WO2014115985A1 - 유리 절단 장치 - Google Patents

유리 절단 장치 Download PDF

Info

Publication number
WO2014115985A1
WO2014115985A1 PCT/KR2014/000202 KR2014000202W WO2014115985A1 WO 2014115985 A1 WO2014115985 A1 WO 2014115985A1 KR 2014000202 W KR2014000202 W KR 2014000202W WO 2014115985 A1 WO2014115985 A1 WO 2014115985A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
glass
focusing lens
mirror
focusing
Prior art date
Application number
PCT/KR2014/000202
Other languages
English (en)
French (fr)
Inventor
발렌틴차딘
알렉퍼알리에프
박상배
김성철
세르게이폴루쉬킨
이해동
Original Assignee
에이엠테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이엠테크놀로지 주식회사 filed Critical 에이엠테크놀로지 주식회사
Publication of WO2014115985A1 publication Critical patent/WO2014115985A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a glass cutting device, and more particularly to a glass cutting device using a laser beam.
  • the liquid crystal display device After the liquid crystal is injected between the two transparent substrates, the liquid crystal display device allows light to pass through or is blocked by the liquid crystal injected transparent substrate, while controlling the amount of light passing through the transparent substrate and controlling the amount of light passing through the transparent substrate.
  • the transparent substrate of the liquid crystal display panel As the transparent substrate of the liquid crystal display panel, a glass substrate having a predetermined strength while allowing light to pass therethrough is mainly used.
  • the liquid crystal display panel is manufactured through a process of separating from the glass mother substrate. Since the process of separating the liquid crystal display panel from the glass mother substrate corresponds to the end of the manufacturing process of the liquid crystal display panel, the liquid crystal display panel is separated from the glass mother substrate. In this case, there is a problem that enormous damage occurs.
  • Korean Patent Registration No. 10-0634976 will be described.
  • Such a cutting device can be easily used when the cutting line is a straight line, it is difficult to apply when the cutting line is a curve, the conventional diamond glass cutting method was applied.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a glass cutting device that can prevent the occurrence of damage of the glass substrate to be cut during glass cutting.
  • an object of this invention is to provide the glass cutting device which cut
  • an object of this invention is to provide the glass cutting device which cut
  • an object of the present invention is to provide a glass cutting device that allows the optical contact to be made when irradiated to the glass that is the object of the laser beam cutting operation to reduce the energy loss of the laser beam.
  • the laser beam generating unit for generating a laser beam irradiated on the cutting path of the glass to be cut work;
  • a focusing unit for focusing and irradiating the laser beam irradiated from the laser beam generator onto the cutting path;
  • An induction prism for guiding the laser beam focused at the focusing part to the glass as a cutting target;
  • a medium supply unit supplying an optical contact medium between the induction prism and the glass.
  • the laser beam generated by the laser beam generator may be a single wavelength.
  • the focusing unit includes a focusing lens for focusing a laser beam generated by the laser beam generator, a first mirror having a planar shape for changing a direction of the laser beam focused by the focusing lens, and the first mirror. It may include a second mirror for reflecting the reflected laser beam, but focus and reflect in the glass direction.
  • the focusing lens may be a flat convex, toroidal or meniscus type disposed toward the laser beam generator.
  • the focusing lens may be arranged such that an optical axis coincides with a central axis of the laser beam.
  • the focusing lens may be disposed to be movable on an optical axis.
  • the movement of the focusing lens may correspond to the thickness of the glass to be cut.
  • the focusing lens may include an anti-reflection film.
  • the first mirror may be disposed on the optical axis of the focusing lens, but may be disposed closer to the focusing lens than to the focal point of the focusing lens.
  • the reflection angle of the first mirror may be 40 to 50 degrees.
  • the second mirror may have a reflective surface formed on the incident surface of the laser beam.
  • the second mirror The second mirror
  • the focal length may be twice the focal length of the focusing lens.
  • the induction prism is disposed perpendicular to the central axis of the laser beam focused at the focusing portion, the first surface on which the laser beam is incident, and the laser beam is disposed parallel to the surface of the glass to be cut. It may include a third side exit.
  • the induction prism may include an antireflection layer.
  • the optical contact medium supplied by the medium supply may comprise steam.
  • the luminous flux of the laser beam may be elliptical.
  • the laser beam generator may further include a light splitter configured to split the laser beam generated by the laser beam generator into a main beam and an auxiliary beam.
  • the light splitter may include a pair of split prisms disposed at both sides of a central axis of the laser beam generator to split the laser beam into a main beam and an auxiliary beam.
  • the pair of split prisms may be disposed in the long axis direction of the laser beam luminous flux.
  • a separation distance of the pair of divided prisms may be smaller than a diameter in the long axis direction of the laser beam.
  • the split prism may include an incident surface inclined toward the laser beam generator and an incident surface to which the laser beam is incident, and an exit surface parallel to the incident surface and outputting the laser beam.
  • the pair of split prisms may be arranged so that incident surfaces face each other.
  • the focusing lens may be formed in a plane with respect to a short axis direction of the laser beam.
  • the focusing lens may have an area that covers all the exit surfaces of the pair of split prisms.
  • the pair of split prisms may include an anti-reflection film.
  • the present invention as described above can prevent the occurrence of damage of the glass substrate to be cut at the time of glass cutting.
  • the present invention is divided into a single laser beam and irradiated to the glass so that the cutting of the glass substrate can be made.
  • the present invention simultaneously preheats both sides of the cut line of the glass at the same time by means of an auxiliary beam split in both sides in a single laser beam.
  • FIG. 1 is a view conceptually showing the configuration of a glass cutting device according to an embodiment of the present invention.
  • FIGS. 1 and 2 are diagram illustrating a configuration of the split prism shown in FIGS. 1 and 2.
  • FIG. 4 is a diagram illustrating the division of the laser beam by the split prism shown in FIGS. 1 and 2.
  • FIG. 5 is a perspective view showing an example of the configuration of the focusing lens used in the present invention.
  • FIG. 6 is a perspective view illustrating an example of a configuration of a second mirror used in the present invention.
  • FIG. 7 is a diagram illustrating an association relationship between a first mirror and a second mirror used in the present invention.
  • FIG. 8 is a diagram illustrating a configuration of an induction prism used in the present invention.
  • FIG. 9 is a diagram showing the relationship between an induction prism, glass, and an optical contact medium.
  • FIG. 11 is a plan view of a portion A of FIG. 9.
  • FIG. 12 is a detailed view of a portion B of FIG. 11.
  • FIG. 1 is a view conceptually showing the configuration of a glass cutting device according to an embodiment of the present invention
  • Figure 2 is a view showing the configuration of the glass cutting device shown in the A direction of FIG.
  • the glass cutting device 100 may include a laser beam generator 110, a focusing unit 130, an induction prism 140, and a medium supply unit 150. Include.
  • the glass cutting device 100 may further include a light splitter 120.
  • the laser beam generator 110 generates a laser beam for cutting the glass and irradiates the glass to be cut.
  • the glass to be cut may be a glass substrate used in the liquid crystal display device.
  • the wavelength of the generated laser beam may be set according to the needs of the user.
  • the laser beam is preferably a single wavelength. It is preferable that the wavelength of the laser beam used in this embodiment is 1.064 ⁇ m.
  • the laser beam generator 110 used in the present invention may be used YAG laser, CO2 laser, fiber laser and the like.
  • the laser beam generated by the laser beam generator 110 preferably has an ellipsoidal light beam.
  • the length of the long axis and short axis of the luminous flux of the laser beam may be variously set according to the needs of the user.
  • a luminous flux converting lens or mask can be used.
  • the laser beam generating unit 110 is preferably installed to be movable in the X, Y, Z axis direction according to the user's needs.
  • the light splitter 120 divides the laser beam generated by the laser beam generator 110 into a main beam and an auxiliary beam, and focuses the luminous fluxes of the divided main beam 3 and the auxiliary beam 4, respectively.
  • the main beam is used for cutting the glass
  • the auxiliary beam may preheat both sides of the cutting line to facilitate the cutting of the glass.
  • the light splitter 120 includes a pair of split prisms 122.
  • the pair of splitting prisms 122 splits the laser beam into a main beam and an auxiliary beam.
  • a pair of split prisms 122 are disposed on both sides with respect to the optical axis of the laser beam.
  • the pair of split prisms 122 are disposed in the long axis direction of the laser beam 2, and the split prisms 122 are equal to each other at a distance from the optical axis of the laser beam.
  • the laser beam 2 passing through the separation space of the split prism 122 continues straight as the main beam 3, and the laser beam passing through the split prism 122 is refracted in the predetermined direction as the auxiliary beam 4.
  • the separation distance of the split prism 122 is smaller than the major axis diameter of the laser beam.
  • split prism 122 For refraction of the auxiliary beam, split prism 122 is made as follows.
  • FIG. 3 is a diagram showing the configuration of the split prism shown in FIGS. 1 and 2, in which a right side view (a), a left side view (b), and a plan view (c) of the split prism are shown.
  • the split prism 122 may have a hexahedron shape having a predetermined height, width, and thickness. However, a predetermined chamfering process may be performed on the rear surface of the split prism 122 on both side edge portions.
  • the surface facing the laser beam generator 110 is set as the incident surface 123a through which the laser beam is incident, and the opposite side is the exit surface 123b through which the laser beam is emitted. Can be set.
  • the incident surface 123a and the emission surface 123b are parallel to each other, but are inclined toward the laser beam generator 110.
  • the inclination is preferably set according to the needs of the user Do.
  • FIG. 4 is a diagram illustrating the splitting of the laser beam by the splitting prism shown in FIGS. 1 and 2.
  • the auxiliary beam 4 is emitted in parallel with the main beam 3 by the inclined entrance surface 123a and the emission surface 123b, but spaced apart from the main beam 3 by a predetermined distance. It is emitted.
