WO2023146157A1 - 편광 광학 소자를 이용한 증강 현실용 광학 장치 - Google Patents

편광 광학 소자를 이용한 증강 현실용 광학 장치 Download PDF

Info

Publication number
WO2023146157A1
WO2023146157A1 PCT/KR2023/000355 KR2023000355W WO2023146157A1 WO 2023146157 A1 WO2023146157 A1 WO 2023146157A1 KR 2023000355 W KR2023000355 W KR 2023000355W WO 2023146157 A1 WO2023146157 A1 WO 2023146157A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
image light
image
polarization
light
Prior art date
Application number
PCT/KR2023/000355
Other languages
English (en)
French (fr)
Inventor
하정훈
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Publication of WO2023146157A1 publication Critical patent/WO2023146157A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality capable of increasing light efficiency for real object image light while maintaining light efficiency for virtual video image light by using a polarization optical element.
  • AR augmented reality
  • An apparatus for realizing such augmented reality requires an optical combiner that enables simultaneous observation of virtual images and real images in the real world.
  • an optical synthesizer a half mirror method and a holographic/diffractive optical element (HOE/DOE) method are known.
  • the semi-mirror method has a problem in that the transmittance of the virtual image is low and it is difficult to provide a comfortable fit because the volume and weight are increased to provide a wide viewing angle.
  • a technology such as a so-called LOE (Light guide Optical Element) in which a plurality of small half mirrors are placed inside a waveguide has also been proposed, but this technology also has a half mirror of a virtual image inside the waveguide. Since it has to pass through several times, the manufacturing process is complicated, and there is a limit in that light uniformity may be easily lowered due to errors in manufacturing.
  • LOE Light guide Optical Element
  • the holographic/diffractive optical element method generally uses a nanostructured grating or a diffraction grating, and since they are manufactured in a very precise process, they have limitations in that the manufacturing cost is high and the yield for mass production is low.
  • Holographic/diffractive optical elements are often used together with waveguides such as the LOEs described above, and therefore have problems with LOEs as well.
  • FIG. 1 is a diagram showing an optical device 100 for augmented reality as described in Prior Art Document 1.
  • the optical device 100 for augmented reality of FIG. 1 includes an optical unit 10 , a reflection unit 20 and an image output unit 30 .
  • the optical means 10 functions to transmit real object image light, which is image light emitted from objects in the real world, through the pupil 40 and emit virtual image image light reflected by the reflector 20 into the pupil 40. It is a means of carrying out Inside the optical means 10, the reflector 20 is buried and disposed.
  • the optical means 10 may be formed of a material such as glass or transparent plastic, such as a spectacle lens, and may be fixed by a frame (not shown) such as a spectacle frame.
  • the image emitting unit 30 is means for emitting virtual video image light, and includes a display unit for displaying a virtual image on a screen and emitting virtual video image light corresponding to the displayed virtual image, and image light emitted from the display unit in parallel.
  • a collimator for collimating and emitting light may be provided.
  • the reflector 20 is a means for reflecting the virtual video image light emitted from the image emitter 30 and transmitting it toward the pupil 40 of the user.
  • the reflector 20 of FIG. 1 is formed to have a smaller size than a human pupil. Since it is known that the size of a typical human pupil is about 4 to 8 mm, the reflector 20 is preferably formed to a size of 8 mm or less, more preferably 4 mm or less. As a result, the depth of field for light incident to the pupil 40 through the reflector 20 can be made close to infinity.
  • the depth of field refers to a range recognized as being in focus.
  • the range of the focal length of the virtual image correspondingly widens. Therefore, even if the user changes the focal length of the real world while gazing at the real world, the focus of the virtual image is always recognized as correct regardless of this. This can be regarded as a kind of pinhole effect.
  • the reflector 20 by forming the reflector 20 to have a smaller size than the pupil 40, the user can always observe a clear virtual image even if the user changes the focal length of the real object.
  • the present applicant has developed an optical device 200 for augmented reality capable of widening a field of view (FOV) and an eyebox as shown in FIG. 2 based on the above-mentioned Prior Art Document 1.
  • FIG. 2 is a diagram showing an optical device 200 for augmented reality based on the technology disclosed in Prior Art Document 2.
  • the optical device 200 for augmented reality of FIG. 2 has the same basic principle as the optical device 100 for augmented reality of FIG. ⁇ 29) and arranged inside the optical means 10 in an array form, and the virtual video image light emitted from the image output unit 30 is totally reflected from the inner surface of the optical means 10 to the reflector 20. The difference is in how it is transmitted.
  • the image emitting unit 30 in FIG. 2 includes a display unit 31 and a collimator 32 for collimating image light emitted from the display unit 31 into parallel light.
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected on the inner surface of the optical means 10 and then transmitted to a plurality of reflection modules 21 to 29.
  • the plurality of reflection modules 21 to 29 reflect incident virtual video image light and transmit it to the pupil 40 .
  • optical device 200 for augmented reality having such a configuration, it is possible to provide a compact optical device for augmented reality capable of reducing the form factor while widening the eye box and viewing angle.
  • the optical devices 100 and 200 for augmented reality as described above use the reflector 20, which is a reflector for reflecting incident light, real object image light incident to the reflector 20 is also reflected by the reflector 20. ), there is a problem that it is difficult to be transmitted to the pupil 40. Accordingly, the light efficiency for real object image light may be lowered.
