手段、及び液化ガスを加熱し気化する暖気部を有した導入気化部と、
    前記充填容器を切り離し可能に連結する着脱部とを備えた
    ガス充填装置。
  2.  前記緩衝手段が、前記連通路を塞ぐように設けられるとともに連通路内で連通路の長手方向に移動可能であり、前記流体出口方向に向けて付勢されている
    請求項1に記載のガス充填装置。
  3.  前記緩衝手段が、前記連通路の長手方向にガスを通す貫通穴を備えた
    請求項1に記載のガス充填装置。
  4.  前記導入気化部に、前記連通路の長手方向に延びて前記充填容器側から吹き出す気化ガスを噴射するノズルが備えられた
    請求項1に記載のガス充填装置。
  5.  前記導入気化部に、前記暖気部を形成する加温手段が設けられた
    請求項1に記載のガス充填装置。
  6.  前記充填容器の内周面に、外周側に気化ガスを通す通気部を有するとともに加温を行う加温層が隙間をあけて形成された
    請求項1に記載のガス充填装置。
  7.  前記一時貯留断熱容器に気化ガスを回収する気化ガス回収路が接続され、
    該気化ガス回収路には圧縮機を備えるとともに、
    前記気化ガス回収路における該圧縮機よりも先の位置に、液化ガスを混合する液化ガス導入路が接続され、
    前記気化ガス回収路の先端には、気化ガスを充填容器に充填するための接続部を備えた
    請求項1に記載のガス充填装置。
  8.  気化ガスを充填容器に所定圧力となるように充填するガス充填方法であって、
    断熱機能を有する一時貯留断熱容器を設け、
    該一時貯留断熱容器に対して、常温において前記所定圧力の気化ガスを充填した状態とするのに見合った量の液化ガスを供給し、
    該液化ガスを、前記充填容器に着脱可能に連通した開閉可能な連通路を開放して、充填容器に導入するとともに、
    該充填容器に導入する液化ガスに対して、前記連通路に設けた緩衝手段によるガス流の勢いの緩和と、前記連通路に形成した暖気部による液化ガスの気化とを行って、気化ガスを低温の状態のまま充填容器に充填し、
    前記一時貯留断熱容器と充填容器の内部が同圧になったところで連通路を閉止する
    ガス充填方法。
  9.  前記一時貯留断熱容器から気化ガスを回収し、圧縮機で圧縮した後、液化ガスを混合して冷却しながら、気化ガスを充填容器に充填する
    請求項8に記載ガス充填方法。
PCT/JP2014/050863 2013-02-04 2014-01-18 ガス充填装置およびガス充填方法 WO2014119398A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019072 2013-02-04
JP2013019072A JP2014149059A (ja) 2013-02-04 2013-02-04 ガス充填装置およびガス充填方法

Publications (1)

Publication Number Publication Date
WO2014119398A1 true WO2014119398A1 (ja) 2014-08-07

Family

ID=51262112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050863 WO2014119398A1 (ja) 2013-02-04 2014-01-18 ガス充填装置およびガス充填方法

Country Status (2)

Country Link
JP (1) JP2014149059A (ja)
WO (1) WO2014119398A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108561749A (zh) * 2018-06-07 2018-09-21 张家港氢云新能源研究院有限公司 应用于液氢加氢站的混合加注系统
CN110131577A (zh) * 2019-06-18 2019-08-16 电子科技大学中山学院 一种消毒气雾剂制的氮气充填装置
US20220090739A1 (en) * 2020-09-21 2022-03-24 China Energy Investment Corporation Limited Hybrid refueling station and method for refueling
FR3130934A1 (fr) * 2021-12-22 2023-06-23 Faurecia Systemes D'echappement Ensemble de stockage de fluide cryogénique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977655B2 (ja) * 2018-04-05 2021-12-08 トヨタ自動車株式会社 燃料ガス充填システム
JP7028156B2 (ja) * 2018-12-27 2022-03-02 トヨタ自動車株式会社 液体水素タンクにおける液面測定方法及び液体水素貯蔵システム
KR102539226B1 (ko) * 2021-04-08 2023-06-02 한국자동차연구원 수소충전소용 수소 냉각 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295796A (ja) * 2001-03-29 2002-10-09 Nippon Sanso Corp ガス充填装置及び方法
JP2003322298A (ja) * 2002-05-01 2003-11-14 Chiyoda Security Service:Kk 燃料供給装置
JP2006275091A (ja) * 2005-03-28 2006-10-12 Taiyo Nippon Sanso Corp 水素ガスの供給方法及び液化水素輸送車
JP2007009982A (ja) * 2005-06-29 2007-01-18 N Energy:Kk 液化ガスのガス供給設備

