WO2014118862A1 - オゾン水を用いた洗浄方法及び洗浄装置 - Google Patents

オゾン水を用いた洗浄方法及び洗浄装置 Download PDF

Info

Publication number
WO2014118862A1
WO2014118862A1 PCT/JP2013/007540 JP2013007540W WO2014118862A1 WO 2014118862 A1 WO2014118862 A1 WO 2014118862A1 JP 2013007540 W JP2013007540 W JP 2013007540W WO 2014118862 A1 WO2014118862 A1 WO 2014118862A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
cleaning
ozone water
supply pipe
concentration
Prior art date
Application number
PCT/JP2013/007540
Other languages
English (en)
French (fr)
Inventor
阿部 達夫
均 椛澤
新井 泉
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2014118862A1 publication Critical patent/WO2014118862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present invention relates to a wafer cleaning method and apparatus using ozone water.
  • wafers There are two methods for cleaning semiconductor wafers (hereinafter referred to as wafers): a method in which a plurality of wafers are immersed vertically in a cleaning tank filled with a cleaning solution, and a method in which wafers are horizontally placed one by one. There are types.
  • the most common cleaning flow includes ammonia water / hydrogen peroxide solution ⁇ pure water rinse ⁇ hydrochloric acid / hydrogen peroxide solution ⁇ pure water rinse ⁇ drying.
  • This cleaning method removes organic substances and particles on the surface with the first ammonia / hydrogen peroxide cleaning solution, rinses the cleaning solution with pure water rinse, and then removes metal impurities with the next hydrochloric acid / hydrogen peroxide solution cleaning solution. In this method, the chemicals are washed again with pure water rinse and then dried.
  • the cleaning liquid is often used by heating from 60 ° C. to 80 ° C. in order to enhance the cleaning effect.
  • a circulation filtration system is attached to the cleaning liquid tank, and the temperature of the cleaning liquid is adjusted by a heater simultaneously with the removal of particles.
  • the concentration of the cleaning liquid is controlled to be constant in order to prevent a decrease in the concentration of the cleaning liquid due to evaporation.
  • ultrasonic cleaning may be used in combination in order to improve the ability to remove particles adhering to the wafer.
  • the concentration of particles and metal impurities in the cleaning solution is strictly controlled, and high-quality ones with extremely few particles and impurities are used. Yes.
  • Ozone water may be used instead of rinsing water with pure water, and is introduced as appropriate.
  • Ozone water has a strong oxidizing power, and is used to decompose organic substances adhering to the wafer surface and to oxidize the wafer surface using the strong oxidizing power.
  • ozone water is very unstable and easily decomposes. Since ozone water is obtained by dissolving ozone gas in pure water, if the stirring, bubbling, showering or the like is performed easily, the dissolved ozone gas is released and the concentration of ozone water is lowered. In order to clean the wafer uniformly with ozone water that easily changes in concentration, it is necessary to bring ozone water with a uniform concentration into contact with the wafer surface.
  • Patent Document 1 As a cleaning method using ozone water, a method in which a plurality of wafers are immersed in a cleaning tank filled with ozone water (Patent Document 1, etc.), ozone water is supplied from a nozzle to a horizontally placed wafer. And a method of performing as a shower (Patent Document 1, etc.) has been performed.
  • the former method is not economical because a large amount and high concentration of ozone water is used, and both methods have a non-uniform concentration of ozone water and are difficult to clean evenly.
  • Patent Documents 2 and 3 In order to prevent cleaning unevenness, a method of rotating a horizontally placed wafer (Patent Documents 2 and 3) has been studied, but a complicated apparatus configuration is required.
  • a method of supplying ozone water from an ozone water supply pipe installed at the bottom of the cleaning tank is common.
  • a plurality of holes are formed in the supply pipe, and the direction of the holes is often different depending on the structure of the cleaning tank, the wafer holding method, and the like.
  • the positions of the holes are various, the holes are generally arranged in the cleaning tank so that the ozone water is uniformly supplied to the wafer surface.
  • a large amount of high-concentration ozone water is required, which is not economical.
  • ozone water constantly decreases in concentration due to self-decomposition and reaction, a concentration distribution is generated in the cleaning tank. That is, the concentration of ozone water near the outlet of the supply pipe is high, the ozone water concentration decreases along with the liquid flow ejected from the supply pipe, and a gradient occurs in the ozone water concentration in the cleaning tank. Occurs.
  • the wafer is held in a container that can be sealed, and cleaning is performed by spraying ozone water onto the wafer from a shower nozzle attached to the upper and lower parts.
  • Shower method is common.
  • a cleaning process is performed by laying out the wafer so as to be sprayed on the entire surface of the wafer from 19 nozzles on the upper and lower sides.
