WO2020226235A1 - 전자 디바이스 - Google Patents
전자 디바이스 Download PDFInfo
- Publication number
- WO2020226235A1 WO2020226235A1 PCT/KR2019/011496 KR2019011496W WO2020226235A1 WO 2020226235 A1 WO2020226235 A1 WO 2020226235A1 KR 2019011496 W KR2019011496 W KR 2019011496W WO 2020226235 A1 WO2020226235 A1 WO 2020226235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- electronic device
- lens
- image
- image light
- Prior art date
Links
- 210000001508 eye Anatomy 0.000 claims abstract description 34
- 201000009310 astigmatism Diseases 0.000 claims abstract description 29
- 230000003287 optical effect Effects 0.000 claims description 128
- 238000000034 method Methods 0.000 claims description 43
- 210000003128 head Anatomy 0.000 claims description 18
- 210000005252 bulbus oculi Anatomy 0.000 claims description 7
- 230000003190 augmentative effect Effects 0.000 abstract description 28
- 238000013473 artificial intelligence Methods 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 49
- 238000005516 engineering process Methods 0.000 description 31
- 230000033001 locomotion Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 22
- 238000004891 communication Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 230000003993 interaction Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 7
- 210000001525 retina Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002096 quantum dot Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 238000001028 reflection method Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 101710088580 Stromal cell-derived factor 1 Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- LUYQYZLEHLTPBH-UHFFFAOYSA-N perfluorobutanesulfonyl fluoride Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)S(F)(=O)=O LUYQYZLEHLTPBH-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0068—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0176—Head mounted characterised by mechanical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4272—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/10—Mirrors with curved faces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1639—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being based on projection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/0304—Detection arrangements using opto-electronic means
- G06F3/0308—Detection arrangements using opto-electronic means comprising a plurality of distinctive and separately oriented light emitters or reflectors associated to the pointing device, e.g. remote cursor controller with distinct and separately oriented LEDs at the tip whose radiations are captured by a photo-detector associated to the screen
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0346—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/011—Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
- G02B2027/0125—Field-of-view increase by wavefront division
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/013—Head-up displays characterised by optical features comprising a combiner of particular shape, e.g. curvature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0149—Head-up displays characterised by mechanical features
- G02B2027/0154—Head-up displays characterised by mechanical features with movable elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
- G02B2027/0174—Head mounted characterised by optical features holographic
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Definitions
- the present invention relates to an electronic device.
- it relates to an electronic device used for Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR).
- VR Virtual Reality
- AR Augmented Reality
- MR Mixed Reality
- VR Virtual Reality
- Augmented Reality refers to a technology that synthesizes virtual objects or information in a real environment to make them look like objects existing in the original environment.
- Mixed reality or hybrid reality refers to creating a new environment or new information by combining the virtual world and the real world. In particular, it is referred to as mixed reality when it is possible to interact in real time between real and virtual objects in real time.
- the created virtual environment or situation stimulates the user's five senses and allows them to freely enter the boundary between reality and imagination by allowing them to experience spatial and temporal similarities to the real world.
- users can not only immerse themselves in this environment, but also interact with things implemented in this environment, such as manipulating or applying commands using an existing device.
- an electronic device used for augmented reality has a problem that a virtual image is not clearly formed because a user must simultaneously recognize a virtual image projected onto a lens while viewing a real image.
- the present invention provides an electronic device that solves the dual image problem caused by astigmatism in using electronic devices used for VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), etc. .
- the reflective surface on which the pin mirror is provided is a non-axis optical system, an electronic device capable of solving a dual image problem due to astigmatism that inevitably occurs can be provided.
- An electronic device includes an emission unit that provides image light, and a display unit that reflects the image light of the emission unit and transmits it to a user's eyes, and the display unit includes an image transmitted from the emission unit.
- a lens unit that transmits light and a reflective surface provided inside the lens unit and reflecting the image light, and the reflective surface includes a curvature in a first direction and a curvature in a second direction perpendicular to the first direction It is formed as a three-dimensional curved surface that is provided differently, so that astigmatism can be corrected.
- the display unit may further include an optical element provided on the reflective surface and reflecting image light incident from the emission unit toward the user's eyeball.
- the optical device may include a pin mirror.
- the lens unit is provided by bonding a first lens close to the emission unit and a second lens far from the emission unit, the reflective surface is provided on the bonding surface of the first lens and the second lens, the optical element May be provided between the first lens and the second lens.
- control unit may include an emission panel disposed adjacent to or in contact with an incident surface of the lens unit.
- the emission unit may emit image light in a direction inclined with respect to the lens unit, and the lens unit may totally reflect image light incident from the emission unit and transmit it to the reflective surface.
- the widths of the first direction focal line and the second direction focal line of the image light may be narrowed while total reflection.
- the incident surface of the lens unit may be formed in a direction inclined parallel to the emission surface of the emission unit.
- the three-dimensional curved surface of the reflective surface may be provided to be concave with respect to the direction in which the image light is incident.
- the three-dimensional curved surface of the reflective surface may be provided in an anamorphic shape.
- a plurality of optical devices may be spaced apart from each other in the first direction on the reflective surface to form a first direction array.
- the plurality of optical devices may be spaced apart from each other in the second direction on the reflective surface to form a second direction array.
- the emission part may be a micro OLED.
- the emission unit may be provided to be movable with respect to the lens unit to adjust a distance between the emission surface of the emission unit and the incident surface of the lens unit.
- astigmatism may be corrected by adjusting a distance between the exit surface and the incident surface.
- it further comprises a driving control unit for moving the exit unit forward or backward, the driving control unit, when a double image occurs in the y-axis direction, moves the exit part closer to the lens unit, and generates a double image in the x-axis direction. In this case, it is possible to move the exit part farther from the lens part.
- a frame coupled to the display unit and supported on the user's head, and a control unit for generating a virtual image and transmitting it to the output unit, the lens unit at a position corresponding to one or more of the user's left and right eyes Is provided in, and the emission unit is located in the frame, and modulates an image signal transmitted from the control unit into image light and transmits it to the display unit.
- an emission unit that provides image light
- a display unit that reflects the image light of the emission unit and transmits it to a user's eyes
- the display unit the image light transmitted from the emission unit.
- a transmitting lens unit, and a reflective surface provided inside the lens unit and reflecting the image light, and the reflective surface is formed as an aspherical surface in a rotational direction on the axis of symmetry of the incident light and the reflected light to correct astigmatism. It can be possible.
- the emission unit may be provided to be movable with respect to the lens unit to adjust a distance between the emission surface of the emission unit and the incident surface of the lens unit.
- the electronic device can solve the problem of a double image due to a focal length and a double image due to astigmatism.
- a double-image problem due to astigmatism occurring in a non-axial optical system can be solved by providing the shape of the reflective surface to have different curvatures in the Rx direction and the Ry direction.
- a dual image problem due to astigmatism occurring in a non-axial optical system may be solved by variably providing the position of the emission part providing image light.
- 1 is a conceptual diagram showing an embodiment of an AI device.
- FIG. 2 is a block diagram showing the configuration of an extended reality electronic device according to an embodiment of the present invention.
- FIG 3 is a perspective view of a virtual reality electronic device according to an embodiment of the present invention.
- FIG. 4 is a diagram illustrating a state in which the virtual reality electronic device of FIG. 3 is used.
- FIG. 5 is a perspective view of an augmented reality electronic device according to an embodiment of the present invention.
- FIG. 6 is an exploded perspective view for explaining a control unit according to an embodiment of the present invention.
- 7 to 13 are conceptual diagrams for explaining various display methods applicable to a display unit according to an embodiment of the present invention.
- 15 is a diagram for explaining the reason why astigmatism occurs in a spherical reflective surface.
- 16 is a perspective view showing an electronic device according to an embodiment of the present invention.
- FIG. 17 is a cross-sectional view of FIG. 16 in the Z-axis direction.
- FIG. 18 is a diagram illustrating a path of image light in a display unit.
- FIG. 19 is an enlarged view of area A in FIG. 17.
- FIG. 20A shows an image formed on the retina when the exit portion is moved in the direction a
- (b) shows an image formed on the retina when the exit portion is moved in the direction b.
- Fig. 21 is a block diagram showing a configuration for driving an emission unit.
- the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
- eMBB Enhanced Mobile Broadband
- mMTC Massive Machine Type Communication
- URLLC Low Latency Communications
- KPI key performance indicator
- eMBB goes far beyond basic mobile Internet access and covers rich interactive work, media and entertainment applications in the cloud or augmented reality.
- Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
- voice is expected to be processed as an application program simply using the data connection provided by the communication system.
- the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
- Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
- Cloud storage and applications are increasing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
- cloud storage is a special use case that drives the growth of the uplink data rate.
- 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
- Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
- Another use case is augmented reality and information retrieval for entertainment.
- augmented reality requires very low latency and an instantaneous amount of data.
- one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
- mMTC massive machine type computer
- Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
- URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
- the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
- 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TV in 4K or higher (6K, 8K and higher) resolution as well as virtual reality and augmented reality.
- Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events. Certain application programs may require special network settings. In the case of VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
- Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
- Another application example in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver is looking through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
- wireless modules enable communication between vehicles, exchange of information between the vehicle and supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
- the safety system allows the driver to lower the risk of accidents by guiding alternative courses of action to make driving safer.
- the next step will be a remote controlled or self-driven vehicle. It is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic anomalies that the vehicle itself cannot identify.
- the technical requirements of self-driving vehicles call for ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
- Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
- a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
- a similar setup can be done for each household.
- Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
- the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
- the smart grid can also be viewed as another low-latency sensor network.
- the health sector has many applications that can benefit from mobile communications.
- the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
- a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
- Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
- 1 is a conceptual diagram showing an embodiment of an AI device.
- the AI system includes at least one of an AI server 16, a robot 11, an autonomous vehicle 12, an XR device 13, a smartphone 14, or a home appliance 15. It is connected with (10).
- the robot 11 to which the AI technology is applied, the autonomous vehicle 12, the XR device 13, the smartphone 14, or the home appliance 15 may be referred to as AI devices 11 to 15.
- the cloud network 10 may constitute a part of the cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure.
- the cloud network 10 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
- LTE Long Term Evolution
- the devices 11 to 16 constituting the AI system may be connected to each other through the cloud network 10.
- the devices 11 to 16 may communicate with each other through a base station, but may directly communicate with each other without passing through the base station.
- the AI server 16 may include a server that performs AI processing and a server that performs an operation on big data.
- the AI server 16 includes at least one of a robot 11, an autonomous vehicle 12, an XR device 13, a smartphone 14, or a home appliance 15, which are AI devices constituting an AI system, and a cloud network ( 10) is connected through, and can help at least part of the AI processing of the connected AI devices 11 to 15.
- the AI server 16 may train an artificial neural network according to a machine learning algorithm in place of the AI devices 11 to 15, and may directly store the learning model or transmit it to the AI devices 11 to 15.
- the AI server 16 receives input data from the AI devices 11 to 15, infers a result value for the received input data using a learning model, and a response or control command based on the inferred result value. Can be generated and transmitted to the AI devices (11 to 15).
- the AI devices 11 to 15 may infer a result value for input data using a direct learning model, and generate a response or a control command based on the inferred result value.
- the robot 11 is applied with AI technology and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, and the like.
- the robot 11 may include a robot control module for controlling an operation, and the robot control module may refer to a software module or a chip implemented with hardware.
- the robot 11 acquires status information of the robot 11 by using sensor information acquired from various types of sensors, detects (recognizes) the surrounding environment and objects, generates map data, and travels and travels. It can decide a plan, decide a response to user interaction, or decide an action.
- the robot 11 may use sensor information obtained from at least one sensor among a lidar, a radar, and a camera in order to determine a moving route and a driving plan.
- the robot 11 may perform the above operations using a learning model composed of at least one artificial neural network.
- the robot 11 may recognize a surrounding environment and an object using the learning model, and may determine an operation using the recognized surrounding environment information or object information.
- the learning model may be directly learned by the robot 11 or learned by an external device such as the AI server 16.
- the robot 11 may directly generate a result using a learning model to perform an operation, but transmits sensor information to an external device such as the AI server 16 and receives the result generated accordingly to perform the operation. You can also do it.
- the robot 11 determines a movement route and a driving plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the determined movement path and travel plan. Accordingly, the robot 11 can be driven.
- the map data may include object identification information on various objects arranged in a space in which the robot 11 moves.
- the map data may include object identification information on fixed objects such as walls and doors and movable objects such as flower pots and desks.
- the object identification information may include a name, type, distance, and location.
- the robot 11 may perform an operation or run by controlling a driving unit based on a user's control/interaction.
- the robot 11 may acquire interaction intention information according to a user's motion or voice speech, and determine a response based on the obtained intention information to perform the operation.
- the autonomous vehicle 12 may be implemented as a mobile robot, vehicle, or unmanned aerial vehicle by applying AI technology.
- the autonomous driving vehicle 12 may include an autonomous driving control module for controlling an autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implementing the same as hardware.
- the autonomous driving control module may be included inside as a configuration of the autonomous driving vehicle 12, but may be configured and connected to the exterior of the autonomous driving vehicle 12 as separate hardware.
- the autonomous vehicle 12 acquires status information of the autonomous vehicle 12 by using sensor information acquired from various types of sensors, detects (recognizes) surrounding environments and objects, or generates map data, It is possible to determine a travel route and a driving plan, or to determine an action.
- the autonomous vehicle 12 may use sensor information obtained from at least one sensor from among a lidar, a radar, and a camera, similar to the robot 11, in order to determine a moving route and a driving plan.
- the autonomous vehicle 12 may recognize an environment or object in an area where the view is obscured or an area greater than a certain distance by receiving sensor information from external devices or directly recognized information from external devices. .
- the autonomous vehicle 12 may perform the above operations using a learning model composed of at least one artificial neural network.
- the autonomous vehicle 12 may recognize the surrounding environment and objects using the learning model, and may determine the driving movement using the recognized surrounding environment information or object information.
- the learning model may be directly learned by the autonomous vehicle 12 or learned by an external device such as the AI server 16.
- the autonomous vehicle 12 may directly generate a result and perform an operation using a learning model, but transmits sensor information to an external device such as the AI server 16 and receives the result generated accordingly. You can also perform actions.
- the autonomous vehicle 12 determines a movement path and a driving plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the determined movement path and driving.
- the autonomous vehicle 12 can be driven according to a plan.
- the map data may include object identification information on various objects arranged in a space (eg, a road) in which the autonomous vehicle 12 travels.
- the map data may include object identification information on fixed objects such as street lights, rocks, and buildings, and movable objects such as vehicles and pedestrians.
- the object identification information may include a name, type, distance, and location.
- the autonomous vehicle 12 may perform an operation or run by controlling a driving unit based on a user's control/interaction.
- the autonomous vehicle 12 may obtain information on intention of interaction according to a user's motion or voice speech, and determine a response based on the obtained intention information to perform the operation.
- the XR device 13 is applied with AI technology, such as HMD (Head-Mount Display), HUD (Head-Up Display) provided in the vehicle, TV, mobile phone, smart phone, computer, wearable device, home appliance, digital signage. , A vehicle, a fixed robot, or a mobile robot.
- HMD Head-Mount Display
- HUD Head-Up Display
- the XR device 13 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for 3D points, thereby providing information on surrounding spaces or real objects.
- the XR object to be acquired and output can be rendered and output.
- the XR apparatus 13 may output an XR object including additional information on the recognized object in correspondence with the recognized object.
- the XR device 13 may perform the above operations using a learning model composed of at least one artificial neural network.
- the XR apparatus 13 may recognize a real object from 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized real object.
- the learning model may be directly trained by the XR device 13 or may be learned by an external device such as the AI server 16.
- the XR device 13 may perform an operation by generating a result using a direct learning model, but it transmits sensor information to an external device such as the AI server 16 and receives the result generated accordingly. You can also do
- the robot 11 may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc. by applying AI technology and autonomous driving technology.
- the robot 11 to which AI technology and autonomous driving technology are applied may refer to a robot itself having an autonomous driving function, or a robot 11 that interacts with the autonomous driving vehicle 12.
- the robot 11 having an autonomous driving function may collectively refer to devices that move by themselves according to a given movement line without the user's control or by determining the movement line by themselves.
- the robot 11 and the autonomous vehicle 12 having an autonomous driving function may use a common sensing method to determine one or more of a moving route or a driving plan.
- the robot 11 and the autonomous vehicle 12 having an autonomous driving function may determine one or more of a movement route or a driving plan using information sensed through a lidar, a radar, and a camera.
- the robot 11 interacting with the autonomous driving vehicle 12 exists separately from the autonomous driving vehicle 12 and is linked to an autonomous driving function inside or outside the autonomous driving vehicle 12, or ), you can perform an operation associated with the user on board.
- the robot 11 interacting with the autonomous vehicle 12 acquires sensor information on behalf of the autonomous vehicle 12 and provides it to the autonomous vehicle 12, or acquires sensor information and provides information on the surrounding environment.
- object information may be generated and provided to the autonomous vehicle 12 to control or assist the autonomous driving function of the autonomous vehicle 12.
- the robot 11 interacting with the autonomous vehicle 12 may monitor a user aboard the autonomous vehicle 12 or control the functions of the autonomous vehicle 12 through interaction with the user. .
- the robot 11 may activate an autonomous driving function of the autonomous driving vehicle 12 or assist the control of a driving unit of the autonomous driving vehicle 12.
- the functions of the autonomous driving vehicle 12 controlled by the robot 11 may include not only an autonomous driving function, but also functions provided by a navigation system or an audio system provided inside the autonomous driving vehicle 12.
- the robot 11 interacting with the autonomous vehicle 12 may provide information or assist a function to the autonomous vehicle 12 from the outside of the autonomous vehicle 12.
- the robot 11 may provide traffic information including signal information to the autonomous vehicle 12 such as a smart traffic light, or interact with the autonomous vehicle 12 such as an automatic electric charger of an electric vehicle. You can also automatically connect an electric charger to the charging port.
- the robot 11 may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, etc. by applying AI technology and XR technology.
- the robot 11 to which the XR technology is applied may refer to a robot that is an object of control/interaction in an XR image.
- the robot 11 is separated from the XR device 13 and can be interlocked with each other.
- the robot 11 which is the object of control/interaction in the XR image, acquires sensor information from sensors including a camera, the robot 11 or the XR device 13 generates an XR image based on the sensor information. And, the XR device 13 may output the generated XR image. In addition, the robot 11 may operate based on a control signal input through the XR device 13 or a user's interaction.
- the user can check the XR image corresponding to the viewpoint of the robot 11 remotely linked through an external device such as the XR device 13, and adjust the autonomous driving path of the robot 11 through interaction.
- You can control motion or driving, or check information on surrounding objects.
- the autonomous vehicle 12 may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying AI technology and XR technology.
- the self-driving vehicle 12 to which the XR technology is applied may refer to an autonomous vehicle having a means for providing an XR image, or an autonomous vehicle that is an object of control/interaction within the XR image.
- the autonomous vehicle 12, which is an object of control/interaction in the XR image is distinguished from the XR device 13 and may be interlocked with each other.
- the autonomous vehicle 12 provided with a means for providing an XR image may obtain sensor information from sensors including a camera, and may output an XR image generated based on the acquired sensor information.
- the autonomous vehicle 12 may provide a real object or an XR object corresponding to an object in a screen to the occupant by outputting an XR image with a HUD.
- the XR object when the XR object is output to the HUD, at least a part of the XR object may be output so that it overlaps the actual object facing the occupant's gaze.
- the XR object when the XR object is output on a display provided inside the autonomous vehicle 12, at least a part of the XR object may be output to overlap the object in the screen.
- the autonomous vehicle 12 may output XR objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
- the autonomous vehicle 12 which is the object of control/interaction within the XR image, acquires sensor information from sensors including a camera, the autonomous vehicle 12 or the XR device 13 is based on the sensor information. An XR image is generated, and the XR device 13 may output the generated XR image.