  • An object of the present invention is to provide an optical device for augmented reality capable of increasing light efficiency for real object image light while maintaining light efficiency for virtual video image light.
  • the present invention is an optical device for augmented reality using a polarization optical element, comprising: an image emitting unit for emitting virtual image image light corresponding to a virtual image; a polarization optical element that transmits the virtual image image light emitted from the image output unit to the pupil of the user's eye;
  • the polarization optical element is disposed and includes an optical means for transmitting real object image light emitted from a real object to a pupil of a user's eye, and the image emitter emits polarized virtual image image light in a first direction.
  • the polarization optical element reflects the virtual image image light polarized in a first direction emitted from the image output unit and transmits it to the pupil of the user's eye, and among the real object image light incident to the polarization optical element, the first polarized image light is reflected.
  • an optical device for augmented reality that transmits polarized light in a second direction perpendicular to a first direction to a pupil of a user's eye.
  • the polarization optical element may be a reflective polarizer.
  • the image output unit may include a display unit implemented with liquid crystal on silicon (LCoS).
  • LCD liquid crystal on silicon
  • a polarization filter absorbing polarized light in the first direction may be disposed on a surface of the polarization optical element on which real object image light is incident.
  • the polarization optical element may be composed of a plurality arranged in an array form.
  • an optical device for augmented reality using a polarization optical element comprising: an image emitting unit for emitting virtual image image light, which is image light corresponding to a virtual image; an auxiliary optical element that reflects the virtual video image light emitted from the image emitter, converts it into collimated parallel light, and outputs the reflected light; a polarization optical element that transmits the virtual video image light emitted from the auxiliary optical element to the pupil of the user's eye;
  • the auxiliary optical element and the polarization optical element are disposed, and an optical means for transmitting real object image light emitted from a real object to a pupil of a user's eye, wherein the image emitter polarizes a virtual image in a first direction.
  • the polarization optical element reflects the virtual image image light polarized in a first direction emitted from the auxiliary optical element and transmits it to the pupil of the user's eye, and the real object image incident to the polarization optical element.
  • an optical device for augmented reality characterized in that transmitting polarized light in a second direction perpendicular to the first direction among light to the pupil of the user's eye.
  • the polarization optical element may be a reflective polarizer.
  • the image output unit may include a display unit implemented with liquid crystal on silicon (LCoS).
  • LCD liquid crystal on silicon
  • a polarization filter absorbing polarized light in the first direction may be disposed on a surface of the polarization optical element on which real object image light is incident.
  • the polarization optical element may be composed of a plurality arranged in an array form.
  • the auxiliary optical element reflects the virtual image image light polarized in a first direction emitted from the image emitter and transmits the reflected virtual image light to the polarization optical element, and among the real object image light incident on the auxiliary optical element, the first direction It may be an optical element that transmits polarized light in a second direction perpendicular to .
  • the optical means has a first surface through which polarized virtual image light and real object image light are emitted toward the user's pupil, and a second surface opposite to the first surface and into which real object image light is incident;
  • a reflective surface of the auxiliary optical element that reflects incident polarized virtual video image light may be disposed to face the first surface or the second surface of the optical means.
  • the reflective surface of the auxiliary optical element may be a concave curved surface.
  • auxiliary optical element may be formed to extend closer to the image output unit toward both left and right ends from the central portion when the optical means is viewed from the pupil toward the front direction.
  • an optical device for augmented reality capable of increasing light efficiency for real object image light while maintaining light efficiency for virtual video image light.
  • FIG. 1 is a diagram showing an optical device 100 for augmented reality as described in Prior Art Document 1.
  • FIG. 2 is a diagram showing an optical device 200 for augmented reality based on the technology disclosed in Prior Art Document 2.
  • FIG 3 is a side view of an optical device 300 for augmented reality using a polarization optical element according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the operation of the polarization optical element 50 .
  • FIG. 5 is a view for explaining polarized light reflected by the polarization optical element 50 among real object image light.
  • FIG. 6 shows an example in which a polarization filter 60 is additionally disposed in the polarization optical element 50 .
  • FIG. 7 to 9 are views for explaining an optical device 400 according to another embodiment of the present invention, wherein FIG. 7 is a side view, FIG. 8 is a perspective view, and FIG. 9 is a front view.
  • FIG. 10 to 12 are views for explaining an optical device 500 according to another embodiment of the present invention, wherein FIG. 10 is a side view, FIG. 11 is a perspective view, and FIG. 12 is a front view.
  • FIG 3 is a side view of an optical device 300 for augmented reality using a polarization optical element according to an embodiment of the present invention.
  • optical device 300 for augmented reality using the polarization optical element of FIG. 3 (hereinafter simply referred to as "optical device 300") includes an optical means 10, a polarization optical element 50, and an image output unit 30.
  • the optical unit 10 is a unit that transmits real object image light emitted from a real object existing in the real world to the pupil 40 of the user's eye.
  • the optical means 10 performs a function of emitting virtual video image light transmitted from the polarization optical element 50 to the pupil 40 .
  • the optical means 10 has a first surface 11 through which the virtual video image light and real object image light are emitted toward the user's pupil 40, and the first surface 11 is opposed to the real object image light incident thereto. It has a second surface 12 that does.
