WO2020251084A1 - 전자 디바이스 - Google Patents

전자 디바이스 Download PDF

Info

Publication number
WO2020251084A1
WO2020251084A1 PCT/KR2019/007123 KR2019007123W WO2020251084A1 WO 2020251084 A1 WO2020251084 A1 WO 2020251084A1 KR 2019007123 W KR2019007123 W KR 2019007123W WO 2020251084 A1 WO2020251084 A1 WO 2020251084A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light source
light
image
beam combining
Prior art date
Application number
PCT/KR2019/007123
Other languages
English (en)
French (fr)
Inventor
신성철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/489,319 priority Critical patent/US20210405367A1/en
Priority to PCT/KR2019/007123 priority patent/WO2020251084A1/ko
Priority to KR1020190089736A priority patent/KR20190094309A/ko
Publication of WO2020251084A1 publication Critical patent/WO2020251084A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus

Definitions

  • the present invention relates to an electronic device.
  • it relates to an electronic device used for Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR).
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Mixed Reality
  • VR Virtual Reality
  • Augmented Reality refers to a technology that synthesizes virtual objects or information in a real environment to make them look like objects existing in the original environment.
  • Mixed reality or hybrid reality refers to creating a new environment or new information by combining the virtual world and the real world.
  • mixed reality when it refers to the real-time interaction between reality and what exists in the virtual.
  • the created virtual environment or situation stimulates the user's five senses and allows them to freely enter the boundary between reality and imagination by allowing them to experience spatial and temporal similarities to the real world.
  • users can not only immerse themselves in this environment, but also interact with things implemented in this environment, such as manipulating or applying commands using an existing device.
  • a projection equipment In order to create a virtual image that a user can see through such equipment in the form of glasses, a projection equipment is essential, and miniaturization of the projection equipment is essential.
  • a commonly used small project may have a structure as shown in FIG. 1.
  • a conventional small project is located in front of a plurality of light source elements 1a, 1b, and 1c with different wavelengths, and a predetermined direction emitted from each of the plurality of light source elements.
  • a plurality of collimated lenses (2a, 2b, 2c) that are collected together, a combiner (3) that combines light sources with different wavelengths into one optical axis, and the light source emitted from the combiner are uniform.
  • a display panel 6 that receives a light source from a condensed lens and generates an image may be provided.
  • the plurality of light source elements 1a to 1c may be positioned to emit light sources in a direction crossing each other, and each of the plurality of collimated lenses 2a to 2c is positioned immediately in front of the plurality of light source elements and intersecting Can be positioned in any direction.
  • Each of the collimated lenses 2a to 2c collects light sources emitted from the light source element in a predetermined direction and transmits the light source to the combiner 3.
  • the combiner 3 is provided in an X-shape, synthesizes light sources emitted through each of a plurality of collimated lenses, and converts the light source into a fly eye lens or a rod lens. lens).
  • the condensed lenses 5a and 5b collect the received light source and transmit it to the display panel, and the display panel may generate and output an image to be viewed by the user.
  • the present invention provides an electronic device used for Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and the like, and an object thereof.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Mixed Reality
  • the present invention minimizes the size of a control unit that generates and outputs an image to be viewed by a user by providing the light source unit with a plurality of light emitting elements that emit a plurality of light sources with different wavelengths in the same direction. Its purpose is to provide an electronic device in the form of an optimized eyeglasses capable of blowing an image and a virtual image together.
  • An electronic device includes a frame having at least one opening and worn on a user's body; A control unit fixed to the frame and generating an image; And an optical display unit positioned at the opening of the frame to display an image provided from the control unit to the user, wherein the control unit emits light of a plurality of light sources having different wavelengths in the same direction to provide an image.
  • a light source unit having a; And a beam combining unit for synthesizing a plurality of light sources incident from the light source unit and emitting the synthesized light source.
  • the control unit may further include a beam condensing unit that receives the light source synthesized from the beam synthesis unit and condenses and emits light in a predetermined direction.
  • the beam condensing unit comprises: a first beam condensing lens having an incident surface facing the emission surface of the beam combining unit, having a first diameter, and receiving and expanding a light source synthesized from the beam combining unit; And a second beam condensing lens having a second diameter larger than the first diameter and condensing and emitting a synthesized light source emitted from the first beam condensing lens from the first beam condensing lens.
  • the control unit may further include a beam guide unit that receives the light source synthesized from the beam condensing unit and transmits it to a display panel generating an image.
  • a plurality of light emitting devices provided in the light source may be configured as one package.
  • the beam combining unit is located opposite to the light source unit, has an incident surface through which a plurality of light sources are incident and an exit surface through which the combined light source is emitted, and the beam combining unit extends long in the traveling direction of the plurality of light sources.
  • the cross section of the incident surface receiving the light source of may have a shape of any one of a square, a polygon, or a circle.
  • the beam synthesis unit is formed as a single rod lens with a medium, or a fiber bundle structure in which a plurality of rod lenses are formed as a bundle, or has a tunnel shape without a medium and has a mirror inside the tunnel. It can be formed in a structure having (mirror).
  • the size of the incident surface and the size of the exit surface are different from each other, but the size ratio forming each surface of the incident surface may be the same as the size ratio forming each surface of the exit surface.
  • the light source unit includes a plurality of light emitting devices generating light sources having different wavelengths in one package
  • the beam combining unit is provided in a fiber bundle form in which a plurality of rod lenses are formed as a bundle, and a plurality of rod lenses
  • Each incidence surface may be spaced apart from each other to face each of the plurality of light-emitting elements, and the emission surfaces of each of the plurality of rod lenses may be adjacent to each other to form one emission surface.
  • the light source unit includes a plurality of light-emitting elements that generate light sources having different wavelengths in one package, the beam combining unit is provided with one rod lens, and the incident surface of the beam combining unit provided with one rod lens.
  • the size may be equal to or greater than the size of the maximum effective light source area, which is the light emitting area of the plurality of light emitting devices.
  • a plurality of light sources incident from the light source unit to the beam combining unit may be diverged and converged at least once or more within the beam combining unit.
  • the length of the beam combining unit has a length at which the plurality of light sources converge at least two or more times, and the plurality of light sources may converge at the exit surface of the beam combining unit.
  • the length of the beam combining unit may be inversely proportional to the effective divergence angle of the plurality of light sources, and may be proportional to the size of the maximum effective light source area.
  • the electronic device minimizes the size of a control unit that generates and outputs an image to be viewed by a user by providing the light source unit with a plurality of light emitting elements that emit a plurality of light sources with different wavelengths in the same direction. It is possible to provide an electronic device in the form of an optimized glasses capable of blowing an image and a virtual image together.
  • 1 is a diagram for explaining a problem of a conventional small project.
  • FIG. 2 is a diagram for describing an electronic device according to an example of the present invention.
  • FIG. 3 is a diagram for explaining an example of a control unit in FIG. 2.
  • 4 to 6 are diagrams for explaining various display methods applicable to an optical display unit according to an example of the present invention.
  • FIG. 7 illustrates a basic structure of an image source panel among the control units described in FIG. 3.
  • FIG. 8 is a diagram for explaining various examples of modifications of a beam concentrator, a beam guide unit, and a display panel applied to the image source panel shown in FIG. 7.
  • 9 and 10 are diagrams for explaining in more detail the structure of a light source unit and a beam combining unit in the image source panel shown in FIG. 7.
  • FIG. 11 is a diagram for explaining a modification example of a beam combining unit in the image source panel shown in FIG. 7.
  • FIG. 2 is a diagram for describing an electronic device according to an example of the present invention.
  • an electronic device may include a frame 100, a control unit 200, and an optical display unit 300.
  • the frame 100 may have a form of glasses worn on the face of the user 10, but is not limited thereto, and goggles worn in close contact with the face of the user 10 It can also have a shape such as.
  • the frame 100 includes a front frame 110 having at least one opening and first and second side frames 120 extending in a first direction y crossing the front frame 110 and parallel to each other. can do.
  • the control unit 200 may generate an image to be displayed to the user 10 or an image in which images are continuous.
  • the control unit 200 may include an image source generating an image and a plurality of lenses for diffusing and converging light generated from the image source. A detailed structure of the control unit 200 will be described in detail in FIG. 3 below.
  • control unit 200 may be fixed to one of the first and second side frames 120.
  • control unit 200 may be fixed inside or outside any one side frame 120, or may be integrally formed by being built into the inside of any one side frame 120.
  • the optical display unit 300 may play a role of displaying an image generated by the control unit 200 to the user 10, and allow the image to be viewed by the user 10 while viewing the external environment through the opening.
  • it may be formed of a translucent glass material.
  • Such an optical display unit 300 is inserted into and fixed to the opening included in the front frame 110, or is located on the rear surface of the opening (ie, between the opening and the user 10), and is fixed to the front frame 110. It can be provided.
  • the optical display unit 300 is positioned on the rear surface of the opening and is fixed to the front frame 110 as an example.
  • the user 10 can simultaneously view the image generated by the controller 200 while viewing the external environment through the opening of the frame 100.
  • Such an electronic device may be relatively heavier than general glasses or goggles because the control unit 200 for generating an image is provided on one of the first and second side frames 120.
  • the electronic device includes the first length L1 or the first length L1 of each of the At least one of the first distance D1 between the first side frame 120 and the second side frame 120 may be adjusted.
  • at least one of the first length L1 and the first interval D1 may have a structure in which at least one of the first length L1 and the first interval D1 may increase or decrease. A detailed description of this will be described in detail below with reference to FIG. 7 after first describing the controller 200 and the optical display unit 300.
  • FIG. 3 is a diagram for explaining an example of the control unit 200 in FIG. 2.
  • the control unit 200 is, for example, a first cover 207 and a second cover 225 that protect the components inside the control unit 200 and form the outer shape of the control unit 200, as shown in FIG. 3 And, inside the first cover 207 and the second cover 225, a driving unit 201, an image source panel 203, a polarization beam splitter filter (PBSF, 211), a mirror 209 ), a plurality of lenses (213, 215, 217, 221), a Fly Eye Lens (FEL, 219), a Dichroic filter (227), and a Freeform prism Projection Lens (FPL, 223) can be provided.
  • PBSF polarization beam splitter filter
  • FEL Fly Eye Lens
  • FPL Freeform prism Projection Lens
  • the first cover 207 and the second cover 225 include a driving unit 201, an image source panel 203, a polarizing beam splitter filter 211, a mirror 209, and a plurality of lenses 213, 215, 217, 221. ), a space in which the fly-eye lens 219 and the prism projection lens 223 can be built in, and package them, to the side frame 120a or 120b of any one of the first and second side frames 120 Can be fixed.
  • the driving unit 201 may supply an image displayed on the image source panel 203 or a driving signal for controlling the image, and may be interlocked with a separate module driving chip provided inside the control unit 200 or outside the control unit 200. have.
  • a driving unit 201 may be provided in the form of, for example, a flexible printed circuit board (FPCB), and a heat sink for discharging heat generated during driving to the outside is provided on the flexible printed circuit board. Can be.
  • FPCB flexible printed circuit board
  • the image source panel 203 may emit light by generating an image according to a driving signal provided from the driving unit 201.
  • the image source panel 203 is one of digital light processing (DLP), digital mirror device (DMD), liquid crystal on silicon (LCos), liquid crystal display (micro LCD), or organic light emitting diode (OLED).
  • DLP digital light processing
  • DMD digital mirror device
  • LCos liquid crystal on silicon
  • micro LCD liquid crystal display
  • OLED organic light emitting diode
  • the image source panel 203 may include a light source unit that generates a light source to generate an image, and a display panel that generates an image by receiving a light source from the light source unit. A detailed structure of the image source panel 203 will be described later in FIG. 7.
  • the polarization beam splitter filter 211 may separate image light for an image generated by the image source panel 203 according to a rotation angle or may block a part and pass a part through it. Therefore, for example, when the image light emitted from the image source panel 203 includes a horizontal light P wave and a vertical light S wave, the polarization beam splitter filter 211 separates the P wave and the S wave into different paths, or In this case, one image light may pass and the other image light may be blocked.
  • a polarization beam splitter filter 211 may be provided in, for example, a cube type or a plate type.
  • the polarizing beam splitter filter 211 provided in a cue type can be separated into different paths by filtering image light formed as a P wave and an S wave, and a polarizing beam splitter filter 211 provided in a plate type ) May pass the image light of one of the P-wave and the S-wave and block the other image light.
  • the mirror 209 may reflect the image light polarized and separated by the polarization beam splitter filter 211 and collect it again to be incident on the plurality of lenses 213, 215, 217, and 221.
  • the plurality of lenses 213, 215, 217, and 221 may include a convex lens and a concave lens, and for example, may include an I-type lens and a C-type lens.
  • the plurality of lenses 213, 215, 217, and 221 may repeat diffusion and convergence of incident image light, thereby improving linearity of image light.
  • the fly-eye lens 219 receives image light that has passed through the plurality of lenses 213, 215, 217, 221, and emits image light to further improve the illuminance uniformity of the incident light.
  • the area with uniform illuminance can be expanded.
  • the dichroic filter 227 may include a plurality of film layers or lens layers, and among the image light incident from the fly-eye lens 219, light of a specific wavelength band is transmitted, and light of the other specific wavelength band is reflected. By doing so, the color sense of the image light can be corrected.
  • the image light transmitted through the dichroic filter 227 may be emitted to the optical display unit 300 through the prism projection lens 223.
  • the optical display unit 300 may receive image light emitted from the control unit 200 and emit image light incident in the direction in which the user's 10 eyes are positioned so that the user 10 can see it with the eyes.
  • Such an optical display unit 300 may be fixed to the front frame 110 through a separate fixing member, or may be fixed within an opening provided in the front frame 110.
  • 4 to 6 are diagrams for explaining various types of optical elements applicable to the optical display unit 300 according to an example of the present invention.
  • FIG. 4 is a diagram for explaining an example of a prism type optical element applicable to the optical display unit 300 according to an example of the present invention
  • FIG. 5 is a diagram illustrating an optical display unit 300 according to an example of the present invention.
  • FIG. 6 is a view of an optical element of a surface reflection method applicable to the optical display unit 300 according to an example of the present invention. It is a diagram for explaining an example.
  • the optical display unit 300 may be translucent so that the user 10 visually recognizes the external environment and at the same time allows the user 10 to recognize an image generated by the control unit 200.
  • it may be formed of an optical element including a material such as glass.