  • the ozone water is released from the ozone water as ozone gas due to release from the piping pressure before the ozone water reaches the wafer surface from the shower nozzle, resulting in a significant concentration drop.
  • high-concentration ozone water is required.
  • ozone water shower is applied non-uniformly on the wafer surface, cleaning unevenness occurs at a large portion and a small portion.
  • the present invention has been made in view of the above circumstances, and a cleaning method using ozone water that can use a small amount and a low concentration of ozone water, has no unevenness in cleaning, and does not require a complicated apparatus configuration, and An object is to provide a cleaning device.
  • the present invention provides: A wafer cleaning method using ozone water, The wafer is placed horizontally on a dipping tray having a drain outlet on the bottom, the ozone water is supplied from a supply pipe installed above the wafer, and the wafer is immersed in the ozone water with the dipping tray. And a cleaning method using ozone water that drains the ozone water from the drain port.
  • Such a cleaning method can use a small amount of low-concentration ozone water, has no cleaning unevenness, and does not require a complicated apparatus.
  • the present invention is a wafer cleaning apparatus using ozone water, A holding means for horizontally placing the wafer, and an immersion tray having a drain of the ozone water on the bottom surface; And a supply pipe for supplying the ozone water from above the wafer.
  • the supply pipe is installed above the center of the wafer.
  • Such a supply pipe can eliminate cleaning unevenness more effectively.
  • the cleaning method and cleaning apparatus using ozone water of the present invention eliminates the need for an expensive large-flow / high-concentration ozone water production apparatus, and uses a small amount of low-concentration ozone water with an inexpensive and simple apparatus configuration. Therefore, it is possible to perform ozone water cleaning without causing uneven cleaning.
  • FIG. 6 is a schematic diagram illustrating an example of a cleaning device used in Comparative Example 1.
  • FIG. 10 is a schematic diagram illustrating another example of the cleaning device used in Comparative Example 2.
  • FIG. 10 is a schematic diagram showing still another example of the cleaning device used in Comparative Example 3. It is a figure which shows the result of the comparative test of the wafer which cleaned using the cleaning apparatus shown in Example 1 and Comparative Examples 1-3.
  • the inventors of the present invention need a complicated apparatus configuration if the wafer is placed on a dipping tray and ozone water is supplied from above to immerse and clean the wafer. And the present invention was completed by finding that the wafer does not cause uneven cleaning.
  • the present invention A wafer cleaning method and apparatus using ozone water,
  • the wafer is placed horizontally on a dipping tray having a drain outlet on the bottom, the ozone water is supplied from a supply pipe installed above the wafer, and the wafer is immersed in the ozone water with the dipping tray.
  • the cleaning method and the cleaning device using ozone water are used for discharging the ozone water from the drain port.
  • the cleaning apparatus of the present invention for example, one equipped with an ozone water cleaning BOX sealed to prevent the diffusion of ozone gas can be used.
  • a cleaning apparatus provided with the ozone water cleaning BOX will be described with reference to the drawings.
  • FIG. 1 is a schematic view showing an example of a cleaning apparatus 10 using ozone water of the present invention installed in the ozone water cleaning BOX 7.
  • the wafer 3 is placed horizontally on a dipping tray 4 having a drain port 6 on the bottom surface, ozone water 2 is supplied from a supply pipe 1 installed above the wafer 3, and the wafer 3 is ozone water in the dipping tray 4. 2, the ozone water 2 is drained from the drainage port 6.
  • an exhaust mechanism capable of processing ozone gas is connected and an openable / closable shutter for taking in and out the wafer is attached.
  • the immersion tray 4 can be provided with a cradle 5 as shown in FIG. 1 as a holding means for horizontally placing the wafer 3.
  • a cradle 5 is preferably one that can move up and down to immerse the wafer reliably.
  • the drainage port 6 of the immersion tray 4 is not particularly limited, and examples thereof include those formed at a position directly below the center of the wafer.
  • the supply pipe installed above the wafer may be above the wafer, but is installed above the center of the wafer in order to efficiently flow ozone water over the entire surface of the wafer. It is preferable.
  • the supply pipe may be fixed in the center or may be swung in the radial direction of the wafer.
  • a plurality of supply pipes can be installed.
  • the ozone water supplied from the supply pipe above the wafer flows from the center of the wafer surface toward the outer periphery, and further toward the drainage port at the center of the lower part of the immersion tray.
  • the structure flows through the immersion tray on the back side of the wafer. Further, the ozone water may be drained by overflowing from the edge of the immersion tray.