  • the focusing lens 126 focuses the laser beam. More specifically, the focusing lens 126 passes through the split prism 122 and focuses a laser beam including the divided main beam 3 and the auxiliary beam 4.
  • FIG 5 is a perspective view showing an example of the configuration of the focusing lens 126 used in the present invention.
  • the focusing lens 126 is formed in the form of a convex lens.
  • the focusing lens 126 may have a convex lens shape with respect to the laser beam, but may have a planar shape with respect to a short axis direction of the laser beam.
  • the convex lens shape of the focusing lens 126 is a flat convex, toroidal or meniscus type convex lens, and the convex surface, that is, the incident surface of the laser beam, is the laser beam generator 110. It is preferred to be disposed towards.
  • the focal length of the focusing lens 126 is twice or more than that of the glass to be cut at the positioning position of the focusing lens 126.
  • the focal length is preferably set in consideration of the disposition positions of the first and second mirrors 132 and 134 and the induction prism 140 which will be described later.
  • the focusing lens 126 preferably has its center axis, that is, the optical axis, aligned with the central axis of the light beam of the laser beam.
  • the focusing lens 126 is preferably arranged to be movable along the optical axis as the user needs. That is, the focusing lens 126 moves the position on the optical axis so that the cutting operation can be easily made in response to the thickness change according to the glass to be cut, and an optimal focus is formed on the glass 1 to be cut. It is desirable to be able to.
  • the area of the front surface of the focusing lens 126 is preferably formed to cover the exit surface of the pair of divided prism 122 spaced apart from each other.
  • the main beam 3 is incident to the center of the focusing lens 126, and the auxiliary beam 4 is incident to both sides of the focusing lens 126.
  • the main beam and the auxiliary beams passing through the focusing lens 126 are focused in a predetermined focal direction by the focusing lens 126.
  • the focus of the focusing lens 126 may be linear as shown in FIG. 5.
  • an anti-reflection film for the laser beam is preferably formed on the surfaces of the split prism 122 and the focusing lens 126 to prevent the loss of the laser beam.
  • the focusing unit 130 focuses the main beam 3 and the auxiliary beam 4 that are split and reflected by the light splitter 120 into the glass 1 to be cut.
  • the focusing unit 130 includes a first mirror 132 and a second mirror 134.
  • the first mirror 132 is disposed on the optical axis of the focusing lens 126 to reflect the main beam and the auxiliary beam focused by the focusing lens 126 in a predetermined direction.
  • the arrangement position of the first mirror 132 is closer to the focusing lens 126 than to the focus of the focusing lens 126.
  • the first mirror 132 is in the form of a planar mirror, and changes the directions of the incident main beam and the auxiliary beam, thereby facilitating the incident to the glass to be cut.
  • An arrangement angle of the first mirror 132 may be 40 to 50 degrees. More preferably, it may be 45 degrees, but may vary according to the needs of the user.
  • the first mirror 132 In order for the first mirror 132 to easily reflect the incident main beam and the auxiliary beam, it is preferable that the first mirror 132 has a reflective layer formed on the incident surface.
  • the reflective layer is subjected to a reflective coating for obtaining an optimum reflectance corresponding to the laser beam used, such as aluminum coating, silver coating or gold coating.
  • the first mirror 132 preferably has a thickness that is durable in response to the energy density of the laser beam, that is, the output. To this end, if the output of the laser beam used for cutting the glass is increased, the first mirror 132 is replaced with a thicker one to prevent the first mirror 132 from being broken by the energy of the laser beam during the glass cutting operation. It is preferable.
  • the second mirror 134 reflects the main beam and the auxiliary beam 4 reflected from the first mirror 132 toward the cutting path of the glass to be cut.
  • FIG. 6 is a perspective view illustrating an example of a configuration of a second mirror used in the present invention.
  • the second mirror 134 may be concave with respect to the short axis direction of the laser beam having an elliptic light beam, and may be formed in a planar shape with respect to the long axis direction.
  • the second mirror 134 may have a planar shape in both the short axis direction and the long axis direction.
  • the second mirror 134 is preferably formed with a reflective layer for facilitating the reflection of the laser beam on the incident surface on which the main beam and the auxiliary beam are incident.
  • the reflective layer of the second mirror 134 may be formed in the same manner as the reflective layer of the first mirror 132.
  • the focal length of the second mirror 134 is preferably formed to the extent that the incident main beam and the auxiliary beam can focus on the glass to be cut.
  • the main beam and the auxiliary beam incident on the second mirror 134 are focused by the focusing lens 126, the focusing is performed in the long axis direction, and the focusing by the second mirror 134 is shortened. Is made about the direction.
  • FIG. 7 is a diagram illustrating an association relationship between a first mirror and a second mirror used in the present invention. Referring to FIG. 7, it can be seen that the first mirror 132 and the second mirror 134 focus the laser beam through the focusing lens 126 to a predetermined position, that is, glass to be cut.
  • the distance from the focusing lens 126 to the glass preferably corresponds to the focal length of the focusing lens 126. That is, when the laser beam passing through the focusing lens 126 is reflected on the first mirror 132 and the second mirror 134 in turn and irradiated onto the glass, the distance of the path that the laser beam passes through is focused on the focusing lens 126. It is preferable to correspond to the focal length of.
  • FIG. 8 is a diagram showing the configuration of the induction prism 140 used in the present invention.
  • the induction prism 140 guides the laser beam reflected from the second mirror 134 to facilitate the incidence into the glass to be cut.
  • the induction prism 140 may be formed in a hexahedron shape.
  • the first surface 142 of the induction prism 140 is an incident surface to which the laser beam is incident, and may be disposed perpendicular to the central axis of the laser beam reflected from the second mirror 134. Therefore, the laser beam reflected by the second mirror 134 may be easily incident into the induction prism 140.
  • an antireflection layer is preferably formed on the first surface 142.
  • the first surface 142 is in a planar shape, but may be formed convexly in accordance with a user's needs so that incident light may be focused.
  • the third surface 144 of the induction prism 140 opposite to the first surface 142 is an exit surface from which the laser beam is emitted, and is preferably formed in parallel with the surface of the glass 1 to be cut. . It is preferable that the anti-reflection layer is also formed on the third surface 144.
  • the exit surface of the induction prism 140 and the incidence surface of the glass 1 are in optical contact. It is desirable that optical contacting be maintained. Even when the exit surface of the induction prism 140 and the entrance surface of the glass 1 are in close contact with each other, this may not be regarded as optical contact even though it may be a mechanical contact.
  • Optical contact is an adhesive-free attachment of two polished glass surfaces, which utilizes molecular attraction within a very short range.
  • Optical contact has the advantage that Fresnel reflections disappear between any two optical planes.
  • FIG. 9 is a diagram showing the relationship between an induction prism, glass, and an optical contact medium.
  • a medium supply unit 150 is disposed on one side of the glass to induce the prism 140 and the glass 1.
  • the optical contact medium is shown as a structure having a predetermined size, but this is to indicate that the optical contact medium exists between the exit surface of the induction prism 140 and the entrance surface of the glass 1, and the optical The contact medium is atypical while the exit surface of the induction prism 140 and the entrance surface of the glass 1 are in optical contact.
  • the medium supply unit 150 for supplying the optical contact medium, the medium supply unit 150 is disposed separately.
  • the medium supply unit 150 may supply steam as an optical contact medium between the exit surface of the induction prism 140 and the entrance surface of the glass 1.
  • the medium supply unit 150 is preferably configured to continuously supply a uniform amount of steam during the glass cutting operation.
  • the components of the steam may comprise water or oil.
  • the present invention configured as described above can be used as follows.
  • the worker prepares the glass 1 which has predetermined thickness and area as a cutting operation object.
  • the prepared glass 1 is arrange
  • positioned does not shake the glass which is a work object with respect to an external vibration etc., and the arrangement position is a table which comprises a horizontal plane.
  • the operator adjusts the focusing lens 126 in the + or-y-axis direction and the second mirror 134 and the induction prism 140 in the + or-z-axis direction corresponding to the thickness of the prepared glass 1. Adjust with Here, in the adjustment of the above optical elements, it is preferable to take into account the angle at which the laser beam can be totally reflected at the bottom of the glass 1.
  • the glass cutting device 100 according to the present invention is preferably set so that the focus of the laser beam can be formed inside the glass (1).
  • FIG. 10 is a detailed view of the portion A of FIG. 9, showing that the focus of the laser beam is formed at a predetermined depth on the surface of the glass 1, not on the surface of the glass 1 to be cut.
  • the laser beam is totally reflected at the bottom of the glass 1, so that a focal point is formed at a portion close to the incident surface side of the glass 1.
  • the glass is cut at the focal position of the laser beam. At this time, in order to improve glass cutting quality, it is preferable to preheat at both sides of a cut part.
  • the auxiliary beam 4 can be irradiated on both sides of the main beam 3.
  • FIG. 11 is a plan view of the portion A of FIG. 9, and FIG. 12 is a detailed view of the portion B of FIG. 11.
  • the main beam 3 is a cutting line of the glass 1 to be cut. It is shown at (W) that is focused to the main focal point F1, and the auxiliary beam 4 is focused to the preheat focal point F2 on both sides of the main focal point F1.
  • the operator forms the focus of the laser beam on the glass 1 to be cut, as shown in FIG. 12, and may perform a predetermined cutting operation on the glass 1.
  • the present invention can prevent the occurrence of damage to the glass substrate to be cut when cutting the glass, the glass substrate can be cut by dividing a single laser beam and irradiated to the glass, divided into both sides in a single laser beam
  • the auxiliary beams can simultaneously preheat both sides of the cut line of the glass at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)