  • an optical element as shown in FIGS. 4 to 6 may be used, and in addition, various optical elements such as a retina scan method may be used. have.
  • a prism-type optical element may be used in the optical display unit 300 according to an example of the present invention.
  • the prism-type optical element uses a flat-type glass optical element in which a surface on which image light is incident and a surface to be emitted is flat, as shown in FIG. 4(a).
  • a freeform glass optical device in which the surface 300b from which image light is emitted is formed as a curved surface without a constant radius of curvature may be used.
  • the flat-type glass optical element receives image light generated by the controller 200 on a flat side, is reflected by the total reflection mirror 300a provided therein, and emits it toward the user 10.
  • the total reflection mirror 300a provided inside the flat-type glass optical element may be formed inside the flat-type glass optical element by a laser.
  • the freeform glass optical element is configured to have a thinner thickness as it moves away from the incident surface, so that the image light generated by the control unit 200 is incident on the side having a curved surface, and is totally reflected from the inside and emitted toward the user 10 can do.
  • a waveguide (or waveguide) type optical element or a light guide optical element (LOE) may be used. have.
  • Such a waveguide or a light guide type optical element is, for example, a segmented beam splitter type glass optical element as shown in FIG. 5A, A glass optical element of a sawtooth prism method as shown in FIG. 5B, a glass optical element having a Diffractive optical element (DOE) as shown in FIG. 5C, ( d) a glass optical element having a hologram optical element (HOE), a glass optical element having a passive grating as shown in (e) of FIG. 5, ( There may be a glass optical element having an active grating as shown in f).
  • DOE Diffractive optical element
  • HOE hologram optical element
  • a total reflection mirror 301a and an optical image are formed on the side where the optical image is incident inside the glass optical element.
  • a segmented beam splitter 301b may be provided on the emission side.
  • the light image generated by the control unit 200 is totally reflected by the total reflection mirror 301a inside the glass optical element, and the total reflected light image is partially reflected by the partial reflection mirror 301b while guiding along the length direction of the glass. Is separated and emitted, and can be recognized at the time of the user 10.
  • the image light of the control unit 200 is incident on the side of the glass in a diagonal direction and is totally reflected inside the glass. It is emitted to the outside of the glass by the uneven shape 302 and can be recognized at the user's 10's time.
  • the first diffractive part 303a and the light image are emitted on the surface of the side where the light image is incident.
  • a second diffraction unit 303b may be provided on the surface of the.
  • the first and second diffraction portions 303a and 303b may be provided in a form in which a specific pattern is patterned on the surface of the glass or a separate diffraction film is attached.
  • the optical image generated by the control unit 200 diffracts while being incident through the first diffraction unit 303a, guides light along the length direction of the glass while being totally reflected, and is emitted through the second diffraction unit 303b, It can be recognized at the user's 10's perspective.
  • an out-coupler 304 may be provided inside the glass on the side from which the optical image is emitted. I can. Accordingly, the light image is incident from the control unit 200 in the oblique direction through the side of the glass, is totally reflected, guides light along the length direction of the glass, is emitted by the out coupler 304, and is recognized by the user's 10 perspective. Can be.
  • Such a holographic optical device can be further subdivided into a structure having a passive grating and a structure having an active grating because the structure is changed little by little.
  • an in-coupler 305a and an optical image are emitted on a surface opposite to the glass surface on which the optical image is incident.
  • An out-coupler 305b may be provided on a surface opposite to the surface of the glass.
  • the in-coupler 305a and the out-coupler 305b may be provided in the form of a film having a passive grid.
  • the light image incident on the glass surface on the side where the glass is incident is totally reflected by the in-coupler 305a provided on the opposite surface and guided along the length of the glass, and the out-coupler 305b causes the It is emitted through the opposite surface, and can be recognized by the user 10's perspective.
  • the glass optical element having an active grating as shown in (f) of FIG. 5 is an in-coupler 306a formed as an active grating inside the glass on which the optical image is incident, and the optical image
  • An out-coupler 306b formed as an active lattice may be provided inside the glass on the side from which is emitted.
  • the light image incident on the glass is totally reflected by the in-coupler 306a, guides light along the length direction of the glass, and is emitted out of the glass by the out-coupler 306b, so that it is at the time of the user 10. Can be recognized.
  • the optical element of the surface reflection method applicable to the optical display unit 300 according to an example of the present invention is a freeform combiner method as shown in FIG. 6(a), and a flat HOE as shown in FIG. 6(b). Method, a freeform HOE method as shown in (c) of FIG. 6 may be used.
  • a plurality of flat surfaces having different incident angles of optical images are formed as one glass 300 in order to function as a combiner.
  • a freeform combiner glass 300 formed to have a curved surface as a whole can be used.
  • the incident angle of the light image is different for each area, and thus, may be emitted to the user 10.
  • the optical element of the surface reflection method of the flat HOE method as shown in (b) of FIG. 6 may be provided by coating or patterning a hologram optical element (HOE) 311 on the surface of a flat glass.
  • the light image incident from 200 may pass through the holographic optical element 311 and be reflected off the surface of the glass, pass through the holographic optical element 311 again, and be emitted toward the user 10.
  • HOE hologram optical element
  • the freeform HOE type surface reflection type optical element as shown in FIG. 6(c) may be provided by coating or patterning a hologram optical element (HOE) 313 on the surface of the freeform type glass, and the operation principle is It may be the same as described in (b) of FIG.
  • HOE hologram optical element
  • a prism type optical element As described above, in the optical display unit 300 according to the exemplary embodiment of the present invention, a prism type optical element, a waveguide type optical element, a light guide optical element (LOE), or a surface reflection type optical element may be selected and used. .
  • LOE light guide optical element
  • the first length of each of the first and second side frames 120 is At least one of (L1) or the first distance D1 between the first side frame 120 and the second side frame 120 may be adjustable. This will be described in more detail.
  • FIG. 7 is a detailed description of the structure of the image source panel 203 among the control units described in FIG. 3.
  • the image source panel 203 provided in the control unit 200 of the present invention includes a light source unit 410, a beam combining unit 420, a beam condensing unit 430, and a beam guide unit 440. And a display panel 450.
  • the light source unit 410 may include a plurality of light emitting devices that emit light from a plurality of light sources having different wavelengths in the same direction.
  • a plurality of light emitting devices provided in the light source unit 410 may be configured as one package.
  • the light source unit 410 including the plurality of light emitting devices may emit light of a plurality of light sources having different wavelengths in the same direction.
  • the beam combining unit 420 may uniformly synthesize a plurality of light sources incident from the light source unit 410 to emit the synthesized light source.
  • the beam combining unit 420 is located opposite to the light source unit 410 so that a plurality of light sources incident from the light source unit 410 may extend long in a traveling direction, and an incident surface receiving a plurality of light sources generated from the light source unit 410 It may have an emission surface from which the light source synthesized with is emitted,
  • the beam combining unit 420 may be (1) formed as a single rod lens with a medium, or (2) formed as a fiber bundle structure in which a plurality of rod lenses are formed as a bundle, or , (3) It has a tunnel shape without a medium and can be formed in a structure having a mirror inside the tunnel.
  • the beam combining unit 420 is composed of one rod lens with a medium is illustrated as an example, but the present invention is not limited thereto.
  • the beam condensing unit 430 may receive the light source synthesized from the beam combining unit 420 and collect light in a predetermined direction, thereby emitting a light source to the beam guide unit 440.
  • the beam condensing unit 430 may include a plurality of beam condensing lenses with an incident surface facing the emission surface of the beam combining unit 420.
  • the beam condensing unit 430 may include a first beam condensing lens 431 and a second beam condensing lens 432.
  • the first and second beam condensing lenses 431 and 432 may be, for example, a collimated condensed lens.
  • the first beam condensing lens 431 has a first diameter and can be enlarged by receiving a light source synthesized from the beam combining unit 420, and the second beam condensing lens 432 has a second diameter larger than the first diameter. And the combined light source emitted from the first beam condensing lens 431 may be condensed and emitted from the first beam condensing lens 431.
  • the structure of the beam condensing unit 430 is not limited to FIG. 7 but may be changed in various forms, which will be described with reference to FIG. 8.
  • the beam guide unit 440 may receive the light source synthesized from the beam concentrator 430 and transmit it to the display panel 450.
  • the display panel 450 may receive a light source synthesized from a beam guide and generate an image to be viewed by a user.
  • Such a display panel 450 includes Digital Light Processing (DLP), Digital Mirror Device (DMD), Liquid Crystal on Sillicon (LCoS), Micro LCD, or Micro OLED. OLED) may be used, and any other display panel 450 capable of generating an image may be used.
  • DLP Digital Light Processing
  • DMD Digital Mirror Device
  • LCD Liquid Crystal on Sillicon
  • Micro LCD Micro LCD
  • OLED Organic LED
  • the beam condensing unit 430 the beam guide unit 440, and the display panel 450 may be variously modified. This will be described as follows.
  • FIG. 8 is a diagram for describing various examples of modifications of the beam concentrator 430, the beam guide unit 440, and the display panel 450 applied to the image source panel illustrated in FIG. 7.
  • the beam concentrator 430, the beam guide part 440, and the display panel 450 applied to the image source panel of the present invention may be provided in various forms.
  • the beam guide unit 440 may be deformed in the image source panel of the present invention.
  • the beam guide unit 440 is, for example, a polarizing beam splitter cube (PBS-cube, 441) and a PBS-HWP 442, which are polarization forming units that polarize a light source.
  • a quarter wave plate (QWP, 443), and the display panel 450 may be provided with LCoS.
  • the projection lens is a polarization beam splitter filter (PBSF, 211), a mirror 209, a plurality of lenses (213, 215, 217, 221) described in FIG. 3, and a Fly Eye Lens. It may include an FEL, 219, a Dichroic filter 227, and a Freeform prism Projection Lens (FPL, 223).
  • PBSF polarization beam splitter filter
  • FPL Freeform prism Projection Lens
  • the beam condensing unit 430 may be partially deformed in the image source panel.
  • the beam condensing unit 430 includes the first and second beam condensing lenses 431 and 432 is illustrated as an example, but as shown in FIG. 8(b) .
  • a plurality of second beam condensing lenses 432a and 432b having a relatively large diameter may be provided, and a plurality of second beam condensing lenses 432a and 432b may be provided facing each other. have.
  • FIG. 9 and 10 are diagrams for explaining in more detail the structures of the light source unit 410 and the beam combining unit 420 in the image source panel shown in FIG. 7.
  • the light source unit 410 includes a plurality of light-emitting elements 410a, 410b, and 410c that emit a plurality of light sources having different wavelengths in the same direction as illustrated in FIG. 9A. It can be provided.
  • each of the plurality of light-emitting elements 410a, 410b, 410c may emit red (R), green (G), and blue (B) light sources having different wavelengths, and may have the same emission direction. have.
  • the plurality of light-emitting elements 410a, 410b, and 410c generating different light sources may be configured as one package.
  • the beam combining unit 420 may extend long in a direction in which a plurality of light sources emitted from each of the plurality of light emitting devices 410a, 410b, and 410c travel.
  • the beam combining unit 420 is positioned opposite to the light source unit 410 and may include an incident surface A420 through which a plurality of light sources are incident and an emission surface B420 through which the combined light source is emitted.
  • the cross section of the incident surface A420 through which the plurality of light sources are incident from the beam combining unit 420 may have a shape of any one of a square, a polygon, or a circle.
  • the cross-section of the incident surface A420 of the beam combining unit 420 is shown to have a square shape, but may have various shapes as described above.
  • the size of the incident surface A420 of the beam combining unit 420 provided as one rod lens is a plurality of light emitting elements 410a, 410b, 410c ) May be the same as or larger than the size of the maximum effective light source area, which is the emission area of ).
  • the size of the incident surface A420 and the size of the exit surface B420 are different from each other, but the size ratio forming each surface of the incident surface A420 is the same as the size ratio forming each surface of the exit surface B420 can do.
  • the ratio of the vertical length A420y to the horizontal length A420x of the incident surface A420 formed in a square shape May be the same as the ratio of the horizontal length B420x of the exit surface B420 and the proxy vertical length B420y.
  • a plurality of light sources incident from the light source unit 410 to the beam combining unit 420 diverge and converge at least once in the beam combining unit 420.
  • the length L420 of the beam combining unit 420 has a length at which a plurality of light sources converge at least two or more times, and an exit surface B420 of the beam combining unit 420 In the plurality of light sources can be converged.
  • a plurality of light sources emitted from each of the plurality of light emitting elements 410a, 410b, 410c provided in the light source unit 410 are uniformly distributed within the beam combining unit 420.
  • the light source can be uniformly formed on the emission surface B420 of the beam combining unit 420, and the size ratio of the light source is also the incident surface A420 of the beam combining unit 420 ) And the exit surface (B420) may be the same.
  • the length L420 of the beam combining unit 420 may be inversely proportional to the effective divergence angle a of the plurality of light sources, and may be proportional to the size of the maximum effective light source area.
  • the part 420 may be formed of a fiber bundle in which a plurality of rod lenses are formed as a bundle.
  • the beam combining unit 420 is formed of a fiber bundle.
  • FIG. 11 is a diagram for explaining a modified example of the beam combining unit 420 in the image source panel shown in FIG. 7.
  • the light source unit 410 may include a plurality of light emitting devices 410a, 410b, 410c, and 410d that generate light sources having different wavelengths in one package.
  • the beam combining unit 420 may be provided in the form of a fiber bundle in which a plurality of rod lenses 420a, 420b, 420c, and 420d are formed as a bundle.
  • each of the plurality of rod lenses 420a, 420b, 420c, and 420d may be spaced apart from each other and positioned adjacent to each of the plurality of light emitting elements 410a, 410b, and 410c.
  • each of the plurality of rod lenses may be positioned to face each of the plurality of light emitting elements 410a, 410b, 410c, and each of the plurality of rod lenses 420a, 420b, 420c, 420d is vertical Alternatively, it may be located horizontally spaced apart by D1 and D2 by a predetermined interval.
  • exit surfaces B420 of each of the plurality of rod lenses may be adjacent to each other to form one exit surface B420.
  • each of the plurality of rod lenses 420a, 420b, 420c, and 420d may have a length at which light sources of different wavelengths emitted from each of the plurality of light emitting elements 410a, 410b, 410c converge, and a plurality of The emission surface B420 of each of the rod lenses 420a, 420b, 420c, 420d may be provided with an emission surface B420 at a length at which light sources of different wavelengths converge, and each emission surface B420 is spaced apart from each other. It is not possible, and the side surfaces are brought into contact with each other, so that it is possible to make it appear as if one combined light source is emitted to the emission surface B420 of each of the plurality of rod lenses, as shown in FIG. 11C.
  • the electronic device minimizes the size of the control unit that generates and outputs an image to be viewed by the user by having the light source unit include a plurality of light-emitting elements that emit a plurality of light sources having different wavelengths in the same direction.
  • the electronic device in the form of an optimized glasses capable of blowing a real image and a virtual image together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