- the autonomous vehicle 12 may operate based on a control signal input through an external device such as the XR device 13 or a user's interaction.
- Extended reality collectively refers to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
- VR technology provides only CG images of real world objects or backgrounds
- AR technology provides virtually created CG images on top of real object images
- MR technology is a computer that mixes and combines virtual objects in the real world. It is a graphic technology.
- MR technology is similar to AR technology in that it shows real and virtual objects together.
- virtual objects are used in a form that complements real objects
- MR technology virtual objects and real objects are used with equal characteristics.
- XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phones, tablet PCs, laptops, desktops, TVs, digital signage, etc., and devices applied with XR technology are XR devices. It can be called as.
- HMD Head-Mount Display
- HUD Head-Up Display
- mobile phones tablet PCs, laptops, desktops, TVs, digital signage, etc.
- devices applied with XR technology are XR devices. It can be called as.
- FIG. 2 is a block diagram showing a configuration of an extended reality electronic device 20 according to an embodiment of the present invention.
- the extended reality electronic device 20 includes a wireless communication unit 21, an input unit 22, a sensing unit 23, an output unit 24, an interface unit 25, a memory 26, and a control unit ( 27) and a power supply unit 28, and the like.
- the components shown in FIG. 2 are not essential in implementing the electronic device 20, so the electronic device 20 described herein may have more or fewer components than the components listed above. .
- the wireless communication unit 21 is a wireless communication unit between the electronic device 20 and a wireless communication system, between the electronic device 20 and other electronic devices, or between the electronic device 20 and an external server. It may include one or more modules that enable communication. In addition, the wireless communication unit 21 may include one or more modules that connect the electronic device 20 to one or more networks.
- the wireless communication unit 21 may include at least one of a broadcast reception module, a mobile communication module, a wireless Internet module, a short range communication module, and a location information module.
- the input unit 22 includes a camera or video input unit for inputting an image signal, a microphone or audio input unit for inputting an audio signal, and a user input unit for receiving information from a user (for example, a touch key). , Push key (mechanical key, etc.).
- the voice data or image data collected by the input unit 22 may be analyzed and processed as a user's control command.
- the sensing unit 23 may include one or more sensors for sensing at least one of information in the electronic device 20, information on surrounding environments surrounding the electronic device 20, and user information.
- the sensing unit 23 includes a proximity sensor, an illumination sensor, a touch sensor, an acceleration sensor, a magnetic sensor, and a gravity sensor (G- sensor), gyroscope sensor, motion sensor, RGB sensor, infrared sensor (IR sensor), fingerprint recognition sensor, ultrasonic sensor, optical sensor ( optical sensor (e.g., photographing means), microphone, battery gauge, environmental sensor (e.g., barometer, hygrometer, thermometer, radiation sensor, heat sensor, gas sensor, etc.), It may include at least one of a chemical sensor (eg, an electronic nose, a healthcare sensor, a biometric sensor, etc.). Meanwhile, the electronic device 20 disclosed in the present specification may combine and utilize information sensed by at least two or more of these sensors.
- the output unit 24 is for generating output related to visual, auditory or tactile sense, and may include at least one of a display unit, an audio output unit, a haptic module, and a light output unit.
- the display unit forms a layered structure with the touch sensor or is integrally formed, thereby implementing a touch screen.
- Such a touch screen may function as a user input means providing an input interface between the augmented reality electronic device 20 and the user, and may provide an output interface between the augmented reality electronic device 20 and the user.
- the interface unit 25 serves as a passage for various types of external devices connected to the electronic device 20. Through the interface unit 25, the electronic device 20 may receive virtual reality or augmented reality content from an external device, and may perform mutual interaction by exchanging various input signals, sensing signals, and data.
- the interface unit 25 includes a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, and a device equipped with an identification module. It may include at least one of a connection port, an audio input/output (I/O) port, an input/output (video I/O) port, and an earphone port.
- I/O audio input/output
- video I/O input/output
- earphone port an earphone port
- the memory 26 stores data supporting various functions of the electronic device 20.
- the memory 26 may store a plurality of application programs or applications driven by the electronic device 20, data for operation of the electronic device 20, and instructions. At least some of these application programs may be downloaded from an external server through wireless communication. In addition, at least some of these application programs may exist on the electronic device 20 from the time of shipment for basic functions of the electronic device 20 (eg, incoming calls, outgoing functions, message receiving and outgoing functions).
- control unit 27 In addition to the operation related to the application program, the control unit 27 generally controls the overall operation of the electronic device 20.
- the controller 27 may process signals, data, information, etc. that are input or output through the above-described components.
- controller 27 may control at least some of the components by driving the application program stored in the memory 26 to provide appropriate information or process functions to the user.
- control unit 27 may operate by combining at least two or more of the components included in the electronic device 20 to drive the application program.
- the controller 27 may detect the movement of the electronic device 20 or a user using a gyroscope sensor, a gravity sensor, a motion sensor, etc. included in the sensing unit 23.
- the control unit 27 may detect an object approaching the electronic device 20 or the user using a proximity sensor, an illuminance sensor, a magnetic sensor, an infrared sensor, an ultrasonic sensor, an optical sensor, etc. included in the sensing unit 23. have.
- the control unit 27 may detect the user's movement through sensors provided in the controller operating in conjunction with the electronic device 20.
- controller 27 may perform an operation (or function) of the electronic device 20 using an application program stored in the memory 26.
- the power supply unit 28 receives external power or internal power under the control of the controller 27 and supplies power to each of the components included in the electronic device 20.
- the power supply unit 28 includes a battery, and the battery may be provided in a built-in or replaceable form.
- At least some of the above components may operate in cooperation with each other to implement an operation, control, or control method of an electronic device according to various embodiments described below. Further, the operation, control, or control method of the electronic device may be implemented on the electronic device by driving at least one application program stored in the memory 26.
- a mobile phone a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC ( slate PC), a tablet PC, an ultrabook, and a wearable device.
- PDA personal digital assistants
- PMP portable multimedia player
- slate PC slate PC
- the wearable device may include a smart watch and a contact lens.
- FIG. 3 is a perspective view of a virtual reality electronic device according to an embodiment of the present invention
- FIG. 4 is a view showing a state of using the virtual reality electronic device of FIG. 3.
- the virtual reality electronic device may include a box-type electronic device 30 mounted on a user's head, and controllers 40 (40a, 40b) capable of being held and operated by the user.
- the electronic device 30 includes a head unit 31 worn and supported on the head of the human body, and a display unit 32 coupled to the head unit 31 to display a virtual image or image in front of the user's eyes.
- the head unit 31 and the display unit 32 are configured as separate units and are shown to be combined with each other. Unlike this, the display unit 32 may be integrated with the head unit 31.
- the head unit 31 may adopt a structure surrounding the user's head so that the weight of the display unit 32 having a sense of weight can be distributed.
- a band having a variable length may be provided to fit the size of the head of each different user.
- the display unit 32 comprises a cover portion 32a coupled to the head unit 31 and a display portion 32b accommodating a display panel therein.
- the cover portion 32a is also referred to as a goggle frame, and may have a tub shape as a whole.
- the cover part 32a has a space inside and an opening corresponding to the position of the user's eyeball is formed on the front side.
- the display unit 32b is mounted on the front frame of the cover unit 32a, and is provided at positions corresponding to the user's sides to output screen information (images or images, etc.).
- Screen information output from the display unit 32b includes not only virtual reality content but also external images collected through photographing means such as a camera.
- the virtual reality content output to the display unit 32b may be stored in the electronic device 30 itself or may be stored in the external device 60.
- the electronic device 30 performs image processing and rendering processing for processing the image of the virtual space, and the image processing and rendering processing result
- the generated image information may be output through the display unit 32b.
- the external device 60 may perform image processing and rendering processing, and transmit the resulting image information to the electronic device 30.
- the electronic device 30 may output 3D image information received from the external device 60 through the display unit 32b.
- the display unit 32b includes a display panel provided in front of the opening of the cover unit 32a, and the display panel may be an LCD or OLED panel.
- the display unit 32b may be a display unit of a smartphone. That is, a structure in which the smartphone can be detached in front of the cover part 32a may be adopted.
- a photographing means and various sensors may be installed in front of the display unit 32.
- the photographing means (for example, a camera) is formed to photograph (receive, input) an image in front, and in particular, can acquire the real world viewed by the user as an image.
- One photographing means may be provided at a central position of the display unit 32b, or two or more photographing means may be provided at positions symmetrical to each other. When a plurality of photographing means are provided, a stereoscopic image may be obtained. An image obtained by combining a virtual image with an external image obtained from the photographing means may be displayed through the display unit 32b.
- the sensors may include a gyroscope sensor, a motion sensor, or an IR sensor. This will be described in detail later.
- a facial pad 33 may be installed at the rear of the display unit 32.
- the face pad 33 is in close contact with the user's eyeball and is made of a cushioned material to provide a comfortable fit to the user's face.
- the face pad 33 has a shape corresponding to the front contour of a person's face and is made of a flexible material, so that it can be in close contact with the face even with the face shape of different users, thereby preventing external light from entering the eyes.
- the electronic device 30 may include a user input unit operated to receive a control command, and an audio output unit and a control unit. The description of this is the same as before, so it is omitted.
- the virtual reality electronic device may include controllers 40 (40a, 40b) for controlling operations related to a virtual space image displayed through the box-type electronic device 30 as a peripheral device.
- the controller 40 may be provided in a form in which a user can easily grip both hands, and a touch pad (or track pad) for receiving a user input, a button, and the like may be provided on an outer surface thereof.
- the controller 40 may be used to control a screen output on the display unit 32b in connection with the electronic device 30.
- the controller 40 may include a grip part gripped by a user, and a head part extending from the grip part and including various sensors and a microprocessor.
- the grip portion may be formed in a vertically long bar shape so that the user can easily grasp it, and the head portion may be formed in a ring shape.
- the controller 40 may include an IR sensor, a motion tracking sensor, a microprocessor, and an input unit.
- the IR sensor is used to track a user's motion by receiving light emitted from the location tracking device 50 to be described later.
- the motion tracking sensor may be configured by including a 3-axis acceleration sensor, a 3-axis gyroscope, and a digital motion processor as one assembly.
- a user input unit may be provided on the grip unit of the controller 40.
- the user input unit may include, for example, keys disposed inside the grip unit, a touch pad (track pad) provided outside the grip unit, a trigger button, and the like.
- the controller 40 may perform a feedback corresponding to a signal received from the controller 27 of the electronic device 30.
- the controller 40 may transmit a feedback signal to the user through vibration, sound, or light.
- the user may access an external environment image checked through a camera provided in the electronic device 30 through manipulation of the controller 40. That is, the user can immediately check the external environment through the operation of the controller 40 without taking off the electronic device 30 even during virtual space experience.
- the virtual reality electronic device may further include a location tracking device 50.
- the location tracking device 50 detects the location of the electronic device 30 or the controller 40 by applying a positional tracking technology called a lighthouse system, and tracks the user's 360-degree motion using this. To help.
- the location tracking system can be implemented by installing one or more location tracking devices 50:50a, 50b in a specific closed space.
- the plurality of position tracking devices 50 may be installed at positions where the recognizable spatial range can be maximized, for example, at positions facing each other in a diagonal direction.
- the electronic device 30 or the controller 40 receives light emitted from LEDs or laser emitters included in the plurality of position tracking devices 50, and based on the correlation between the position and time at which the light is received, It is possible to accurately determine the user's location within a specific closed space.
- the position tracking device 50 may include an IR lamp and a two-axis motor, respectively, through which signals are exchanged with the electronic device 30 or the controller 40.
- the electronic device 30 may perform wired/wireless communication with the external device 60 (eg, a PC, a smartphone, or a tablet).
- the electronic device 30 may receive a virtual space image stored in the connected external device 60 and display it to the user.
- controller 40 and the location tracking device 50 described above are not essential configurations, they may be omitted in the embodiment of the present invention.
- an input device installed in the electronic device 30 may replace the controller 40, and position information may be determined by itself from sensors installed in the electronic device 30.
- FIG. 5 is a perspective view of an augmented reality electronic device according to an embodiment of the present invention.
- an electronic device may include a frame 100, a control unit 200, and a display unit 300.
- the electronic device may be provided in a glass type (smart glass).
- the glass-type electronic device is configured to be worn on the head of the human body, and may include a frame (case, housing, etc.) 100 therefor.
- the frame 100 may be formed of a flexible material to facilitate wearing.
- the frame 100 is supported on the head and provides a space in which various parts are mounted. As illustrated, electronic components such as a control unit 200, a user input unit 130, or an audio output unit 140 may be mounted on the frame 100. In addition, a lens covering at least one of the left eye and the right eye may be detachably mounted on the frame 100.
- the frame 100 may have a shape of glasses worn on the face of the user's body, but is not limited thereto, and may have a shape such as goggles worn in close contact with the user's face. .
- Such a frame 100 includes a front frame 110 having at least one opening and a pair of side frames 120 extending in a first direction y crossing the front frame 110 and parallel to each other. I can.
- the control unit 200 is provided to control various electronic components provided in the electronic device.
- the controller 200 may generate an image displayed to a user or an image in which the image is continuous.
- the controller 200 may include an image source panel that generates an image and a plurality of lenses that diffuse and converge light generated from the image source panel.
- the control unit 200 may be fixed to either side frame 120 of the two side frames 120.
- the control unit 200 may be fixed inside or outside any one side frame 120, or may be integrally formed by being built in the inside of any one side frame 120.
- the control unit 200 may be fixed to the front frame 110 or may be provided separately from the electronic device.
- the display unit 300 may be implemented in the form of a head mounted display (HMD).
- HMD type refers to a display method that is mounted on the head and displays an image directly in front of the user's eyes.
- the display unit 300 may be disposed to correspond to at least one of the left eye and the right eye so that an image can be directly provided in front of the user's eyes.
- the display unit 300 is located in a portion corresponding to the right eye so that an image can be output toward the user's right eye.
- the display unit 300 may allow the user to visually perceive the external environment and simultaneously display an image generated by the controller 200 to the user.
- the display unit 300 may project an image onto the display area using a prism.
- the display unit 300 may be formed to be light-transmitting so that the projected image and the general field of view (a range that the user sees through the eyes) can be seen at the same time.
- the display unit 300 may be translucent and may be formed of an optical element including glass.
- the display unit 300 may be inserted into and fixed to an opening included in the front frame 110, or located at the rear surface of the opening (ie, between the opening and the user), and fixed to the front frame 110.
- the display unit 300 is located at the rear of the opening and is fixed to the front frame 110 as an example, but unlike this, the display unit 300 is disposed and fixed at various positions of the frame 100. I can.
- the control unit 200 injects image light for an image to one side of the display unit 300
- the electronic device emits the image light to the other side through the display unit 300, as shown in FIG. 200) can be made visible to the user.
- the electronic device may provide an Augmented Reality (AR) that displays a virtual image as a single image by superimposing a virtual image on a real image or a background using such display characteristics.
- AR Augmented Reality
- FIG. 6 is an exploded perspective view for explaining a control unit according to an embodiment of the present invention.
- the control unit 200 is provided with a first cover 207 and a second cover 225 that protects the internal components and forms the outer shape of the control unit 200, the first cover 207 And the inside of the second cover 225 is a driving unit 201, an image source panel 203, a polarization beam splitter filter (PBSF, 211), a mirror 209, a plurality of lenses (213, 215, 217, 221), a Fly Eye Lens (FEL, 219), a Dichroic filter 227, and a Freeform prism Projection Lens (FPL, 223) may be provided.
- PBSF polarization beam splitter filter
- FEL Fly Eye Lens
- FPL Freeform prism Projection Lens
- the first cover 207 and the second cover 225 include a driving unit 201, an image source panel 203, a polarizing beam splitter filter 211, a mirror 209, and a plurality of lenses 213, 215, 217, 221. ), a space in which the fly-eye lens 219 and the prism projection lens 223 can be installed, and packaging them, may be fixed to any one of the side frames 120.
- the driving unit 201 may supply an image displayed on the image source panel 203 or a driving signal for controlling the image, and may be interlocked with a separate module driving chip provided inside the control unit 200 or outside the control unit 200.
- the driving unit 201 may be provided in the form of a flexible printed circuit board (FPCB), and the flexible printed circuit board is provided with a heatsink that discharges heat generated during driving to the outside. Can be.
- FPCB flexible printed circuit board
- the image source panel 203 may emit light by generating an image according to a driving signal provided from the driving unit 201.
- the image source panel 203 may be a liquid crystal display (LCD) panel or an organic light emitting diode (OLED) panel.
- the polarization beam splitter filter 211 may separate image light for an image generated by the image source panel 203 according to a rotation angle or may block a part and pass a part through it. Therefore, for example, when the image light emitted from the image source panel 203 includes a horizontal light P wave and a vertical light S wave, the polarization beam splitter filter 211 separates the P wave and the S wave into different paths, or In this case, one image light may pass and the other image light may be blocked.
- the polarization beam splitter filter 211 as described above may be provided in a cube type or a plate type according to an exemplary embodiment.
- the polarizing beam splitter filter 211 provided in a cube type can be separated into different paths by filtering image light formed of P waves and S waves, and a polarizing beam splitter filter 211 provided in a plate type. ) May pass the image light of one of the P-wave and the S-wave and block the other image light.
- the mirror 209 may reflect the image light polarized and separated by the polarization beam splitter filter 211 and collect it again to be incident on the plurality of lenses 213, 215, 217, and 221.
- the plurality of lenses 213, 215, 217, and 221 may include a convex lens and a concave lens, and for example, may include an I-type lens and a C-type lens.
- the plurality of lenses 213, 215, 217, and 221 may repeat diffusion and convergence of incident image light, thereby improving linearity of image light.
- the fly-eye lens 219 receives image light that has passed through the plurality of lenses 213, 215, 217, 221, and emits image light to further improve the illuminance uniformity of the incident light.
- the area with uniform illuminance can be expanded.
- the dichroic filter 227 may include a plurality of film layers or lens layers, and among the image light incident from the fly-eye lens 219, light of a specific wavelength band is transmitted, and light of the other specific wavelength band is reflected. By doing so, the color sense of the image light can be corrected.
- the image light transmitted through the dichroic filter 227 may be emitted to the display unit 300 through the prism projection lens 223.
- the display unit 300 may receive image light emitted from the control unit 200 and may output image light incident in the direction in which the user's eyes are positioned so that the user can see it with the eyes.
- the electronic device may include one or more photographing means (not shown).
- the photographing means is disposed adjacent to at least one of the left eye and the right eye, so that the front image can be photographed. Alternatively, it may be arranged to capture a lateral/rear image.
- the photographing means Since the photographing means is located adjacent to the eye, the photographing means can acquire an image of the real world viewed by the user.
- the photographing means may be installed on the frame 100 or may be provided in plural to obtain a three-dimensional image.
- the electronic device may include a user input unit 130 that is operated to receive a control command.
- the user input unit 130 provides a tactile manner, such as a touch, a push, and the like, a gesture manner that recognizes the movement of the user's hand without a direct touch, or a voice command.
- Various methods can be employed, including recognition methods.
- the frame 100 is provided with the user input unit 130.
- the electronic device may include a microphone that receives sound and processes it as electrical voice data, and a sound output unit 140 that outputs sound.
- the sound output unit 140 may be configured to transmit sound through a general sound output method or a bone conduction method. When the sound output unit 140 is implemented in a bone conduction method, when the user wears the electronic device, the sound output unit 140 is in close contact with the head and vibrates the skull to transmit sound.
- 7 to 13 are conceptual diagrams for explaining various types of optical elements applicable to the display unit 300 according to an embodiment of the present invention.
- FIG. 7 is a view for explaining an embodiment of a prism type optical element
- FIG. 8 is a view for explaining an embodiment of a waveguide type optical element
- FIG. 9 And 10 are views for explaining an embodiment of an optical element of a pin mirror type
- FIG. 11 is a view for explaining an embodiment of an optical element of a surface reflection type.