Abstract

본 발명은, 절단 작업 대상인 유리의 절단경로 상에 조사되는 타원형의 광속을 갖는 레이저빔을 발생시키는 레이저빔 발생부; 상기 레이저빔 발생부에서 발생된 상기 레이저빔을 메인 빔과 보조 빔으로 분할하는 광분할부; 상기 광분할부에서 분할된 상기 레이저빔을 상기 절단경로 상으로 집속하여 조사하는 집속부; 및 상기 집속부와 상기 유리 기판 사이에 광학적 접촉 매질을 공급하는 매질 공급부; 를 포함하는 유리 절단 장치를 제공한다. 본 발명은, 유리 절단 시 절단되는 유리 기판의 손상 발생을 방지할 수 있고, 단일의 레이저 빔을 분할한 후 유리에 조사하여 유리 기판의 절단이 이루어질 수 있으며, 단일의 레이저 빔에서 양측으로 분할된 보조 빔에 의해 유리의 절단선 양측을 동시에 동일하게 예열할 수 있다.

Description

유리 절단 장치
본 발명은 유리 절단 장치에 관한 것으로서, 보다 상세하게는 레이저빔을 이용한 유리 절단 장치에 관한 것이다.
최근 매우 빠른 정보처리능력을 갖는 정보처리장치의 개발이 급속히 이루어지면서 액정표시장치의 기술 개발이 급속히 진행되고 있다.
액정표시장치는 투명한 2 장의 투명 기판 사이에 액정을 주입한 후, 액정이 주입된 투명 기판을 빛이 통과 또는 차단되도록 함과 동시에 투명 기판을 통과하는 빛의 많고 적음이 제어되도록 하고, 빛이 각각 지정된 색으로 필터링되도록 하여 모자이크 형태로 정보가 시각적으로 확인될 수 있도록 하는 액정표시패널과, 액정표시패널에 균일한 광을 공급하는 백라이트 어셈블리 및 액정표시패널 및 백라이트 어셈블리를 수납하는 케이스로 구성된다.
이와 같은 액정표시패널의 투명 기판은 빛이 통과될 수 있으면서도 소정 강도를 갖는 유리 기판이 주로 사용된다. 여기서, 액정표시패널은 유리 모기판으로부터 분리하는 공정을 통해 제작된다. 이와 같이 유리 모기판으로부터 액정표시패널을 분리시키는 공정은 액정표시패널의 제작 공정의 마지막에 해당하는 공정이기 때문에 유리 모기판으로부터 액정표시패널을 분리하다 액정표시패널 중 일부에 깨짐 및 손상이 발생될 경우, 막대한 피해가 발생되는 문제점이 있다.
상기한 문제점을 해결하기 위하여, 레이저를 이용하여 유리 기판을 절단하는 장치가 개시되었다.
이에 대한 선행기술의 예시로서, 대한민국 등록특허 10-0634976호를 살펴보기로 한다.
선행기술은 절단 작업 대상인 유리 기판 상의 절단선을 따라 레이저빔을 조사하여 유리 기판 상에서 레이저 조사부위를 따라 기판 표면 상에 소정의 절단홈이 발생되면, 절단홈에 대하여 소정의 압력을 인가하여 기판의 절단이 이루어지도록 함을 알 수 있다.
상기한 같은 절단 장치는 절단선이 직선인 경우에는 용이하게 사용할 수 있으나, 절단선이 곡선을 이루는 경우에는 적용하기 곤란하여, 기존의 다이아몬드 유리 커팅 방식을 적용하였다.
유리의 절단선 형태에 따라 레이저 절단과 다이아몬드 커팅을 교대로 사용하는 유리 절단 장치를 경우, 절단 방식을 교대하는 구성이 매우 복잡하고, 설정에도 많은 시간이 소요되는 문제점이 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 유리 절단 시 절단되는 유리 기판의 손상 발생을 방지할 수 있는 유리 절단 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 절단 작업 대상인 유리 상의 절단선상에 레이저빔을 조사하여 유리의 절단이 이루어지도록 하는 유리 절단 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 절단 작업 대상인 유리의 절단선이 곡선을 이루는 경우에도 유리의 절단이 이루어지도록 하는 유리 절단 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 레이저빔의 절단 작업 대상인 유리에 조사될 때 광학적 접촉이 이루어질 수 있도록 하여 레이저빔의 에너지 손실이 감소되도록 하는 유리 절단 장치를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해 본 발명은, 절절단 작업 대상인 유리의 절단경로 상에 조사되는 레이저빔을 발생시키는 레이저빔 발생부; 상기 레이저빔 발생부에서 조사되는 상기 레이저빔을 상기 절단경로 상으로 집속하여 조사하는 집속부; 상기 집속부에서 집속된 상기 레이저빔을 절단 작업 대상인 상기 유리로 유도하는 유도 프리즘; 및 상기 유도 프리즘과 상기 유리 사이에 광학적 접촉 매질을 공급하는 매질 공급부; 를 포함하는 유리 절단 장치를 제공한다.
상기 레이저빔 발생부에서 발생되는 상기 레이저빔은 단일 파장일 수 있다.
상기 집속부는, 상기 레이저빔 발생부에서 발생된 레이저빔을 집속하는 집속 렌즈와, 상기 집속 렌즈에 의해 집속되는 상기 레이저빔의 방향을 변환하는 평면 형태의 제1 미러와, 상기 제1 미러에 의해 반사된 상기 레이저빔을 반사하되 상기 유리 방향으로 집속하여 반사시키는 제2 미러를 포함할 수 있다.
상기 집속 렌즈는, 상기 레이저빔 발생부를 향하여 배치되는 평볼록, 토로이달(toroidal) 또는 메니스커스(meniscus) 타입일 수 있다.
상기 집속 렌즈는 광축이 상기 레이저빔의 중심축과 일치하여 배치될 수 있다.
상기 집속 렌즈는 광축 상에서 이동 가능하게 배치될 수 있다.
상기 집속 렌즈의 이동은 절단 작업 대상인 상기 유리의 두께에 대응할 수 있다.
상기 집속 렌즈는 반사 방지막을 포함할 수 있다.
상기 제1 미러는, 상기 집속 렌즈의 광축 상에 배치되되 상기 집속 렌즈의 초점보다 상기 집속 렌즈에 근접하여 배치될 수 있다.
상기 제1 미러의 반사 각도는 40~50도일 수 있다.
상기 제2 미러는, 상기 레이저빔의 입사면 상에 반사면이 형성될 수 있다.
상기 제2 미러는,
그 초점 거리가 상기 집속 렌즈의 초점 거리의 2배일 수 있다.
상기 유도 프리즘은, 상기 집속부에서 집속되는 상기 레이저빔의 중심축에 대하여 수직으로 배치되고 상기 레이저빔이 입사되는 제1 면과, 절단 대상인 상기 유리의 표면에 대하여 평행하게 배치되고 상기 레이저빔이 출사되는 제3 면을 포함할 수 있다.
상기 유도 프리즘은 반사 방지층을 포함할 수 있다.
상기 매질 공급부가 공급하는 광학접 접촉 매질은 증기를 포함할 수 있다.