본 발명은 전자 디바이스에 관한 것이다. 보다 상세하게, VR(Virtual Reality), AR(Augmented Reality), MR(Mixed Reality) 등에 사용되는 전자 디바이스에 관한 것이다. 본 발명의 일례에 따른 전자 디바이스는 적어도 하나의 개구부를 구비하는 프레임; 상기 프레임에 장착되고, 이미지를 생성하는 제어부; 그리고, 상기 프레임의 개구부에 고정되고, 상기 이미지가 반영되는 디스플레이부를 포함하고, 상기 제어부는: 상기 이미지를 제공하기 위하여, 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하는 광원부; 그리고, 상기 광원부로부터 입사된 상기 복수의 광원을 합성하여, 합성된 광원을 출사하는 빔 합성부를 포함한다.

Description

전자 디바이스
본 발명은 전자 디바이스에 관한 것이다. 보다 상세하게, VR(Virtual Reality), AR(Augmented Reality), MR(Mixed Reality) 등에 사용되는 전자 디바이스에 관한 것이다.
가상현실(Virtual Reality, VR)은 컴퓨터 등을 사용한 인공적인 기술로 만들어낸 실제와 유사하지만 실제가 아닌 어떤 특정한 환경이나 상황 혹은 그 기술 자체를 말한다.
증강현실(Augmented Reality, AR)은 실제 환경에 가상 사물이나 정보를 합성하여 원래의 환경에 존재하는 사물처럼 보이도록 하는 기술을 말한다.
혼합 현실 (Mixed Reality, MR) 혹은 혼성 현실 (Hybrid reality)은 가상 세계와 현실 세계를 합쳐서 새로운 환경이나 새로운 정보를 만들어 내는 것을 말한다. 특히, 실시간으로 현실과 가상에 존재하는 것 사이에서 실시간으로 상호작용할 수 있는 것을 말할 때 혼합 현실이라 한다.
이때, 만들어진 가상의 환경이나 상황 등은 사용자의 오감을 자극하며 실제와 유사한 공간적, 시간적 체험을 하게 함으로써 현실과 상상의 경계를 자유롭게 드나들게 한다. 또한 사용자는 이러한 환경에 단순히 몰입할 뿐만 아니라 실재하는 디바이스를 이용해 조작이나 명령을 가하는 등 이러한 환경 속에 구현된 것들과 상호작용이 가능하다.
최근, 이러한 기술분야에 사용되는 장비(gear)에 대한 연구가 활발히 이루어지고 있고, 특히, 최근에는 사용자의 안면에 착용되어, 현실 이미지와 가상 이미지를 함께 볼 수 있는 안경 형태의 장비에 대한 연구가 활발히 진행되고 있다.
이와 같은, 안경 형태의 장비를 통해 사용자가 볼 수 있는 가상 이미지를 만들어 내기 위해서는 프로젝션 장비가 필수적이고, 프로젝션 장비의 소형화가 필수적이다.
일반적으로 사용되는 소형 프로젝트는 도 1에 도시된 바와 같은 구조를 가질 수 있다.
종래의 사용되던 소형 프로젝트는 도 1에 도시된 바와 같이, 파장이 다른 복수의 광원 소자(1a, 1b, 1c), 복수의 광원 소자 각각의 앞에 위치하여, 복수의 광원 소자 각각에서 발광되는 일정 방향으로 모아주는 복수의 콜리메이티드 렌즈(Collimated lens, 2a, 2b, 2c), 파장이 서로 다른 광원을 하나의 광축으로 합쳐주는 컴바이너(Combiner, 3), 컴바이너로부터 출사되는 광원을 유니폼하게 만들어주는 플라이 아이 렌즈(Fly Eye Lens) 또는 로드 렌즈(Rod lens)(4), 광원을 집광해서 이미지를 생성하는 패널로 전달해주는 컨덴스드 렌즈(condensed lens, 5a, 5b) 및 컨덴스드 렌즈(condensed lens)로부터 광원을 받아 이미지를 생성하는 디스플레이 패널(6)을 구비할 수 있다.
여기서, 복수의 광원 소자(1a ~ 1c)는 서로 교차하는 방향으로 광원이 발광되도록 위치할 수 있으며, 복수의 콜리메이티드 렌즈(2a ~ 2c) 각각은 복수의 광원 소자의 바로 앞에 위치하고, 교차하는 방향으로 위치할 수 있다.
이와 같은 콜리메이티드 렌즈(2a ~ 2c) 각각은 광원 소자로부터 발광된 광원을 일정 방향으로 모아주고, 컴바이너(3)로 광원을 전달한다.
컴바이너(3)는 도시된 바와 같이, X자 형태로 구비되어, 복수의 콜리메이티드 렌즈 각각을 통해 발광되는 광원을 합성시켜, 광원을 플라이 아이 렌즈(Fly Eye Lens) 또는 로드 렌즈(Rod lens)로 전달한다.
이후, 컨덴스드 렌즈(5a, 5b)는 전달받은 광원을 집광하여, 디스플레이 패널로 전달하고, 디스플레이 패널은 사용자에게 보여질 이미지를 생성하여 출력할 수 있다.
이와 같은 종래의 소형 프로젝트는 파장이 서로 다른 광원이 서로 교차하는 방향으로 위치하고, 이에 따라 컴바이너의 구조적 복잡성을 증가시켜, 프로젝트를 소형화하는데 한계가 있었다.
이로 인하여, 종래의 소형 프로젝트는 현실 이미지와 가상 이미지를 함께 보기 위한 안경 형태의 전자 디바이스에 적용하는데, 한계가 있었다.
본 발명은 VR(Virtual Reality), AR(Augmented Reality), MR(Mixed Reality) 등에 사용되는 전자 디바이스를 제공하는데, 그 목적이 있다.
보다 구체적으로, 본 발명은 광원부가 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하도록 함으로써, 사용자에게 보여질 이미지를 생성하여 출력하는 제어부의 크기를 최소화하면서, 현실 이미지와 가상 이미지를 함께 불 수 있는 최적화된 안경 형태의 전자 디바이스를 제공하는데 그 목적이 있다.
본 발명의 일례에 따른 전자 디바이스는 적어도 하나의 개구부를 구비하고, 사용자의 신체에 착용되는 프레임; 프레임에 고정되고, 이미지를 생성하는 제어부; 및 프레임의 개구부에 위치하여, 제어부로부터 제공된 이미지를 사용자에게 보여주는 광학 디스플레이부;를 포함하고, 제어부는 이미지를 제공하기 위하여, 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하는 광원부; 및 광원부로부터 입사된 복수의 광원을 합성하여, 합성된 광원을 출사하는 빔 합성부;를 구비한다.
제어부는 빔 합성부로부터 합성된 광원을 입사받아 미리 결정된 방향으로 집광시켜 출사하는 빔 집광부;를 더 구비할 수 있다.
빔 집광부는 입사면이 빔 합성부의 출사면에 맞대어 위치하고, 제1 직경을 가지며, 빔 합성부로부터 합성된 광원을 입사받아 확대하는 제1 빔 집광 렌즈; 및 제1 직경보다 큰 제2 직경을 가지며, 제1 빔 집광 렌즈로부터 제1 빔 집광 렌즈로부터 출사되는 합성된 광원을 집광하여 출사하는 제2 빔 집광 렌즈;를 포함할 수 있다.
제어부는 빔 집광부로부터 합성된 광원을 입사받아 이미지를 생성하는 디스플레이 패널로 전달하는 빔 가이드부;를 더 구비할 수 있다.
여기서, 광원부에 구비된 복수의 발광 소자는 하나의 패키지로 구성될 수 있다.
또한, 빔 합성부는 광원부에 맞대어 위치하고, 복수의 광원이 입사되는 입사면과 합성된 광원이 출사되는 출사면을 구비하고, 빔 합성부는 복수의 광원의 진행 방향으로 길게 연장되고, 빔 합성부에서 복수의 광원을 입사받는 입사면의 단면은 정사각형, 다각형 또는 원형 중 어느 하나의 형상을 가질 수 있다.
빔 합성부는 매질이 있는 하나의 로드 렌즈(Rod lens)로 형성되거나 복수의 로드 렌즈가 하나의 묶음으로 형성되는 파이버 번들(fiber bundle) 구조로 형성되거나, 매질이 없이 터널 형태를 가지며 터널 내부에 미러(mirror)를 갖는 구조로 형성될 수 있다.
여기서, 입사면의 크기와 출사면의 크기가 서로 다르되, 입사면의 각면을 형성하는 크기 비율은 출사면의 각면을 형성하는 크기 비율과 서로 동일할 수 있다.
일례로, 광원부는 파장이 서로 다른 광원을 발생시키는 복수의 발광 소자가 하나의 패키지로 구성되고, 빔 합성부는 복수의 로드 렌즈가 하나의 묶음으로 형성되는 파이버 번들 형태로 구비되고, 복수의 로드 렌즈 각각의 입사면은 서로 이격되어 복수의 발광 소자 각각과 맞대어 인접하고, 복수의 로드 렌즈 각각의 출사면은 서로 인접하여 하나의 출사면을 형성할 수 있다.
다른 일례로, 광원부는 파장이 서로 다른 광원을 발생시키는 복수의 발광 소자가 하나의 패키지로 구성되고, 빔 합성부는 하나의 로드 렌즈로 구비되고, 하나의 로드 렌즈로 구비된 빔 합성부의 입사면의 크기는 복수의 발광 소자의 발광 영역인 최대 유효 광원 영역의 크기와 동일하거나 더 클 수 있다.
여기서, 광원부로부터 빔 합성부로 입사된 복수의 광원은 빔 합성부 내에서 적어도 1회 이상 발산 및 수렴될 수 있다.
이에 따라, 빔 합성부의 길이는 복수의 광원이 적어도 2회 이상 수렴되는 길이를 갖고, 빔 합성부의 출사면에서 복수의 광원은 수렴될 수 있다.
아울러, 빔 합성부의 길이는 복수의 광원의 유효 발산각에 반비례하고, 최대 유효 광원 영역의 크기에 비례할 수 있다.
본 발명에 따른 전자 디바이스는 광원부가 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하도록 함으로써, 사용자에게 보여질 이미지를 생성하여 출력하는 제어부의 크기를 최소화하면서, 현실 이미지와 가상 이미지를 함께 불 수 있는 최적화된 안경 형태의 전자 디바이스를 제공할 수 있다.
도 1은 종래의 사용되던 소형 프로젝트의 문제점을 설명하기 위한 도이다.
도 2은 본 발명의 일례에 따른 전자 디바이스를 설명하기 위한 도이다.
도 3는 도 2에서 제어부의 일례를 설명하기 위한 설명하기 위한 도이다.
도 4 내지 도 6는 본 발명의 일례에 따른 광학 디스플레이부에 적용 가능한 다양한 디스플레이 방식을 설명하기 위한 도이다.
도 7은 도 3에서 설명한 제어부 중 이미지 소스 패널의 기본 구조에 대해 설명한다.
도 8은 도 7에 도시된 이미지 소스 패널에 적용되는 빔 집광부, 빔 가이드부 및 디스플레이 패널의 다양한 변경례에 대해 설명하기 위한 도이다.
도 9및 도 10은 도 7에 도시된 이미지 소스 패널에서 광원부 및 빔 합성부의 구조에 대해 보다 구체적으로 설명하기 위한 도이다.
도 11은 도 7에 도시된 이미지 소스 패널에서 빔 합성부의 변경례에 대해 설명하기 위한 도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 2은 본 발명의 일례에 따른 전자 디바이스를 설명하기 위한 도이다.
도 2에 도시된 바와 같이, 본 발명의 일례에 따른 전자 디바이스는 프레임(100), 제어부(200) 및 광학 디스플레이부(300)를 포함할 수 있다.
프레임(100)은 도 2에 도시된 바와 같이, 사용자(10)의 신체 중 안면에 착용되는 안경 형태를 가질 수 있으나, 이에 반드시 한정되는 것은 아니고, 사용자(10)의 안면에 밀착되어 착용되는 고글 등의 형태를 가질 수도 있다.