  • the ozone water used here is preferably 5 to 20 ppm. If it is 5 ppm or more, a sufficient cleaning effect can be obtained, and if it is 20 ppm or less, an economical disadvantage does not occur, which is preferable.
  • the supply amount of ozone water supplied to the wafer surface is preferably 3 to 5 liters per minute. If it is 3 liters or more, a sufficient cleaning effect can be obtained, and if it is 5 liters or less, it is preferable because there is little economic loss.
  • Example 1 A silicon wafer having a diameter of 300 mm was cleaned using a cleaning apparatus as shown in FIG. That is, the silicon wafer 3 is placed horizontally on a cradle 5 in a dipping tray 4 having a drainage port 6 on the bottom, and 10 ppm of ozone water 2 is supplied from a supply pipe 1 installed above the silicon wafer 3, and silicon The wafer 3 was cleaned by immersing it in the ozone water 2 with the immersion tray 4, and the ozone water 2 was drained from the drain port 6 for cleaning.
  • a silicon wafer having a diameter of 300 mm was cleaned using an apparatus for cleaning by immersing a plurality of wafers vertically in a cleaning tank filled with ozone water as shown in FIG. That is, cleaning was performed by supplying ozone water 102 from the supply pipe 101 installed at the bottom of the cleaning tank so as to uniformly touch the surface of the silicon wafer 103 and draining it from the upper part of the cleaning tank by overflow. .
  • 20 ppm of ozone water 102 was constantly supplied from the ozone water production apparatus toward the supply pipe 101.
  • the silicon wafer 103 a wafer whose orientation, number and size were adjusted in accordance with the structure and holding method of the cleaning tank was used.
  • a silicon wafer having a diameter of 300 mm was cleaned using an apparatus for horizontally cleaning the wafers one by one as shown in FIG. That is, the silicon wafer 203 is placed horizontally in a sealed ozone water cleaning BOX (not shown) in order to prevent the diffusion of ozone gas, and 20 ppm ozone from a shower nozzle type supply pipe 201 attached to the upper part and the lower part. Cleaning was performed by spraying water 202 onto the silicon wafer 203. At this time, a cleaning process was performed with a layout so that ozone water could be sprayed on the entire wafer surface from the upper and lower 19 shower nozzles.
  • BOX sealed ozone water cleaning BOX
  • a silicon wafer having a diameter of 300 mm was cleaned using an apparatus for cleaning while rotating the wafers one by one as shown in FIG. That is, in a chamber (not shown) in which exhaust gas and drainage can be performed to prevent the diffusion of ozone gas, the silicon wafer 303 is held on a cradle 305 that can be rotated, and the upper portion of the chamber is rotated while the silicon wafer 303 is rotated. Then, 10 ppm of ozone water 302 was supplied to the silicon wafer 303 from the supply pipe 301 attached to the lower part and cleaned. At this time, the wafer rotation was performed at 100 rpm to 1500 rpm. The cleaning liquid shaken off from the wafer by the rotation is received by the partition wall 306 so as not to be scattered.
  • Example 1 and Comparative Examples 1 to 3 are shown in Table 1 and FIG.
  • Example 1 and Comparative Example 3 unevenness due to ozone cleaning did not occur in the Haze map of SP2, but in Comparative Example 1, Haze unevenness due to ozone water concentration distribution in the cleaning tank occurred, and Comparative Example 2 In Haze, Haze unevenness due to shower occurred.
  • Comparative Example 1 since ozone water itself constantly decreases in concentration due to autolysis and reaction, it is unavoidable that concentration distribution occurs in the washing tank, and the concentration of ozone water near the outlet of the supply pipe is high. It is conceivable that the place away from the supply pipe or the place where it is difficult to be replaced by the supplied ozone water has a decrease in the ozone water concentration, causing a gradient in the ozone water concentration in the cleaning tank.
  • the ozone water is released from the ozone water as ozone gas due to the release from the piping pressure until the ozone water reaches the wafer surface from the shower nozzle, leading to a significant decrease in concentration. It is conceivable that the ozone water shower was applied unevenly, and cleaning unevenness occurred in a large portion and a small portion.