  • the polarization optical element 50 is spaced apart from the first surface 11 and the second surface 12 and disposed buried.
  • the image emitting unit 30 is means for emitting virtual image light, which is image light corresponding to a virtual image.
  • the virtual image means an image for augmented reality, and may be an image or a video.
  • the image output unit 30 itself is not a direct object of the present invention and is known in the prior art, a detailed description thereof will be omitted.
  • the image emitter 30 in the present invention is characterized in that it emits polarized virtual video image light in a specific direction.
  • virtual video image light polarized in a specific direction means virtual video image light that vibrates only in a specific direction among virtual video image lights.
  • the polarization direction of the polarized virtual video image light emitted from the image emitting unit 30 will be referred to as a first direction.
  • the image emitting unit 30 includes a display unit implemented with conventionally known micro display devices such as small LCD, OLED, LCoS, and micro LED, and a collimator that collimates the virtual image image light emitted from the display unit and emits it as parallel light.
  • a display unit implemented with conventionally known micro display devices such as small LCD, OLED, LCoS, and micro LED, and a collimator that collimates the virtual image image light emitted from the display unit and emits it as parallel light.
  • the image emitter 30 includes a display unit for emitting virtual image image light polarized in a specific direction, such as LCoS (Liquid Crystal on Silicon), so as to emit virtual image image light polarized in the first direction.
  • a display unit for emitting virtual image image light polarized in a specific direction, such as LCoS (Liquid Crystal on Silicon), so as to emit virtual image image light polarized in the first direction.
  • LCoS Liquid Crystal on Silicon
  • a polarization filter may be additionally disposed to configure the display unit.
  • the polarized virtual video image light emitted from the image emitting unit 30 is shown to be directly transferred to the polarization optical element 50, but this is exemplary, and at least 1 light from the inner surface of the optical means 10 It may be transferred to the polarization optical element 50 through total reflection of more than twice.
  • the image output unit 30 is shown as being disposed on the upper surface of the optical means 10, but this is exemplary and may be disposed in other positions, of course.
  • the polarization optical element 50 is a means for transmitting the virtual video image light emitted from the image output unit 30 to the pupil 40 of the user's eye.
  • the polarization optical element 50 in the present invention is directed in a specific direction. It is characterized in that polarized light is reflected and light polarized in a direction perpendicular to the specific direction is transmitted.
  • the polarization optical element 50 reflects the virtual image image light polarized in the first direction emitted from the image output unit 30 and transmits it to the pupil 40 of the user's eye, and passes it to the polarization optical element 50. It is characterized in that polarized light of a second direction perpendicular to the first direction is transmitted to the pupil 40 of the user's eye among incident real object image light.
  • the polarization of the second direction means light polarized in a direction perpendicular to the first direction.
  • the polarization in the first direction is s-polarized light
  • the polarized light in the second direction is p-polarized light
  • the polarization optical element 50 reflects the s-polarized light
  • the p-polarized light is transmitted.
  • a reflective polarizing plate that reflects polarized light in a specific direction and transmits polarized light in a direction perpendicular to the specific direction can be used.
  • a reflective polarizing plate elements such as a polarizing beam splitter (PBS), a multilayer reflective polarizing plate, and a wire grid polarizing plate may be used. These devices reflect polarized light in a specific direction by utilizing interference in a multilayer film, the principle of Brewster angle, the principle of birefringence, or the interaction of light with a metal nanowire structure, etc. direction of polarized light can be transmitted.
  • PBS polarizing beam splitter
  • a multilayer reflective polarizing plate a multilayer reflective polarizing plate
  • wire grid polarizing plate wire grid polarizing plate
  • FIG. 4 is a diagram for explaining the operation of the polarization optical element 50, and only the image output unit 30 and the polarization optical element 50 are shown for convenience of description.
  • the image emitter 30 emits virtual image light VL1 polarized in a first direction.
  • the virtual video image light VL1 polarized in the first direction is s-polarized.
  • the polarization optical element 50 reflects the virtual video image light VL1 polarized in the first direction and emits it to the pupil 40 . Therefore, assuming that the virtual video image light VL2 emitted from the polarization optical element 50 is also s-polarized, and the reflectance of the polarization optical element 50 for the s-polarization is 100%, the light amounts of VL1 and VL2 are In principle, they are the same.
  • the polarization optical element 50 converts real object image light polarized in a second direction perpendicular to the first direction from among unpolarized real object image light EL1 incident to the polarization optical element 50 . It transmits to the pupil 40 through transmission.
  • the real object image light EL2 transmitted through the polarization optical element 50 and emitted is p-polarized light, which corresponds to approximately 50% of the light amount of the non-polarized real object image light EL1. .
  • the polarization optical element 50 reflects only s-polarized light, the light efficiency of the virtual video image light can be maintained by allowing the image output unit 30 to emit s-polarized virtual video image light.
  • the polarization optical element 50 transmits p-polarized light, it can transmit p-polarized light among real object image light to the pupil 40 . Therefore, compared to the optical devices 100 and 200 for augmented reality of FIGS. 1 and 2 , there is an advantage in that light efficiency for real object image light can be increased.