이와 같은 프레임(100)은 적어도 하나의 개구부를 구비하는 전면 프레임(110)과 전면 프레임(110)과 교차하는 제1 방향(y)으로 연장되어 서로 나란한 제1, 2 측면 프레임(120)을 포함할 수 있다.
제어부(200)는 사용자(10)에게 보여질 이미지 또는 이미지가 연속되는 영상을 생성할 수 있다. 이와 같은 제어부(200)에는 이미지를 발생시키는 이미지 소스와 이미지 소스에서 발생된 빛을 확산 및 수렴하는 복수의 렌즈 등을 포함할 수 있다. 이와 같은 제어부(200)의 구체적인 구조에 대해서는 아래의 도 3에서 구체적으로 설명한다.
이와 같은 제어부(200)는 제1, 2 측면 프레임(120) 중 어느 하나의 측면 프레임(120)에 고정될 수 있다. 일례로, 제어부(200)는 어느 하나의 측면 프레임(120) 내측 또는 외측에 고정되거나, 어느 하나의 측면 프레임(120)의 내부에 내장되어 일체로 형성될 수 있다.
광학 디스플레이부(300)는 제어부(200)에서 생성된 이미지가 사용자(10)에게 보여지도록 하는 역할을 수행할 수 있으며, 이미지가 사용자(10)에게 보여지도록 하면서, 개구부를 통하여 외부 환경을 볼 수 있도록 하기 위하여, 반투명 유리 재질로 형성될 수 있다.
이와 같은 광학 디스플레이부(300)는 전면 프레임(110)에 포함된 개구부에 삽입되어 고정되거나, 개부구의 배면[즉 개구부와 사용자(10) 사이]에 위치하여, 전면 프레임(110)에 고정되어 구비될 수 있다. 본 발명에서는 일례로, 광학 디스플레이부(300)가 개구부의 배면에 위치하여, 전면 프레임(110)에 고정된 경우를 일예로 도시하였다.
이와 같은 전자 디바이스는 도 2에 도시된 바와 같이, 제어부(200)에서 이미지에 대한 이미지 광을 광학 디스플레이부(300)의 일측으로 입사시키면, 이미지광이 광학 디스플레이부(300)를 통하여 타측으로 출사되어, 제어부(200)에서 생성된 이미지를 사용자(10)에게 보여지도록 할 수 있다.
이에 따라, 사용자(10)는 프레임(100)의 개구부를 통하여 외부 환경을 보면서 동시에 제어부(200)에서 생성된 이미지를 함께 볼 수 있다.
이와 같은 전자 디바이스는 제1, 2 측면 프레임(120) 중 어느 하나의 측면 프레임(120)에 이미지를 생성하는 제어부(200)가 구비되므로, 일반적인 안경이나 고글보다 상대적으로 더 무거울 수 있다.
이에 따라, 사용자(10)의 인체 특성에 따라 다양한 머리 둘레의 차이에 대응하기 위하여, 본 발명의 일례에 따른 전자 디바이스는 제1, 2 측면 프레임(120) 각각의 제1 길이(L1) 또는 제1 측면 프레임(120)과 제2측면 프레임(120) 사이의 제1 간격(D1) 중 적어도 하나가 조절될 수 있는 구조를 가질 수 있다. 일례로, 제1 길이(L1)나 제1 간격(D1) 중 적어도 하나가 커지거나 줄어들 수 있는 구조를 가질 수 있다. 이에 대한 구체적인 설명은 제어부(200) 및 광학 디스플레이부(300)에 대해 먼저 설명한 이후, 도 7 이하에서 구체적으로 설명한다.
도 3는 도 2에서 제어부(200)의 일례를 설명하기 위한 설명하기 위한 도이다.
제어부(200)는 일례로, 도 3에 도시된 바와 같이, 제어부(200) 내부의 구성 소자를 보호하고, 제어부(200)의 외형을 형성하는 제1 커버(207)와 제2 커버(225)를 구비하고, 제1 커버(207)와 제2 커버(225)의 내부에는 구동부(201), 이미지 소스 패널(203), 편광빔 스플리터 필터(Polarization Beam Splitter Filter, PBSF, 211), 미러(209), 복수의 렌즈(213, 215, 217, 221), 플라이아이 렌즈(Fly Eye Lens, FEL, 219), 다이크로익 필터(Dichroic filter, 227) 및 프리즘 프로젝션 렌즈(Freeform prism Projection Lens, FPL, 223)를 구비할 수 있다.
제1 커버(207)와 제2 커버(225)는 구동부(201), 이미지 소스 패널(203), 편광빔 스플리터 필터(211), 미러(209), 복수의 렌즈(213, 215, 217, 221), 플라이아이 렌즈(219) 및 프리즘 프로젝션 렌즈(223)가 내장될 수 있는 공간을 구비하고, 이들을 패키징하여, 제1, 2 측면 프레임(120) 중 어느 하나의 측면 프레임(120a 또는 120b)에 고정될 수 있다.
구동부(201)는 이미지 소스 패널(203)에서 디스플레이되는 영상 또는 이미지를 제어하는 구동 신호를 공급할 수 있으며, 제어부(200) 내부 또는 제어부(200) 외부에 구비되는 별도의 모듈 구동칩에 연동될 수 있다. 이와 같은 구동부(201)는 일례로, 연성 인쇄 회로 기판(Flexible Printed Circuits Board, FPCB) 형태로 구비될 수 있고, 연성 인쇄 회로 기판에는 구동 중 발생하는 열을 외부로 방출시키는 방열판(heatsink)이 구비될 수 있다.
이미지 소스 패널(203)은 구동부(201)에서 제공되는 구동 신호에 따라 이미지를 생성하여 발광할 수 있다. 이를 위해 이미지 소스 패널(203)은 DLP(Digital light processing), DMD(Digital mirror device), LCos(Liquid crystal on silicon), micro LCD(liquid crystal display), 또는 micro OLED(Organic Light Emitting Diode) 중 어느 하나가 이용될 수 있다.
이와 같은 이미지 소스 패널(203)은 이미지를 생성하기 위해 광원을 발생시키는 광원부와 광원부로부터 광원을 입사받아 이미지를 생성하는 디스플레이 패널을 구비할 수 있다. 이와 같은 이미지 소스 패널(203)에 대한 구체적인 구조에 대해서는 도 7 이하에서 후술한다.
편광빔 스플리터 필터(211)는 이미지 소스 패널(203)에서 생성된 이미지에 대한 이미지 광을 회전 각도에 따라 분리하거나 일부를 차단하고 일부는 통과시킬 수 있다. 따라서, 예를 들어, 이미지 소스 패널(203)에서 발광되는 이미지 광이 수평광인 P파와 수직광인 S파를 구비한 경우, 편광빔 스플리터 필터(211)는 P파와 S파를 서로 다른 경로로 분리하거나, 어느 하나의 이미지 광은 통과시키고 나머지 하나의 이미지 광은 차단할 수 있다. 이와 같은 편광빔 스플리터 필터(211)는 일례로, 큐프(cube) 타입 또는 플레이트(plate) 타입으로 구비될 수 있다.
큐프(cube) 타입으로 구비되는 편광빔 스플리터 필터(211)는 P파와 S파로 형성되는 이미지 광을 필터링하여 서로 다른 경로로 분리할 수 있으며, 플레이트(plate) 타입으로 구비되는 편광빔 스플리터 필터(211)는 P파와 S파 중 어느 하나의 이미지 광을 통과시키고 다른 하나의 이미지 광을 차단할 수 있다.
미러(Mirror, 209)는 편광빔 스플리터 필터(211)에서 편광되어 분리된 이미지 광을 반사하여 다시 모아 복수의 렌즈(213, 215, 217, 221)로 입사시킬 수 있다.
복수의 렌즈(213, 215, 217, 221)는 볼록 렌즈와 오목 렌즈 등을 포함할 수 있으며, 일례로, I타입의 렌즈와 C 타입의 렌즈를 포함할 수 있다. 이와 같은 복수의 렌즈(213, 215, 217, 221)는 입사되는 이미지 광을 확산 및 수렴을 반복하도록 하여, 이미지 광의 직진성을 향상시킬 수 있다.
플라이아이 렌즈(219)는 복수의 렌즈(213, 215, 217, 221)를 통과한 이미지 광을 입사받아 입사광의 조도 균일성(uniformity)이 보다 향상되도록 이미지 광을 출사할 수 있으며, 이미지 광이 균일한 조도를 갖는 영역을 확장시킬 수 있다.
다이크로익 필터(227)는 복수의 필름층 또는 렌즈층을 포함할 수 있으며, 플라이아이 렌즈(219)로부터 입사되는 이미지 광 중 특정 파장 대역의 빛은 투과시키고, 나머지 특정 파장 대역의 빛은 반사시켜, 이미지 광의 색감을 보정할 수 있다. 이와 같은 다이크로익 필터(227)를 투과한 이미지 광은 프리즘 프로젝션 렌즈(223)를 통하여 광학 디스플레이부(300)로 출사될 수 있다.
광학 디스플레이부(300)는 제어부(200)에서 출사되는 이미지 광을 입사받아, 사용자(10)가 눈으로 볼 수 있도록 사용자(10)의 눈이 위치한 방향으로 입사된 이미지 광을 출사할 수 있다.
이와 같은 광학 디스플레이부(300)는 전면 프레임(110)에 별도의 고정 부재를 통하여 고정되거나, 전면 프레임(110)에 구비된 개구부 내에 고정될 수 있다.
이하의 도 4 내지 도 6에서는 광학 디스플레이부(300)의 다양한 형태와 입사된 이미지 광이 출사되는 다양한 방식에 대해 설명한다.
도 4 내지 도 6은 본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 다양한 방식의 광학 소자를 설명하기 위한 도이다.
보다 구체적으로, 도 4은 본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 프리즘 방식의 광학 소자의 일례를 설명하기 위한 도이고, 도 5는 본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 웨이브 가이드(waveguide, 또는 도파관) 방식의 광학 소자의 일례를 설명하기 위한 도이고, 도 6는 본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 표면 반사 방식의 광학 소자의 일례를 설명하기 위한 도이다.
본 발명의 일례에 따른 광학 디스플레이부(300)는 사용자(10)가 외부 환경을 시각적으로 인지하면서, 동시에 제어부(200)에서 생성된 이미지를 사용자(10)가 인식하도록 하기 위하여, 반투명일 수 있으며, 일례로, 글래스와 같은 재질을 포함하는 광학 소자로 형성될 수 있다.
본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 광학 소자는 도 4 내지 도 6에 도시된 바와 같은 광학 소자가 이용될 수 있으며, 이외에도 망막 스캔 방식 등 다양한 방식의 광학 소자가 이용될 수 있다.
도 4에 도시된 바와 같이, 본 발명의 일례에 따른 광학 디스플레이부(300)에는 프리즘 방식의 광학 소자가 이용될 수 있다.