  • this invention is not limited to the said embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

本発明は、オゾン水を用いたウェーハの洗浄方法であって、前記ウェーハ(3)を底面に排液口を有する浸漬トレー(4)に横置きし、前記ウェーハ(3)の上方に設置された供給管(1)より前記オゾン水(2)を供給し、前記ウェーハ(3)を前記浸漬トレー(4)にて前記オゾン水(2)中に浸漬することで洗浄し、前記排液口(6)より前記オゾン水(2)の排液を行うオゾン水を用いた洗浄方法である。これにより、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラが無く、複雑な装置構成を必要とすることのないオゾン水を用いた洗浄方法を提供できる。

Description

オゾン水を用いた洗浄方法及び洗浄装置
 本発明は、オゾン水を用いたウェーハの洗浄方法及び洗浄装置に関する。
 半導体ウェーハ(以下、ウェーハとする)の洗浄方法には、複数枚のウェーハを洗浄液で満たされた洗浄槽に縦置きで浸漬して行う方法と、ウェーハを横置きで1枚ずつ行う方法の2種類がある。
 ここで一般的なウェーハの洗浄フローの例を示す。最も一般的に行われている洗浄フローには、アンモニア水・過酸化水素水→純水リンス→塩酸・過酸化水素水→純水リンス→乾燥がある。この洗浄方法は、最初のアンモニア・過酸化水素水洗浄液で表面付着有機物とパーティクルの除去を行い、純水リンスで洗浄液を洗い流した後、次の塩酸・過酸化水素水洗浄液で金属不純物を除去し、再度、純水リンスで薬品を洗い流した後、乾燥を行う方法である。
 一般的に洗浄液は、洗浄効果を高めるために60℃から80℃に加温して使用されることが多い。このため、洗浄液槽には循環ろ過システムが取り付けられ、パーティクルの除去と同時にヒーターによる洗浄液の温度調節も行われている。また、蒸発による洗浄液の濃度低下を防ぐために、洗浄液濃度を一定に制御している場合もある。さらに、ウェーハに付着したパーティクルの除去力を向上させるために、超音波洗浄を併用する場合もある。また、ここで使用される洗浄液は、ウェーハの清浄度品質に直接影響を与えるため、洗浄液中のパーティクルや金属不純物濃度は厳しく管理され、パーティクルや不純物が極限まで少ない高品質のものが使用されている。
 また、前述の一般的なウェーハの洗浄フローにおいて、純水によるリンス水の代わりにオゾン水を使用することもあり、適宜、導入されている。オゾン水は強い酸化力を有しており、その強い酸化力を利用して、ウェーハ表面に付着している有機物の分解やウェーハ表面の酸化に用いられている。
 しかし、オゾン水は、とても不安定で分解しやすい性質を持つ。オゾン水はオゾンガスを純水に溶解したものであるため、安易に攪拌やバブリング、シャワー等を行うと、溶解したオゾンガスが離脱してオゾン水の濃度低下をまねくこととなる。
 濃度変化のしやすいオゾン水でウェーハをムラ無く洗浄するためには、ウェーハ表面に均一な濃度のオゾン水を接触させることが必要である。
 オゾン水を用いた洗浄方法としては、複数枚のウェーハをオゾン水で満した洗浄槽に浸漬して行う方法(特許文献1等)、一枚の横置きしたウェーハにオゾン水をノズルからの供給やシャワーとして行う方法(特許文献1等)が行われてきた。しかし、前者の方法は大量かつ高濃度のオゾン水を使用するため経済的ではなく、また、どちらの方法もオゾン水の濃度が不均一となり、ムラ無く洗浄することが困難であった。また、洗浄ムラを防ぐため、一枚の横置きしたウェーハを回転させる方法(特許文献2、3)も検討されたが、複雑な装置構成を必要としていた。
特開2012-119491号公報 特開2001-203182号公報 特開2002-25971号公報
 即ち、オゾン水で満たされた洗浄槽にウェーハを縦置きで浸漬して行う方法の場合、例えば、洗浄槽の底部に設置されたオゾン水供給管からオゾン水を供給する方法が一般的である。この供給管には、複数の穴が開けられており、この穴の向きは、洗浄槽の構造やウェーハの保持方法等により異なっている場合が多い。この穴の位置は多種多様であるが、洗浄槽内でオゾン水がウェーハ表面に均一に供給されるように配置されている場合が一般的である。しかし、この場合では、大量かつ高濃度のオゾン水を必要とし、経済的ではない。また、オゾン水が絶えず自己分解や反応により濃度低下を起こすため、洗浄槽内において濃度分布を生じてしまう。つまり、供給管の出口付近のオゾン水は濃度が高く、供給管から噴き出す液流に添ってオゾン水濃度が低下し、洗浄槽内おいてオゾン水濃度に勾配が生じることとなり、結果として洗浄ムラが生じる。
 一方、ウェーハを横置きして行う方法の場合、例えば、密閉できる容器の中でウェーハを保持し、上部、及び、下部に取り付けられたシャワーノズルからオゾン水をウェーハに噴き付けて洗浄を行う方法(シャワー方式)が一般的である。直径300mmのウェーハの洗浄方法の例をあげると、上下各19個のノズルからウェーハ表面の全体に噴霧できるようにレイアウトをして、洗浄処理を行う。しかし、このシャワー方式の場合、オゾン水がシャワーノズルからウェーハ表面に到達するまでの間に、配管圧力からの開放によりオゾン水中からオゾンガスとして離脱してしまい、大幅な濃度低下を招く状況となっており、安定して洗浄を行うためには、高濃度のオゾン水が必要となる。さらに、ウェーハ表面にオゾン水のシャワーが不均一にかかると、多くかかる部分と少ない部分で洗浄ムラが生じることとなる。