  • the polarization optical element 50 since the polarization optical element 50 reflects s-polarized light and transmits p-polarized light, the polarization optical element 50 can reflect s-polarized light among real object image light.
  • FIG. 5 is a view for explaining polarized light reflected by the polarization optical element 50 among real object image light.
  • polarization EL3 in the first direction that is, s-polarization may be reflected by the polarization optical element 50, which may act as a factor in generating a ghost image.
  • a method of disposing a polarization filter blocking polarization in the first direction may be considered in the polarization optical element 50 .
  • FIG. 6 shows an example in which a polarization filter 60 is additionally disposed in the polarization optical element 50 .
  • a polarization filter 60 may be disposed on a surface of the polarization optical element 50 on which real object image light is incident.
  • the polarization filter 60 performs a function of absorbing polarized light in a polarization direction reflected by the polarization optical element 50, that is, in a first direction. In addition, the polarization filter 60 transmits polarized light in a direction perpendicular to the first direction.
  • the polarization optical element 50 is preferably formed to a size smaller than the general pupil size of a person, that is, 8 mm or less, so as to obtain a pinhole effect by deepening the depth of field, More preferably, it is formed to 4 mm or less.
  • the depth of field for light incident to the pupil 40 by the polarization optical element 50 can be made close to infinity, that is, the depth of field can be made very deep, so that the user gazes at the real world. Even if the focal length of the real world is changed, a pinhole effect may be generated, which causes the virtual image to be always perceived as being in focus regardless of this change.
  • the size of the polarization optical element 50 is defined as a maximum length between two arbitrary points on the edge boundary of the polarization optical element 50 .
  • the size of the polarization optical element 50 is greater than at least 0.3 mm.
  • the shape of the polarization optical element 50 may be circular.
  • the polarization optical element 50 may be formed in an elliptical shape so that the polarization optical element 50 looks circular when viewed from the pupil 40 .
  • FIG. 7 to 9 are views for explaining an optical device 400 according to another embodiment of the present invention, wherein FIG. 7 is a side view, FIG. 8 is a perspective view, and FIG. 9 is a front view.
  • the optical device 400 of FIGS. 7 to 9 has the same basic principle as the optical device 300 of FIG. 3 , but a plurality of polarization optical elements 50 are disposed inside the optical means 10 in an array form. There is a difference.
  • the virtual video image light polarized in the first direction emitted from the image emitting unit 30 is emitted toward the second surface 12 of the optical means 10, and the optical means ( After being totally reflected on the second surface 12 of 10), it is transmitted to the plurality of polarization optical elements 50.
  • the plurality of polarization optical elements 50 reflect the virtual image image light polarized in the first direction and transmit it to the pupil 40, while the first of the real object image light entering the polarization optical element 50 is reflected.
  • the polarized light polarized in a second direction perpendicular to the first direction is transmitted to the pupil 40 .
  • the plurality of polarization optical elements 50 may transmit the polarized virtual image light incident along the optical path to the pupil 40 so that the first surface 11 and the second surface of the optical means 10 ( 12) is arranged with an appropriate inclination angle.
  • each of the plurality of polarization optical elements 50 is disposed so as not to block transmission of virtual video image light transmitted from the image output unit 30 to other polarization optical elements 50 .
  • the plurality of polarization optical elements 50 may be arranged in a line along a vertical line when viewing the optical device 400 from the side in the form shown in FIG. 7 .
  • optical device 400 when viewed from the side, it may be disposed along an inclined oblique line or a gentle curve.
  • FIG. 10 to 12 are views for explaining an optical device 500 according to another embodiment of the present invention, wherein FIG. 10 is a side view, FIG. 11 is a perspective view, and FIG. 12 is a front view.
  • the optical device 500 of FIGS. 10 to 12 has the same basic principle as the optical device 400 of FIGS. 7 to 9 , but an auxiliary optical element 80 functioning as a collimator is inside the optical means 10. There is a difference in that it is placed in a landfill. Accordingly, since the image output unit 30 of the optical device 500 does not have to include a collimator, the form factor of the optical device 500 can be reduced.
  • the auxiliary optical element 80 performs a function of reflecting the virtual video image light emitted from the image emitter 30, converting it into collimated parallel light, and radiating the light. Therefore, the virtual video image light emitted from the auxiliary optical element 80 is collimated parallel light or image light for which the focal length is intended.
  • the virtual video image light reflected from the auxiliary optical element 80 and emitted is transmitted to the polarization optical element 50 .
  • the auxiliary optical element 80 may be embodied as a reflector that emits collimated parallel light while reflecting incident virtual video image light.
  • the auxiliary optical element 80 may be formed of a material having a high reflectance of 100% or close to 100%, such as a metal material.
  • auxiliary optical element 80 may also be implemented as an optical element having properties of the polarization optical element 50 as described above.
  • the auxiliary optical element 80 reflects the virtual video image light polarized in the first direction emitted from the image emitting unit 30 and transmits it to the polarization optical element 50 while passing it to the auxiliary optical element 80. It can be implemented as an optical element that transmits polarized light in a second direction perpendicular to the first direction among incident real object image light.
  • the auxiliary optical element 80 is disposed and buried inside the optical means 10 so as to face the image output unit 30 .
  • the image emitting unit 30 emits polarized virtual video image light in a first direction toward the second surface 12 of the optical means 10, and the second surface of the optical means 10
  • the polarized virtual video image light totally reflected by the surface 12 is transmitted to the auxiliary optical element 80.