상기 레이저빔의 광속은 타원형일 수 있다.
상기 레이저빔 발생부에서 발생된 상기 레이저빔을 메인 빔과 보조 빔으로 분할하는 광분할부를 더 포함할 수 있다.
상기 광분할부는, 상기 레이저빔 발생부의 중심축의 양측으로 배치되어, 상기 레이저빔을 메인빔과 보조빔으로 분할하는 한 쌍의 분할 프리즘을 포함할 수 있다.
상기 한 쌍의 분할 프리즘은 상기 레이저빔 광속의 장축 방향으로 배치될 수 있다.
상기 한 쌍의 분할 프리즘의 이격 거리는 상기 레이저빔의 장축 방향 직경보다 작을 수 있다.
상기 분할 프리즘은, 상기 레이저빔 발생부를 향하여 경사지고 상기 레이저빔이 입사되는 입사면과, 상기 입사면에 대하여 평행하고 상기 레이저빔이 출사되는 출사면을 포함할 수 있다.
상기 한 쌍의 분할 프리즘은, 입사면이 서로 대향하여 배치될 수 있다.
상기 집속 렌즈는, 상기 레이저빔의 단축 방향에 대하여 평면으로 형성될 수 있다.
상기 집속 렌즈는 상기 한 쌍의 분할 프리즘의 출사면을 모두 커버하는 면적을 가질 수 있다.
상기 한 쌍의 분할 프리즘은 반사 방지막을 포함할 수 있다.
상기와 같은 본 발명은, 유리 절단 시 절단되는 유리 기판의 손상 발생을 방지할 수 있다.
또한, 본 발명은 단일의 레이저 빔을 분할한 후 유리에 조사하여 유리 기판의 절단이 이루어질 수 있도록 한다.
또한, 본 발명은 단일의 레이저 빔에서 양측으로 분할된 보조 빔에 의해 유리의 절단선 양측을 동시에 동일하게 예열한다.
도 1은 본 발명의 일 실시예에 따른 유리 절단 장치의 구성을 개념적으로 나타내는 도면이다.
도 2는 도 1의 A 방향에서 도시된 유리 절단 장치의 구성을 나타내는 도면이다.
도 3은 도 1과 도 2에 도시된 분할 프리즘의 구성을 나타내는 도면이다.
도 4는 도 1과 도 2에 도시된 분할 프리즘에 의한 레이저빔의 분할을 나타내는 도면이다.
도 5는 본 발명에서 사용하는 집속 렌즈의 구성의 일 예를 나타내는 사시도이다.
도 6은 본 발명에서 사용하는 제2 미러의 구성의 일 예를 나타내는 사시도이다.
도 7은 본 발명에서 사용하는 제1 미러와 제2 미러의 연관 관계를 나타내는 도면이다.
도 8은 본 발명에서 사용하는 유도 프리즘의 구성을 나타내는 도면이다.
도 9는 유도 프리즘, 유리 및 광학적 접촉 매질의 관계를 나타내는 도면이다.
도 11은 도 9의 A 부분의 평면도이다.
도 12는 도 11의 B 부분의 상세도면이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 유리 절단 장치의 구성을 개념적으로 나타내는 도면이고, 도 2는 도 1의 A 방향에서 도시된 유리 절단 장치의 구성을 나타내는 도면이다.
도 1과 도 2를 참조하면, 본 발명의 일 실시예에 따른 유리 절단 장치(100)는 레이저빔 발생부(110), 집속부(130), 유도 프리즘(140) 및 매질 공급부(150)를 포함한다.
또한, 본 발명의 일 실시예에 따른 유리 절단 장치(100)는 광분할부(120)를 더 포함할 수 있다.
레이저빔 발생부(110)는 유리 절단을 위한 레이저빔을 발생시켜 절단 대상인 유리에 대하여 조사한다. 여기서, 절단 대상인 유리는 액정표시장치에서 사용하는 유리 기판일 수 있다.
이때, 발생되는 레이저빔의 파장은 사용자의 필요에 따라 설정될 수 있다. 다만, 후술하는 광학 요소들에 의한 레이점빔의 분산 정도와 굴절 정도가 균일하게 하기 위해 레이저빔은 단일 파장인 것이 바람직하다. 본 실시예에서 사용하는 레이저빔은 그 파장이 1.064μm 인 것이 바람직하다. 또한, 본 발명에서 사용하는 레이저빔 발생부(110)는 YAG 레이저, CO2 레이저, 파이버 레이저 등이 사용될 수 있다.
레이저빔 발생부(110)에서 발생되는 레이저빔은 그 광속이 타원인 바람직하다. 여기서, 레이저빔의 광속의 장축과 단축의 길이는 사용자의 필요에 따라 다양하게 설정될 수 있다. 레이저빔의 광속을 타원으로 하기 위해, 광속 변환 렌즈 또는 마스크를 사용할 수 있다.
또한, 레이저빔 발생부(110)는 사용자의 필요에 따라 X, Y, Z 축 방향으로 이동가능하게 설치되는 것이 바람직하다.
광분할부(120)는 레이저빔 발생부(110)에서 발생된 레이저빔을 메인 빔과 보조 빔으로 분할하고, 분할된 메인 빔(3)과 보조 빔(4)의 광속을 각각 집속한다. 여기서, 메인 빔은 유리의 절단에 사용되고, 보조 빔은 유리 절단을 용이하게 하기 위한 절단선 양측을 예열할 수 있다.
광분할부(120)는 한 쌍의 분할 프리즘(122)을 포함한다.
한 쌍의 분할 프리즘(122)은 레이저빔을 메인 빔과 보조 빔으로 분할한다. 이를 위해, 한 쌍의 분할 프리즘(122)은 레이저빔의 광축을 기준으로 양측에 각각 배치된다. 여기서, 한 쌍의 분할 프리즘(122)은 레이저빔(2)의 장축 방향으로 배치되고, 분할 프리즘(122) 각각은 레이저빔의 광축과의 이격 거리는 서로 동일하다.
분할 프리즘(122)의 이격 공간을 통과하는 레이저 빔(2)은 메인 빔(3)으로서 계속 직진하고, 분할 프리즘(122)을 통과하는 레이저 빔은 보조 빔(4)으로서 소정 방향으로 굴절된다. 이를 위해, 분할 프리즘(122)의 이격 거리는 레이저빔의 장축 방향 직경보다 작은 것이 바람직하다.
보조 빔의 굴절을 위해, 분할 프리즘(122)은 다음과 같이 이루어진다.
도 3은 도 1과 도 2에 도시된 분할 프리즘의 구성을 나타내는 도면으로서, 분할 프리즘의 우측면도(a), 좌측면도(b) 및 평면도(c)가 도시되어 있다.
도 3을 참조하면, 분할 프리즘(122)은 소정의 높이와 폭 그리고 두께를 갖는 육면체 형상으로 이루어질 수 있다. 다만, 분할 프리즘(122)의 배면은 양측 모서리부위에 대하여 소정의 면취 공정이 수행될 수 있다.
이때, 분할 프리즘(122)의 표면 중, 레이저빔 발생부(110)를 향하는 면은 레이저빔이 입사되는 입사면(123a)으로 설정되고, 반대측면은 레이저빔이 출사되는 출사면(123b)으로 설정될 수 있다. 이때, 입사면(123a)과 출사면(123b)은 서로 평행하지만, 레이저빔 발생부(110)를 향하여 경사지게 형성된다. 이때, 입사면(123a)과 출사면(123b)의 경사도에 따라, 후술하는 메인 빔(3)과 보조 빔(4)의 이격 정도가 설정되므로, 그 경사도는 사용자의 필요에 따라 설정되는 것이 바람직하다.