- FIG. 12 is a diagram for explaining an embodiment of an optical element of a micro LED type
- FIG. 13 is a diagram for describing an embodiment of a display unit used in a contact lens.
- a prism optical element may be used in the display unit 300-1 according to an exemplary embodiment of the present invention.
- the prism-type optical element is a flat type glass optical element in which the surface on which image light is incident and the surface 300a to be emitted are flat, as shown in Fig. 7(a).
- a freeform glass optical element in which a surface 300b from which image light is emitted is formed as a curved surface without a constant radius of curvature may be used.
- the flat type glass optical element receives image light generated by the control unit 200 on a flat side, is reflected by the total reflection mirror 300a provided therein, and emits it toward the user.
- the total reflection mirror 300a provided inside the flat-type glass optical element may be formed inside the flat-type glass optical element by a laser.
- the freeform glass optical element is configured to have a thinner thickness as it moves away from the incident surface, so that the image light generated by the control unit 200 is incident on the side having a curved surface, and is totally reflected from the inside to be emitted toward the user. .
- a waveguide type optical element or a light guide optical element is provided in the display unit 300-2 according to another embodiment of the present invention. Can be used.
- the optical element of the waveguide or light guide method is an example, and a segmented beam splitter type glass optics as shown in FIG. 8A Element, a glass optical element of a sawtooth prism method as shown in (b) of FIG. 8, a glass optical element having a diffractive optical element (DOE) as shown in (c) of FIG. 8, FIG. 8 A glass optical element having a hologram optical element (HOE) as shown in (d) of, FIG. 8A glass optical element having a passive grating as shown in (e) of FIG. There may be a glass optical element having an active grating as shown in (f) of.
- a segmented beam splitter type glass optics as shown in FIG. 8A Element, a glass optical element of a sawtooth prism method as shown in (b) of FIG. 8, a glass optical element having a diffractive optical element (DOE) as shown in (c) of FIG. 8, FIG. 8 A glass optical element having a hologram optical element (HOE
- a total reflection mirror 301a and an optical image are formed on the side where the optical image is incident inside the glass optical element.
- a segmented beam splitter 301b may be provided on the emission side.
- the light image generated by the controller 200 is totally reflected by the total reflection mirror 301a inside the glass optical element, and the total reflected light image is partially reflected by the partial reflection mirror 301b while guiding along the length direction of the glass. It can be separated and outputted, and recognized at the user's perspective.
- the image light of the controller 200 is incident on the side of the glass in an oblique direction and is totally reflected into the glass, and the sawtooth provided on the side from which the light image is emitted. It is emitted to the outside of the glass by the uneven shape 302 and can be recognized by the user's perspective.
- the first diffractive part 303a and the light image are emitted on the surface of the side where the optical image is incident.
- a second diffraction unit 303b may be provided on the surface of the.
- the first and second diffraction portions 303a and 303b may be provided in a form in which a specific pattern is patterned on the surface of the glass or a separate diffraction film is attached.
- the optical image generated by the control unit 200 diffracts while being incident through the first diffraction unit 303a, guides light along the length direction of the glass while being totally reflected, and exits through the second diffraction unit 303b, It can be recognized from the user's perspective.
- an out-coupler 304 may be provided inside the glass on the side from which the optical image is emitted. I can. Accordingly, the light image is incident from the control unit 200 in the oblique direction through the side of the glass and is totally reflected, guides light along the length of the glass, and is emitted by the out coupler 304, so that it can be recognized by the user's perspective. .
- a holographic optical device can be further subdivided into a structure having a passive grating and a structure having an active grating because the structure is changed little by little.
- an in-coupler 305a and an optical image are emitted on the surface opposite to the glass surface on the side where the optical image is incident.
- An out-coupler 305b may be provided on a surface opposite to the surface of the glass.
- the in-coupler 305a and the out-coupler 305b may be provided in the form of a film having a passive grid.
- the light image incident on the surface of the glass on the side where the glass is incident is totally reflected by the in-coupler 305a provided on the opposite surface and guided along the length of the glass, and the out-coupler 305b causes the It is emitted through the opposite surface and can be recognized by the user's eyes.
- the glass optical element having an active grating as shown in (f) of FIG. 8 is an in-coupler 306a formed as an active grating inside the glass on the side where the optical image is incident, and the optical image
- An out-coupler 306b formed as an active lattice may be provided inside the glass on the side from which is emitted.
- the light image incident on the glass is totally reflected by the in-coupler 306a and guided along the length of the glass, and is emitted out of the glass by the out-coupler 306b, so that it can be recognized by the user's perspective. have.
- a pin mirror type optical element may be used in the display unit 300-3 according to another embodiment of the present invention.
- the pin-hole effect is called a pinhole because the hole facing the object is like a hole made with a pin, and it refers to the effect of seeing more clearly by transmitting light through a small hole. This is due to the nature of light using the refraction of light, and the depth of field (DOF) of light passing through the pinhole becomes deep, so that the image formed on the retina can become clear.
- DOE depth of field
- the pinhole mirror 310a is provided on a light path irradiated in the display unit 300-3, and may reflect the irradiated light toward the user's eyes.
- the pinhole mirror 310a may be interposed between the front (outer surface) and the rear (inner surface) of the display unit 300-3. The manufacturing method of this will be described again later.
- the pinhole mirror 310a may be formed to have a smaller area than the pupil to provide a deep depth of field. Therefore, the user can clearly superimpose the augmented reality image provided by the control unit 200 on the real world even if the focal length for viewing the real world through the display unit 300-3 is variable.
- the display unit 300-3 may provide a path for guiding the irradiated light to the pinhole mirror 310a through total internal reflection.
- a pinhole mirror 310b may be provided on a surface 300c through which light is totally reflected from the display unit 300-3.
- the pinhole mirror 310b may have a prism characteristic of changing a path of external light to suit the user's eyes.
- the pinhole mirror 310b may be manufactured in a film shape and attached to the display unit 300-3, and in this case, there is an advantage of being easy to manufacture.
- the display unit 300-3 guides the light irradiated by the control unit 200 through total internal reflection, and the total reflection and incident light is reflected by the pinhole mirror 310b provided on the surface 300c on which the external light is incident. As a result, it may pass through the display unit 300-3 and reach the user's eyes.
- light irradiated by the control unit 200 may be directly reflected on the pinhole mirror 310c without total internal reflection of the display unit 300-3 to reach the user's eyes. Fabrication may be facilitated in that augmented reality can be provided regardless of a shape of a surface through which external light passes in the display unit 300-3.
- light irradiated by the control unit 200 is reflected by a pinhole mirror 310d provided on a surface 300d from which external light is emitted from the display unit 300-3, Can reach the eyes.
- the controller 200 is provided to irradiate light from a position spaced apart from the surface of the display unit 300-3 in the rear direction, and is directed toward the surface 300d from which external light is emitted from the display unit 300-3.
- Light can be irradiated.
- This embodiment can be easily applied when the thickness of the display unit 300-3 is not sufficient to accommodate the light irradiated by the control unit 200.
- it is not related to the shape of the surface of the display unit 300-3, and the pinhole mirror 310d may be manufactured in a film shape, which may be advantageous in ease of manufacturing.
- a plurality of pinhole mirrors 310 may be provided in an array pattern.
- FIG. 10 is a diagram illustrating a shape and an array pattern structure of a pinhole mirror according to an embodiment of the present invention.
- the pinhole mirror 310 may be manufactured in a polygonal structure including a rectangle or a rectangle.
- the long axis length (diagonal length) of the pinhole mirror 310 may have a positive square root of the product of the focal length and the wavelength of light emitted from the display unit 300-3.
- the plurality of pinhole mirrors 310 may be spaced apart from each other and disposed in parallel to form an array pattern.
- the array pattern may form a line pattern or a grid pattern.
- FIG. 10 show a flat pin mirror method
- (c) and (d) of FIG. 10 show a freeform pin mirror method.
- the display unit 300-3 is an inclined surface on which the first glass 300e and the second glass 300f are disposed to be inclined in the pupil direction It is formed by combining (300g) therebetween, and a plurality of pinhole mirrors 310e are disposed on the inclined surface 300g to form an array pattern.
- a plurality of pinhole mirrors 310e are provided side by side on the inclined surface 300g in one direction, so that even when the user moves the pupil, the display unit 300-3 ), the augmented reality provided by the controller 200 can be continuously implemented in the real world visible through.
- the plurality of pinhole mirrors 310f may form a radial array parallel to the inclined surface 300g provided as a curved surface.
- a plurality of pinhole mirrors 300f are arranged along the radial array, and in the drawing, the pinhole mirror 310f at the edge is at the highest position on the inclined surface 300g, and the pinhole mirror 310f at the center is at the lowest position.
- the beam path irradiated by the controller 200 can be matched.
- a lens may be attached to the rear surface of the display unit 300-3 to cancel a path difference of light reflected from the plurality of pinhole mirrors 310e arranged in a row.
- the optical element of the surface reflection method applicable to the display unit 300-4 according to another embodiment of the present invention is a freeform combiner method as shown in FIG. 11(a), and as shown in FIG. 11(b).
- the flat HOE method as described above, and the freeform HOE method as shown in (c) of FIG. 11 may be used.
- a plurality of flat surfaces having different incidence angles of optical images are formed as a single glass 300 in order to function as a combiner.
- a freeform combiner glass 300 formed to have a curved surface as a whole can be used.
- an incident angle of an optical image is different for each area, so that it may be emitted to a user.
- the optical element of the flat HOE type surface reflection method as shown in (b) of FIG. 11 may be provided by coating or patterning a hologram optical element (HOE) 311 on the surface of a flat glass.
- the light image incident at 200 may pass through the holographic optical element 311 and be reflected off the surface of the glass, pass through the holographic optical element 311 again, and be emitted toward the user.
- HOE hologram optical element
- the freeform HOE type surface reflection type optical element as shown in FIG. 11C may be provided by coating or patterning a hologram optical element (HOE) 313 on the surface of the freeform type glass, and the operation principle is It may be the same as described in (b) of FIG.
- HOE hologram optical element
- a display unit 300-5 using a micro LED as shown in FIG. 12 and a display unit 300-6 using a contact lens as shown in FIG. 13 are also shown. It is possible.
- the optical elements of the display unit 300-5 are, for example, LCoS (liquid crystal on silicon) devices, LCD (liquid crystal display) devices, OLED (organic light emitting diode) display devices, and DMDs ( digital micromirror device), and may include a next-generation display device such as Micro LED and QD (quantum dot) LED.
- LCoS liquid crystal on silicon
- LCD liquid crystal display
- OLED organic light emitting diode
- DMDs digital micromirror device
- next-generation display device such as Micro LED and QD (quantum dot) LED.
- Image data generated by the control unit 200 to correspond to the augmented reality image is transmitted to the display unit 300-5 along the conductive input line 316, and the display unit 300-5 includes a plurality of optical elements 314
- the image signal is converted into light through (for example, micro LEDs) and irradiated to the user's eyes.
- the plurality of optical elements 314 may be arranged in a grating structure (eg, 100*100) to form the display area 314a.
- the user can view augmented reality through the display area 314a in the display unit 300-5.
- the plurality of optical elements 314 may be disposed on a transparent substrate.
- the image signal generated by the control unit 200 is transmitted to the image dividing circuit 315 provided on one side of the display unit 300-5 through the conductive input line 316, and a plurality of It is divided into branches and transmitted to the optical element 314 disposed for each branch.
- the image segmentation circuit 315 may be located outside the user's visual range to minimize gaze interference.
- the display unit 300-5 may be provided with a contact lens.
- the contact lens 300-5 on which the augmented reality can be displayed is also called a smart contact lens.
- a plurality of optical elements 317 may be arranged in a grid structure at a central portion.
- the smart contact lens 300-5 may include a solar cell 318a, a battery 318b, a controller 200, an antenna 318c, a sensor 318d, and the like.
- the sensor 318d can check the blood sugar level in tears, and the controller 200 processes the signal from the sensor 318d to vomit the optical element 317 to display the blood sugar level in augmented reality so that the user I can confirm.
- a prism type optical element As described above, in the display unit 300 according to an embodiment of the present invention, a prism type optical element, a waveguide type optical element, a light guide optical element (LOE), a pin mirror type optical element, or a surface reflection method It can be selected and used among the optical elements of.
- an optical element applicable to the display unit 300 according to an embodiment of the present invention includes a retina scan method.
- Astigmatism is a phenomenon in which the location of the store where the bundle of rays spread out in the vertical direction and the store where the bundle of rays spread in the horizontal direction are collected is different from the point where the bundles of rays spread out in the horizontal direction are collected when the bundles of rays from the object point pass through the imaging optical system (lens) and then regroup to form an image.
- it is called astigmatic aberration because the difference of the object point appears as not stigmatic.
- Astigmatism is eventually caused by the breakdown of the rotational symmetry of the imaging optical system, and there are two causes. First, the imaging optical system itself is rotationally symmetric, but the imaging condition breaks rotational symmetry, and the second is that the imaging optical system itself is not rotationally symmetric.
- the first example is when the object point is off-axis in a spherical lens.
- the bundle of rays spreading from the object point P deviating from the optical axis Q1-Q2 passes through the spherical lens L and gathers again to form an image
- the rays spread in the horizontal direction collect at T
- the rays spread in the vertical direction collect at S.
- the plane containing the object point and the optical axis is called a tangential plane or a meridional plane
- rays that spread in a vertical direction along this plane are called tangential rays or meridional rays.
- a plane perpendicular to this plane is called a sagittal plane, and rays that spread horizontally along this plane are called sagittal rays.
- the point where the Zao rays converge is called the Zao shop (S)
- the point where the arrow rays gather is called the Arrow shop (T).
- the magnitude of the astigmatism is expressed as the interval between the two stores S and T.
- the optical element itself is rotationally symmetric, but if the position and direction of the optical axis are not correctly aligned during the process of inserting the element into the optical system, the rotational symmetry with respect to the optical axis is broken, and astigmatism appears on the object point on the optical axis.
- FIGS. 10A and 10B show that a plurality of pinhole mirrors 310-e are formed parallel to the inclined surface 300g in one direction, and in FIGS. 10C and 10D It has been described that the pinhole mirror 310-f of can form a radial array parallel to the inclined surface 300g provided as a curved surface.
- the augmented reality provided by the controller 200 may partially solve the problem of forming a double image due to a path difference of light. have.
- this correction method is for adjusting the focal length due to the difference in the path of light, and is insufficient to solve the phenomenon that the image is formed into a double or triple image due to astigmatism.
- 15 is a diagram for explaining the reason why astigmatism occurs in a spherical reflective surface.
- a reflective surface 300g in which an array of a plurality of pinhole mirrors 310 is formed is provided as a spherical surface or an inclined surface, and in this case, image light provided from the controller is an optical axis Q1 of the reflective surface 300g. -Q2) is incident from a position off-axis, and is reflected to a position out of the optical axis (Q1-Q2).
- FIG. 16 is a perspective view illustrating an electronic device according to an embodiment of the present invention
- FIG. 17 is a cross-sectional view of FIG. 16 in the Z-axis direction.
- the electronic device receives an image signal from the control unit 200 (refer to FIG. 10) and generates and provides image light, and the image light transmitted from the output unit 400 is transmitted to the user's eyes. It includes a display unit 500 to be transmitted to.
- the output unit 400 modulates the image signal (data) generated by the control unit 200 (see FIG. 10) into image light.
- the emitting unit 400 may include, for example, a liquid crystal on silicon (LCoS) device, a liquid crystal display (LCD) device, an organic light emitting diode (OLED) display device, a digital micromirror device (DMD), and , Micro LED, QD (quantum dot) LED, etc. may include next-generation display devices.
- LCD liquid crystal on silicon
- OLED organic light emitting diode
- DMD digital micromirror device
- Micro LED, QD (quantum dot) LED, etc. may include next-generation display devices.
- the display unit 500 includes an entrance portion into which image light is incident from the exit unit 400 and an exit portion emitted toward the user's eyeball, and an image through total internal reflection between the entrance portion and the exit portion. It is provided to be able to propagate at least some of the light.
- the display unit 500 may be an optical wave guide or a waveguide.
- the optical waveguide refers to the propagation of light while enclosing the inside by covering light with a material having a smaller refractive index on the propagating part of light.
- the display unit 500 reflects the lens units 510 and 520 that transmit the image light incident from the emission unit 400 through total reflection, and the image light provided inside the lens units 510 and 520 and transmitted. It may include a reflective surface 530 that is configured, and an optical element 540 that is provided on the reflective surface 530 and reflects the image light transmitted along the lens units 510 and 520 toward the user's eyeball.
- the display unit 500 has a plate shape having a first surface 501 facing the user's eyeball and a second surface 502 facing the first surface 501 and looking at the external environment viewed by the user Can be provided.
- the lens units 510 and 520 are disposed adjacent to the emission surface 410 of the emission unit 400 and form a first lens 510 and a first lens 510 forming an incident surface 511 through which image light is incident. ), and a second lens 520 disposed in parallel with each other, and the reflective surface 530 is provided on a bonding interface between the first lens 510 and the second lens 520.
- the interface of the first lens 510 and the interface of the second lens 510 have a shape corresponding to each other, so that when they are bonded, they can be in close contact with each other.
- FIG. 18 is a diagram illustrating a path of image light in the display unit 500.
- the first lens 510 and the second lens 520 are bonded to form a first surface 501 and a second surface 502 in common.
- the first surface 501 and the second surface 502 may be disposed substantially parallel. However, it includes some concave or convex curves.
- An incident surface 511 through which image light is incident is formed at one end of the first lens 510.
- the incident surface 511 may be disposed to be inclined with respect to the first surface 501 or the second surface 502 and may be provided as a prism surface.
- the image light incident perpendicularly to the incident surface 511 passes through the first lens 510 and is obliquely incident on the second surface 502, and the second surface 502 totally reflects the image light at a reflection angle equal to the incident angle.
- the image light totally reflected from the second surface 502 is again obliquely incident on the first surface 501, and the first surface 501 totally reflects the image light at a reflection angle equal to the incident angle.
- total reflection of the first and second surfaces 501 and 502 is repeated and transmitted toward the reflective surface 530.
- the width of the focal line may decrease as it propagates while being totally reflected from the first surface 501 and the second surface 502.
- the focus line may include both the x-axis direction focus line and the y-axis direction focus line.
- the reflective surface 530 is provided to be inclined in a direction facing the first surface 501.
- a concave curved shape may be included in order to solve a problem that a double image occurs while a focal length is changed according to a path difference from the incident surface 511 to the reflective surface 530.
- Image light that is totally reflected from the first surface 501 and incident on the reflective surface 530 is reflected by the optical element 540 provided on the reflective surface 530 and is transmitted toward the user's eyes.
- the optical element 540 may be a pin mirror or a pin-hole mirror.
- the pin mirror can make a clear image with a deep depth of field (DOF) on the retina by using a pin-hole effect.
- DOF deep depth of field
- a plurality of pin mirrors may be arranged in a horizontal or vertical direction to extend the field of view (FOV). As such, the spacing, shape, or number of pin mirrors may affect the depth of field and viewing angle of the image.
- the optical device 540 Since the optical device 540 is located within the user's field of view, it may have a size that is so small that it is not visible. For example, fin mirrors of 1 mm or less may be arranged in rows on the reflective surface 530. In addition, the width of the focal length may converge in the process of total reflection through the first lens 510 so that image light may be incident on such a small sized pin mirror.
- the display unit 500 has a reflective surface 530 on which the pin mirror 540 is mounted in a non-axis optical system structure.
- a double-image phenomenon in the vertical or horizontal direction due to astigmatism occurring in the non-axial optical system structure will be described.
- FIG. 19 is an enlarged view of area A in FIG. 17.
- FIG. 20A shows an image formed on the retina when the exit portion is moved in the direction a
- (b) shows an image formed on the retina when the exit portion is moved in the direction b.