  • the polarized virtual video image light converted into collimated collimated light by the auxiliary optical element 80 and emitted is transmitted to the polarization optical element 50 after being totally reflected again by the second surface 12 of the optical means 10 .
  • the polarization optical element 50 reflects incident polarized virtual video image light and transmits it to the pupil 40 as described in the above-described embodiment.
  • the auxiliary optical element 80 includes the image emitting unit 30, the polarization optical element 50 and the pupil so as to transfer the polarized virtual video image light to the polarization optical element 50 through the optical path as described above. Considering the relative position of 40, it is disposed at an appropriate position inside the optical means 10 between the first face 11 and the second face 12 of the optical means 10.
  • the auxiliary optical element 80 directs the reflective surface 81 for reflecting the polarized virtual video image light toward the second surface 12 of the optical means 10. It is buried and placed inside (10).
  • a straight line in a vertical direction from the center of the reflection surface 81 and the second surface 12 of the optical means 10 may be inclined so as not to be parallel to each other.
  • the reflective surface 81 of the auxiliary optical element 80 may be disposed buried inside the optical means 10 so as to face the first surface 11 of the optical means 10.
  • the reflective surface 81 of the auxiliary optical element 80 may be disposed buried inside the optical means 10 so as to face the first surface 11 of the optical means 10.
  • the reflective surface 81 of the auxiliary optical element 80 may be formed as a curved surface.
  • the reflective surface 81 of the auxiliary optical element 80 may be concave in the direction of the second surface 12 of the optical means 10 as shown in FIGS. 10 to 12 .
  • the auxiliary optical element 80 is built into the optical means 10 and can serve as a built-in collimator for collimating the polarized virtual video image light emitted from the image output unit 30, and thus image output. There is no need to use a collimator-like arrangement for section 30.
  • the thickness of the auxiliary optical element 80 is thin when the user looks at the front through the pupil 40 so that the user cannot recognize it as much as possible.
  • the auxiliary optical element 80 may be formed of a means such as a half mirror that partially reflects light.
  • auxiliary optical element 80 may be formed of a refractive element or a diffractive element other than a reflective element, or a combination of at least one of them.
  • auxiliary optical element 80 may be formed of an optical element such as a notch filter that selectively transmits light according to wavelengths.
  • a surface opposite to the reflective surface 81 of the auxiliary optical element 80 may be coated with a material that absorbs light without reflecting it.
  • the image output unit moves from the center toward both left and right ends. It may be formed to extend closer to (30).
  • the auxiliary optical element 80 when viewed from the front, may be formed in a generally gentle "U" bar shape. In this way, the function of the auxiliary optical element 80 as a collimator can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은, 가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공으로 전달하는 편광 광학 소자; 상기 편광 광학 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 광학 수단을 포함하고, 상기 화상 출사부는 제1 방향으로 편광된 가상 영상 화상광을 출사하고, 상기 편광 광학 소자는, 상기 화상 출사부로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공으로 전달하고, 편광 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 증강 현실용 광학 장치를 제공한다.

Description

편광 광학 소자를 이용한 증강 현실용 광학 장치
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 편광 광학 소자를 이용함으로써 가상 영상 화상광에 대한 광효율을 유지하면서 실제 사물 화상광에 대한 광효율을 높일 수 있는 증강 현실용 광학 장치에 관한 것이다.
증강 현실(AR, Augmented Reality)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 제공되는 가상 영상을 겹쳐서 제공함으로써, 현실 세계의 시각 정보에서 확장된(augmented) 가상 영상 정보를 사용자에게 동시에 제공하는 기술을 의미한다.
이러한 증강 현실을 구현하기 위한 장치는, 가상 영상을 현실 세계의 실제 영상과 동시에 관찰할 수 있도록 하는 광학 합성기(optical combiner)를 필요로 한다. 이러한 광학 합성기로서는, 반거울(half mirror) 방식과 홀로그래픽/회절 광학 소자(Holographic/Diffractive Optical Elements: HOE/DOE) 방식이 알려져 있다.
반거울 방식은, 가상 영상의 투과율이 낮다는 문제점과 넓은 시야각을 제공하기 위해 부피 및 무게가 증가하므로 편안한 착용감을 제공하기 어렵다는 문제점이 있다. 부피와 무게를 줄이기 위하여 복수개의 소형 반거울을 도파로(waveguide) 내부에 배치하는 이른바 LOE(Light guide Optical Element) 등과 같은 기술도 제안되고 있으나, 이러한 기술 또한 도파로 내부에서 가상 영상의 화상광이 반거울을 여러번 통과해야 하기 때문에 제조 공정이 복잡하고 제조상의 오차로 인해 광균일도가 쉽게 낮아질 수도 있는 한계가 있다.
또한, 홀로그래픽/회절 광학 소자 방식은, 일반적으로 나노 구조 격자나 회절 격자를 사용하는데, 이들은 매우 정밀한 공정으로 제작되기 때문에 제작 단가가 높고 양산을 위한 수율이 낮다는 한계점을 갖는다.