일례로, 프리즘 방식의 광학 소자는 도 4의 (a)에 도시된 바와 같이, 이미지 광이 입사되는 표면과 출사되는 표면이 평면인 플렛(flat) 타입의 글래스 광학 소자가 이용되거나, 도 4의 (b)에 도시된 바와 같이, 이미지 광이 출사되는 표면(300b)이 일정한 곡률 반경이 없는 곡면으로 형성되는 프리폼(freeform) 글래스 광학 소자가 이용될 수 있다.
플렛(flat) 타입의 글래스 광학 소자는 제어부(200)에서 생성된 이미지 광을 평평한 측면으로 입사 받아 내부에 구비된 전반사 미러(300a)에 의해 반사되어, 사용자(10) 쪽으로 출사할 수 있다. 여기서, 플렛(flat) 타입의 글래스 광학 소자 내부에 구비되는 전반사 미러(300a)는 레이저에 의해 플렛(flat) 타입의 글래스 광학 소자 내부에 형성될 수 있다.
프리폼(freeform) 글래스 광학 소자는 입사되는 표면으로부터 멀어질수록 두께가 얇아지도록 구성되어, 제어부(200)에서 생성된 이미지 광을 곡면을 가지는 측면으로 입사받아, 내부에서 전반사하여 사용자(10) 쪽으로 출사할 수 있다.
도 5에 도시된 바와 같이, 본 발명의 일례에 따른 광학 디스플레이부(300)에는 웨이브 가이드(waveguide, 또는 도파관) 방식의 광학 소자 또는 광 가이드 광학 소자(light guide optical element, LOE)가 이용될 수 있다.
이와 같은 웨이브 가이드(waveguide, 또는 도파관) 또는 광 가이드(light guide) 방식의 광학 소자는 일례로, 도 5의 (a)에 도시된 바와 같은 부분 반사 미러(Segmented Beam splitter) 방식의 글래스 광학 소자, 도 5의 (b)에 도시된 바와 같은 톱니 프리즘 방식의 글래스 광학 소자, 도 5의 (c)에 도시된 바와 같은 회절 광학 소자(Diffractive optical element, DOE)를 갖는 글래스 광학 소자, 도 5의 (d)에 도시된 바와 같은 홀로그램 광학 소자(hologram optical element, HOE)를 갖는 글래스 광학 소자, 도 5의 (e)에 도시된 바와 같은 수동 격자(Passive grating)를 갖는 글래스 광학 소자, 도 5의 (f)에 도시된 바와 같은 능동 격자(Active grating)를 갖는 글래스 광학 소자가 있을 수 있다.
도 5의 (a)에 도시된 바와 같은 부분 반사 미러(Segmented Beam splitter) 방식의 글래스 광학 소자는 도시된 바와 같이, 글래스 광학 소자 내부에서 광 이미지가 입사되는 쪽에 전반사 미러(301a)와 광 이미지가 출사되는 쪽에 부분 반사 미러(Segmented Beam splitter, 301b)가 구비될 수 있다.
이에 따라, 제어부(200)에서 생성된 광 이미지는 글래스 광학 소자 내부의 전반사 미러(301a)에 전반사되고, 전반사된 광 이미지는 글래스의 길이 방향을 따라 도광하면서, 부분 반사 미러(301b)에 의해 부분적으로 분리 및 출사되어, 사용자(10)의 시각에 인식될 수 있다.
도 5의 (b)에 도시된 바와 같은 톱니 프리즘 방식의 글래스 광학 소자는 글래스의 측면에 사선 방향으로 제어부(200)의 이미지 광이 입사되어 글래스 내부로 전반사되면서 광 이미지가 출사되는 쪽에 구비된 돕니 형태의 요철(302)에 의해 글래스 외부로 출사되어 사용자(10)의 시각에 인식될 수 있다.
도 5의 (c)에 도시된 바와 같은 회절 광학 소자(Diffractive optical element, DOE)를 갖는 글래스 광학 소자는 광 이미지가 입사되는 쪽의 표면에 제1 회절부(303a)와 광 이미지가 출사되는 쪽의 표면에 제2 회절부(303b)가 구비될 수 있다. 이와 같은 제1, 2 회절부(303a, 303b)는 글래스의 표면에 특정 패턴이 패터닝되거나 별도의 회절 필름이 부착되는 형태로 구비될 수 있다.
이에 따라, 제어부(200)에서 생성된 광 이미지는 제1 회절부(303a)를 통하여 입사되면서 회절하고, 전반사되면서 글래스의 길이 방향을 따라 도광하고, 제2 회절부(303b)를 통하여 출사되어, 사용자(10)의 시각에 인식될 수 있다.
도 5의 (d)에 도시된 바와 같은 홀로그램 광학 소자(hologram optical element, HOE)를 갖는 글래스 광학 소자는 광 이미지가 출사되는 쪽의 글래스 내부에 아웃-커플러(out-coupler, 304)가 구비될 수 있다. 이에 따라, 글래스의 측면을 통해 사선 방향으로 제어부(200)로부터 광 이미지가 입사되어 전반사되면서 글래스의 길이 방향을 따라 도광하고, 아웃 커플러(304)에 의해 출사되어, 사용자(10)의 시각에 인식될 수 있다. 이와 같은 홀로그램 광학 소자는 구조가 조금씩 변경되어 수동 격자를 갖는 구조와 능동 격자를 갖는 구조로 보다 세분될 수 있다.
도 5의 (e)에 도시된 바와 같은 수동 격자(Passive grating)를 갖는 글래스 광학 소자는 광 이미지가 입사되는 쪽 글래스 표면의 반대쪽 표면에 인-커플러(in-coupler, 305a), 광 이미지가 출사되는 쪽 글래스 표면의 반대쪽 표면에 아웃-커플러(out-coupler, 305b)가 구비될 수 있다. 여기서, 인-커플러(305a)와 아웃-커플러(305b)는 수동 격자를 갖는 필름 형태로 구비될 수 있다.
이에 따라, 글래스의 입사되는 쪽 글래스 표면으로 입사되는 광 이미지는 반대쪽 표면에 구비된 인-커플러(305a)에 의해 전반사되면서 글래스의 길이 방향을 따라 도광하고, 아웃-커플러(305b)에 의해 글래스의 반대쪽 표면을 통하여 출사되어, 사용자(10)의 시각에 인식될 수 있다.
도 5의 (f)에 도시된 바와 같은 능동 격자(Active grating)를 갖는 글래스 광학 소자는 광 이미지가 입사되는 쪽 글래스 내부에 능동 격자로 형성되는 인-커플러(in-coupler, 306a), 광 이미지가 출사되는 쪽 글래스 내부에 능동 격자로 형성되는 아웃-커플러(out-coupler, 306b)가 구비될 수 있다.
이에 따라, 글래스로 입사되는 광 이미지는 인-커플러(306a)에 의해 전반사되면서 글래스의 길이 방향을 따라 도광하고, 아웃-커플러(306b)에 의해 글래스의 밖으로 출사되어, 사용자(10)의 시각에 인식될 수 있다.
본 발명의 일례에 따른 광학 디스플레이부(300)에 적용 가능한 표면 반사 방식의 광학 소자는 도 6의 (a)에 도시된 바와 같은 freeform combiner 방식, 도 6의 (b)에 도시된 바와 같은 Flat HOE 방식, 도 6의 (c)에 도시된 바와 같은 freeform HOE 방식이 사용될 수 있다.
도 6의 (a)에 도시된 바와 같은 freeform combiner 방식의 표면 반사 방식의 광학 소자는 결합기로서의 역할을 수행하기 위해 광 이미지의 입사각이 서로 다른 복수의 플랫한 면이 하나의 글래스(300)로 형성되어, 전체적으로 곡면을 가지도록 형성된 freeform combiner글래스(300)가 이용될 수 있다. 이와 같은 freeform combiner글래스(300)는 광 이미지 입사각이 영역별로 다르게 입사되어 사용자(10)에게 출사될 수 있다.
도 6의 (b)에 도시된 바와 같은 Flat HOE 방식의 표면 반사 방식의 광학 소자는 플랫(flat)한 글래스의 표면에 홀로그램 광학 소자(HOE, 311)가 코팅되거나 패터닝되어 구비될 수 있으며, 제어부(200)에서 입사된 광 이미지가 홀로그램 광학 소자(311)를 통과하여 글래스의 표면에서 반사되어 다시 홀로그램 광학 소자(311)를 통과하여 사용자(10) 쪽으로 출사될 수 있다.
도 6의 (c)에 도시된 바와 같은 freeform HOE 방식의 표면 반사 방식의 광학 소자는 freeform 형태의 글래스의 표면에 홀로그램 광학 소자(HOE, 313)가 코팅되거나 패터닝되어 구비될 수 있으며, 동작 원리는 도 6의 (b)에서 설명한 바와 동일할 수 있다.
이와 같이, 본 발명의 일례에 따른 광학 디스플레이부(300)에는 프리즘 방식의 광학 소자, 웨이브 가이드 방식의 광학 소자, 광 가이드 광학 소자(LOE) 또는 표면 반사 방식의 광학 소자 중에서 선택되어 이용될 수 있다.
이와 같은 제어부(200)와 광학 디스플레이부(300)를 갖는 본 발명의 일례에 따른 전자 디바이스는 사용자(10)의 착용감을 보다 향상시키기 위하여, 제1, 2 측면 프레임(120) 각각의 제1 길이(L1) 또는 제1 측면 프레임(120)과 제2측면 프레임(120) 사이의 제1 간격(D1) 중 적어도 하나가 조절 가능할 수 있다. 이에 대해 보다 구체적으로 설명한다.
도 7은 도 3에서 설명한 제어부 중 이미지 소스 패널(203)의 구조에 대해 구체적으로 설명한다.
본 발명의 제어부(200)에 구비된 이미지 소스 패널(203)은 도 7에 도시되 바와 같이, 광원부(410), 빔 합성부(420), 빔 집광부(430), 빔 가이드부(440) 및 디스플레이 패널(450)을 포함할 수 있다.
광원부(410)는 이미지를 제공하기 위하여, 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비할 수 있다. 광원부(410)에 구비된 복수의 발광 소자는 하나의 패키지로 구성될 수 있다.
이에 따라, 복수의 발광 소자를 구비한 광원부(410)는 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시킬 수 있다.
빔 합성부(420)는 광원부(410)로부터 입사된 복수의 광원을 균일하게 합성하여, 합성된 광원을 출사시킬 수 있다. 빔 합성부(420)는 광원부(410)에 맞대어 위치하여 광원부(410)로부터 입사된 복수의 광원이 진행 방향으로 길게 연장될 수 있고, 광원부(410)로부터 생성된 복수의 광원을 입사받는 입사면과 합성된 광원이 출사되는 출사면을 구비할 수 있으며,
이와 같은 빔 합성부(420)는 (1) 매질이 있는 하나의 로드 렌즈(Rod lens)로 형성되거나 (2) 복수의 로드 렌즈가 하나의 묶음으로 형성되는 파이버 번들(fiber bundle) 구조로 형성되거나, (3) 매질이 없이 터널 형태를 가지며 터널 내부에 미러(mirror)를 갖는 구조로 형성될 수 있다.
도 7에서는 빔 합성부(420)가 매질이 있는 하나의 로드 렌즈(Rod lens)로 구성된 경우를 일례로 도시하였으나, 이에 반드시 한정되는 것은 아니다.
빔 집광부(430)는 빔 합성부(420)로부터 합성된 광원을 입사받아 미리 결정된 방향으로 집광시켜 빔 가이드부(440)로 광원을 출사할 수 있다.