 上記の洗浄ムラの問題を解決するため、横置きしたウェーハを回転させる方法が検討されたが、このような方法を用いた洗浄装置では、耐薬品性の処理チャンバー及びウェーハを回転させる機構、回転するウェーハの保持機構、回転させる機構を阻害しないように配置するオゾン水の供給機構等の複雑な装置構成を備える必要があり、経済的ではない。
 本発明は、上記事情に鑑みなされたもので、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラが無く、複雑な装置構成を必要とすることのないオゾン水を用いた洗浄方法及び洗浄装置を提供することを目的とする。
 上記目的を達成するために、本発明は、
 オゾン水を用いたウェーハの洗浄方法であって、
 前記ウェーハを底面に排液口を有する浸漬トレーに横置きし、前記ウェーハの上方に設置された供給管より前記オゾン水を供給し、前記ウェーハを前記浸漬トレーにて前記オゾン水中に浸漬することで洗浄し、前記排液口より前記オゾン水の排液を行うオゾン水を用いた洗浄方法を提供する。
 このような洗浄方法であれば、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラが無く、複雑な装置を用いる必要のない洗浄方法とすることができる。
 このとき、前記供給管を前記ウェーハの中心部の上方に配置することが好ましい。
 このようにすれば、より効果的に洗浄ムラを無くすことができる。
 また、本発明は、オゾン水を用いたウェーハの洗浄装置であって、
 前記ウェーハを横置きするための保持手段、及び底面に前記オゾン水の排液口を有する浸漬トレーと、
 前記ウェーハの上方より前記オゾン水を供給する供給管とを備える洗浄装置を提供する。
 このような洗浄装置であれば、複雑な装置構成を加える必要がなく、少量かつ低濃度のオゾン水を用いることができ、洗浄後のウェーハの洗浄ムラを無くすことができる。
 このとき、前記供給管が前記ウェーハの中心部の上方に設置されているものであることが好ましい。
 このような供給管であれば、より効果的に洗浄ムラを無くすことができる。
 本発明のオゾン水を用いた洗浄方法及び洗浄装置であれば、高価な大流量・高濃度のオゾン水製造装置は不要となり、安価で単純な装置構成で、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラを発生させることなくオゾン水洗浄が可能となる。
本発明のオゾン水を用いた洗浄装置の一例を示す概略図である。 比較例1で用いた洗浄装置の一例を示す概略図である。 比較例2で用いた洗浄装置の別の一例を示す概略図である。 比較例3で用いた洗浄装置のさらに別の一例を示す概略図である。 実施例1及び比較例1~3で示す洗浄装置を用いて洗浄を行ったウェーハの比較試験の結果を示す図である。
 本発明者らは鋭意検討したところ、ウェーハを浸漬トレーに横置きし、そこに上方からオゾン水を供給してウェーハを浸漬して洗浄する方法であれば、複雑な装置構成を必要とすることなく、かつ、ウェーハに洗浄ムラを生じさせないことを見出し、本発明を完成させた。
 即ち、本発明は、
 オゾン水を用いたウェーハの洗浄方法及び洗浄装置であって、
 前記ウェーハを底面に排液口を有する浸漬トレーに横置きし、前記ウェーハの上方に設置された供給管より前記オゾン水を供給し、前記ウェーハを前記浸漬トレーにて前記オゾン水中に浸漬することで洗浄し、前記排液口より前記オゾン水の排液を行うオゾン水を用いた洗浄方法及び洗浄装置である。
 本発明の洗浄装置は、例えば、オゾンガスの拡散を防ぐために密閉されたオゾン水洗浄BOXを備えたものを使用できる。以下、このオゾン水洗浄BOXを備えた場合における洗浄装置について図面を参照しながら説明する。
 図1は、このオゾン水洗浄BOX7内に設置される、本発明のオゾン水を用いた洗浄装置10の一例を示す概略図である。
 まず、ウェーハ3を底面に排液口6を有する浸漬トレー4に横置きし、ウェーハ3の上方に設置された供給管1よりオゾン水2を供給し、ウェーハ3を浸漬トレー4にてオゾン水2中に浸漬することで洗浄し、排液口6よりオゾン水2の排液を行う。
 オゾン水洗浄BOX7としては、オゾンガスを処理できる排気機構が接続され、さらにウェーハを出し入れするための開閉可能なシャッターが取り付けられているものであることが好ましい。
 浸漬トレー4は、ウェーハ3を横置きするための保持手段として、図1に示すような受け台5を設置することができる。このような受け台5としては、ウェーハを確実に浸漬させるために上下に可動するものが好ましい。
 また、浸漬トレー4が有する排液口6としては、特に限定されないが、例えば、ウェーハの中心部の直下の位置に形成されるものを挙げることができる。
 さらに、ウェーハの上方に設置される供給管としては、ウェーハの上方にあればよいが、ウェーハ表面の全域に効率良くオゾン水を流すために、ウェーハの中心部の上方に設置されるものであることが好ましい。もちろん、供給管を中心部で不動にしてもよいし、ウェーハの径方向にスイングするようにしてもよい。さらに供給管は複数設置することも可能である。