또한 파장 대역 및 입사 각도에 따른 회절 효율의 차이로 인하여 색상 균일도 측면 및 영상의 선명도가 낮다는 한계점을 갖는다. 홀로그래픽/회절 광학 소자는, 전술한 LOE와 같은 도파로(waveguide)와 함께 사용되는 경우가 많은데, 따라서 LOE에서의 문제점도 마찬가지로 가지고 있다.
또한, 종래의 광학 합성기들은, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있다. 이를 해결하기 위하여 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘을 이용하거나 전기적으로 초점 거리를 제어할 수 있는 가변형 초점 렌즈를 이용하는 기술이 제안된 바 있다. 그러나, 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 초점 거리 제어를 위한 별도의 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
이와 같은 종래 기술의 문제점을 해결하기 위하여, 본 출원인은 사람의 동공보다 작은 크기의 핀미러(pin mirror) 형태의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영하는 기술을 개발한 바 있다(선행 기술 문헌 1 참조).
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 1의 증강 현실용 광학 장치(100)는, 광학 수단(10), 반사부(20) 및 화상 출사부(30)를 포함한다.
광학 수단(10)은 실제 세계의 사물로부터 출사된 화상광인 실제 사물 화상광을 동공(40)으로 투과시키는 한편 반사부(20)에서 반사된 가상 영상 화상광을 동공(40)으로 출사하는 기능을 수행하는 수단이다. 광학 수단(10) 내부에는 반사부(20)가 매립 배치되어 있다.
광학 수단(10)은 예컨대 안경 렌즈와 같은 유리 또는 투명한 플라스틱 등의 재질로 형성될 수 있으며, 안경테와 같은 프레임(미도시)에 의해 고정될 수 있다.
화상 출사부(30)는 가상 영상 화상광을 출사하는 수단으로서, 가상 영상을 화면에 표시하고 표시된 가상 영상에 상응하는 가상 영상 화상광을 출사하는 디스플레이부와, 디스플레이부로부터 출사하는 화상광을 평행광으로 시준하여 출사하는 콜리메이터(collimator)를 구비할 수 있다.
반사부(20)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 반사시켜 사용자의 동공(40)을 향해 전달하는 수단이다.
도 1의 반사부(20)는 사람의 동공보다 작은 크기로 형성된다. 사람의 일반적인 동공의 크기는 4~8mm 정도인 것으로 알려져 있으므로, 반사부(20)는 바람직하게는 8mm 이하로, 보다 바람직하게는 4mm 이하의 크기로 형성한다. 이에 의해 반사부(20)를 통해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 할 수 있다.
여기서, 심도(Depth of Field)라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지면 그에 상응하여 가상 영상에 대한 초점 거리의 범위도 넓어진다. 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점은 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pinhole effect)라고 볼 수 있다.
따라서, 반사부(20)를 동공(40)보다 작은 크기로 형성함으로써, 사용자가 실제 사물에 대한 초점 거리를 변경하더라도 사용자는 항상 선명한 가상 영상을 관찰할 수 있다.
또한, 본 출원인은 상기한 선행기술문헌 1에 기초하여 도 2에 나타낸 바와 같이 시야각(FOV) 및 아이박스(eyebox)를 넓힐 수 있는 증강 현실용 광학 장치(200)를 개발한 바 있다.
도 2는 선행 기술 문헌 2에 개시된 기술에 기초한 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 2의 증강 현실용 광학 장치(200)는 도 1의 증강 현실용 광학 장치(100)와 기본적인 원리는 동일하되, 시야각 및 아이박스를 넓힐 수 있도록 반사부(20)가 복수개의 반사 모듈(21~29)로 구성되어 어레이 형태로 광학 수단(10) 내부에 배치된다는 점과, 화상 출사부(30)에서 출사된 가상 영상 화상광이 광학 수단(10) 내면에서 전반사되어 반사부(20)로 전달된다는 점에서 차이가 있다.
도 2에서의 화상 출사부(30)는 전술한 바와 같이 디스플레이부(31)와 디스플레이부(31)로부터 출사하는 화상광을 평행광으로 시준하기 위한 콜리메이터(32)를 구비한다.
도 2의 증강 현실용 광학 장치(200)에서는, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내면에서 전반사된 후 복수개의 반사 모듈(21~29)로 전달되고, 복수개의 반사 모듈(21~29)들은 입사하는 가상 영상 화상광을 반사시켜 동공(40)으로 전달한다.
이러한 구성의 증강 현실용 광학 장치(200)에 의하면, 아이박스 및 시야각을 넓게 할 수 있으면서도 폼 팩터를 줄일 수 있는 컴팩트 증강 현실용 광학 장치를 제공할 수 있다.
그러나, 상기한 바와 같은 증강 현실용 광학 장치(100,200)들은, 입사광을 반사시키는 반사 수단인 반사부(20)를 사용하기 때문에, 반사부(20)로 입사하는 실제 사물 화상광 또한 반사부(20)에서 반사되므로 동공(40)으로 전달되기 어렵다는 문제가 있다. 따라서 실제 사물 화상광에 대한 광효율을 저하시킬 수 있다.
이를 해결하기 위하여, 반사부(20) 대신, 입사광의 일부를 투과하는 한편 일부를 반사시키는 하프 미러(half mirror)를 사용하는 것을 생각해 볼 수 있으나, 이 경우 가상 영상 화상광 또한 일부가 하프 미러를 투과하기 때문에 가상 영상 화상광에 대한 광효율도 함께 낮아진다는 문제가 있다.