도 4는 도 1과 도 2에 도시된 분할 프리즘에 의한 레이저 빔의 분할을 나타내는 도면이다. 도 4를 참조하면, 경사진 입사면(123a)과 출사면(123b)에 의해 보조 빔(4)은 메인 빔(3)과 평행하게 출사되지만, 메인 빔(3)과는 소정 거리만큼 이격되어 출사된다.
집속 렌즈(126)는 레이저빔을 집속한다. 보다 상세하게는 집속 렌즈(126)는 분할 프리즘(122)을 통과하며 분할된 메인 빔(3)과 보조 빔(4)을 포함하는 레이저빔을 집속한다.
도 5는 본 발명에서 사용하는 집속 렌즈(126)의 구성의 일 예를 나타내는 사시도이다.
도 5를 참조하면, 집속 렌즈(126)는 볼록 렌즈 형태로 이루어진다. 다만, 집속 렌즈(126)는 레이저빔에 대하여는 볼록 렌즈 형태를 이루지만, 레이저빔의 단축 방향에 대하여는 평면 형태로 이루어질 수 있다. 여기서, 집속 렌즈(126)의 볼록 렌즈 형태는 평볼록, 토로이달(toroidal) 또는 메니스커스(meniscus) 타입의 볼록 렌즈로서, 볼록한 면 즉, 레이저빔의 입사면이 레이저빔 발생부(110)를 향하여 배치되는 것이 바람직하다.
집속 렌즈(126)의 초점 거리는 집속 렌즈(126)의 배치 위치에서 절단 작업 대상인 유리의 배치 위치의 2배 또는 그 이상인 것이 바람직하다. 이때, 초점 거리의 설정은 후술하는 제1 및 제2 미러(132, 134) 그리고 유도 프리즘(140)의 배치 위치를 고려하여 이루어지는 것이 바람직하다.
집속 렌즈(126)는 그 중심축 즉, 광축이 레이저빔의 광속의 중심축과 일치하게 배치되는 것이 바람직하다.
또한, 집속 렌즈(126)는 그 광축을 따라 사용자의 필요에 따라 이동가능하게 배치되는 것이 바람직하다. 즉, 절단 대상인 유리에 따른 두께 변화에 대응하여 절단 작업이 용이하게 이루어질 수 있도록 하기 위해, 집속 렌즈(126)는 광축 상에서의 위치를 이동시키며 절단 작업 대상인 유리(1)에 대하여 최적의 초점이 형성될 수 있도록 하는 것이 바람직하다.
이때, 집속 렌즈(126)의 전면의 면적이 서로 이격되어 있는 한 쌍의 분할 프리즘(122)의 출사면을 모두 커버할 수 있는 정도로 형성되는 것이 바람직하다.
메인 빔(3)은 집속 렌즈(126)의 중심으로 입사되고, 보조 빔(4)은 집속 렌즈(126)의 양측으로 입사된다. 집속 렌즈(126)를 투과하는 메인 빔과 보조 빔은 집속 렌즈(126)에 의해 소정의 초점 방향으로 집속된다.
집속 렌즈(126)는 레이저빔의 장축 방향에 대하여 볼록 렌즈 형태를 이루고 있으므로, 집속 렌즈(126)의 초점은 도 5에 도시한 바와 같이 직선 형태일 수 있다.
레이저빔의 집속 시, 레이저빔의 손실을 방지하기 위해 상기한 분할 프리즘(122)와 집속 렌즈(126)의 표면에는 레이저빔에 대한 반사 방지막이 형성되는 것이 바람직하다.
집속부(130)는 광분할부(120)에서 분할되어 반사되는 메인 빔(3)과 보조 빔(4)을 절단 대상인 유리(1)로 집속한다.
집속부(130)는 제1 미러(132)와 제2 미러(134)를 포함한다.
제1 미러(132)는 집속 렌즈(126)의 광축 상에 배치되어, 집속 렌즈(126)에 의해 집속되는 메인 빔과 보조 빔을 소정의 방향으로 반사한다. 여기서, 제1 미러(132)의 배치 위치는 집속 렌즈(126)의 초점보다 집속 렌즈(126)에 근접하는 것이 바람직하다.
제1 미러(132)는 평면경 형태로서, 입사되는 메인 빔과 보조 빔의 방향을 변화시켜, 절단 대상인 유리에의 입사를 용이하게 한다. 제1 미러(132)의 배치 각도는 40~50도 일 수 있다. 더욱 바람직하게는, 45도일 수 있지만, 사용자의 필요에 따라 변화될 수 있다.
제1 미러(132)는 입사되는 메인 빔과 보조 빔의 반사를 용이하게 하기위해, 제1 미러(132)는 입사면상에 반사층이 형성되는 것이 바람직하다. 여기서, 반사층은 알루미늄 코팅, 은 코팅 또는 금 코팅 등, 사용되는 레이저빔에 대응하여 최적의 반사율을 얻기 위한 반사 코팅이 수행되는 것이 바람직하다.
한편, 제1 미러(132)는 레이저빔의 에너지 밀도, 즉 출력에 대응하여 내구성을 갖는 두께를 갖는 것이 바람직하다. 이를 위해, 유리 절단에 사용되는 레이저빔의 출력이 증가한다면, 제1 미러(132)를 보다 두꺼운 것으로 교체하여 유리 절단 작업 도중 제1 미러(132)가 레이저빔의 에너지에 의해 파손되는 것을 방지하는 것이 바람직하다.
제2 미러(134)는 제1 미러(132)에서 반사된 메인 빔과 보조 빔(4)을 절단 대상인 유리의 절단 경로를 향하여 반사한다.
도 6은 본 발명에서 사용하는 제2 미러의 구성의 일 예를 나타내는 사시도이다.
도 6을 참조하면, 본 실시예에서 제2 미러(134)는 타원의 광속을 갖는 레이저빔의 단축 방향에 대하여 오목하게 형성되고, 장축 방향에 대해서는 평면 형태로 형성될 수 있다. 그러나, 사용자의 필요에 따라서, 제2 미러(134)는 단축 방향과 장축 방향 모두 평면 형태일 수 있다.
제2 미러(134)는 메인 빔과 보조 빔이 입사하는 입사면 상에 레이저빔의 반사를 용이하게 하기 위한 반사층이 형성되는 것이 바람직하다. 제2 미러(134)의 반사층은 제1 미러(132)의 반사층과 동일하게 형성될 수 있다.
여기서, 제2 미러(134)의 초점 거리는 입사되는 메인 빔과 보조 빔이 절단 작업 대상인 유리에 초점을 형성할 수 있는 정도로 형성되는 것이 바람직하다. 단, 제2 미러(134)에 입사되는 메인 빔과 보조 빔은 집속 렌즈(126)에 의해 집속되고 있으나, 그 집속은 장축 방향에 대해 이루어지고 있고, 제2 미러(134)에 의한 집속은 단축 방향에 대해 이루어진다.
도 7은 본 발명에서 사용하는 제1 미러와 제2 미러의 연관 관계를 나타내는 도면이다. 도 7을 참조하면, 제1 미러(132)와 제2 미러(134)는 집속 렌즈(126)를 통한 레이저빔을 소정의 위치 즉, 절단 작업 대상인 유리로 집속함을 알 수 있다.