 上記のような機構は、ウェーハの上方の供給管から供給されたオゾン水は、ウェーハ表面の中心部から外周部に向かって流れ、さらに、浸漬トレー下部の中心部にある排液口に向かって、ウェーハ背面側の浸漬トレー中を流れていく構造となっている。また、オゾン水は、さらに浸漬トレーの縁から溢れ出ることにより排液されてもよい。
 ここで使用されるオゾン水としては、5~20ppmが好ましい。5ppm以上であれば、十分な洗浄効果を得ることができ、20ppm以下であれば、経済的なデメリットが生じることがないため好ましい。
 また、ウェーハ表面に供給されるオゾン水の供給量としては、毎分3~5リットルが好ましい。3リットル以上であれば、十分な洗浄効果を得ることができ、5リットル以下であれば、経済的なロスも少ないため好ましい。
 以下に、上記のような洗浄装置10を用いた本発明のオゾン水を用いた洗浄方法の一連のオゾン水洗浄フローの一例を示す。
 1.ロボットアームによりウェーハ3をロードする。
 2.オゾン水洗浄BOX7のシャッターを開く。
 3.ウェーハ3を浸漬トレー4上に挿入する。
 4.ウェーハ3を受け台5に置き、ロボットアームを退避させる。
 5.オゾン水洗浄BOX7のシャッターを閉じる。
 6.供給管1よりオゾン水の供給を開始する。
 7.受け台5を下げて浸漬トレー4中のオゾン水に浸漬させる。
 8.規程時間、オゾン水を供給しながら浸漬状態を保持する。
 9.オゾン水の供給を停止する。
 10.純水の供給を開始する。
 11.ウェーハ3を純水に浸漬させ、オゾン水を洗い流す。
 12.受け台5を上昇させる。
 13.純水の供給を停止する。
 14.オゾン水洗浄BOX7のシャッターを開く。
 15.オゾン水洗浄済のウェーハ3をロボットアームにより回収する。
 16.最初の工程に戻り新たなウェーハを洗浄する、又は、オゾン水洗浄BOXシャッターを閉じて終了する。
 上記に例示される洗浄方法であれば、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラが無く、複雑な装置構成を必要とすることのない洗浄方法とすることができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例は、以下の比較試験フローを行い評価した。
 1.ウェーハの研磨
 2.オゾン水洗浄
 3.リンス
 4.SC1(アンモニア/過酸化水素水)
 5.リンス
 6.乾燥
 7.表面欠陥検査装置SP2(ケーエルエー・テンコール社製)による測定
 比較試験において、ウェーハの表面の測定は、ケーエルエー・テンコール社製の表面欠陥検査装置SP2で行い、SP2のHazeマップを比較する方法で行った。
 尚、下記実施例及び比較例に示される洗浄方法は上記工程2のオゾン水洗浄に該当する。
[実施例1]
 図1に示すような洗浄装置を用いて直径300mmのシリコンウェーハの洗浄を行った。即ち、シリコンウェーハ3を底面に排液口6を有する浸漬トレー4中の受け台5に横置きし、シリコンウェーハ3の上方に設置された供給管1より10ppmのオゾン水2を供給し、シリコンウェーハ3を浸漬トレー4にてオゾン水2中に浸漬することで洗浄し、排液口6よりオゾン水2の排液し、洗浄を行った。
[比較例1]
 図2で示すような、複数枚のウェーハを縦置きで同時にオゾン水で満たされた洗浄槽に浸漬して洗浄する装置を用いて直径300mmのシリコンウェーハの洗浄を行った。即ち、洗浄槽の底部に設置された供給管101からオゾン水102を槽内にシリコンウェーハ103表面に均一に触れるように供給し、洗浄槽上部からオーバーフローにより排液することで、洗浄を行った。尚、濃度を維持するため、20ppmのオゾン水102をオゾン水製造装置から供給管101に向けて常時供給した。また、シリコンウェーハ103としては、洗浄槽の構造や保持方法に合わせて向きや個数、大きさが調整されているものを使用した。
[比較例2]
 図3で示すような、ウェーハを横置きして1枚ずつ洗浄する装置を用いて直径300mmのシリコンウェーハの洗浄を行った。即ち、オゾンガスの拡散を防ぐために密閉されたオゾン水洗浄BOX(不図示)の中でシリコンウェーハ203を横置きし、上部、及び、下部に取り付けられたシャワーノズル型の供給管201から20ppmのオゾン水202をシリコンウェーハ203に噴き付けて洗浄を行った。このとき、上下各19個のシャワーノズルからウェーハ表面の全体にオゾン水を噴霧できるようにレイアウトをして、洗浄処理を行った。
[比較例3]
 図4で示すような、ウェーハを横置きして1枚ずつ回転させながら洗浄する装置を用いて直径300mmのシリコンウェーハの洗浄を行った。即ち、オゾンガスの拡散を防ぐために排ガスと排液を行うことのできるチャンバー(不図示)内で、シリコンウェーハ303を回転することができる受け台305に保持し、シリコンウェーハ303を回転させながらチャンバー上部、及び、下部に取り付けられた供給管301から10ppmのオゾン水302をシリコンウェーハ303に供給して洗浄を行った。このとき、ウェーハ回転は100rpmから1500rpmで行った。回転によりウェーハから振り飛ばされた洗浄液は、隔壁306で受け止めることで飛散しないようにした。