- the double image phenomenon due to astigmatism in the non-axial optical system may appear differently as the distance between the exit surface 410 and the incident surface 511 is changed.
- the vertical direction as shown in (a) of FIG. 20 A triple image appears, and when the distance between the exit surface 410 and the incident surface 511 is made closer by moving the exit part 400 in the direction b than the reference direction, a double image appears in the horizontal direction as shown in FIG. 20(b).
- the triple phase in the vertical direction or the double phase in the horizontal direction may vary according to conditions.
- the electronic device can solve a double image phenomenon due to astigmatism while using a non-axial optical system.
- the reflective surface 530 may be provided as a curved surface concave in the x-axis direction and concave in the y-axis direction. As described above, when the reflective surface 530 is concave in the x-axis direction, the optical paths propagating from the emission part 400 to the optical elements 540 arranged parallel in the x-axis direction can be matched. It is possible to solve the double-image problem that is caused by the focus disparity caused by the difference.
- the reflective surface 530 is formed as a concave curved surface also in the y-axis direction, so that a double image problem due to astigmatism can be solved.
- the curvature in the Rx-axis direction and the curvature in the Ry-axis direction are provided differently.
- the curvature in the Rx-axis direction and the curvature in the Ry-axis direction may vary according to optical conditions.
- the distance from the exit part 400 to the first lens 510, the distance from the incident surface 511 of the first lens 510 to the reflective surface 530, the incident surface 510 is a prism surface In the case of being provided, it may vary according to various conditions such as a difference in refractive index and an angle between the incident surface 510 and the second surface 502.
- the reflective surface 530 may be formed in an anamorphic shape or an anamorphic shape.
- Anamorphic optical system is usually used in the lens of a camera, refers to an aspherical lens that is rotationally asymmetric with respect to the optical axis, or a combination lens including the same.
- the optical axis is the axis of symmetry of the path of image light incident on the reflective surface 530 and the path of image light reflected by the optical element 540. Can be seen (see Q1-Q2 in FIG. 15). That is, the curved shape of the reflective surface 530 may be aspheric on the optical axis, that is, a different curvature in the rotational direction on the optical axis.
- the electronic device moves the emission part 400 to adjust the distance between the emission surface 410 and the incident surface 511 to adjust astigmatism. It can solve the double-phase problem caused by. As illustrated in FIG. 20, as the distance between the exit surface 410 and the incident surface 511 is changed, a double or triple phase may occur in different directions. By using this, it is possible to solve the double image problem caused by astigmatism by moving the emission part 400 in a direction perpendicular to the incident surface 511 to find the optimal distance between the emission surface 410 and the incident surface 511. have.
- the exit part 400 is moved forward to adjust the distance between the exit surface 410 and the incidence surface 511 close, and double or triple phase in the x-axis direction.
- the distance between the exit surface 410 and the incident surface 511 may be adjusted by retreating the exit unit 400.
- 21 is a block diagram showing a configuration for driving the output unit 400.
- the electronic device uses a sensor unit 420 capable of determining whether a double image occurs and in which direction the double image occurs, and detection information of the sensor unit 420.
- a driving control unit 440 for determining a moving direction and a moving distance of the emission unit 400 and a driving unit 430 for moving the emission unit 400 forward and backward according to a command of the driving control unit 440 may be further included.
- the driving control unit 440 when the driving control unit 440 analyzes the information sensed from the sensor unit 420 and determines that a double or triple image appears in the y-axis direction, it sends a command to the driving unit 430 to transmit the output unit 400 You can move forward.
- the driving control unit 440 analyzes the information sensed from the sensor unit 420 and determines that a double or triple image appears in the x-axis direction, it can issue a command to the driving unit 430 to retreat the output unit 400. have.
- a configuration A described in a specific embodiment and/or a drawing may be combined with a configuration B described in another embodiment and/or a drawing. That is, even if the combination between the components is not directly described, it means that the combination is possible except for the case where the combination is described as impossible.
- 100 augmented reality electronic device, 110, 120: frame unit,
- control unit 300: display unit
- 530 reflective surface
- 540 optical element (pin mirror).
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
전자 디바이스가 개시된다. 본 발명에 따른 전자 디바이스는 이미지 광을 제공하는 출사부와, 이미지 광을 반사하여 사용자의 눈에 전달하는 디스플레이부를 포함하고, 디스플레이부는 렌즈부와 이미지 광을 반사시키는 반사면을 포함하고, 반사면은 제1 방향의 곡률과 이에 수직한 제2 방향의 곡률이 서로 다르게 마련되는 입체 곡면으로 형성되어 비점수차(Astigmatism) 보정이 가능하다. 본 발명의 전자 디바이스는 인공 지능(Artificial Intelligence) 모듈, 로봇, 증강현실(Augmented Reality, AR) 장치, 가상현실(virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.
Description
본 발명은 전자 디바이스에 관한 것이다. 보다 상세하게, VR(Virtual Reality), AR(Augmented Reality), MR(Mixed Reality) 등에 사용되는 전자 디바이스에 관한 것이다.
가상현실(Virtual Reality, VR)은 컴퓨터 등을 사용한 인공적인 기술로 만들어낸 실제와 유사하지만 실제가 아닌 어떤 특정한 환경이나 상황 혹은 그 기술 자체를 말한다.
증강현실(Augmented Reality, AR)은 실제 환경에 가상 사물이나 정보를 합성하여 원래의 환경에 존재하는 사물처럼 보이도록 하는 기술을 말한다.
혼합현실 (Mixed Reality, MR) 혹은 혼성현실 (Hybrid reality)은 가상 세계와 현실 세계를 합쳐서 새로운 환경이나 새로운 정보를 만들어 내는 것을 말한다. 특히, 실시간으로 현실과 가상에 존재하는 것 사이에서 실시간으로 상호작용할 수 있는 것을 말할 때 혼합현실이라 한다.
이 때, 만들어진 가상의 환경이나 상황 등은 사용자의 오감을 자극하며 실제와 유사한 공간적, 시간적 체험을 하게 함으로써 현실과 상상의 경계를 자유롭게 드나들게 한다. 또한 사용자는 이러한 환경에 단순히 몰입할 뿐만 아니라 실재하는 디바이스를 이용해 조작이나 명령을 가하는 등 이러한 환경 속에 구현된 것들과 상호작용이 가능하다.
최근, 이러한 기술분야에 사용되는 장비(gear)에 대한 연구가 활발히 이루어지고 있다.
그러나 증강현실 등에 사용되는 전자 디바이스는 사용자가 현실 이미지를 바라보면서 렌즈에 투사되는 가상 이미지를 동시에 인식해야 하기 때문에, 가상 이미지가 또렷하게 맺히지 않는 문제가 있다.
특히, 비축광학계에서의 비점수차가 발생하는 경우 이로 인한 이중 상 문제를 해결하기가 어려운 실정이다.
본 발명은 VR(Virtual Reality), AR(Augmented Reality), MR(Mixed Reality) 등에 사용되는 전자 디바이스를 사용함에 있어, 비점수차로 인한 이중 상 문제를 해결하는 전자 디바이스를 제공하는데, 그 목적이 있다.
본 발명의 일 실시예에서는, 핀 미러가 마련되는 반사면이 비축광학계이기 때문에 필연적으로 발생하는 비점수차로 인한 이중 상 문제를 해결하는 전자 디바이스를 제공할 수 있다.
본 발명의 일 실시예에 따른 전자 디바이스는 이미지 광을 제공하는 출사부와, 상기 출사부의 이미지 광을 반사하여 사용자의 눈에 전달하는 디스플레이부를 포함하고, 상기 디스플레이부는, 상기 출사부로부터 전달된 이미지 광을 전달하는 렌즈부와, 상기 렌즈부의 내부에 마련되고, 상기 이미지 광을 반사시키는 반사면을 포함하고, 상기 반사면은 제1 방향의 곡률과 상기 제1 방향에 수직한 제2 방향의 곡률이 서로 다르게 마련되는 입체 곡면으로 형성되어 비점수차(Astigmatism) 보정이 가능하다.
여기서 상기 디스플레이부는 상기 반사면 상에 마련되고, 상기 출사부에서 입사되는 이미지 광을 사용자의 안구를 향해 반사시키는 광학소자를 더 포함할 수 있다.
이에 더하여, 상기 광학소자는 핀 미러를 포함할 수 있다.
그리고 상기 렌즈부는 상기 출사부에 가까운 제1 렌즈와 상기 출사부에 먼 제2 렌즈가 접합되어 마련되고, 상기 반사면은 상기 제1 렌즈와 상기 제2 렌즈의 접합면에 마련되고, 상기 광학소자는 상기 제1 렌즈와 상기 제2 렌즈 사이에 마련될 수 있다.
또한, 상기 제어부는 상기 렌즈부의 입사면에 인접하게 배치되거나 접촉하는 출사패널을 구비할 수 있다.
또한, 상기 출사부는 상기 렌즈부에 대해 경사진 방향으로 이미지 광을 출사하고, 상기 렌즈부는 상기 출사부로부터 입사되는 이미지 광을 전반사 하여 상기 반사면으로 전달할 수 있다.
여기서 상기 이미지 광의 제1 방향 초점라인과 제2 방향 초점라인의 폭은 전반사 되면서 좁아질 수 있다.
그리고 상기 렌즈부의 입사면은 상기 출사부의 출사면에 평행하게 경사진 방향으로 형성될 수 있다.
또한, 상기 반사면의 입체 곡면은 상기 이미지 광이 입사되는 방향에 대해 오목하게 마련될 수 있다.
여기서 상기 반사면의 입체 곡면은 아나모르픽(anamorphic) 형상으로 마련될 수 있다.
또한, 상기 광학소자는 상기 반사면 상에 상기 제1 방향으로 복수의 상기 광학소자가 서로 이격되어 제1 방향 어레이를 형성할 수 있다.
이에 더하여, 상기 광학소자는 상기 반사면 상에 상기 제2 방향으로 복수의 상기 광학소자가 서로 이격되어 제2 방향 어레이를 형성할 수 있다.
또한, 상기 출사부는 마이크로 OLED일 수 있다.
또한, 상기 출사부는 상기 렌즈부에 대해 이동 가능하게 마련되어 상기 출사부의 출사면과 상기 렌즈부의 입사면 사이의 거리를 조절할 수 있다.
여기서 상기 출사면과 상기 입사면 사이의 거리를 조절하여 비점수차 보정이 가능할 수 있다.
또한, 상기 출사부를 전진 또는 후퇴시키는 구동 제어부를 더 포함하고, 상기 구동 제어부는, y축 방향으로 이중 상이 발생하는 경우 상기 출사부를 상기 렌즈부에 대해 가깝게 이동시키고, x축 방향으로 이중 상이 발생하는 경우 상기 출사부를 상기 렌즈부에 대해 멀게 이동시킬 수 있다.
또한, 상기 디스플레이부와 결합하고 사용자의 두부에 지지되는 프레임과, 가상 이미지를 생성하여 상기 출사부에 전달하는 제어부를 더 포함하고, 상기 렌즈부는 사용자의 좌안과 우안 중 어느 하나 이상에 대응하는 위치에 마련되고, 상기 출사부는 상기 프레임에 위치하고, 상기 제어부에서 전달되는 이미지 신호를 이미지 광으로 변조시켜 상기 디스플레이부에 전달할 수 있다.
본 발명의 다른 실시예에 따르면, 이미지 광을 제공하는 출사부와, 상기 출사부의 이미지 광을 반사하여 사용자의 눈에 전달하는 디스플레이부를 포함하고, 상기 디스플레이부는, 상기 출사부로부터 전달된 이미지 광을 전달하는 렌즈부와, 상기 렌즈부의 내부에 마련되고, 상기 이미지 광을 반사시키는 반사면을 포함하고, 상기 반사면은 입사광과 반사광의 대칭축에 회전 방향으로 비구면으로 형성되어 비점수차(Astigmatism) 보정이 가능할 수 있다.
여기서 상기 출사부는 상기 렌즈부에 대해 이동 가능하게 마련되어 상기 출사부의 출사면과 상기 렌즈부의 입사면 사이의 거리를 조절할 수 있다.
본 발명에 따른 전자 디바이스는 초점 거리로 인한 이중 상 및 비점수차로 인한 이중 상 문제를 해결할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 반사면의 형상을 Rx 방향과 Ry 방향의 곡률이 서로 다르게 마련함으로써 비축광학계에서 나타나는 비점수차로 인한 이중 상 문제를 해결할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 이미지 광을 제공하는 출사부의 위치를 가변적으로 마련함으로써 비축광학계에서 나타나는 비점수차로 인한 이중 상 문제를 해결할 수 있다.
도 1은 AI 장치의 일 실시예를 나타내는 개념도이다.
도 2는 본 발명의 일 실시예에 따른 확장현실 전자 디바이스의 구성을 나타내는 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 가상현실 전자 디바이스의 사시도이다.
도 4는 도 3의 가상현실 전자 디바이스를 사용하는 모습을 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 증강현실 전자 디바이스의 사시도이다.
도 6은 본 발명의 일 실시예에 따른 제어부를 설명하기 위한 분해사시도이다.
도 7 내지 도13은 본 발명의 일 실시예에 따른 디스플레이부에 적용 가능한 다양한 디스플레이 방식을 설명하기 위한 개념도이다.
도 14는 비점수차를 설명하기 위한 그림이다.
도 15는 구면 반사면에서 비점수차가 발생하는 이유를 설명하기 위한 그림이다.
도 16은 본 발명의 일 실시예에 따른 전자 디바이스를 나타내는 사시도이다.
도 17은 도 16의 Z축 방향 단면도이다.
도 18은 디스플레이부에서 이미지 광의 진행 경로를 나타내는 그림이다.
도 19는 도 17에서 A 영역을 확대하여 도시하는 그림이다.
도 20의 (a)는 출사부를 a 방향으로 이동한 경우에 망막에 맺히는 상의 모습을, (b)는 출사부를 b 방향으로 이동한 경우에 망막에 맺히는 상의 모습을 나타낸다.
도 21은 출사부를 구동시키는 구성을 나타내는 블록도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에 개시된 실시예를 설명함에 있어서 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
[5G 시나리오]
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강현실 및 정보 검색이다. 여기서, 증강현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상현실과 증강현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
본 명세서에서 후술할 본 발명은 전술한 5G의 요구 사항을 만족하도록 각 실시예를 조합하거나 변경하여 구현될 수 있다.
도 1은 AI 장치의 일 실시예를 나타내는 개념도이다.
도 1을 참조하면, AI 시스템은 AI 서버(16), 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 등을 AI 장치(11 내지 15)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템을 구성하는 각 장치들(11 내지 16)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(11 내지 16)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(16)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(16)는 AI 시스템을 구성하는 AI 장치들인 로봇(11), 자율주행 차량(12), XR 장치(13), 스마트폰(14) 또는 가전(15) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(11 내지 15)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이 때, AI 서버(16)는 AI 장치(11 내지 15)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(11 내지 15)에 전송할 수 있다.
이 때, AI 서버(16)는 AI 장치(11 내지 15)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(11 내지 15)로 전송할 수 있다.
또는, AI 장치(11 내지 15)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
<AI+로봇>
로봇(11)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(11)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(11)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(11)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(11)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(11)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(11)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(11)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, 로봇(11)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(11)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(11)을 주행시킬 수 있다.
맵 데이터에는 로봇(11)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(11)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이 때, 로봇(11)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율주행 차량(12)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율주행 차량(12)은 자율주행 기능을 제어하기 위한 자율주행 제어 모듈을 포함할 수 있고, 자율주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율주행 제어 모듈은 자율주행 차량(12)의 구성으로써 내부에 포함될 수도 있지만, 자율주행 차량(12)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율주행 차량(12)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율주행 차량(12)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율주행 차량(12)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(11)과와 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율주행 차량(12)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율주행 차량(12)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율주행 차량(12)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율주행 차량(12)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, 자율주행 차량(12)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율주행 차량(12)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율주행 차량(12)을 주행시킬 수 있다.
맵 데이터에는 자율주행 차량(12)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율주행 차량(12)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이 때, 자율주행 차량(12)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(13)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(13)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(13)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(13)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(13)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(13)에서 직접 학습되거나, AI 서버(16) 등의 외부 장치에서 학습된 것일 수 있다.
이 때, XR 장치(13)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(16) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(11)은 AI 기술 및 자율주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율주행 기술이 적용된 로봇(11)은 자율주행 기능을 가진 로봇 자체나, 자율주행 차량(12)과 상호작용하는 로봇(11) 등을 의미할 수 있다.
자율주행 기능을 가진 로봇(11)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율주행 기능을 가진 로봇(11) 및 자율주행 차량(12)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율주행 기능을 가진 로봇(11) 및 자율주행 차량(12)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)과 별개로 존재하면서, 자율주행 차량(12)의 내부 또는 외부에서 자율주행 기능에 연계되거나, 자율주행 차량(12)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이 때, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)을 대신하여 센서 정보를 획득하여 자율주행 차량(12)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율주행 차량(12)에 제공함으로써, 자율주행 차량(12)의 자율주행 기능을 제어하거나 보조할 수 있다.
또는, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율주행 차량(12)의 기능을 제어할 수 있다. 예컨대, 로봇(11)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율주행 차량(12)의 자율주행 기능을 활성화하거나 자율주행 차량(12)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(11)이 제어하는 자율주행 차량(12)의 기능에는 단순히 자율주행 기능뿐만 아니라, 자율주행 차량(12)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율주행 차량(12)과 상호작용하는 로봇(11)은 자율주행 차량(12)의 외부에서 자율주행 차량(12)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(11)은 스마트 신호등과 같이 자율주행 차량(12)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율주행 차량(12)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(11)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(11)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(11)은 XR 장치(13)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(11)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(11) 또는 XR 장치(13)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(13)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(11)은 XR 장치(13)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(13) 등의 외부 장치를 통해 원격으로 연동된 로봇(11)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(11)의 자율주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율주행 차량(12)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율주행 차량(12)은 XR 영상을 제공하는 수단을 구비한 자율주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량(12)은 XR 장치(13)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율주행 차량(12)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율주행 차량(12)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이 때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율주행 차량(12)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율주행 차량(12)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율주행 차량(12)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율주행 차량(12) 또는 XR 장치(13)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(13)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율주행 차량(12)은 XR 장치(13) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
[확장현실 기술]
확장현실(XR: eXtended Reality)은 가상현실(VR: Virtual Reality), 증강현실(AR: Augmented Reality), 혼합현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이하에서는 본 발명의 실시예에 따른 확장현실을 제공하는 전자 디바이스에 대해 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 확장현실 전자 디바이스(20)의 구성을 나타내는 블럭도이다.
도 2를 참조하면, 확장현실 전자 디바이스(20)는 무선 통신부(21), 입력부(22), 센싱부(23), 출력부(24), 인터페이스부(25), 메모리(26), 제어부(27) 및 전원 공급부(28) 등을 포함할 수 있다. 도 2에 도시된 구성요소들은 전자 디바이스(20)를 구현하는데 있어서 필수적인 것은 아니어서, 본 명세서 상에서 설명되는 전자 디바이스(20)는 위에서 열거된 구성요소들 보다 많거나, 적은 구성요소들을 가질 수 있다.
보다 구체적으로, 위 구성요소들 중 무선 통신부(21)는, 전자 디바이스(20)와 무선 통신 시스템 사이, 전자 디바이스(20)와 다른 전자 디바이스 사이, 또는 전자 디바이스(20)와 외부서버 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 또한, 상기 무선 통신부(21)는, 전자 디바이스(20)를 하나 이상의 네트워크에 연결하는 하나 이상의 모듈을 포함할 수 있다.
이러한 무선 통신부(21)는, 방송 수신 모듈, 이동통신 모듈, 무선 인터넷 모듈, 근거리 통신 모듈, 위치정보 모듈 중 적어도 하나를 포함할 수 있다.