[선행기술문헌]
선행기술문헌 1 대한민국 공개특허공보 10-2018-0028339호(2018.03.16 공개)
선행기술문헌 2 대한민국 등록특허공보 10-2192942호(2020.12.18. 공고)
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 가상 영상 화상광에 대한 광효율을 유지하면서 실제 사물 화상광에 대한 광효율을 높일 수 있는 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 편광 광학 소자를 이용한 증강 현실용 광학 장치로서, 가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공으로 전달하는 편광 광학 소자; 상기 편광 광학 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 광학 수단을 포함하고, 상기 화상 출사부는 제1 방향으로 편광된 가상 영상 화상광을 출사하고, 상기 편광 광학 소자는, 상기 화상 출사부로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공으로 전달하고, 편광 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 편광 광학 소자는 반사형 편광판일 수 있다.
또한, 상기 화상 출사부는, LCoS(Liquid Crystal on Silicon)로 구현된 디스플레이부를 포함할 수 있다.
또한, 상기 편광 광학 소자의 표면 중에서 실제 사물 화상광이 입사하는 면 위에 상기 제1 방향의 편광을 흡수하는 편광 필터가 배치될 수 있다.
또한, 상기 편광 광학 소자는 어레이 형태로 배치되는 복수개로 구성될 수 있다.
본 발명의 다른 측면에 의하면, 편광 광학 소자를 이용한 증강 현실용 광학 장치로서, 가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 가상 영상 화상광을 반사하여 시준된 평행광으로 변환하여 출사하는 보조 광학 소자; 상기 보조 광학 소자로부터 출사되는 가상 영상 화상광을 사용자의 눈의 동공으로 전달하는 편광 광학 소자; 상기 보조 광학 소자 및 편광 광학 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 광학 수단을 포함하고, 상기 화상 출사부는 제1 방향으로 편광된 가상 영상 화상광을 출사하고, 상기 편광 광학 소자는, 상기 보조 광학 소자로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공으로 전달하고, 편광 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 편광 광학 소자는 반사형 편광판일 수 있다.
또한, 상기 화상 출사부는, LCoS(Liquid Crystal on Silicon)로 구현된 디스플레이부를 포함할 수 있다.
또한, 상기 편광 광학 소자의 표면 중에서 실제 사물 화상광이 입사하는 면 위에 상기 제1 방향의 편광을 흡수하는 편광 필터가 배치될 수 있다.
또한, 상기 편광 광학 소자는 어레이 형태로 배치되는 복수개로 구성될 수 있다.
또한, 상기 보조 광학 소자는, 상기 화상 출사부로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 편광 광학 소자로 전달하고, 보조 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시키는 광학 소자일 수 있다.
또한, 상기 광학 수단은 편광된 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 가지며, 입사하는 편광된 가상 영상 화상광을 반사시키는 보조 광학 소자의 반사면은 상기 광학 수단의 제1 면 또는 제2 면을 향하도록 배치될 수 있다.
또한, 상기 보조 광학 소자의 반사면은 오목하게 형성된 곡면일 수 있다.
또한, 상기 보조 광학 소자는, 동공에서 정면 방향을 향해 광학 수단을 바라보았을 때, 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 화상 출사부에 더 가깝도록 연장되어 형성될 수 있다.
본 발명에 의하면, 가상 영상 화상광에 대한 광효율을 유지하면서 실제 사물 화상광에 대한 광효율을 높일 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 2는 선행 기술 문헌 2에 개시된 기술에 기초한 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 3은 본 발명의 일실시예에 의한 편광 광학 소자를 이용한 증강 현실용 광학 장치(300)의 측면도를 나타낸 것이다.
도 4는 편광 광학 소자(50)의 작용을 설명하기 위한 도면이다.
도 5는 실제 사물 화상광 중에서 편광 광학 소자(50)에서 반사되는 편광을 설명하기 위한 도면이다.
도 6은 편광 광학 소자(50)에 편광 필터(60)가 추가적으로 배치된 예를 나타낸 것이다.
도 7 내지 도 9는 본 발명의 다른 실시예에 의한 광학 장치(400)를 설명하기 위한 도면으로서, 도 7은 측면도, 도 8은 사시도, 도 9는 정면도를 나타낸 것이다.
도 10 내지 도 12는 본 발명의 또 다른 실시예에 의한 광학 장치(500)를 설명하기 위한 도면으로서, 도 10은 측면도, 도 11은 사시도, 도 12는 정면도를 나타낸 것이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예를 상세하게 설명하기로 한다.
도 3은 본 발명의 일실시예에 의한 편광 광학 소자를 이용한 증강 현실용 광학 장치(300)의 측면도를 나타낸 것이다.
도 3의 편광 광학 소자를 이용한 증강 현실용 광학 장치(300, 이하 간단히 "광학 장치(300)"라 한다)는, 광학 수단(10), 편광 광학 소자(50) 및 화상 출사부(30)를 포함한다.
광학 수단(10)은 실제 세계에 존재하는 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공(40)으로 전달하는 수단이다. 또한, 광학 수단(10)은 편광 광학 소자(50)로부터 전달되는 가상 영상 화상광을 동공(40)으로 출사하는 기능을 수행한다.