 実施例1及び比較例1~3の比較試験結果を表1及び図5に示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例3においては、SP2のHazeマップにオゾン洗浄によるムラが発生しなかったが、比較例1は洗浄槽内のオゾン水濃度分布に起因するHazeムラが発生し、比較例2においてはシャワーによるHazeムラが発生した。
 比較例1においては、オゾン水自体が絶えず自己分解や反応により濃度を低下させるため、洗浄槽内において濃度分布が生じることは避けることができず、供給管出口付近のオゾン水濃度は高いが、供給管から離れた場所や供給されるオゾン水によって置換されにくい場所は、オゾン水濃度が低下し、洗浄槽内においてオゾン水濃度に勾配が生じ、このような結果となったことが考えられる。
 比較例2においては、オゾン水がシャワーノズルからウェーハ表面に到達するまでの間に、配管圧力からの開放によりオゾン水からオゾンガスとして離脱してしまい、大幅な濃度低下を招き、さらに、ウェーハ表面にオゾン水シャワーが不均一にかかってしまい、多くかかる部分と少ない部分で洗浄ムラが生じてしまったことが考えられる。
 比較例3においては、ウェーハにオゾン水洗浄ムラが生じることは無かったが、ウェーハの回転機構、上下動作のウェーハチャック機構、オゾン水供給機構、スピンチャンバー構造等、複雑で高価な構成となり、洗浄装置の大幅なコストアップを招いてしまった。
 上記のことから、本発明のオゾン水を用いた洗浄方法であれば、少量かつ低濃度のオゾン水を用いることができ、洗浄ムラが無く、複雑な装置構成を必要とすることのない洗浄を行うことができることが明らかになった。
 尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  オゾン水を用いたウェーハの洗浄方法であって、
     前記ウェーハを底面に排液口を有する浸漬トレーに横置きし、前記ウェーハの上方に設置された供給管より前記オゾン水を供給し、前記ウェーハを前記浸漬トレーにて前記オゾン水中に浸漬することで洗浄し、前記排液口より前記オゾン水の排液を行うことを特徴とするオゾン水を用いた洗浄方法。
  2.  前記供給管を前記ウェーハの中心部の上方に配置することを特徴とする請求項1に記載のオゾン水を用いた洗浄方法。
  3.  オゾン水を用いたウェーハの洗浄装置であって、
     前記ウェーハを横置きするための保持手段、及び底面に前記オゾン水の排液口を有する浸漬トレーと、
     前記ウェーハの上方より前記オゾン水を供給する供給管とを備えるものであることを特徴とする洗浄装置。
  4.  前記供給管が前記ウェーハの中心部の上方に設置されているものであることを特徴とする請求項3に記載の洗浄装置。
PCT/JP2013/007540 2013-01-29 2013-12-24 オゾン水を用いた洗浄方法及び洗浄装置 WO2014118862A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014330A JP6099996B2 (ja) 2013-01-29 2013-01-29 オゾン水を用いた洗浄方法及び洗浄装置
JP2013-014330 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014118862A1 true WO2014118862A1 (ja) 2014-08-07

Family

ID=51261612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007540 WO2014118862A1 (ja) 2013-01-29 2013-12-24 オゾン水を用いた洗浄方法及び洗浄装置

Country Status (3)

Country Link
JP (1) JP6099996B2 (ja)
TW (1) TW201448011A (ja)
WO (1) WO2014118862A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996438B2 (ja) * 2018-07-11 2022-01-17 株式会社Sumco 半導体ウェーハの洗浄方法、および該洗浄方法を用いた半導体ウェーハの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037671A (ja) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp 基板表面処理方法および装置
JP2002033300A (ja) * 2000-07-18 2002-01-31 Sasakura Engineering Co Ltd フォトレジスト膜除去方法及び装置
JP2003045842A (ja) * 2001-08-01 2003-02-14 Pyuarekkusu:Kk 表面付着異質物質の除去方法及び除去装置
JP2008124203A (ja) * 2006-11-10 2008-05-29 Kurita Water Ind Ltd 洗浄装置
WO2009099138A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology 半導体ウエハの洗浄方法および洗浄装置