입력부(22)는, 영상 신호 입력을 위한 카메라 또는 영상 입력부, 오디오 신호 입력을 위한 마이크로폰(microphone), 또는 오디오 입력부, 사용자로부터 정보를 입력받기 위한 사용자 입력부(예를 들어, 터치키(touch key), 푸시키(mechanical key) 등)를 포함할 수 있다. 입력부(22)에서 수집한 음성 데이터나 이미지 데이터는 분석되어 사용자의 제어명령으로 처리될 수 있다.
센싱부(23)는 전자 디바이스(20) 내 정보, 전자 디바이스(20)를 둘러싼 주변 환경 정보 및 사용자 정보 중 적어도 하나를 센싱하기 위한 하나 이상의 센서를 포함할 수 있다.
예를 들어, 센싱부(23)는 근접센서(proximity sensor), 조도 센서(illumination sensor), 터치 센서(touch sensor), 가속도 센서(acceleration sensor), 자기 센서(magnetic sensor), 중력 센서(G-sensor), 자이로스코프 센서(gyroscope sensor), 모션 센서(motion sensor), RGB 센서, 적외선 센서(IR 센서: infrared sensor), 지문인식 센서(finger scan sensor), 초음파 센서(ultrasonic sensor), 광 센서(optical sensor, 예를 들어, 촬영수단), 마이크로폰(microphone), 배터리 게이지(battery gauge), 환경 센서(예를 들어, 기압계, 습도계, 온도계, 방사능 감지 센서, 열 감지 센서, 가스 감지 센서 등), 화학 센서(예를 들어, 전자 코, 헬스케어 센서, 생체 인식 센서 등) 중 적어도 하나를 포함할 수 있다. 한편, 본 명세서에 개시된 전자 디바이스(20)는, 이러한 센서들 중 적어도 둘 이상의 센서에서 센싱되는 정보들을 조합하여 활용할 수 있다.
출력부(24)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 디스플레이부, 음향 출력부, 햅틱 모듈, 광 출력부 중 적어도 하나를 포함할 수 있다. 디스플레이부는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 증강현실 전자 디바이스(20)와 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력수단으로써 기능함과 동시에, 증강현실 전자 디바이스(20)와 사용자 사이의 출력 인터페이스를 제공할 수 있다.
인터페이스부(25)는 전자 디바이스(20)에 연결되는 다양한 종류의 외부장치와의 통로 역할을 수행한다. 인터페이스부(25)를 통해 전자 디바이스(20)는 외부장치로부터 가상현실 또는 증강현실 컨텐츠를 제공받을 수 있고, 다양한 입력 신호, 센싱 신호, 데이터를 주고받음으로써, 상호 인터랙션을 수행할 수 있다.
예를 들어, 인터페이스부(25)는 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port) 중 적어도 하나를 포함할 수 있다.
또한, 메모리(26)는 전자 디바이스(20)의 다양한 기능을 지원하는 데이터를 저장한다. 메모리(26)는 전자 디바이스(20)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 전자 디바이스(20)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 무선 통신을 통해 외부 서버로부터 다운로드 될 수 있다. 또한 이러한 응용 프로그램 중 적어도 일부는, 전자 디바이스(20)의 기본적인 기능(예를 들어, 전화 착신, 발신 기능, 메시지 수신, 발신 기능)을 위하여 출고 당시부터 전자 디바이스(20)상에 존재할 수 있다.
제어부(27)는 응용 프로그램과 관련된 동작 외에도, 통상적으로 전자 디바이스(20)의 전반적인 동작을 제어한다. 제어부(27)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리할 수 있다.
또한, 제어부(27)는 메모리(26)에 저장된 응용 프로그램을 구동함으로써 구성요소들 중 적어도 일부를 제어하여 사여 사용자에게 적절한 정보를 제공하거나 기능을 처리할 수 있다. 나아가, 제어부(27)는 응용 프로그램의 구동을 위하여 전자 디바이스(20)에 포함된 구성요소들 중 적어도 둘 이상을 서로 조합하여 동작시킬 수 있다.
또한, 제어부(27)는 센싱부(23)에 포함된 자이로스코프 센서, 중력 센서, 모션 센서 등을 이용하여 전자 디바이스(20)나 사용자의 움직임을 감지할 수 있다. 또는 제어부(27)는 센싱부(23)에 포함된 근접센서, 조도센서, 자기센서, 적외선 센서, 초음파 센서, 광 센서 등을 이용하여 전자 디바이스(20)나 사용자 주변으로 다가오는 대상체를 감지할 수도 있다. 그 밖에도, 제어부(27)는 전자 디바이스(20)와 연동하여 동작하는 컨트롤러에 구비된 센서들을 통해서도 사용자의 움직임을 감지할 수 있다.
또한, 제어부(27)는 메모리(26)에 저장된 응용 프로그램을 이용하여 전자 디바이스(20)의 동작(또는 기능)을 수행할 수 있다.
전원 공급부(28)는 제어부(27)의 제어 하에서, 외부의 전원 또는 내부의 전원을 인가받아 전자 디바이스(20)에 포함된 각 구성요소들에 전원을 공급한다. 전원 공급부(28)는 배터리를 포함하며, 배터리는 내장형 또는 교체가능한 형태로 마련될 수 있다.
위 각 구성요소들 중 적어도 일부는, 이하에서 설명되는 다양한 실시 예들에 따른 전자 디바이스의 동작, 제어, 또는 제어방법을 구현하기 위하여 서로 협력하여 동작할 수 있다. 또한, 전자 디바이스의 동작, 제어, 또는 제어방법은 메모리(26)에 저장된 적어도 하나의 응용 프로그램의 구동에 의하여 전자 디바이스 상에서 구현될 수 있다.
이하, 본 발명의 일 예로서 설명되는 전자 디바이스는 HMD(Head Mounted Display)에 적용되는 실시예를 기준으로 설명한다. 그러나 본 발명에 따른 전자 디바이스의 실시예에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 및 웨어러블 디바이스(wearable device) 등이 포함될 수 있다. 웨어러블 디바이스에는 HMD 이외에도 워치형 단말기(smart watch)와 컨택트 렌즈(Contact lens) 등이 포함될 수 있다.
도 3은 본 발명의 일 실시예에 따른 가상현실 전자 디바이스의 사시도이고, 도 4는 도 3의 가상현실 전자 디바이스를 사용하는 모습을 나타낸다.
도면을 참조하면, 가상현실 전자 디바이스는 사용자의 머리에 장착되는 박스 타입의 전자 디바이스(30)와, 사용자가 파지하여 조작할 수 있는 컨트롤러(40: 40a, 40b)를 포함할 수 있다.
전자 디바이스(30)는 인체의 두부에 착용되어 지지되는 헤드유닛(31)과, 헤드유닛(31)에 결합되어 사용자의 눈 앞에 가상의 이미지 또는 영상을 표시하는 디스플레이유닛(32)을 포함한다. 도면에는 헤드유닛(31)과 디스플레이유닛(32)이 별개의 유닛으로 구성되어 서로 결합되는 것으로 도시되지만, 이와 달리 디스플레이유닛(32)은 헤드유닛(31)에 일체로 구성될 수도 있다.
헤드유닛(31)은 중량감이 있는 디스플레이유닛(32)의 무게를 분산시킬 수 있도록 사용자의 머리를 감싸는 구조를 채택할 수 있다. 그리고 각기 다른 사용자의 두상 크기에 맞출 수 있도록 길이 가변되는 밴드 등이 구비될 수 있다.
디스플레이유닛(32)은 헤드유닛(31)에 결합되는 커버부(32a)와 디스플레이 패널을 내측에 수용하는 디스플레이부(32b)를 구성한다.
커버부(32a)는 고글 프레임이라고도 불리며, 전체적으로 터브 형상(tub shape)일 수 있다. 커버부(32a)는 내부에 공간이 형성되고 전면에 사용자의 안구의 위치에 대응되는 개구가 형성된다.
디스플레이부(32b)는 커버부(32a)의 전면 프레임에 장착되고, 사용자의 양 안에 대응되는 위치에 마련되어 화면정보(영상 또는 이미지 등)를 출력한다. 디스플레이부(32b)에서 출력되는 화면정보는 가상현실 컨텐츠뿐만 아니라, 카메라 등 촬영수단을 통해 수집되는 외부 이미지를 포함한다.
그리고 디스플레이부(32b)에 출력되는 가상현실 컨텐츠는 전자 디바이스(30) 자체에 저장된 것이거나 또는 외부장치(60)에 저장된 것일 수 있다. 예를 들어, 화면정보가 전자 디바이스(30)에 저장된 가상 공간 영상인 경우, 전자 디바이스(30)는 상기 가상 공간의 영상을 처리하기 위한 이미지 프로세싱 및 렌더링 처리를 수행하고, 이미지 프로세싱 및 렌더링 처리 결과 생성된 화상 정보를 디스플레이부(32b)를 통해 출력할 수 있다. 반면, 외부장치(60)에 저장된 가상 공간 영상인 경우, 외부장치(60)가 이미지 프로세싱 및 렌더링 처리를 수행하고, 그 결과 생성된 화상 정보를 전자 디바이스(30)에 전송해줄 수 있다. 그러면 전자 디바이스(30)는 외부장치(60)로부터 수신된 3D 화상 정보를 디스플레이부(32b)를 통해 출력할 수 있다.
디스플레이부(32b)는 커버부(32a)의 개구 전방에 마련되는 디스플레이 패널을 포함하고, 디스플레이 패널은 LCD 또는 OLED 패널일 수 있다. 또는 디스플레이부(32b)는 스마트폰의 디스플레이부일 수 있다. 즉, 커버부(32a)의 전방에 스마트폰이 탈착될 수 있는 구조를 채택할 수 있다.
그리고 디스플레이유닛(32)의 전방에는 촬영수단과 각종 센서류가 설치될 수 있다.
촬영수단(예를 들어, 카메라)는 전방의 영상을 촬영(수신, 입력)하도록 형성되고, 특히 사용자가 바라보는 현실 세계를 영상으로 획득할 수 있다. 촬영수단은 디스플레이부(32b)의 중앙 위치에 한 개 마련되거나, 서로 대칭되는 위치에 두 개 이상 마련될 수 있다. 복수의 촬영수단을 구비하는 경우 입체 영상을 획득할 수도 있다. 촬영수단으로부터 획득되는 외부 이미지에 가상 이미지를 결합한 이미지가 디스플레이부(32b)를 통해 표시될 수 있다.
센서류는 자이로스코프 센서, 모션 센서 또는 IR 센서 등을 포함할 수 있다. 이에 대해서는 뒤에서 자세히 설명하기로 한다.
그리고 디스플레이유닛(32)의 후방에는 안면패드(facial pad, 33)가 설치될 수 있다. 안면패드(33)는 사용자의 안구 주위에 밀착되고, 쿠션감이 있는 소재로 마련되어 사용자의 얼굴에 편안한 착용감을 제공한다. 그리고 안면패드(33)는 사람의 얼굴 전면 윤곽에 대응하는 형상을 지니면서도 플렉서블한 소재로 마련되어 각기 다른 사용자의 얼굴 형상에도 안면에 밀착될 수 있어 외부 빛이 눈으로 침입하는 것을 차단할 수 있다.
그 밖에도 전자 디바이스(30)는 제어명령을 입력 받기 위하여 조작되는 사용자 입력부, 그리고 음향 출력부와 제어부가 구비될 수 있다. 이에 대한 설명은 전과 동일하므로 생략한다.
또한, 가상현실 전자 디바이스는 박스 타입의 전자 디바이스(30)를 통해 표시되는 가상 공간 영상과 관련된 동작을 제어하기 위한 컨트롤러(40: 40a, 40b)가 주변장치로 구비될 수 있다.
컨트롤러(40)는 사용자가 양손에 쉽게 그립(grip)할 수 있는 형태로 마련되고, 외측면에는 사용자 입력을 수신하기 위한 터치패드(또는 트랙패드), 버튼 등이 구비될 수 있다.
컨트롤러(40)는 전자 디바이스(30)와 연동하여 디스플레이부(32b)에 출력되는 화면을 제어하는데 사용될 수 있다. 컨트롤러(40)는 사용자가 쥐는(grip) 그립부와, 그립부로부터 연장되며 다양한 센서들과 마이크로 프로세서가 내장된 헤드부를 포함하여 구성될 수 있다. 그립부는 사용자가 쉽게 쥘 수 있도록 세로로 긴 바 형태로 이루어지고 헤드부는 링 형태로 이루어질 수 있다.
그리고 컨트롤러(40)는 IR 센서, 모션 추적 센서, 마이크로 프로세서, 및 입력부를 포함할 수 있다. 예를 들어, IR 센서는 후술하는 위치추적장치(50)로부터 방사되는 빛을 수신하여서, 사용자 동작을 추적하는데 사용된다. 모션 추적 센서는 3축의 가속도 센서와, 3축의 자이로스코프, 디지털 모션 프로세서를 하나의 집합체로 포함하여 구성될 수 있다.
그리고 컨트롤러(40)의 그립부에는 사용자 입력부가 마련될 수 있다. 사용자 입력부는 예를 들어, 그립부의 내측에 배치된 키들과, 그립부의 외측에 구비된 터치패드(트랙 패드), 트리거 버튼 등을 포함할 수 있다.
한편, 컨트롤러(40)는 전자 디바이스(30)의 제어부(27)로부터 수신되는 신호에 대응하는 피드백을 수행할 수 있다. 예를 들어, 컨트롤러(40)는 진동, 소리, 또는 광 등을 통해 사용자에게 피드백 신호를 전달할 수 있다.
또한, 사용자는 컨트롤러(40) 조작을 통해 전자 디바이스(30)에 구비된 카메라를 통해 확인되는 외부 환경 이미지에 접근할 수 있다. 즉, 사용자는 가상 공간 체험 중에도 전자 디바이스(30)를 벗지 않고 컨트롤러(40)의 조작을 통해 외부 환경을 즉시 확인할 수 있다.
또한, 가상현실 전자 디바이스는 위치추적장치(50)를 더 포함할 수 있다. 위치추적장치(50)는 라이트하우스(lighthouse) 시스템라는 위치추적(positional tracking) 기술을 적용하여 전자 디바이스(30) 또는 컨트롤러(40)의 위치를 검출하고, 이를 이용하여 사용자의 360도 모션을 추적하는데 도움을 준다.
위치추적시스템은 닫힌 특정 공간내에 하나 이상의 위치추적장치(50: 50a, 50b)를 설치함으로써 구현될 수 있다. 복수의 위치추적장치(50)는 인식 가능한 공간 범위가 극대화될 수 있는 위치, 예를 들어 대각선 방향으로 서로 마주보는 위치에 설치될 수 있다.
전자 디바이스(30) 또는 컨트롤러(40)는 복수의 위치추적장치(50)에 포함된 LED 또는 레이저 방출기들로부터 방사되는 빛을 수신하고, 해당 빛이 수신된 위치와 시간 간의 상관관계에 기초하여, 닫힌 특정 공간 내에서의 사용자의 위치를 정확하게 판단할 수 있다. 이를 위해, 위치추적장치(50)에는 IR 램프와 2축의 모터가 각각 포함될 수 있으며, 이를 통해 전자 디바이스(30) 또는 컨트롤러(40)와 신호를 주고받는다.
또한, 전자 디바이스(30)는 외부장치(60)(예를 들어, PC, 스마트폰, 또는 태블릿 등)와 유/무선 통신을 수행할 수 있다. 전자 디바이스(30)는 연결된 외부장치(60)에 저장된 가상 공간 영상을 수신하여 사용자에게 표시할 수 있다.
한편, 이상 설명한 컨트롤러(40)와 위치추적장치(50)는 필수 구성은 아니므로, 본 발명의 실시예에서는 생략될 수 있다. 예를 들어, 전자 디바이스(30)에 설치된 입력장치가 컨트롤러(40)를 대신할 수 있고, 전자 디바이스(30)에 설치된 센서류로부터 자체적으로 위치 정보를 판단할 수 있다.
도 5는 본 발명의 일 실시예에 따른 증강현실 전자 디바이스의 사시도이다.
도 5에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전자 디바이스는 프레임(100), 제어부(200) 및 디스플레이부(300)를 포함할 수 있다.
전자 디바이스는 글라스 타입(smart glass)으로 마련될 수 있다. 글라스 타입의 전자 디바이스는 인체의 두부에 착용 가능하도록 구성되며, 이를 위한 프레임(케이스, 하우징 등)(100)을 구비할 수 있다. 프레임(100)은 착용이 용이하도록 플렉서블 재질로 형성될 수 있다.
프레임(100)은 두부에 지지되며, 각종 부품들이 장착되는 공간을 마련한다. 도시된 바와 같이, 프레임(100)에는 제어부(200), 사용자 입력부(130) 또는 음향 출력부(140) 등과 같은 전자부품이 장착될 수 있다. 또한, 프레임(100)에는 좌안 및 우안 중 적어도 하나를 덮는 렌즈가 착탈 가능하게 장착될 수 있다.
프레임(100)은 도면에 도시된 바와 같이, 사용자의 신체 중 안면에 착용되는 안경 형태를 가질 수 있으나, 이에 반드시 한정되는 것은 아니고, 사용자의 안면에 밀착되어 착용되는 고글 등의 형태를 가질 수도 있다.
이와 같은 프레임(100)은 적어도 하나의 개구부를 구비하는 전면 프레임(110)과 전면 프레임(110)과 교차하는 제1 방향(y)으로 연장되어 서로 나란한 한 쌍의 측면 프레임(120)을 포함할 수 있다.
제어부(200)는 전자 디바이스에 구비되는 각종 전자부품을 제어하도록 마련된다.
제어부(200)는 사용자에게 보여지는 이미지 또는 이미지가 연속되는 영상을 생성할 수 있다. 제어부(200)는 이미지를 발생시키는 이미지 소스 패널과 이미지 소스 패널에서 발생된 빛을 확산 및 수렴하는 복수의 렌즈 등을 포함할 수 있다.
제어부(200)는 두 측면 프레임(120) 중 어느 하나의 측면 프레임(120)에 고정될 수 있다. 예를 들어, 제어부(200)는 어느 하나의 측면 프레임(120) 내측 또는 외측에 고정되거나, 어느 하나의 측면 프레임(120)의 내부에 내장되어 일체로 형성될 수 있다. 또는 제어부(200)가 전면 프레임(110)에 고정되거나 전자 디바이스와 별도로 마련될 수도 있다.
디스플레이부(300)는 헤드 마운티드 디스플레이(Head Mounted Display, HMD) 형태로 구현될 수 있다. HMD 형태란, 두부에 장착되어, 사용자의 눈 앞에 직접 영상을 보여주는 디스플레이 방식을 말한다. 사용자가 전자 디바이스를 착용하였을 때, 사용자의 눈 앞에 직접 영상을 제공할 수 있도록, 디스플레이부(300)는 좌안 및 우안 중 적어도 하나에 대응되게 배치될 수 있다. 본 도면에서는, 사용자의 우안을 향하여 영상을 출력할 수 있도록, 디스플레이부(300)가 우안에 대응되는 부분에 위치한 것을 예시하고 있다.
디스플레이부(300)는 사용자가 외부 환경을 시각적으로 인지하면서, 동시에 제어부(200)에서 생성된 이미지가 사용자에게 보이도록 할 수 있다. 예를 들어, 디스플레이부(300)는 프리즘을 이용하여 디스플레이 영역에 이미지를 투사할 수 있다.
그리고 디스플레이부(300)는 투사된 이미지와 전방의 일반 시야(사용자가 눈을 통하여 바라보는 범위)가 동시에 보이도록 하기 위해 투광성으로 형성될 수 있다. 예를 들어, 디스플레이부(300)는 반투명일 수 있으며, 글라스(glass)를 포함하는 광학 소자로 형성될 수 있다.
그리고 디스플레이부(300)는 전면 프레임(110)에 포함된 개구부에 삽입되어 고정되거나, 개부구의 배면[즉 개구부와 사용자 사이]에 위치하여, 전면 프레임(110)에 고정될 수 있다. 도면에는 디스플레이부(300)가 개구부의 배면에 위치하여, 전면 프레임(110)에 고정된 경우를 일 예로 도시하였지만, 이와 달리 디스플레이부(300)는 프레임(100)의 다양한 위치에 배치 및 고정될 수 있다.