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385384B2 (ja) * 1992-03-23 2003-03-10 大阪瓦斯株式会社 Lng冷熱の蓄冷および有効利用方法とその装置
US5325894A (en) * 1992-12-07 1994-07-05 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied natural gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295796A (ja) * 2001-03-29 2002-10-09 Nippon Sanso Corp ガス充填装置及び方法
JP2003322298A (ja) * 2002-05-01 2003-11-14 Chiyoda Security Service:Kk 燃料供給装置
JP2006275091A (ja) * 2005-03-28 2006-10-12 Taiyo Nippon Sanso Corp 水素ガスの供給方法及び液化水素輸送車
JP2007009982A (ja) * 2005-06-29 2007-01-18 N Energy:Kk 液化ガスのガス供給設備

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108561749A (zh) * 2018-06-07 2018-09-21 张家港氢云新能源研究院有限公司 应用于液氢加氢站的混合加注系统
CN108561749B (zh) * 2018-06-07 2024-01-05 张家港氢云新能源研究院有限公司 应用于液氢加氢站的混合加注系统
CN110131577A (zh) * 2019-06-18 2019-08-16 电子科技大学中山学院 一种消毒气雾剂制的氮气充填装置
US20220090739A1 (en) * 2020-09-21 2022-03-24 China Energy Investment Corporation Limited Hybrid refueling station and method for refueling
CN114251595A (zh) * 2020-09-21 2022-03-29 国家能源投资集团有限责任公司 一种混合式加气站及加气方法
CN114251595B (zh) * 2020-09-21 2023-09-01 国家能源投资集团有限责任公司 一种混合式加气站及加气方法
FR3130934A1 (fr) * 2021-12-22 2023-06-23 Faurecia Systemes D'echappement Ensemble de stockage de fluide cryogénique
WO2023118371A1 (fr) * 2021-12-22 2023-06-29 Faurecia Systemes D'echappement Ensemble de stockage de fluide cryogénique

Also Published As

Publication number Publication date
JP2014149059A (ja) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014119398A1 (ja) ガス充填装置およびガス充填方法
CN109888330B (zh) 燃料电池控制系统和燃料电池装置
US8459241B2 (en) Liquefied natural gas system for a natural gas vehicle
CN102536516B (zh) 连续流热力泵
US11415084B2 (en) Storage tank for cryogenic liquid gas
US20170291486A1 (en) Hydrogen fuel supply system
JP6829014B2 (ja) 水素供給施設および水素供給方法
US20120159970A1 (en) Filling containers with compressed media
US9074729B2 (en) Method and filling installation for filling a hydrogen gas into a vessel
Brunner et al. Cryo‐compressed hydrogen storage
US20150354503A1 (en) System and a method for feeding a rocket engine
KR20130135373A (ko) 수소 스테이션
CN105275778A (zh) 用于供应流体的装置和方法
JP5839545B2 (ja) 水素ステーション
US20200370709A1 (en) Device and method for providing liquefied natural gas
CN113375045B (zh) 一种液氢加氢站bog回收利用系统及方法
CN113865262A (zh) 基于增压控温的过冷液甲烷自循环在线制备系统及方法
CN111664349A (zh) 一种基于固态储供氢的加氢站系统及其运行方法
JP2013527385A (ja) 水素分配システム及びその方法
CN102104162A (zh) 车用氢燃料的冷却加注方法
US20160237952A1 (en) Autogenous pressurizer device for a propellant tank
US7484540B2 (en) Liquid hydrogen storage tank with reduced tanking losses
WO2006103987A1 (ja) 水素ガスの供給方法及び液化水素輸送車
JP6792402B2 (ja) 高圧水素製造システム
CN103827570A (zh) 再加热低温液体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745647

Country of ref document: EP

Kind code of ref document: A1