여기서, 제1 미러(132)와 제2 미러(134)의 배치 시, 집속 렌즈(126)에서 유리까지의 거리는 집속 렌즈(126)의 초점 거리에 대응하는 것이 바람직하다. 즉, 집속 렌즈(126)를 통과한 레이저 빔이 제1 미러(132)와 제2 미러(134)에 차례대로 반사되어 유리에 조사될 때, 레이저빔이 경유하는 경로의 거리는 집속 렌즈(126)의 초점 거리에 대응하는 것이 바람직하다.
도 8은 본 발명에서 사용하는 유도 프리즘(140)의 구성을 나타내는 도면이다.
유도 프리즘(140)은 제2 미러(134)에서 반사된 레이저빔을 유도하여 절단 작업 대상인 유리로 입사되는 것을 용이하게 한다.
도 8을 참조하면, 유도 프리즘(140)은 육면체 형태로 형성될 수 있다. 여기서, 유도 프리즘(140)의 제1 면(142)은 레이저빔이 입사하는 입사면으로서, 제2 미러(134)에서 반사되는 레이저빔의 중심축에 대하여 수직으로 배치될 수 있다. 따라서, 제2 미러(134)에서 반사되는 레이저빔은 유도 프리즘(140)의 내측으로 용이하게 입사될 수 있다. 레이저 빔의 입사를 용이하게 하기 위해, 제1 면(142) 상에는 반사 방지층이 형성되는 것이 바람직하다.
본 실시예에서, 제1 면(142)은 평면 형태이지만, 사용자의 필요에 따라 볼록하게 형성되어 입사되는 광이 집속되도록 할 수도 있다.
한편, 제1 면(142)에 대향하는 유도 프리즘(140)의 제3 면(144)은 레이저빔이 출사하는 출사면으로서, 절단 작업 대상인 유리(1)의 표면과 평행하게 형성되는 것이 바람직하다. 제3 면(144) 상에도 반사 방지층이 형성되는 것이 바람직하다.
유도 프리즘(140)의 제3 면(144)을 투과한 빔이 유리(1)에 대하여 용이하게 입사될 수 있도록 하기 위해서는 유도 프리즘(140)의 출사면과 유리(1)의 입사면이 광학적 접촉(optical contacting)이 유지되는 것이 바람직하다. 유도 프리즘(140)의 출사면과 유리(1)의 입사면이 밀착되어 있는 경우에도 이는 기계적인 접촉일 수 있어도 광학적 접촉으로 볼 수 없다.
광학적 접촉은 두 개의 연마된 유리면을 접착제 없이 부착시키는 것으로, 매우 짧은 범위 내의 분자 인력을 활용한다. 광학적 접촉은 임의의 두 개의 광학면 사이에 프레넬(Fresnel) 반사가 사라지게 하는 장점이 있다.
도 9는 유도 프리즘, 유리 및 광학적 접촉 매질의 관계를 나타내는 도면이다.
도 9를 참조하면, 유도 프리즘(140)의 출사면과 유리(1)의 입사면의 광학적 접촉을 위해, 유리의 일측으로는 매질 공급부(150)이 배치되어 유도 프리즘(140)과 유리(1) 사이에 소정의 광학적 접촉 매질을 공급함을 나타낸다. 도면에서, 광학적 접촉 매질은 소정의 크기를 갖는 구조물로서 도시되고 있으나, 이는 유도 프리즘(140)의 출사면과 유리(1)의 입사면 상이에 광학적 접촉 매질이 존재함을 나타내기 위한 것으로서, 광학적 접촉 매질은 유도 프리즘(140)의 출사면과 유리(1)의 입사면이 광학적 접촉이 이루어지게 하는 동안 비정형적으로 존재한다.
도 9의 A 부분에 대해서는 후술하기로 한다.
본 발명에서는 광학적 접촉 매질의 공급을 위해 , 매질 공급부(150)가 별도로 배치된다. 매질 공급부(150)는 유도 프리즘(140)의 출사면과 유리(1)의 입사면의 광학적 접촉 매질로서 증기를 공급할 수 있다. 매질 공급부(150)는 유리 절단 작업이 이루어지는 동안 증기를 균일한 양으로 지속적으로 공급할 수 있도록 구성되는 것이 바람직하다. 여기서, 증기의 성분은 물 또는 오일을 포함할 수 있다.
상기와 같이 구성된 본 발명은 다음과 같이 사용할 수 있다.
작업자는 절단 작업 대상으로서 소정의 두께와 면적을 갖는 유리(1)를 준비한다.
준비된 유리(1)는 소정의 위치에 배치한다. 여기서, 유리(1)가 배치되는 위치는 외부의 진동 등에 대하여 작업 대상인 유리가 흔들리지 않고, 배치 위치는 수평면을 이루는 테이블인 것이 바람직하다.
그리고, 작업자는 준비된 유리(1)의 두께에 대응하여, 집속 렌즈(126)를 + 또는 - y축 방향으로 조정하고, 제2 미러(134)와 유도 프리즘(140)을 + 또는 - z축 방향으로 조정한다. 여기서, 상기한 광학 요소들의 조정 시, 레이저빔이 유리(1)의 저면부에서 전반사될 수 있는 각도를 고려하는 것이 바람직하다.
이때, 본 발명에 의한 유리 절단 장치(100)는 유리(1)의 내측에 레이저빔의 초점이 형성될 수 있도록 설정하는 것이 바람직하다.
도 10은 도 9의 A 부분의 상세도면으로서, 레이저빔의 초점이 절단 작업 대상인 유리(1)의 표면이 아닌, 유리(1)의 표면에서 소정의 깊이를 갖는 곳에 형성됨을 나타낸다.
이때, 레이저빔은 유리(1)의 저면에서 전반사되어, 유리(1)의 입사면측에 밀접한 부분에서 초점이 형성된다.
여기서, 유리의 절단은 레이저빔의 초점 위치에서 이루어진다. 이때, 유리 절단 품질을 향상시키기 위해서는 절단 부위 양측으로 예열이 이루어지는 것이 바람직하다. 따라서, 이를 위해, 메인 빔(3)의 양측으로는 보조 빔(4)이 조사될 수 있다.
도 11은 도 9의 A 부분의 평면도이고, 도 12는 도 11의 B 부분의 상세도면으로서, 도 11과 도 12를 참조하면, 메인 빔(3)은 절단 작업 대상인 유리(1)의 절단선(W)에 메인 초점(F1)으로 집속되고, 보조 빔(4)은 메인 초점(F1)의 양측에 예열 초점(F2)으로 집속됨을 도시하고 있다.
유리(1) 절단선(W)의 양측의 온도가 상이한 경우, 절단선(W)은 온도가 낮은 쪽으로 유도되어, 필요로 하는 절단선(W)을 얻을 수 없지만, 본 발명에서는 단일의 레이저빔에서 2개의 보조빔이 분할되므로, 예열 초점(F2)의 온도는 서로 동일하고, 이에 따라 메인 초점(F1)에 의한 사용자가 필요로 하는 균일한 절단선(W)을 얻을 수 있다.
작업자는 절단 작업 대상인 유리(1)에 대하여 도 12에 도시된 바와 같이 레이저빔의 초점을 형성시키며, 유리(1)에 대하여 소정의 절단 작업을 수행할 수 있다.
본 발명은, 유리 절단 시 절단되는 유리 기판의 손상 발생을 방지할 수 있고, 단일의 레이저 빔을 분할한 후 유리에 조사하여 유리 기판의 절단이 이루어질 수 있으며, 단일의 레이저 빔에서 양측으로 분할된 보조 빔에 의해 유리의 절단선 양측을 동시에 동일하게 예열할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (25)