빔 집광부(430)는 입사면이 빔 합성부(420)의 출사면에 맞대어 위치하고, 복수의 빔 집광 렌즈를 구비할 수 있다. 일례로, 도 7에 도시된 바와 같이, 빔 집광부(430)는 제1 빔 집광 렌즈(431)와 제2 빔 집광 렌즈(432)를 구비할 수 있다. 여기서, 제1, 2 빔 집광 렌즈(431, 432)는 일례로, 콜리메이티드 콘덴스드 렌즈(Collimated Condensed lens)가 사용될 수 있다.
제1 빔 집광 렌즈(431)는 제1 직경을 가지며, 빔 합성부(420)로부터 합성된 광원을 입사받아 확대할 수 있고, 제2 빔 집광 렌즈(432)는 제1 직경보다 큰 제2 직경을 가지며, 제1 빔 집광 렌즈(431)로부터 제1 빔 집광 렌즈(431)로부터 출사되는 합성된 광원을 집광하여 출사할 수 있다.
그러나, 빔 집광부(430)의 구조가 도 7에만 한정되는 것이 아니라 다양한 형태로 변경될 수 있으며, 이에 대해서는 도 8에서 설명한다.
빔 가이드부(440)는 빔 집광부(430)로부터 합성된 광원을 입사받아 디스플레이 패널(450)로 전달할 수 있다.
디스플레이 패널(450)은 빔 가이드로부터 합성된 광원을 입사받아, 사용자에게 보여질 이미지를 생성할 수 있다.
이와 같은 디스플레이 패널(450)은 디지털 라이트 프로세싱(Digital Light Processing, DLP), 디지털 미러 디바이스(Digital Mirror Device, DMD), Liquid Crystal on Sillicon(LCoS), 마이크로 엘씨디(Micro LCD) 또는 마이크로 올레드(Micro OLED) 중 어느 하나가 이용될 수 있으며, 이 밖에도 이미지를 생성할 수 있는 디스플레이 패널(450)이면 얼마든지 가능하다.
이와 같은 본 발명에 따른 이미지 소스 패널에서 빔 집광부(430), 빔 가이드부(440) 및 디스플레이 패널(450)의 다양하게 변형될 수 있다. 이에 대해 설명하면 다음과 같다.
도 8은 도 7에 도시된 이미지 소스 패널에 적용되는 빔 집광부(430), 빔 가이드부(440) 및 디스플레이 패널(450)의 다양한 변경례에 대해 설명하기 위한 도이다.
본 발명의 이미지 소스 패널에 적용되는 빔 집광부(430), 빔 가이드부(440) 및 디스플레이 패널(450)은 도 8에 도시된 바와 같이, 다양한 형태로 구비될 수 있다.
일례로, 본 발명의 이미지 소스 패널에서 빔 가이드부(440)가 변형될 수 있다. 일례로, 도 8의 (a)에 도시된 바와 같이, 빔 가이드부(440)는 일례로, 광원을 편광시키는 편광 형성기인 polarizing beam splitter cube(PBS-cube, 441) 와 PBS-HWP(442) 및 quarter wave plate(QWP, 443)를 포함하여 구성될 수 있으며, 디스플레이 패널(450)은 LCoS로 구비될 수 있다.
이후, 디스플레이 패널(450)인 LCoS에 의해 생성된 이미지는 프로젝션 렌즈로 입사될 수 있다. 여기서 프로젝션 렌즈는 도 3에서 설명한, 편광빔 스플리터 필터(Polarization Beam Splitter Filter, PBSF, 211), 미러(209), 복수의 렌즈(213, 215, 217, 221), 플라이아이 렌즈(Fly Eye Lens, FEL, 219), 다이크로익 필터(Dichroic filter, 227) 및 프리즘 프로젝션 렌즈(Freeform prism Projection Lens, FPL, 223) 등을 포함할 수 있다.
또는, 이미지 소스 패널에서 빔 집광부(430)가 일부 변형되는 것도 가능하다. 일례로, 도 8의 (a)에서는 빔 집광부(430)가 제1, 2 빔 집광 렌즈(431, 432)를 구비한 경우를 일례로 도시하였으나, 도 8의 (b)에 도시된 바와 같이, 빔 집광부(430)에서 직경이 상대적으로 큰 제2 빔 집광 렌즈(432a, 432b)가 복수 개로 구비될 수 있으며, 복수 개의 제2 빔 집광 렌즈(432a, 432b)는 서로 마주보고 구비될 수도 있다.
또한, 도 8의 (a)와 (b)를 혼합하여, 도 8의 (c)에 도시된 바와 같이, 구비되는 것도 가능하다.
이하에서는 광원부(410) 및 빔 합성부(420)의 구조에 대해 보다 상세히 설명한다.
도 9 및 도 10은 도 7에 도시된 이미지 소스 패널에서 광원부(410) 및 빔 합성부(420)의 구조에 대해 보다 구체적으로 설명하기 위한 도이다.
본 발명에 따른 이미지 소스 패널에서 광원부(410)는 도 9의 (a)에 도시된 바와 같이, 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자(410a, 410b, 410c)를 구비할 수 있다.
여기서, 복수의 발광 소자(410a, 410b, 410c) 각각은 파장이 서로 다른 광원인 붉은색(R), 녹색(G), 파란색(B)을 발광할 수 있고, 발광되는 방향이 서로 동일할 수 있다. 여기서, 서로 다른 광원을 발생시키는 복수의 발광 소자(410a, 410b, 410c)는 하나의 패키지로 구성될 수 있다.
빔 합성부(420)는 도 9의 (b)에 도시된 바와 같이, 복수의 발광 소자(410a, 410b, 410c) 각각에서 발광된 복수의 광원이 진행하는 방향으로 길게 연장될 수 있다. 이와 같은 빔 합성부(420)는 광원부(410)에 맞대어 위치하고, 복수의 광원이 입사되는 입사면(A420)과 합성된 광원이 출사되는 출사면(B420)을 구비할 수 있다.
여기서, 빔 합성부(420)에서 복수의 광원을 입사받는 입사면(A420)의 단면은 정사각형, 다각형 또는 원형 중 어느 하나의 형상을 가질 수 있다. 일례로 도 9의 (b)에서는 빔 합성부(420)의 입사면(A420)의 단면이 정사각형을 갖는 것으로 도시되었으나, 전술한 바와 같이 다양한 형상을 가질 수 있다.
또한, 빔 합성부(420)가 하나의 로드 렌즈로 구비된 경우, 하나의 로드 렌즈로 구비된 빔 합성부(420)의 입사면(A420)의 크기는 복수의 발광 소자(410a, 410b, 410c)의 발광 영역인 최대 유효 광원 영역의 크기와 동일하거나 더 클 수 있다.
여기서, 입사면(A420)의 크기와 출사면(B420)의 크기가 서로 다르되, 입사면(A420)의 각면을 형성하는 크기 비율은 출사면(B420)의 각면을 형성하는 크기 비율과 서로 동일할 수 있다.
일례로, 도 9의 (b)에서 빔 합성부(420)의 입사면(A420)이 사각형으로 형성된 경우, 사각형으로 형성된 입사면(A420)의 가로 길이(A420x) 대비 세로 길이(A420y)의 비율은 출사면(B420)의 가로 길이(B420x) 대리 세로 길이(B420y)의 비율과 동일할 수 있다.
이와 같은 빔 합성부(420)는 도 10에 도시된 바와 같이, 광원부(410)로부터 빔 합성부(420)로 입사된 복수의 광원이 빔 합성부(420) 내에서 적어도 1회 이상 발산 및 수렴되는 길이를 가질 수 있다.
보다 구체적으로, 도 10에 도시된 바와 같이, 빔 합성부(420)의 길이(L420)는 복수의 광원이 적어도 2회 이상 수렴되는 길이를 갖고, 빔 합성부(420)의 출사면(B420)에서 복수의 광원은 수렴될 수 있다.
이와 같이, 본 발명에 따른 빔 합성부(420)는 광원부(410)에 구비된 복수의 발광 소자(410a, 410b, 410c) 각각으로부터 발광된 복수의 광원이 빔 합성부(420) 내에서 균일하게 합성될 수 있는 길이(L420)를 갖도록 하여, 빔 합성부(420)의 출사면(B420)에 광원을 유니폼하게 형성할 수 있으며, 광원의 사이즈 비율도 빔 합성부(420)의 입사면(A420)과 출사면(B420)에서 서로 동일하게 할 수 있다.
여기서, 빔 합성부(420)의 길이(L420)는 복수의 광원의 유효 발산각(a)에 반비례하고, 최대 유효 광원 영역의 크기에 비례할 수 있다.
지금까지는 빔 합성부(420)가 복수의 발광 소자(410a, 410b, 410c)에 하나의 로드 렌즈 입사면(A420)이 맞닿는 경우에 대해서 설명하였지만, 본 발명은 이에 반드시 한정되는 것은 아니고, 빔 합성부(420)는 복수의 로드 렌즈가 하나의 묶음으로 형성된 파이버 번들로 형성될 수도 있다.
이하에서는 이와 같이, 빔 합성부(420)가 파이버 번들로 형성된 경우에 대해 설명한다.
도 11은 도 7에 도시된 이미지 소스 패널에서 빔 합성부(420)의 변경례에 대해 설명하기 위한 도이다.
도 11의 (a)에 도시된 바와 같이, 광원부(410)는 파장이 서로 다른 광원을 발생시키는 복수의 발광 소자(410a, 410b, 410c, 410d)가 하나의 패키지로 구성될 수 있다.
더불어, 도 11의 (b)에 도시된 바와 같이, 빔 합성부(420)는 복수의 로드 렌즈(420a, 420b, 420c, 420d)가 하나의 묶음으로 형성되는 파이버 번들 형태로 구비될 수 있다.
여기서, 복수의 로드 렌즈(420a, 420b, 420c, 420d) 각각은 서로 이격되어 복수의 발광 소자(410a, 410b, 410c) 각각과 맞대어 인접하여 위치할 수 있다.
일례로, 복수의 로드 렌즈 각각의 입사면(A420)은 복수의 발광 소자(410a, 410b, 410c) 각각과 맞대어 위치할 수 있으며, 복수의 로드 렌즈(420a, 420b, 420c, 420d) 각각은 수직 또는 수평 방향으로 D1, D2만큼 일정 간격만큼 이격되어 위치할 수 있다.
아울러, 복수의 로드 렌즈 각각의 출사면(B420)은 서로 인접하여 하나의 출사면(B420)을 형성할 수 있다.
이를 위해, 복수의 로드 렌즈(420a, 420b, 420c, 420d) 각각의 길이는 복수의 발광 소자(410a, 410b, 410c) 각각으로부터 발광되는 서로 다른 파장의 광원이 수렴되는 길이 가질 수 있으며, 복수의 로드 렌즈(420a, 420b, 420c, 420d) 각각의 출사면(B420)은 서로 다른 파장의 광원이 수렴되는 길이에서 출사면(B420)이 구비되도록 할 수 있으며, 각 출사면(B420)은 서로 이격되지 않고, 측면이 서로 접촉되도록 하여, 도 11의 (c)와 같이, 복수의 로드 렌즈 각각의 출사면(B420)에 마치 하나의 합성된 광원이 출사되는 것처럼 보이도록 할 수 있다.
이와 같이, 본 발명에 따른 전자 디바이스는 광원부가 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하도록 함으로써, 사용자에게 보여질 이미지를 생성하여 출력하는 제어부의 크기를 최소화하면서, 현실 이미지와 가상 이미지를 함께 불 수 있는 최적화된 안경 형태의 전자 디바이스를 제공할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (13)