전자 디바이스는 도 5에 도시된 바와 같이, 제어부(200)에서 이미지에 대한 이미지 광을 디스플레이부(300)의 일측으로 입사시키면, 이미지광이 디스플레이부(300)를 통하여 타측으로 출사되어, 제어부(200)에서 생성된 이미지를 사용자에게 보이도록 할 수 있다.
이에 따라, 사용자는 프레임(100)의 개구부를 통하여 외부 환경을 보면서 동시에 제어부(200)에서 생성된 이미지를 함께 볼 수 있게 된다. 즉, 디스플레이부(300)를 통하여 출력되는 영상은 일반 시야와 오버랩(overlap)되어 보일 수 있다. 전자 디바이스는 이러한 디스플레이 특성을 이용하여 현실의 이미지나 배경에 가상 이미지를 겹쳐서 하나의 영상으로 보여주는 증강현실(Augmented Reality, AR)을 제공할 수 있다.
도 6은 본 발명의 일 실시예에 따른 제어부를 설명하기 위한 분해사시도이다.
도면을 참조하면, 제어부(200)는 내부의 구성 소자를 보호하고, 제어부(200)의 외형을 형성하는 제1 커버(207)와 제2 커버(225)를 구비하고, 제1 커버(207)와 제2 커버(225)의 내부에는 구동부(201), 이미지 소스 패널(203), 편광빔 스플리터 필터(Polarization Beam Splitter Filter, PBSF, 211), 미러(209), 복수의 렌즈(213, 215, 217, 221), 플라이아이 렌즈(Fly Eye Lens, FEL, 219), 다이크로익 필터(Dichroic filter, 227) 및 프리즘 프로젝션 렌즈(Freeform prism Projection Lens, FPL, 223)를 구비할 수 있다.
제1 커버(207)와 제2 커버(225)는 구동부(201), 이미지 소스 패널(203), 편광빔 스플리터 필터(211), 미러(209), 복수의 렌즈(213, 215, 217, 221), 플라이아이 렌즈(219) 및 프리즘 프로젝션 렌즈(223)가 내장될 수 있는 공간을 구비하고, 이들을 패키징하여, 양 측면 프레임(120) 중 어느 하나에 고정될 수 있다.
구동부(201)는 이미지 소스 패널(203)에서 디스플레이되는 영상 또는 이미지를 제어하는 구동 신호를 공급할 수 있으며, 제어부(200) 내부 또는 제어부(200) 외부에 구비되는 별도의 모듈 구동칩에 연동될 수 있다. 이와 같은 구동부(201)는 일 예로, 연성 인쇄회로기판(Flexible Printed Circuits Board, FPCB) 형태로 구비될 수 있고, 연성 인쇄회로기판에는 구동 중 발생하는 열을 외부로 방출시키는 방열판(heatsink)이 구비될 수 있다.
이미지 소스 패널(203)은 구동부(201)에서 제공되는 구동 신호에 따라 이미지를 생성하여 발광할 수 있다. 이를 위해 이미지 소스 패널(203)은 LCD(liquid crystal display) 패널이 이용되거나 OLED(Organic Light Emitting Diode) 패널이 이용될 수 있다.
편광빔 스플리터 필터(211)는 이미지 소스 패널(203)에서 생성된 이미지에 대한 이미지 광을 회전 각도에 따라 분리하거나 일부를 차단하고 일부는 통과시킬 수 있다. 따라서, 예를 들어, 이미지 소스 패널(203)에서 발광되는 이미지 광이 수평광인 P파와 수직광인 S파를 구비한 경우, 편광빔 스플리터 필터(211)는 P파와 S파를 서로 다른 경로로 분리하거나, 어느 하나의 이미지 광은 통과시키고 나머지 하나의 이미지 광은 차단할 수 있다. 이와 같은 편광빔 스플리터 필터(211)는 일 실시예로, 큐브(cube) 타입 또는 플레이트(plate) 타입으로 구비될 수 있다.
큐브(cube) 타입으로 구비되는 편광빔 스플리터 필터(211)는 P파와 S파로 형성되는 이미지 광을 필터링하여 서로 다른 경로로 분리할 수 있으며, 플레이트(plate) 타입으로 구비되는 편광빔 스플리터 필터(211)는 P파와 S파 중 어느 하나의 이미지 광을 통과시키고 다른 하나의 이미지 광을 차단할 수 있다.
미러(Mirror, 209)는 편광빔 스플리터 필터(211)에서 편광되어 분리된 이미지 광을 반사하여 다시 모아 복수의 렌즈(213, 215, 217, 221)로 입사시킬 수 있다.
복수의 렌즈(213, 215, 217, 221)는 볼록 렌즈와 오목 렌즈 등을 포함할 수 있으며, 일 예로, I타입의 렌즈와 C 타입의 렌즈를 포함할 수 있다. 이와 같은 복수의 렌즈(213, 215, 217, 221)는 입사되는 이미지 광을 확산 및 수렴을 반복하도록 하여, 이미지 광의 직진성을 향상시킬 수 있다.
플라이아이 렌즈(219)는 복수의 렌즈(213, 215, 217, 221)를 통과한 이미지 광을 입사받아 입사광의 조도 균일성(uniformity)이 보다 향상되도록 이미지 광을 출사할 수 있으며, 이미지 광이 균일한 조도를 갖는 영역을 확장시킬 수 있다.
다이크로익 필터(227)는 복수의 필름층 또는 렌즈층을 포함할 수 있으며, 플라이아이 렌즈(219)로부터 입사되는 이미지 광 중 특정 파장 대역의 빛은 투과시키고, 나머지 특정 파장 대역의 빛은 반사시켜, 이미지 광의 색감을 보정할 수 있다. 이와 같은 다이크로익 필터(227)를 투과한 이미지 광은 프리즘 프로젝션 렌즈(223)를 통하여 디스플레이부(300)로 출사될 수 있다.
디스플레이부(300)는 제어부(200)에서 출사되는 이미지 광을 입사받아, 사용자가 눈으로 볼 수 있도록 사용자의 눈이 위치한 방향으로 입사된 이미지 광을 출사할 수 있다.
한편, 앞에서 설명한 구성 외에도 전자 디바이스는 하나 이상의 촬영수단(미도시)을 포함할 수 있다. 촬영수단은 좌안 및 우안 중 적어도 하나에 인접하게 배치되어, 전방의 영상을 촬영할 수 있다. 또는 측방/후방 영상을 촬영할 수 있도록 배치될 수도 있다.
촬영수단이 눈에 인접하여 위치하므로, 촬영수단은 사용자가 바라보는 현실 세계를 영상으로 획득할 수 있다. 촬영수단은 상기 프레임(100)에 설치될 수도 있으며, 복수 개로 구비되어 입체 영상을 획득하도록 이루어질 수도 있다.
전자 디바이스는 제어명령을 입력 받기 위하여 조작되는 사용자 입력부(130)를 구비할 수 있다. 사용자 입력부(130)는 터치, 푸시 등 사용자가 촉각으로 느끼면서 조작하게 되는 방식(tactile manner), 직접 터치하지 않은 상태에서 사용자의 손의 움직임을 인식하는 제스처 방식(gesture manner), 또는 음성 명령을 인식하는 방식을 포함하여 다양한 방식이 채용될 수 있다. 본 도면에서는, 프레임(100)에 사용자 입력부(130)가 구비된 것을 예시하고 있다.
또한, 전자 디바이스는 사운드를 입력 받아 전기적인 음성 데이터로 처리하는 마이크로폰 및 음향을 출력하는 음향 출력부(140)를 구비할 수 있다. 음향 출력부(140)는 일반적인 음향 출력 방식 또는 골전도 방식으로 음향을 전달하도록 이루어질 수 있다. 음향 출력부(140)가 골전도 방식으로 구현되는 경우, 사용자가 전자 디바이스를 착용시, 음향 출력부(140)는 두부에 밀착되며, 두개골을 진동시켜 음향을 전달하게 된다.
이하에서는 디스플레이부(300)의 다양한 형태와 입사된 이미지 광이 출사되는 다양한 방식에 대해 설명한다.
도 7 내지 도13은 본 발명의 일 실시예에 따른 디스플레이부(300)에 적용 가능한 다양한 방식의 광학 소자를 설명하기 위한 개념도이다.
구체적으로, 도 7은 프리즘 방식의 광학 소자의 일 실시예를 설명하기 위한 도면이고, 도 8은 웨이브 가이드(waveguide, 또는 도파관) 방식의 광학 소자의 일 실시예를 설명하기 위한 도면이고, 도 9와 10은 핀 미러(Pin Mirror) 방식의 광학 소자의 일 실시예를 설명하기 위한 도면이고, 도11는 표면 반사 방식의 광학 소자의 일 실시예를 설명하기 위한 도면이다. 그리고 도 12는 마이크로 엘이디 방식의 광학 소자의 일 실시예를 설명하기 위한 도면이고, 도 13은 컨택트 렌즈에 활용되는 디스플레이부의 일 실시예를 설명하기 위한 도면이다.
도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 디스플레이부(300-1)에는 프리즘 방식의 광학 소자가 이용될 수 있다.
일 실시예로, 프리즘 방식의 광학 소자는 도 7의 (a)에 도시된 바와 같이, 이미지 광이 입사되는 표면과 출사되는 표면(300a)이 평면인 플랫(flat) 타입의 글라스 광학 소자가 이용되거나, 도 7의 (b)에 도시된 바와 같이, 이미지 광이 출사되는 표면(300b)이 일정한 곡률 반경이 없는 곡면으로 형성되는 프리폼(freeform) 글라스 광학 소자가 이용될 수 있다.
플랫(flat) 타입의 글라스 광학 소자는 제어부(200)에서 생성된 이미지 광을 평평한 측면으로 입사 받아 내부에 구비된 전반사 미러(300a)에 의해 반사되어, 사용자 쪽으로 출사할 수 있다. 여기서, 플랫(flat) 타입의 글라스 광학 소자 내부에 구비되는 전반사 미러(300a)는 레이저에 의해 플랫(flat) 타입의 글라스 광학 소자 내부에 형성될 수 있다.
프리폼(freeform) 글라스 광학 소자는 입사되는 표면으로부터 멀어질수록 두께가 얇아지도록 구성되어, 제어부(200)에서 생성된 이미지 광을 곡면을 가지는 측면으로 입사받아, 내부에서 전반사하여 사용자 쪽으로 출사할 수 있다.
도 8에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 디스플레이부(300-2)에는 웨이브 가이드(waveguide, 또는 도파관) 방식의 광학 소자 또는 광 가이드 광학 소자(light guide optical element, LOE)가 이용될 수 있다.
이와 같은 웨이브 가이드(waveguide, 또는 도파관) 또는 광 가이드(light guide) 방식의 광학 소자는 일 실시예로, 도 8의 (a)에 도시된 바와 같은 부분 반사 미러(Segmented Beam splitter) 방식의 글라스 광학 소자, 도 8의 (b)에 도시된 바와 같은 톱니 프리즘 방식의 글라스 광학 소자, 도 8의 (c)에 도시된 바와 같은 회절 광학 소자(Diffractive optical element, DOE)를 갖는 글라스 광학 소자, 도 8의 (d)에 도시된 바와 같은 홀로그램 광학 소자(hologram optical element, HOE)를 갖는 글라스 광학 소자, 도 8의 (e)에 도시된 바와 같은 수동 격자(Passive grating)를 갖는 글라스 광학 소자, 도 8의 (f)에 도시된 바와 같은 능동 격자(Active grating)를 갖는 글라스 광학 소자가 있을 수 있다.
도 8의 (a)에 도시된 바와 같은 부분 반사 미러(Segmented Beam splitter) 방식의 글라스 광학 소자는 도시된 바와 같이, 글라스 광학 소자 내부에서 광 이미지가 입사되는 쪽에 전반사 미러(301a)와 광 이미지가 출사되는 쪽에 부분 반사 미러(Segmented Beam splitter, 301b)가 구비될 수 있다.
이에 따라, 제어부(200)에서 생성된 광 이미지는 글라스 광학 소자 내부의 전반사 미러(301a)에 전반사되고, 전반사된 광 이미지는 글라스의 길이 방향을 따라 도광하면서, 부분 반사 미러(301b)에 의해 부분적으로 분리 및 출사되어, 사용자의 시각에 인식될 수 있다.
도 8의 (b)에 도시된 바와 같은 톱니 프리즘 방식의 글라스 광학 소자는 글라스의 측면에 사선 방향으로 제어부(200)의 이미지 광이 입사되어 글라스 내부로 전반사되면서 광 이미지가 출사되는 쪽에 구비된 톱니 형태의 요철(302)에 의해 글라스 외부로 출사되어 사용자의 시각에 인식될 수 있다.
도 8의 (c)에 도시된 바와 같은 회절 광학 소자(Diffractive optical element, DOE)를 갖는 글라스 광학 소자는 광 이미지가 입사되는 쪽의 표면에 제1 회절부(303a)와 광 이미지가 출사되는 쪽의 표면에 제2 회절부(303b)가 구비될 수 있다. 이와 같은 제1, 2 회절부(303a, 303b)는 글라스의 표면에 특정 패턴이 패터닝되거나 별도의 회절 필름이 부착되는 형태로 구비될 수 있다.
이에 따라, 제어부(200)에서 생성된 광 이미지는 제1 회절부(303a)를 통하여 입사되면서 회절하고, 전반사되면서 글라스의 길이 방향을 따라 도광하고, 제2 회절부(303b)를 통하여 출사되어, 사용자의 시각에 인식될 수 있다.
도 8의 (d)에 도시된 바와 같은 홀로그램 광학 소자(hologram optical element, HOE)를 갖는 글라스 광학 소자는 광 이미지가 출사되는 쪽의 글라스 내부에 아웃-커플러(out-coupler, 304)가 구비될 수 있다. 이에 따라, 글라스의 측면을 통해 사선 방향으로 제어부(200)로부터 광 이미지가 입사되어 전반사되면서 글라스의 길이 방향을 따라 도광하고, 아웃 커플러(304)에 의해 출사되어, 사용자의 시각에 인식될 수 있다. 이와 같은 홀로그램 광학 소자는 구조가 조금씩 변경되어 수동 격자를 갖는 구조와 능동 격자를 갖는 구조로 보다 세분될 수 있다.
도 8의 (e)에 도시된 바와 같은 수동 격자(Passive grating)를 갖는 글라스 광학 소자는 광 이미지가 입사되는 쪽 글라스 표면의 반대쪽 표면에 인-커플러(in-coupler, 305a), 광 이미지가 출사되는 쪽 글라스 표면의 반대쪽 표면에 아웃-커플러(out-coupler, 305b)가 구비될 수 있다. 여기서, 인-커플러(305a)와 아웃-커플러(305b)는 수동 격자를 갖는 필름 형태로 구비될 수 있다.
이에 따라, 글라스의 입사되는 쪽 글라스 표면으로 입사되는 광 이미지는 반대쪽 표면에 구비된 인-커플러(305a)에 의해 전반사되면서 글라스의 길이 방향을 따라 도광하고, 아웃-커플러(305b)에 의해 글라스의 반대쪽 표면을 통하여 출사되어, 사용자의 시각에 인식될 수 있다.
도 8의 (f)에 도시된 바와 같은 능동 격자(Active grating)를 갖는 글라스 광학 소자는 광 이미지가 입사되는 쪽 글라스 내부에 능동 격자로 형성되는 인-커플러(in-coupler, 306a), 광 이미지가 출사되는 쪽 글라스 내부에 능동 격자로 형성되는 아웃-커플러(out-coupler, 306b)가 구비될 수 있다.
이에 따라, 글라스로 입사되는 광 이미지는 인-커플러(306a)에 의해 전반사되면서 글라스의 길이 방향을 따라 도광하고, 아웃-커플러(306b)에 의해 글라스의 밖으로 출사되어, 사용자의 시각에 인식될 수 있다.
본 발명의 또 다른 실시예에 따른 디스플레이부(300-3)에는 핀 미러(Pin Mirror) 방식의 광학 소자가 이용될 수 있다.
핀 홀 효과(pin-hole effect)는 물체를 바라보는 구멍이 핀으로 뚫은 구멍 같다고 하여 핀 홀이라고 불리고 있으며, 작은 구멍으로 빛을 투과시켜 더 뚜렷하게 보는 효과를 말한다. 이는 빛의 굴절을 이용한 빛의 성질에 기인한 것으로 핀 홀을 통과한 빛은 심도(Depth of Field, DOF)가 깊어져 망막에 맺히는 상이 분명해질 수 있다.
이하, 도 9와 도 10을 참고하여 핀 미러 방식의 광학 소자를 이용하는 실시예에 대해 설명하기로 한다.
도 9의 (a)를 참조하면, 핀 홀 미러(310a)는 디스플레이부(300-3) 내에 조사되는 광 경로 상에 구비되고, 조사되는 광을 사용자의 눈을 향해 반사시킬 수 있다. 보다 상세하게는 핀 홀 미러(310a)는 디스플레이부(300-3)의 전면(외부면)과 배면(내부면)의 중간에 개재될 수 있으며. 이의 제작 방법에 대해서는 뒤에서 다시 설명하기로 한다.
핀 홀 미러(310a)는 동공 보다 작은 면적으로 형성되어 깊은 심도를 제공할 수 있다. 따라서 사용자는 디스플레이부(300-3)를 통해 현실 세계를 바라보는 초점 거리가 가변 되더라도 제어부(200)에서 제공하는 증강현실 영상을 현실 세계에 선명하게 겹쳐 볼 수 있게 된다.
그리고 디스플레이부(300-3)는 조사되는 광을 내부 전반사를 통해 핀 홀 미러(310a)로 유도하는 경로를 제공할 수 있다.
도 9의 (b)를 참조하면, 디스플레이부(300-3)에서 광이 전반사되는 면(300c)에 핀 홀 미러(310b)가 마련될 수 있다. 여기서 핀 홀 미러(310b)는 사용자의 눈에 맞게 외부 광의 경로를 변경하는 프리즘 특성을 구비할 수 있다. 예를 들어, 핀 홀 미러(310b)는 필름형으로 제작되어 디스플레이부(300-3)에 부착될 수 있고, 이 경우 제작이 용이한 이점이 있다.
디스플레이부(300-3)는 제어부(200)에서 조사되는 광을 내부 전반사를 통해 가이드하고, 전반사되어 입사되는 광은 외부 광이 입사되는 면(300c)에 구비된 핀 홀 미러(310b)에 반사되어 디스플레이부(300-3)를 통과하여 사용자의 눈에 도달할 수 있다.
도 9의 (c)를 참조하면, 제어부(200)에서 조사된 광이 디스플레이부(300-3)의 내부 전반사 없이 직접 핀 홀 미러(310c)에 반사되어 사용자의 눈에 도달할 수 있다. 디스플레이부(300-3)에서 외부 광이 통과하는 면의 형상과 상관없이 증강 현실을 제공할 수 있다는 점에서 제작이 용이할 수 있다.
도 9의 (d)를 참조하면, 제어부(200)에서 조사된 광은 디스플레이부(300-3)에서 외부 광이 출사되는 면(300d)에 구비되는 핀 홀 미러(310d)에 반사되어 사용자의 눈에 도달할 수 있다. 제어부(200)는 디스플레이부(300-3)의 표면에서 배면 방향으로 이격된 위치에서 광을 조사할 수 있도록 마련되고, 디스플레이부(300-3)에서 외부 광이 출사되는 면(300d)을 향해 광을 조사할 수 있다. 본 실시예는 디스플레이부(300-3)의 두께가 제어부(200)에서 조사하는 광을 수용하기에 충분하지 않은 경우 용이하게 적용될 수 있다. 또한, 디스플레이부(300-3)의 면 형상에 무관하며, 핀 홀 미러(310d)가 필름 형상으로 제작될 수 있다는 점에서 제작 용이성에도 유리할 수 있다.