  1. 절단 작업 대상인 유리의 절단경로 상에 조사되는 레이저빔을 발생시키는 레이저빔 발생부;
    상기 레이저빔 발생부에서 조사되는 상기 레이저빔을 상기 절단경로 상으로 집속하여 조사하는 집속부;
    상기 집속부에서 집속된 상기 레이저빔을 절단 작업 대상인 상기 유리로 유도하는 유도 프리즘; 및
    상기 유도 프리즘과 상기 유리 사이에 광학적 접촉 매질을 공급하는 매질 공급부; 를 포함하는 유리 절단 장치.
  2. 제1항에 있어서,
    상기 레이저빔 발생부에서 발생되는 상기 레이저빔은 단일 파장인 유리 절단 장치.
  3. 제1항에 있어서,
    상기 집속부는,
    상기 레이저빔 발생부에서 발생된 레이저빔을 집속하는 집속 렌즈와,
    상기 집속 렌즈에 의해 집속되는 상기 레이저빔의 방향을 변환하는 평면 형태의 제1 미러와,
    상기 제1 미러에 의해 반사된 상기 레이저빔을 반사하되 상기 유리 방향으로 집속하여 반사시키는 제2 미러를 포함하는 유리 절단 장치.
  4. 제3항에 있어서,
    상기 집속 렌즈는,
    상기 레이저빔 발생부를 향하여 배치되는 평볼록, 토로이달(toroidal) 또는 메니스커스(meniscus) 타입인 유리 절단 장치.
  5. 제3항에 있어서,
    상기 집속 렌즈는 광축이 상기 레이저빔의 중심축과 일치하여 배치되는 유리 절단 장치.
  6. 제3항에 있어서,
    상기 집속 렌즈는 광축 상에서 이동 가능하게 배치되는 유리 절단 장치.
  7. 제6항에 있어서,
    상기 집속 렌즈의 이동은 절단 작업 대상인 상기 유리의 두께에 대응하는 유리 절단 장치.
  8. 제3항 내지 제7항 중 어느 한 항에 있어서,
    상기 집속 렌즈는 반사 방지막을 포함하는 유리 절단 장치.
  9. 제3항에 있어서,
    상기 제1 미러는,
    상기 집속 렌즈의 광축 상에 배치되되 상기 집속 렌즈의 초점보다 상기 집속 렌즈에 근접하여 배치되는 유리 절단 장치.
  10. 제3항에 있어서,
    상기 제1 미러의 반사 각도는 40~50도인 유리 절단 장치.
  11. 제3항에 있어서,
    상기 제2 미러는,
    상기 레이저빔의 입사면 상에 반사면이 형성되는 유리 절단 장치.
  12. 제3항에 있어서,
    상기 제2 미러는,
    그 초점 거리가 상기 집속 렌즈의 초점 거리의 2배인 유리 절단 장치.
  13. 제1항에 있어서,
    상기 유도 프리즘은,
    상기 집속부에서 집속되는 상기 레이저빔의 중심축에 대하여 수직으로 배치되고 상기 레이저빔이 입사되는 제1 면과,
    절단 대상인 상기 유리의 표면에 대하여 평행하게 배치되고 상기 레이저빔이 출사되는 제3 면을 포함하는 육면체 형태인 유리 절단 장치.
  14. 제13항에 있어서,
    상기 유도 프리즘은 반사 방지층을 포함하는 유리 절단 장치.
  15. 제1항에 있어서,
    상기 매질 공급부가 공급하는 광학접 접촉 매질은 증기를 포함하는 유리 절단 장치.
  16. 제1항에 있어서,
    상기 레이저빔의 광속은 타원형인 유리 절단 장치.
  17. 제16항에 있어서,
    상기 레이저빔 발생부에서 발생된 상기 레이저빔을 메인 빔과 보조 빔으로 분할하는 광분할부를 더 포함하는 유리 절단 장치.
  18. 제17항에 있어서,
    상기 광분할부는,
    상기 레이저빔 발생부의 중심축의 양측으로 배치되어, 상기 레이저빔을 메인빔과 보조빔으로 분할하는 한 쌍의 분할 프리즘을 포함하는 유리 절단 장치.
  19. 제18항에 있어서,
    상기 한 쌍의 분할 프리즘은 상기 레이저빔 광속의 장축 방향으로 배치되는 유리 절단 장치.
  20. 제19항에 있어서,
    상기 한 쌍의 분할 프리즘의 이격 거리는 상기 레이저빔의 장축 방향 직경보다 작은 유리 절단 장치.
  21. 제18항에 있어서,
    상기 분할 프리즘은,
    상기 레이저빔 발생부를 향하여 경사지고 상기 레이저빔이 입사되는 입사면과,
    상기 입사면에 대하여 평행하고 상기 레이저빔이 출사되는 출사면을 포함하는 유리 절단 장치.
  22. 제21항에 있어서,
    상기 한 쌍의 분할 프리즘은,
    입사면이 서로 대향하여 배치되는 유리 절단 장치.
  23. 제4항 또는 제16항에 있어서,
    상기 집속 렌즈는,
    상기 레이저빔의 단축 방향에 대하여 평면으로 형성되는 유리 절단 장치.
  24. 제4항 또는 제21항에 있어서,
    상기 집속 렌즈는 상기 한 쌍의 분할 프리즘의 출사면을 모두 커버하는 면적을 갖는 유리 절단 장치.
  25. 제18항에 있어서,
    상기 한 쌍의 분할 프리즘은 반사 방지막을 포함하는 유리 절단 장치.
PCT/KR2014/000202 2013-01-25 2014-01-08 유리 절단 장치 WO2014115985A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0008686 2013-01-25
KR20130008686A KR101511670B1 (ko) 2013-01-25 2013-01-25 유리 절단 장치