  1. 적어도 하나의 개구부를 구비하는 프레임;
    상기 프레임에 장착되고, 이미지를 생성하는 제어부; 그리고,
    상기 프레임의 개구부에 고정되고, 상기 이미지가 반영되는 디스플레이부를 포함하고,
    상기 제어부는:
    상기 이미지를 제공하기 위하여, 파장이 서로 다른 복수의 광원을 서로 동일한 방향으로 발광시키는 복수의 발광 소자를 구비하는 광원부; 그리고,
    상기 광원부로부터 입사된 상기 복수의 광원을 합성하여, 합성된 광원을 출사하는 빔 합성부를 포함하는 전자 디바이스.
  2. 제1 항에 있어서,
    상기 제어부는 상기 빔 합성부로부터 상기 합성된 광원을 입사받아 미리 결정된 방향으로 집광시켜 출사하는 빔 집광부;를 더 포함하는 전자 디바이스.
  3. 제2 항에 있어서,
    상기 빔 집광부는
    입사면이 상기 빔 합성부의 출사면에 맞대어 위치하고,
    제1 직경을 가지며, 상기 빔 합성부로부터 상기 합성된 광원을 입사받아 확대하는 제1 빔 집광 렌즈; 및
    상기 제1 직경보다 큰 제2 직경을 가지며, 상기 제1 빔 집광 렌즈로부터 상기 제1 빔 집광 렌즈로부터 출사되는 상기 합성된 광원을 집광하여 출사하는 제2 빔 집광 렌즈;를 포함하는 전자 디바이스.
  4. 제2 항에 있어서,
    상기 제어부는 상기 빔 집광부로부터 상기 합성된 광원을 입사받아 상기 이미지를 생성하는 디스플레이 패널로 전달하는 빔 가이드부;를 더 구비하는 전자 디바이스.
  5. 제1 항에 있어서,
    상기 광원부에 구비된 상기 복수의 발광 소자는 하나의 패키지로 구성되는 전자 디바이스.
  6. 제1 항에 있어서,
    상기 빔 합성부는 상기 광원부에 맞대어 위치하고, 상기 복수의 광원이 입사되는 입사면과 상기 합성된 광원이 출사되는 출사면을 구비하고,
    상기 빔 합성부는 상기 복수의 광원의 진행 방향으로 길게 연장되고,
    상기 빔 합성부에서 상기 복수의 광원을 입사받는 입사면의 단면은 정사각형, 다각형 또는 원형 중 어느 하나의 형상을 갖는 전자 디바이스.
  7. 제6 항에 있어서,
    상기 빔 합성부는 매질이 있는 하나의 로드 렌즈(Rod lens)로 형성되거나 복수의 로드 렌즈가 하나의 묶음으로 형성되는 파이버 번들(fiber bundle) 구조로 형성되거나, 매질이 없이 터널 형태를 가지며 터널 내부에 미러(mirror)를 갖는 구조로 형성되는 전자 디바이스.
  8. 제6 항에 있어서,
    상기 입사면의 크기와 상기 출사면의 크기가 서로 다르되, 상기 입사면의 각면을 형성하는 크기 비율은 상기 출사면의 각면을 형성하는 크기 비율과 서로 동일한 전자 디바이스.
  9. 제6 항에 있어서,
    상기 광원부는 파장이 서로 다른 광원을 발생시키는 복수의 발광 소자가 하나의 패키지로 구성되고,
    상기 빔 합성부는 복수의 로드 렌즈가 하나의 묶음으로 형성되는 파이버 번들 형태로 구비되고,
    상기 복수의 로드 렌즈 각각의 입사면은 서로 이격되어 상기 복수의 발광 소자 각각과 맞대어 인접하고, 상기 복수의 로드 렌즈 각각의 출사면은 서로 인접하여 하나의 출사면을 형성하는 전자 디바이스.
  10. 제6 항에 있어서,
    상기 광원부는 파장이 서로 다른 광원을 발생시키는 복수의 발광 소자가 하나의 패키지로 구성되고,
    상기 빔 합성부는 하나의 로드 렌즈로 구비되고,
    상기 하나의 로드 렌즈로 구비된 상기 빔 합성부의 입사면의 크기는 상기 복수의 발광 소자의 발광 영역인 최대 유효 광원 영역의 크기와 동일하거나 더 큰 전자 디바이스.
  11. 제1 항에 있어서,
    상기 광원부로부터 상기 빔 합성부로 입사된 상기 복수의 광원은 상기 빔 합성부 내에서 적어도 1회 이상 발산 및 수렴되는 전자 디바이스.
  12. 제11 항에 있어서,
    상기 빔 합성부의 길이는 상기 복수의 광원이 적어도 2회 이상 수렴되는 길이를 갖고, 상기 빔 합성부의 출사면에서 상기 복수의 광원은 수렴되는 전자 디바이스.
  13. 제11 항에 있어서,
    상기 빔 합성부의 길이는 상기 복수의 광원의 유효 발산각에 반비례하고, 상기 최대 유효 광원 영역의 크기에 비례하는 전자 디바이스.
PCT/KR2019/007123 2019-06-13 2019-06-13 전자 디바이스 WO2020251084A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/489,319 US20210405367A1 (en) 2019-06-13 2019-06-13 Electronic device
PCT/KR2019/007123 WO2020251084A1 (ko) 2019-06-13 2019-06-13 전자 디바이스
KR1020190089736A KR20190094309A (ko) 2019-06-13 2019-07-24 전자 디바이스