한편, 핀 홀 미러(310)는 복수 개가 어레이 패턴으로 구비될 수 있다.
도 10은 본 발명의 일 실시예에 따라 핀 홀 미러의 형상 및 어레이 패턴 구조를 설명하기 위한 도면이다.
도면을 참조하면, 핀 홀 미러(310)는 사각형 또는 직사각형을 포함하는 다각형 구조로 제작될 수 있다. 여기서 핀 홀 미러(310)의 장축 길이(대각 길이)는 초점 거리 및 디스플레이부(300-3)에서 조사하는 광 파장의 곱의 양의 제곱근을 가질 수 있다.
복수의 핀 홀 미러(310)는 서로 이격되어 나란하게 배치되어 어레이 패턴을 형성할 수 있다. 어레이 패턴은 라인 패턴 또는 격자 패턴을 형성할 수 있다.
도10의 (a)와 (b)는 Flat Pin Mirror 방식을, 도 10의 (c)와 (d)은 freeform Pin Mirror 방식을 도시한다.
디스플레이부(300-3)의 내부에 핀 홀 미러(310)가 구비되는 경우, 디스플레이부(300-3)는 제1 글라스(300e)와 제2 글라스(300f)가 동공 방향으로 경사지게 배치되는 경사면(300g)을 사이로 결합하여 형성되며, 경사면(300g)에는 복수의 핀 홀 미러(310e)가 어레이 패턴을 형성하며 배치된다.
도 10의 (a)와 (b)를 참조하면, 복수의 핀 홀 미러(310e)는 경사면(300g)에 나란하게 일 방향으로 나란하게 구비되어 사용자가 동공을 움직임에도, 디스플레이부(300-3)를 투과하여 보이는 현실 세계에 제어부(200)에서 제공하는 증강현실을 지속적으로 구현할 수 있게 된다.
그리고 도 10의 (c)와 (d)를 참조하면, 복수의 핀 홀 미러(310f)는 곡면으로 마련되는 경사면(300g)에 나란하게 방사형 어레이를 형성할 수 있다.
복수의 핀 홀 미러(300f)가 방사형 어레이를 따라 배치되고, 도면상 가장자리의 핀 홀 미러(310f)가 경사면(300g)에서 가장 높은 위치에, 가운데의 핀 홀 미러(310f)가 가장 낮은 위치에 배치됨으로써 제어부(200)에서 조사되는 빔 경로를 일치시킬 수 있다.
이와 같이, 복수의 핀 홀 미러(310f)를 방사형 어레이를 따라 배치함으로써 광의 경로 차로 인해 제어부(200)에서 제공하는 증강현실이 이중상을 형성하는 문제를 해결할 수 있다.
또는, 디스플레이부(300-3)의 배면에 렌즈를 부착하여 나란하게 일 열로 배치되는 복수의 핀 홀 미러(310e)에서 반사되는 광의 경로차를 상쇄시킬 수 있다.
본 발명의 또 다른 실시예에 따른 디스플레이부(300-4)에 적용 가능한 표면 반사 방식의 광학 소자는 도11의 (a)에 도시된 바와 같은 freeform combiner 방식, 도11의 (b)에 도시된 바와 같은 Flat HOE 방식, 도11의 (c)에 도시된 바와 같은 freeform HOE 방식이 사용될 수 있다.
도11의 (a)에 도시된 바와 같은 freeform combiner 방식의 표면 반사 방식의 광학 소자는 결합기로서의 역할을 수행하기 위해 광 이미지의 입사각이 서로 다른 복수의 플랫한 면이 하나의 글라스(300)로 형성되어, 전체적으로 곡면을 가지도록 형성된 freeform combiner글라스(300)가 이용될 수 있다. 이와 같은 freeform combiner글라스(300)는 광 이미지 입사각이 영역별로 다르게 입사되어 사용자에게 출사될 수 있다.
도11의 (b)에 도시된 바와 같은 Flat HOE 방식의 표면 반사 방식의 광학 소자는 플랫(flat)한 글라스의 표면에 홀로그램 광학 소자(HOE, 311)가 코팅되거나 패터닝되어 구비될 수 있으며, 제어부(200)에서 입사된 광 이미지가 홀로그램 광학 소자(311)를 통과하여 글라스의 표면에서 반사되어 다시 홀로그램 광학 소자(311)를 통과하여 사용자 쪽으로 출사될 수 있다.
도11의 (c)에 도시된 바와 같은 freeform HOE 방식의 표면 반사 방식의 광학 소자는 freeform 형태의 글라스의 표면에 홀로그램 광학 소자(HOE, 313)가 코팅되거나 패터닝되어 구비될 수 있으며, 동작 원리는 도 11의 (b)에서 설명한 바와 동일할 수 있다.
그 밖에, 도 12에 도시된 바와 같은 마이크로 엘이디(Micro LED)를 이용하는 디스플레이부(300-5)와, 도 13에 도시된 바와 같은 컨택트 렌즈(Contact lens)를 이용하는 디스플레이부(300-6)도 가능하다.
도 12를 참조하면, 디스플레이부(300-5)의 광학 소자는 예를 들어, LCoS(liquid crystal on silicon) 소자, LCD(liquid crystal display) 소자, OLED(organic light emitting diode) 디스플레이 소자, DMD(digital micromirror device)를 포함할 수 있고, 또한, Micro LED, QD(quantum dot) LED 등의 차세대 디스플레이 소자를 포함할 수 있다.
제어부(200)에서 증강현실 화상에 대응하도록 생성된 이미지 데이터는 전도성 입력라인(316)을 따라 디스플레이부(300-5)로 전달되고, 디스플레이부(300-5)는 복수의 광학 소자(314)(예를 들어, 마이크로LED)들을 통해 영상신호를 광으로 변환하여 사용자의 눈에 조사한다.
복수의 광학 소자(314)들은 격자 구조(예를 들어, 100*100)로 배치되어 디스플레이 영역(314a)을 형성할 수 있다. 사용자는 디스플레이부(300-5) 내 디스플레이 영역(314a)을 통해 증강현실을 바라볼 수 있다. 그리고 복수의 광학 소자(314)들은 투명한 기판 상에 배치될 수 있다.
제어부(200)에서 생성된 이미지 신호는 전도성 입력라인(316)을 통해 디스플레이부(300-5)의 일 측에 마련되는 영상분할회로(315)로 전달되고, 영상분할회로(315)에서 복수의 분기로 분할되어 각 분기별로 배치되는 광학 소자(314)에 전달된다. 이 때, 영상분할회로(315)는 사용자의 시각 범위 밖에 위치하여 시선 간섭을 최소화할 수 있다.
도 13을 참조하면, 디스플레이부(300-5)는 컨택트 렌즈(Contact Lens)로 마련될 수 있다. 증강현실이 표시될 수 있는 컨택트 렌즈(300-5)는 스마트 컨택트 렌즈(Smart Contact lens)라고도 불린다. 스마트 컨택트 렌즈(300-5)는 복수의 광학 소자(317)가 중앙부에 격자구조로 배치될 수 있다.
스마트 컨택트 렌즈(300-5)는 광학 소자(317) 외에도 태양광 전지(318a), 배터리(318b), 제어부(200), 안테나(318c) 및 센서(318d) 등을 포함할 수 있다. 예를 들어, 센서(318d)는 눈물에서 혈당 수준을 확인할 수 있고, 제어부(200)는 센서(318d)의 신호를 처리하여 광학 소자(317)를 토해 혈당 정도를 증강현실로 표시하여 사용자가 실시간 확인할 수 있다.
위에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 디스플레이부(300)에는 프리즘 방식의 광학 소자, 웨이브 가이드 방식의 광학 소자, 광 가이드 광학 소자(LOE), 핀 미러 방식의 광학 소자 또는 표면 반사 방식의 광학 소자 중에서 선택되어 이용될 수 있다. 그 밖에도, 본 발명의 일 실시예에 따른 디스플레이부(300)에 적용 가능한 광학 소자는 망막 스캔 방식 등을 포함한다.
도 14는 비점수차를 설명하기 위한 그림이다.
비점수차는, 물점에서 나간 광선 다발이 결상광학계(렌즈)를 지난 뒤 다시 모여 상을 만들 때, 수직 방향으로 벌어진 광선 다발이 모이는 상점과 수평 방향으로 벌어진 광선 다발이 모이는 상점의 위치가 다른 현상 혹은 다른 정도로서, 물점의 상이 점(stigmatic)이 아닌 꼴로 나타나므로 비점(astigmatic) 수차라고 한다.
비점수차(Astigmatism)는 결국 결상광학계의 회전대칭성이 깨져서 생기는데, 그 원인은 두 가지이다. 첫째는 결상광학계 자체는 회전대칭이지만 결상 조건이 회전대칭성을 깨는 것이고, 둘째는 결상광학계 자체가 회전대칭이 아닌 것이다.
첫째의 예는 구면 렌즈에서 물점이 광축에서 벗어나 있을 때(off-axis)를 들 수 있다. 이 때는 도면과 같이 광축 Q1-Q2에서 벗어난 물점 P에서 퍼져나간 광선 다발이 구면 렌즈 L을 지나 다시 모여 상을 만들 때 수평 방향으로 퍼진 광선은 T에서 모이고, 수직 방향으로 퍼진 광선은 S에서 모인다. 그림 1에서 물점과 광축을 품는 평면을 접평면(tangential plane) 또는 자오면(meridional plane)이라고 하고, 이 평면을 따라 수직 방향으로 퍼진 광선을 접선 광선(tangential rays) 또는 자오 광선(meridional rays)이라고 한다. 또한 이 평면과 수직 방향의 평면을 화살면(sagittal plane), 이 평면을 따라 수평 방향으로 퍼진 광선을 화살 광선(sagittal rays)이라고 한다. 자오 광선이 모이는 점을 자오 상점(S), 화살 광선이 모이는 점을 화살 상점(T)이라고 한다. 비점수차의 크기는 두 상점 S와 T의 간격으로 나타낸다.
구면 렌즈처럼 광학소자 자체는 회전 대칭성이어도, 광학계에 소자를 끼워 넣는 과정에서 광축에 대한 위치와 방향을 정확히 맞추지 못하면 광축에 대한 회전대칭성이 깨지므로 광축 위의 물점의 상에 비점수차가 나타난다.
앞서 도 10의 (a)와 (b)에서는 복수의 핀 홀 미러(310-e)가 경사면(300g)에 나란하게 일 방향으로 나란하게 형성됨을, 도 10의 (c)와 (d)에서는 복수의 핀 홀 미러(310-f)가 곡면으로 마련되는 경사면(300g)에 나란하게 방사형 어레이를 형성할 수 있음을 설명한 바 있다.
도 10의 (c)와 (d)에서처럼 복수의 핀 홀 미러(310f)를 방사형 어레이를 따라 배치함으로써 광의 경로 차로 인해 제어부(200)에서 제공하는 증강현실이 이중 상을 형성하는 문제를 일부 해결할 수 있다. 그러나 이러한 보정 방법은 광의 경로 차로 인한 초점 거리를 조정하기 위한 것으로, 비점수차에 의하여 이미지가 이중 상 또는 삼중 상으로 맺히는 현상을 해결하기에는 부족하다.
도 15는 구면 반사면에서 비점수차가 발생하는 이유를 설명하기 위한 그림이다.
도 15를 참조하면, 복수의 핀 홀 미러(310)가 어레이를 형성하는 반사면(300g)은 구면 또는 경사면으로 마련되고, 이 경우 제어부에서 제공되는 이미지 광은 반사면(300g)의 광축(Q1-Q2)을 벗어난(off-axis) 위치에서 입사되고, 광축(Q1-Q2)을 벗어난 위치로 반사된다.
즉, 위의 도 14에서 설명한, 구면 렌즈에서 물점이 광축에서 벗어나 있는 경우에 해당하여 비점수차가 나타나게 된다.
이하에서는 도 16 내지 도 20을 참고하여 본 발명의 일 실시예에 따른 전자 디바이스에 대하여 설명하기로 한다.
도 16은 본 발명의 일 실시예에 따른 전자 디바이스를 나타내는 사시도이고, 도 17은 도 16의 Z축 방향 단면도이다.
도면을 참조하면, 전자 디바이스는 제어부(200, 도 10 참조)로부터 이미지 신호를 전달받아 이미지 광을 생성하여 제공하는 출사부(400)와, 출사부(400)로부터 전달된 이미지 광을 사용자의 눈에 전달하는 디스플레이부(500)를 포함한다.
출사부(400)는 제어부(200, 도 10 참조)에서 생성된 이미지 신호(데이터)를 이미지 광으로 변조한다. 출사부(400)는 예를 들어, LCoS(liquid crystal on silicon) 소자, LCD(liquid crystal display) 소자, OLED(organic light emitting diode) 디스플레이 소자, DMD(digital micromirror device)를 포함할 수 있고, 또한, Micro LED, QD(quantum dot) LED 등의 차세대 디스플레이 소자를 포함할 수 있다.
디스플레이부(500)는 출사부(400)로부터 이미지 광이 입사되는 입구 부분과 사용자의 안구를 향해 출사되는 출사 부분을 포함하고, 입구 부분과 출구 부분 사이에서 내부 전반사 (total internal reflection)를 통해 이미지 광의 적어도 일부를 전파할 수 있도록 제공된다.
디스플레이부(500)는 광학 웨이브가이드(optical wave guide) 또는 도파관일 수 있다. 광학 웨이브가이드는 광의 전파부에 그보다 굴절률이 작은 재료를 피복함으로써, 경계면에서 빛을 전반사시켜 내부에 밀폐한 채로 광을 전파하는 것을 의미한다.
그리고 디스플레이부(500)는 출사부(400)로부터 입사된 이미지 광을 전반사를 통해 전달하는 렌즈부(510, 520)와, 렌즈부(510, 520)의 내부에 마련되고 전달된 이미지 광을 반사시키는 반사면(530)과, 반사면(530)에 제공되고 렌즈부(510, 520)를 따라 전달되는 이미지 광을 사용자의 안구를 향해 반사시키는 광학소자(540)를 포함할 수 있다.
디스플레이부(500)는 사용자의 안구를 향하는 제1 면(501)과 제1 면(501)에 대향하고 사용자가 바라보는 외부 환경을 바라보는 제2 면(502)을 구비하는 판(plate) 형상으로 마련될 수 있다.
렌즈부(510, 520)는 출사부(400)의 출사면(410)에 인접하게 배치되고 이미지 광이 입사되는 입사면(511)을 형성하는 제1 렌즈(510)와, 제1 렌즈(510)에 접하고 나란하게 마련되는 제2 렌즈(520)를 포함하고, 반사면(530)은 제1 렌즈(510)와 제2 렌즈(520)의 접합 경계면에 마련된다. 그리고 제1 렌즈(510)의 계면과 제2 렌즈(510)의 계면은 서로 대응하는 형상을 가지게 되어 접합하였을 때 상호 밀착할 수 있다.
도 18은 디스플레이부(500)에서 이미지 광의 진행 경로를 나타내는 그림이다.
도 18을 참조하면, 제1 렌즈(510)와 제2 렌즈(520)는 접합하여 공통으로 제1 면(501)과 제2 면(502)을 형성한다. 제1 면(501)과 제2 면(502)은 거의 평행하게 배치될 수 있다. 다만, 일부 오목하거나 볼록하게 굴곡지는 것을 포함한다.
제1 렌즈(510)의 일 측 단부에는 이미지 광이 입사되는 입사면(511)이 형성된다. 입사면(511)은 제1 면(501) 또는 제2 면(502)에 대해 경사지게 배치되고 프리즘(prism) 면으로 마련될 수 있다.
디스플레이부(500)에서 이미지 광의 진행 경로를 살펴보면, 입사면(511)에 수직하게 입사되는 이미지 광은 제1 렌즈(510) 내부를 지나 제2 면(502)에 비스듬하게 입사되고, 제2 면(502)은 입사각이랑 동일한 반사각으로 이미지 광을 전반사시킨다. 제2 면(502)에서 전반사된 이미지 광은 다시 제1 면(501)에 비스듬하게 입사되고, 제1 면(501)은 입사각이랑 동일한 반사각으로 이미지 광을 전반사시킨다. 이와 같은, 제1 면(501)과 제2 면(502)의 전반사가 반복되면서 반사면(530)을 향해 전달된다.
그리고 입사면(511)이 프리즘 면으로 마련되는 경우, 제1 면(501)과 제2 면(502)에서 전반사 되면서 전파될수록 초점라인의 폭은 좁아질 수 있다. 이 때, 초점라인은 x축 방향 초점라인과 y축 방향 초점라인을 모두 포함할 수 있다.
반사면(530)은 제1 면(501)을 마주보는 방향으로 경사지게 마련된다. 그리고 입사면(511)에서 반사면(530) 까지의 경로차에 따른 초점 거리가 달라지면서 이중 상이 발생하는 문제를 해결하기 위해 오목한 곡면 형상을 포함할 수 있다.
제1 면(501)에서 전반사되어 반사면(530)에 입사한 이미지 광은 반사면(530)에 마련되는 광학소자(540)에 반사되어 사용자의 눈을 향해 전달된다.
광학소자(540)는 핀 미러(pin mirror) 또는 핀 홀 미러(pin-hole mirror)일 수 있다. 핀 미러는 핀 홀 효과(pin-hole effect)를 이용하여 망막에 심도(DOF)가 깊은 분명한 이미지를 맺히게 할 수 있다. 또한, 핀 미러를 횡 방향 또는 종 방향으로 복수가 배치하여 시야각(FOV)을 확장시킬 수 있다. 이처럼 핀 미러의 배치 간격, 모양 또는 개수 등은 이미지의 심도와 시야각에 영향을 미칠 수 있다.
광학소자(540)는 사용자의 시야 내에 위치하기 때문에 눈에 보이지 않을 정도로 작은 크기를 가질 수 있다. 예를 들어, 반사면(530)에는 1mm 이하의 핀 미러가 열을 이루며 배치될 수 있다. 그리고 이러한 작은 사이즈의 핀 미러에 이미지 광이 입사될 수 있도록, 제1 렌즈(510)를 통해 전반사되는 과정에서 초점거리의 폭이 수렴할 수 있다.
디스플레이부(500)는 핀 미러(540)가 장착되는 반사면(530)이 비축광학계 구조로 마련됨은 앞서 도 15에서 설명한 바 있다. 이하에서는 비축광학계 구조에서 나타나는 비점수차로 의한 수직 또는 수평 방향의 이중 상 현상에 대해 살펴보기로 하낟.
도 19는 도 17에서 A 영역을 확대하여 도시하는 그림이다. 도 20의 (a)는 출사부를 a 방향으로 이동한 경우에 망막에 맺히는 상의 모습을, (b)는 출사부를 b 방향으로 이동한 경우에 망막에 맺히는 상의 모습을 나타낸다.
비축광학계에서의 비점수차로 인한 이중 상 현상은 출사면(410)과 입사면(511) 사이의 거리를 달리함에 따라 상이하게 나타날 수 있다.
도 19와 도 20을 참조하면, 출사부(400)를 기준 방향 보다 a 방향으로 후퇴시켜 출사면(410)과 입사면(511) 사이의 거리를 멀게 하면 도 20의 (a)와 같이 세로 방향으로 삼중 상이 나타나고, 출사부(400)를 기준 방향 보다 b 방향으로 전진시켜 출사면(410)과 입사면(511) 사이의 거리를 가깝게 하면 도 20의 (b)와 같이 가로 방향으로 이중 상이 나타난다. 여기서 세로 방향의 삼중 상 또는 가로 방향의 이중 상은 조건에 따라 달라질 수 있다.
본 발명의 일 실시예에 따른 전자 디바이스는 비축광학계를 사용하면서도 비점수차로 인한 이중 상 현상을 해결할 수 있다.