JP2010219138A (ja) * 2009-03-13 2010-09-30 Panasonic Corp 基板洗浄方法及び基板洗浄装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337636A (ja) * 1991-05-14 1992-11-25 Casio Comput Co Ltd 半導体装置の洗浄方法およびその装置
JPH11145099A (ja) * 1997-11-07 1999-05-28 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2005093873A (ja) * 2003-09-19 2005-04-07 Ebara Corp 基板処理装置
JP5152851B2 (ja) * 2008-04-17 2013-02-27 国立大学法人東北大学 半導体装置の製造方法
JP4831216B2 (ja) * 2009-07-28 2011-12-07 株式会社Sumco ウェーハ表面処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037671A (ja) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp 基板表面処理方法および装置
JP2002033300A (ja) * 2000-07-18 2002-01-31 Sasakura Engineering Co Ltd フォトレジスト膜除去方法及び装置
JP2003045842A (ja) * 2001-08-01 2003-02-14 Pyuarekkusu:Kk 表面付着異質物質の除去方法及び除去装置
JP2008124203A (ja) * 2006-11-10 2008-05-29 Kurita Water Ind Ltd 洗浄装置
WO2009099138A1 (ja) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology 半導体ウエハの洗浄方法および洗浄装置
JP2010219138A (ja) * 2009-03-13 2010-09-30 Panasonic Corp 基板洗浄方法及び基板洗浄装置

Also Published As

Publication number Publication date
TW201448011A (zh) 2014-12-16
JP2014146693A (ja) 2014-08-14
JP6099996B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
US8652268B2 (en) Substrate treating method for treating substrates with treating liquids
JP3448613B2 (ja) 乾燥装置
JP2008034779A (ja) 基板処理方法および基板処理装置
JP2007012859A (ja) 基板処理装置および基板処理方法
US20130125931A1 (en) Liquid processing apparatus and liquid processing method
KR102420293B1 (ko) 기판 처리 방법 및 기판 처리 장치, 및 기판 처리 프로그램을 기억한 컴퓨터 판독가능 기억 매체
KR20160048652A (ko) 기판 처리 방법, 기판 처리 장치 및 기억 매체
JP4763756B2 (ja) 半導体ウェハを洗浄、乾燥及び親水化する方法
JP3341727B2 (ja) ウエット装置
JP6099996B2 (ja) オゾン水を用いた洗浄方法及び洗浄装置
JP2016004902A (ja) 洗浄処理方法および洗浄処理装置、ならびに乾燥処理方法および乾燥処理装置
JP2006278956A (ja) 基板処理装置および基板処理方法
TWI592988B (zh) 半導體乾燥設備和用於該設備之半導體乾燥用處理液體的循環與過濾方法
JP2010056208A (ja) 基板洗浄装置
KR20180025201A (ko) 기판 처리 장치 및 기판 처리 방법
JPH04336430A (ja) 洗浄方法及び洗浄装置
JPH09162156A (ja) 処理方法及び処理装置
JP3910757B2 (ja) 処理装置及び処理方法
JP4357456B2 (ja) 半導体基板の洗浄方法
KR101574645B1 (ko) 연속 세정 장치
JP2007012860A (ja) 基板処理装置および基板処理方法
JP3976088B2 (ja) 基板処理装置
JP2908277B2 (ja) 基板の化学処理のための方法及び装置
JPH0474420A (ja) 洗浄装置及び洗浄方法
JPH08148464A (ja) 基板処理装置およびそれに用いられる処理槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874120

Country of ref document: EP

Kind code of ref document: A1