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/007123 WO2020251084A1 (ko) 2019-06-13 2019-06-13 전자 디바이스

Publications (1)

Publication Number Publication Date
WO2020251084A1 true WO2020251084A1 (ko) 2020-12-17

Family

ID=67624343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007123 WO2020251084A1 (ko) 2019-06-13 2019-06-13 전자 디바이스

Country Status (3)

Country Link
US (1) US20210405367A1 (ko)
KR (1) KR20190094309A (ko)
WO (1) WO2020251084A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467405B2 (en) 2019-08-30 2022-10-11 Lg Electronics Inc. Wearable electronic device on head
WO2024054055A1 (ko) * 2022-09-07 2024-03-14 엘지이노텍 주식회사 프로젝트 장치 및 이를 포함하는 전자 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039582A (ko) * 2006-11-01 2008-05-07 엘지전자 주식회사 일체화된 구조를 이용한 투사광학 장치
KR20170010042A (ko) * 2014-05-15 2017-01-25 이준희 헤드 마운트 디스플레이용 광학 시스템
KR20180020768A (ko) * 2016-08-19 2018-02-28 엘지이노텍 주식회사 광출력 모듈 및 가상 현실 디스플레이 장치
JP2019013050A (ja) * 2018-10-16 2019-01-24 株式会社東芝 電子機器および表示方法
WO2019037020A1 (zh) * 2017-08-24 2019-02-28 冯艳 基于非再入型二次扭曲(nrqd)光栅和棱栅的四维多平面宽带成像系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW380213B (en) * 1999-01-21 2000-01-21 Ind Tech Res Inst Illumination apparatus and image projection apparatus includes the same
US6926435B2 (en) * 2001-08-23 2005-08-09 Wavien, Inc. Led illumination engine using a reflector
JP4274766B2 (ja) * 2002-09-12 2009-06-10 オリンパス株式会社 照明装置及びその照明装置を使用した画像投影装置
DE102005044580A1 (de) * 2005-09-17 2007-04-05 Carl Zeiss Jena Gmbh Anordnung zur Beleuchtung eines Feldes
US7537347B2 (en) * 2005-11-29 2009-05-26 Texas Instruments Incorporated Method of combining dispersed light sources for projection display
KR20110058797A (ko) * 2008-08-14 2011-06-01 쓰리엠 이노베이티브 프로퍼티즈 컴파니 이미징 광원 모듈을 갖는 프로젝션 시스템
JP2015088410A (ja) * 2013-11-01 2015-05-07 株式会社サーマプレシジョン Led照明装置
JP7149482B2 (ja) * 2019-09-27 2022-10-07 日亜化学工業株式会社 ロッドレンズアレイ、それを用いた照明光学系および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039582A (ko) * 2006-11-01 2008-05-07 엘지전자 주식회사 일체화된 구조를 이용한 투사광학 장치
KR20170010042A (ko) * 2014-05-15 2017-01-25 이준희 헤드 마운트 디스플레이용 광학 시스템
KR20180020768A (ko) * 2016-08-19 2018-02-28 엘지이노텍 주식회사 광출력 모듈 및 가상 현실 디스플레이 장치
WO2019037020A1 (zh) * 2017-08-24 2019-02-28 冯艳 基于非再入型二次扭曲(nrqd)光栅和棱栅的四维多平面宽带成像系统
JP2019013050A (ja) * 2018-10-16 2019-01-24 株式会社東芝 電子機器および表示方法

Also Published As

Publication number Publication date
KR20190094309A (ko) 2019-08-13
US20210405367A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
US11703691B2 (en) Display system with spatial light modulator illumination for divided pupils
WO2020235816A1 (en) Glasses-type display apparatus
WO2020251083A1 (ko) 전자 디바이스
US9874753B2 (en) Display apparatus
US10162181B2 (en) Display device with optics for brightness uniformity tuning having DOE optically coupled to receive light at central and peripheral regions
WO2020226235A1 (ko) 전자 디바이스
US7324254B2 (en) High efficiency micro-display system
WO2020138640A1 (ko) 전자 디바이스
WO2020251084A1 (ko) 전자 디바이스
WO2021010603A1 (ko) 근안 디스플레이 장치, 이를 포함한 증강 현실 안경 및 그 작동 방법
WO2023146157A1 (ko) 편광 광학 소자를 이용한 증강 현실용 광학 장치
WO2021040116A1 (en) Electronic device
JP2022517796A (ja) 小型ホモジナイザーを有する画像装置
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2018072419A1 (zh) 双空间光调制系统及使用该系统进行光调节的方法
WO2020138636A1 (ko) 전자 기기
WO2020241909A1 (ko) 전자 디바이스
WO2021049694A1 (ko) 전자 디바이스
WO2022086002A1 (en) Waveguide structure with segmented diffractive optical elements and near-eye display apparatus employing the same
WO2021029479A1 (ko) 전자 디바이스
US11009709B2 (en) Compact LCOS projector for wearable AR devices
EP3811144A1 (en) Glasses-type display apparatus
WO2021040097A1 (ko) 머리에 착용할 수 있는 전자 디바이스
WO2021040082A1 (ko) 전자 디바이스
WO2022014952A1 (ko) 증강 현실 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932980

Country of ref document: EP

Kind code of ref document: A1