Publications (1)

Publication Number Publication Date
WO2014115985A1 true WO2014115985A1 (ko) 2014-07-31

Family

ID=51227746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000202 WO2014115985A1 (ko) 2013-01-25 2014-01-08 유리 절단 장치

Country Status (2)

Country Link
KR (1) KR101511670B1 (ko)
WO (1) WO2014115985A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031987A (zh) * 2017-12-29 2018-05-15 苏州德龙激光股份有限公司 玻璃切割扩张装置及其方法
WO2024079172A1 (en) 2022-10-14 2024-04-18 Glass Company S.R.L. Laser cutting machine for cutting glass sheets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618163B1 (ko) 2016-12-05 2023-12-27 삼성디스플레이 주식회사 레이저 가공 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100206095B1 (ko) * 1995-03-15 1999-07-01 구라우치 노리타카 레이저 집광방법 및 장치
KR100500610B1 (ko) * 2003-10-29 2005-07-11 한국전기연구원 형광 현미경 및 이를 사용한 관측 방법
KR20070084162A (ko) * 2004-10-13 2007-08-24 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
KR100789279B1 (ko) * 2006-11-29 2008-01-02 주식회사 이오테크닉스 레이저 가공장치
KR20080108219A (ko) * 2006-04-11 2008-12-12 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Yag 레이저, 파이버 레이저용 렌즈 및 레이저 가공 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100206095B1 (ko) * 1995-03-15 1999-07-01 구라우치 노리타카 레이저 집광방법 및 장치
KR100500610B1 (ko) * 2003-10-29 2005-07-11 한국전기연구원 형광 현미경 및 이를 사용한 관측 방법
KR20070084162A (ko) * 2004-10-13 2007-08-24 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
KR20080108219A (ko) * 2006-04-11 2008-12-12 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Yag 레이저, 파이버 레이저용 렌즈 및 레이저 가공 장치
KR100789279B1 (ko) * 2006-11-29 2008-01-02 주식회사 이오테크닉스 레이저 가공장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031987A (zh) * 2017-12-29 2018-05-15 苏州德龙激光股份有限公司 玻璃切割扩张装置及其方法
WO2024079172A1 (en) 2022-10-14 2024-04-18 Glass Company S.R.L. Laser cutting machine for cutting glass sheets

Also Published As

Publication number Publication date
KR20140096219A (ko) 2014-08-05
KR101511670B1 (ko) 2015-04-13

Similar Documents

Publication Publication Date Title
WO2018166120A1 (zh) 光源装置及投影系统
WO2018166038A1 (zh) 光源装置及投影系统
WO2020235816A1 (en) Glasses-type display apparatus
WO2017188639A1 (ko) 레이저 핀 빔을 이용한 취성 소재 가공 방법 및 장치와 이를 위한 광학계
WO2016173530A1 (zh) 一种光引导部件及光源装置
WO2014115985A1 (ko) 유리 절단 장치
JPS62237408A (ja) 双方向通信網用送受信モジユ−ルとその製造方法
US20190196205A1 (en) Grating waveguide combiner for optical engine
JPWO2014192944A1 (ja) 半導体レーザモジュール
WO2015182892A1 (ko) 헤드 업 디스플레이 장치
WO2018076716A1 (zh) 光源系统及显示设备
WO2018214288A1 (zh) 光源系统及显示设备
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2018151581A1 (ko) 레이저 스크라이빙 장치
WO2021129499A1 (zh) 一种棱镜装置及投影设备
WO2018221878A1 (ko) 차폐부가 형성된 광전달유닛, 이를 이용한 백라이트모듈 및 광전달유닛의 제조방법
CN201017077Y (zh) 实现光纤密排线阵列中光点密接的光纤密排模块
WO2018117316A1 (ko) 광결합장치 및 그 제조방법
EP3811144A1 (en) Glasses-type display apparatus
WO2019059530A1 (ko) 도트사이트 장치
WO2020251084A1 (ko) 전자 디바이스
WO2016137274A1 (ko) 프론트 라이트 유닛 및 영상 표시 장치
WO2016099090A1 (ko) 착용형 디스플레이 장치
WO2019221425A1 (ko) 회절유닛을 이용한 디스플레이 장치
WO2019132441A1 (ko) 라인빔 형성장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743487

Country of ref document: EP

Kind code of ref document: A1