다시 도 16을 참조하면, 반사면(530)은 x축 방향으로 오목하면서도 y축 방향으로도 오목한 곡면으로 마련될 수 있다. 앞에서 설명한 바와 같이 반사면(530)을 x축 방향으로 오목하게 하면, 출사부(400)로부터 x축 방향으로 나란하게 배치되는 광학소자(540)로 전파되는 광 경로를 일치시킬 수 있어, 광 경로 차이로 인한 초점 불일치로 나타나는 이중 상 문제를 해결할 수 있다.
이와 동시에, 반사면(530)은 y축 방향으로도 오목한 곡면으로 형성되어 비점수차로 인한 이중 상 문제를 해결할 수 있게 된다.
이 때, Rx축 방향의 곡률과 Ry축 방향의 곡률은 서로 다르게 마련된다. 그리고 Rx축 방향의 곡률과 Ry축 방향의 곡률은 광학 조건에 따라 달라질 수 있다. 예를 들어, 출사부(400)에서 제1 렌즈(510) 까지의 거리, 제1 렌즈(510)의 입사면(511)에서 반사면(530) 까지의 거리, 입사면(510)이 프리즘면으로 마련되는 경우 굴절률의 차이, 입사면(510)과 제2 면(502)의 각도 등의 다양한 조건에 따라 달라질 수 있다.
또는 반사면(530)은 애너모픽(anamorphic) 형상 또는 왜상으로 형성될 수 있다. 애너모픽 광학계 (anamorphic optical system)는 보통 카메라의 렌즈에 사용되는 것으로, 광축에 대해 회전 비대칭인 비구면(非球面) 렌즈, 또는 그것을 일부에 포함하는 조합 렌즈를 말한다.
반사면(530)에 입사하는 이미지 광이 광축에 나란하게 입사하지 않기 때문에, 여기서 광축은 반사면(530)에 입사되는 이미지 광의 경로와 광학소자(540)에 반사되어 나가는 이미지 광의 경로의 대칭축으로 볼 수 있다(도 15의 Q1-Q2 참조). 즉, 반사면(530)의 곡면 형상은 광축에 비구면, 즉 광축에 회전 방향으로 곡률이 다르게 마련될 수 있다.
본 발명의 일 실시예에 따른 전자 디바이스는 반사면(530)의 형상을 변경하는 것 이외에도 출사부(400)를 이동시켜 출사면(410)과 입사면(511) 사이의 간격을 조정하여 비점수차에 의한 이중 상 문제를 해결할 수 있다. 도 20에서 살펴본 바와 같이, 출사면(410)과 입사면(511) 사이의 거리를 달리함에 따라 서로 다른 방향으로 이중 상 또는 삼중 상이 발생할 수 있다. 이를 이용하면, 출사부(400)를 입사면(511)에 수직한 방향으로 이동시켜 출사면(410)과 입사면(511) 사이의 최적의 거리를 찾아 비점수차로 인한 이중 상 문제를 해결할 수 있다.
예를 들어, y축 방향으로 이중 상 또는 삼중 상이 나타나는 경우 출사부(400)를 전진시켜 출사면(410)과 입사면(511) 사이의 거리를 가깝게 조절하고, x축 방향으로 이중 상 또는 삼중 상이 나타나는 경우 출사부(400)를 후퇴시켜 출사면(410)과 입사면(511) 사이의 거리를 멀게 조절할 수 있다.
도 21은 출사부(400)를 구동시키는 구성을 나타내는 블록도이다.
도 21을 참조하면, 본 발명의 일 실시예에 따른 전자 디바이스는 이중 상이 발생하는지 여부 및 어느 방향으로 이중 상이 발생하는지를 판단할 수 있는 센서부(420)와 센서부(420)의 감지 정보를 통해 출사부(400)의 이동 방향 및 이동 거리를 판단하는 구동 제어부(440)와 구동 제어부(440)의 명령에 따라 출사부(400)를 전진 및 후퇴시키는 구동부(430)를 더 포함할 수 있다.
예를 들어, 구동 제어부(440)가 센서부(420)로부터 감지된 정보를 분석하여 y축 방향으로 이중 상 또는 삼중 상이 나타나는 것으로 판단되는 경우 구동부(430)에 명령을 내려 출사부(400)를 전진시킬 수 있다. 그리고 구동 제어부(440)가 센서부(420)로부터 감지된 정보를 분석하여 x축 방향으로 이중 상 또는 삼중 상이 나타나는 것으로 판단되는 경우 구동부(430)에 명령을 내려 출사부(400)를 후퇴시킬 수 있다.
앞에서 설명된 본 발명의 어떤 실시예들 또는 다른 실시예들은 서로 배타적이거나 구별되는 것은 아니다. 앞서 설명된 본 발명의 어떤 실시예들 또는 다른 실시예들은 각각의 구성 또는 기능이 병용되거나 조합될 수 있다.
예를 들어 특정 실시예 및/또는 도면에 설명된 A 구성과 다른 실시예 및/또는 도면에 설명된 B 구성이 결합될 수 있음을 의미한다. 즉, 구성 간의 결합에 대해 직접적으로 설명하지 않은 경우라고 하더라도 결합이 불가능하다고 설명한 경우를 제외하고는 결합이 가능함을 의미한다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
[부호의 설명]
30: 가상현실 전자 디바이스, 31: 헤드유닛,
32: 디스플레이유닛, 32a: 커버부,
32b: 디스플레이부, 33: 안면패드,
40: 컨트롤러, 50: 위치추적장치,
60: 외부장치,
100: 증강현실 전자 디바이스, 110, 120: 프레임부,
130: 사용자 입력부, 140: 음향 출력부,
200: 제어부, 300: 디스플레이부,
400: 출사부, 410: 출사면,
420: 센서부, 430: 구동부,
440: 구동 제어부,
500: 디스플레이부, 501: 제1 면,
502: 제2 면, 510: 제1 렌즈,
511: 입사면, 520: 제2 렌즈,
530: 반사면, 540: 광학소자(핀 미러).
Claims (19)
- 이미지 광을 제공하는 출사부와,상기 출사부의 이미지 광을 반사하여 사용자의 눈에 전달하는 디스플레이부를 포함하고,상기 디스플레이부는,상기 출사부로부터 전달된 이미지 광을 전달하는 렌즈부와,상기 렌즈부의 내부에 마련되고, 상기 이미지 광을 반사시키는 반사면을 포함하고,상기 반사면은 제1 방향의 곡률과 상기 제1 방향에 수직한 제2 방향의 곡률이 서로 다르게 마련되는 입체 곡면으로 형성되어 비점수차(Astigmatism) 보정이 가능한 전자 디바이스.
- 제1 항에 있어서,상기 디스플레이부는 상기 반사면 상에 마련되고, 상기 출사부에서 입사되는 이미지 광을 사용자의 안구를 향해 반사시키는 광학소자를 더 포함하는 전자 디바이스.
- 제2 항에 있어서,상기 광학소자는 핀 미러를 포함하는 전자 디바이스.
- 제2 항에 있어서,상기 렌즈부는 상기 출사부에 가까운 제1 렌즈와 상기 출사부에 먼 제2 렌즈가 접합되어 마련되고,상기 반사면은 상기 제1 렌즈와 상기 제2 렌즈의 접합면에 마련되고,상기 광학소자는 상기 제1 렌즈와 상기 제2 렌즈 사이에 마련되는 전자 디바이스.
- 제1 항에 있어서,상기 제어부는 상기 렌즈부의 입사면에 인접하게 배치되거나 접촉하는 출사패널을 구비하는 전자 디바이스.
- 제1 항에 있어서,상기 출사부는 상기 렌즈부에 대해 경사진 방향으로 이미지 광을 출사하고,상기 렌즈부는 상기 출사부로부터 입사되는 이미지 광을 전반사 하여 상기 반사면으로 전달하는 전자 디바이스.
- 제6 항에 있어서,상기 이미지 광의 제1 방향 초점라인과 제2 방향 초점라인의 폭은 전반사 되면서 좁아지는 전자 디바이스.
- 제6 항에 있어서,상기 렌즈부의 입사면은 상기 출사부의 출사면에 평행하게 경사진 방향으로 형성되는 전자 디바이스.
- 제1 항에 있어서,상기 반사면의 입체 곡면은 상기 이미지 광이 입사되는 방향에 대해 오목하게 마련되는 전자 디바이스.
- 제9 항에 있어서,상기 반사면의 입체 곡면은 아나모르픽(anamorphic) 형상으로 마련되는 전자 디바이스.
- 제1 항 내지 제9 항 중 어느 한 항에 있어서,상기 광학소자는 상기 반사면 상에 상기 제1 방향으로 복수의 상기 광학소자가 서로 이격되어 제1 방향 어레이를 형성하는 전자 디바이스.
- 제11 항에 있어서,상기 광학소자는 상기 반사면 상에 상기 제2 방향으로 복수의 상기 광학소자가 서로 이격되어 제2 방향 어레이를 형성하는 전자 디바이스.
- 제1 항 내지 제9 항 중 어느 한 항에 있어서,상기 출사부는 마이크로 OLED인 전자 디바이스.
- 제1 항 내지 제9 항 중 어느 한 항에 있어서,상기 출사부는 상기 렌즈부에 대해 이동 가능하게 마련되어 상기 출사부의 출사면과 상기 렌즈부의 입사면 사이의 거리를 조절할 수 있는 전자 디바이스.
- 제14 항에 있어서,상기 출사면과 상기 입사면 사이의 거리를 조절하여 비점수차 보정이 가능한 전자 디바이스.
- 제15 항에 있어서,상기 출사부를 전진 또는 후퇴시키는 구동 제어부를 더 포함하고,상기 구동 제어부는,y축 방향으로 이중 상이 발생하는 경우 상기 출사부를 상기 렌즈부에 대해 가깝게 이동시키고,x축 방향으로 이중 상이 발생하는 경우 상기 출사부를 상기 렌즈부에 대해 멀게 이동시키는 전자 디바이스.
- 제1 항에 있어서,상기 디스플레이부와 결합하고 사용자의 두부에 지지되는 프레임과,가상 이미지를 생성하여 상기 출사부에 전달하는 제어부를 더 포함하고,상기 렌즈부는 사용자의 좌안과 우안 중 어느 하나 이상에 대응하는 위치에 마련되고,상기 출사부는 상기 프레임에 위치하고, 상기 제어부에서 전달되는 이미지 신호를 이미지 광으로 변조시켜 상기 디스플레이부에 전달하는 전자 디바이스.
- 이미지 광을 제공하는 출사부와,상기 출사부의 이미지 광을 반사하여 사용자의 눈에 전달하는 디스플레이부를 포함하고,상기 디스플레이부는,상기 출사부로부터 전달된 이미지 광을 전달하는 렌즈부와,상기 렌즈부의 내부에 마련되고, 상기 이미지 광을 반사시키는 반사면을 포함하고,상기 반사면은 입사광과 반사광의 대칭축에 회전 방향으로 비구면으로 형성되어 비점수차(Astigmatism) 보정이 가능한 전자 디바이스.
- 제18 항에 있어서,상기 출사부는 상기 렌즈부에 대해 이동 가능하게 마련되어 상기 출사부의 출사면과 상기 렌즈부의 입사면 사이의 거리를 조절할 수 있는 전자 디바이스.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962844748P | 2019-05-08 | 2019-05-08 | |
US62/844,748 | 2019-05-08 | ||
KR10-2019-0105583 | 2019-08-28 | ||
KR1020190105583A KR20190106879A (ko) | 2019-05-08 | 2019-08-28 | 전자 디바이스 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020226235A1 true WO2020226235A1 (ko) | 2020-11-12 |
Family
ID=68070968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/011496 WO2020226235A1 (ko) | 2019-05-08 | 2019-09-05 | 전자 디바이스 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11493757B2 (ko) |
KR (1) | KR20190106879A (ko) |
WO (1) | WO2020226235A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4033288A4 (en) * | 2019-09-18 | 2023-11-15 | Letinar Co., Ltd | AUGMENTED REALITY OPTICAL DEVICE HAVING IMPROVED OPTICAL EFFICIENCY |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102706133B1 (ko) * | 2019-02-28 | 2024-09-12 | 삼성디스플레이 주식회사 | 증강 현실 제공 장치 |
GB201906420D0 (en) * | 2019-05-07 | 2019-06-19 | Farley Adam | Virtual augmented and mixed reality systems with physical feedback |
US11467405B2 (en) * | 2019-08-30 | 2022-10-11 | Lg Electronics Inc. | Wearable electronic device on head |
US11221479B2 (en) * | 2019-09-24 | 2022-01-11 | Facebook Technologies, Llc | Varifocal optical assembly providing astigmatism compensation |
KR102226639B1 (ko) * | 2019-10-02 | 2021-03-11 | 주식회사 피앤씨솔루션 | 복수의 핀 미러가 배치된 광학 장치 및 이를 이용한 머리 착용형 디스플레이 장치 |
KR102436597B1 (ko) * | 2020-09-09 | 2022-08-26 | 주식회사 레티널 | 직선 배치 광학 구조를 갖는 증강 현실용 광학 장치 및 광학 수단의 제조 방법 |
TWI751705B (zh) | 2020-09-16 | 2022-01-01 | 宏碁股份有限公司 | 擴增實境眼鏡 |
KR102425375B1 (ko) * | 2020-10-15 | 2022-07-27 | 주식회사 레티널 | 직선 배치 광학 구조를 갖는 컴팩트형 증강 현실용 광학 장치 및 광학 수단의 제조 방법 |
KR102470650B1 (ko) * | 2021-03-04 | 2022-11-25 | 주식회사 레티널 | 곡선 배치 반사 구조를 갖는 컴팩트형 증강 현실용 광학 장치 |
CN116783540A (zh) * | 2021-09-30 | 2023-09-19 | 株式会社Lg化学 | 波导显示装置 |
WO2024122670A1 (ko) * | 2022-12-07 | 2024-06-13 | 엘지전자 주식회사 | 전자 디바이스 |
KR20240124651A (ko) * | 2023-02-09 | 2024-08-19 | 주식회사 레티널 | 확장된 시야각 및 아이박스를 갖는 증강 현실용 광학 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304386B1 (en) * | 1997-06-20 | 2001-10-16 | Sextant Avionique | Display device for helmet-mounted display |
JP2009122582A (ja) * | 2007-11-19 | 2009-06-04 | Fujinon Corp | 投影光学系及びヘッドアップディスプレイ装置 |
JP2012208193A (ja) * | 2011-03-29 | 2012-10-25 | Olympus Corp | 偏心光学系、偏心光学系を用いた画像表示装置及び撮像装置 |
JP2014081481A (ja) * | 2012-10-16 | 2014-05-08 | Olympus Corp | 観察光学系、及びそれを用いた観察装置 |
KR20150026486A (ko) * | 2013-09-03 | 2015-03-11 | 주식회사 에픽옵틱스 | 헤드 마운트 디스플레이용 프리즘과 이를 구비한 헤드 마운트 디스플레이 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9013793B2 (en) * | 2011-09-21 | 2015-04-21 | Google Inc. | Lightweight eyepiece for head mounted display |
US9632312B1 (en) * | 2013-04-30 | 2017-04-25 | Google Inc. | Optical combiner with curved diffractive optical element |
US9341850B1 (en) * | 2013-04-30 | 2016-05-17 | Google Inc. | Diffractive see-through display with hybrid-optical aberration compensation |
US9442291B1 (en) * | 2013-06-28 | 2016-09-13 | Google Inc. | Segmented diffractive optical elements for a head wearable display |
US9459455B2 (en) * | 2013-12-19 | 2016-10-04 | Google Inc. | See-through eyepiece for head wearable display |
US9733475B1 (en) * | 2014-09-08 | 2017-08-15 | Rockwell Collins, Inc. | Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD) |
US9507151B2 (en) * | 2014-10-10 | 2016-11-29 | The Boeing Company | Optical design of a wide field of view pupil forming HUD |
CN107111144A (zh) * | 2014-11-11 | 2017-08-29 | 夏普株式会社 | 导光板及虚像显示装置 |
EP3104215A1 (en) * | 2015-06-09 | 2016-12-14 | Nokia Technologies Oy | Apparatus and method for near eye display |
US10215987B2 (en) * | 2016-11-10 | 2019-02-26 | North Inc. | Systems, devices, and methods for astigmatism compensation in a wearable heads-up display |
US10989921B2 (en) * | 2017-12-29 | 2021-04-27 | Letinar Co., Ltd. | Augmented reality optics system with pinpoint mirror |
US10989922B2 (en) * | 2017-12-29 | 2021-04-27 | Letinar Co., Ltd. | Augmented reality optics system with pin mirror |
-
2019
- 2019-08-28 KR KR1020190105583A patent/KR20190106879A/ko unknown
- 2019-09-05 WO PCT/KR2019/011496 patent/WO2020226235A1/ko active Application Filing
- 2019-11-22 US US16/692,951 patent/US11493757B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304386B1 (en) * | 1997-06-20 | 2001-10-16 | Sextant Avionique | Display device for helmet-mounted display |
JP2009122582A (ja) * | 2007-11-19 | 2009-06-04 | Fujinon Corp | 投影光学系及びヘッドアップディスプレイ装置 |
JP2012208193A (ja) * | 2011-03-29 | 2012-10-25 | Olympus Corp | 偏心光学系、偏心光学系を用いた画像表示装置及び撮像装置 |
JP2014081481A (ja) * | 2012-10-16 | 2014-05-08 | Olympus Corp | 観察光学系、及びそれを用いた観察装置 |
KR20150026486A (ko) * | 2013-09-03 | 2015-03-11 | 주식회사 에픽옵틱스 | 헤드 마운트 디스플레이용 프리즘과 이를 구비한 헤드 마운트 디스플레이 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4033288A4 (en) * | 2019-09-18 | 2023-11-15 | Letinar Co., Ltd | AUGMENTED REALITY OPTICAL DEVICE HAVING IMPROVED OPTICAL EFFICIENCY |
Also Published As
Publication number | Publication date |
---|---|
KR20190106879A (ko) | 2019-09-18 |
US11493757B2 (en) | 2022-11-08 |
US20200096763A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020226235A1 (ko) | 전자 디바이스 | |
WO2021040106A1 (ko) | Ar 장치 및 그 제어 방법 | |
WO2021040119A1 (ko) | 전자 디바이스 | |
WO2020189866A1 (ko) | 머리에 착용할 수 있는 전자 디바이스 | |
WO2020138640A1 (ko) | 전자 디바이스 | |
WO2019231306A2 (ko) | 전자 디바이스 | |
WO2019231307A2 (ko) | 전자 디바이스 | |
WO2021040076A1 (ko) | 전자 디바이스 | |
WO2021040117A1 (en) | Electronic device | |
WO2021040116A1 (en) | Electronic device | |
WO2021040083A1 (ko) | 머리에 착용할 수 있는 전자 디바이스 | |
WO2021040107A1 (ko) | Ar 장치 및 그 제어 방법 | |
WO2021049694A1 (ko) | 전자 디바이스 | |
WO2021049693A1 (ko) | 전자 디바이스 | |
KR20190106886A (ko) | 전자 디바이스 | |
WO2020138636A1 (ko) | 전자 기기 | |
WO2021029479A1 (ko) | 전자 디바이스 | |
WO2022102954A1 (ko) | 디스플레이를 포함하는 웨어러블 전자 장치 | |
WO2021040084A1 (ko) | 머리에 착용할 수 있는 전자 디바이스 | |
WO2021040097A1 (ko) | 머리에 착용할 수 있는 전자 디바이스 | |
KR20190106856A (ko) | 전자 디바이스 | |
KR20190106947A (ko) | 전자 디바이스 | |
WO2021040081A1 (ko) | 전자 디바이스 | |
WO2021040082A1 (ko) | 전자 디바이스 | |
WO2021033784A1 (ko) | 표시 모듈을 포함하는 전자 디바이스 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19928260 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928260 Country of ref document: EP Kind code of ref document: A1 |