광학 수단(10)은 가상 영상 화상광 및 실제 사물 화상광이 사용자의 동공(40)을 향해 출사되는 제1 면(11)과, 상기 제1 면(11)에 대향하며 실제 사물 화상광이 입사하는 제2 면(12)을 갖는다.
광학 수단(10) 내부에는 편광 광학 소자(50)가 상기 제1 면(11) 및 제2 면(12)과 이격되어 매립 배치된다.
화상 출사부(30)는, 가상 영상(virtual image)에 상응하는 화상광인 가상 영상 화상광(virtual image light)을 출사하는 수단이다. 여기에서, 가상 영상이란 증강 현실용 화상을 의미하며, 이미지 또는 동영상일 수 있다.
이러한 화상 출사부(30) 자체는 본 발명의 직접적인 목적이 아니며 종래 기술에 의해 알려져 있는 것이므로 여기에서는 상세 설명은 생략한다. 다만, 본 발명에서의 화상 출사부(30)는 특정 방향으로 편광된 가상 영상 화상광을 출사하는 것을 특징으로 한다.
주지된 바와 같이, 일반적인 빛은 그 전자기파를 일으키는 광원의 랜덤한 속성 때문에 빛의 진행 방향과 직각을 이루는 면에서 모든 방향으로 진동할 수 있는데, 이러한 빛이 어느 하나의 특정한 방향으로만 진동하는 경우 이를 편광이라고 한다. 따라서, 특정 방향으로 편광된 가상 영상 화상광이라 함은, 가상 영상 화상광 중에서 특정 방향으로만 진동하는 가상 영상 화상광을 의미한다. 이하에서 화상 출사부(30)가 출사하는 편광된 가상 영상 화상광의 편광 방향을 제1 방향이라고 부르기로 한다.
화상 출사부(30)는, 소형의 LCD, OLED, LCoS, 마이크로 LED 등과 같이 종래 알려져 있는 마이크로 디스플레이 장치로 구현되는 디스플레이부와 디스플레이부에서 출사된 가상 영상 화상광을 시준하여 평행광으로 출사하는 콜리메이터를 포함할 수 있다.
화상 출사부(30)는 제1 방향으로 편광된 가상 영상 화상광을 출사할 수 있도록 LCoS(Liquid Crystal on Silicon)와 같이 특정 방향으로 편광된 가상 영상 화상광을 출사하는 디스플레이부를 포함하는 것이 바람직하다.
예컨대 OLED와 같이 편광되지 않은 가상 영상 화상광을 출사하는 디스플레이부를 사용하는 경우에는, 편광 필터를 추가적으로 배치하여 디스플레이부를 구성할 수도 있다.
도 3에서는, 화상 출사부(30)에서 출사되는 편광된 가상 영상 화상광은 편광 광학 소자(50)로 직접 전달되는 것으로 나타내었으나, 이는 예시적인 것이며, 광학 수단(10)의 내면에서의 적어도 1회 이상의 전반사를 통해 편광 광학 소자(50)로 전달될 수도 있다.
또한, 도 3에서, 화상 출사부(30)는 광학 수단(10)의 상면에 배치된 것으로 나타내었으나, 이는 예시적인 것이며 기타 다른 위치에 배치될 수도 있음은 물론이다.
편광 광학 소자(50)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공(40)으로 전달하는 수단으로서, 특히 본 발명에서의 편광 광학 소자(50)는, 특정 방향으로 편광된 빛을 반사시키고 상기 특정 방향에 수직한 방향으로 편광된 빛은 투과시키는 것을 특징으로 한다.
즉, 편광 광학 소자(50)는 화상 출사부(30)로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공(40)으로 전달하고, 편광 광학 소자(50)로 입사하는 실제 사물 화상광 중 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공(40)으로 전달하는 것을 특징으로 한다.
여기에서, 제2 방향의 편광이란 제1 방향에 수직한 방향으로 편광된 빛을 의미한다. 예컨대, 제1 방향의 편광을 s-편광이라고 하면, 제2 방향의 편광은 p-편광이 되고, 편광 광학 소자(50)가 s-편광을 반사시키는 경우 p-편광은 투과시키게 된다.
편광 광학 소자(50)로서는, 특정 방향의 편광을 반사시키고 특정 방향에 수직한 방향의 편광을 투과시키는 반사형 편광판을 사용할 수 있다.
이러한 반사형 편광판으로는, 편광 빔 스플리터(PBS, Polarizing Beam splitter), 다층막 반사 편광판, 와이어 그리드 편광판 등과 같은 소자를 사용할 수 있다. 이러한 소자들은 다층막내 간섭 또는 브루스터 각(Brewster angle)의 원리를 활용하거나, 복굴절 원리를 활용하거나, 금속 나노 와이어 구조물과 빛의 상호 작용 등을 활용하여 특정 방향의 편광을 반사시키고 특정 방향에 수직한 방향의 편광을 투과시킬 수 있다.
도 4는 편광 광학 소자(50)의 작용을 설명하기 위한 도면으로서, 설명의 편의를 위하여 화상 출사부(30)와 편광 광학 소자(50)만을 나타내었다.
도 4를 참조하면, 화상 출사부(30)는 제1 방향으로 편광된 가상 영상 화상광(VL1)을 출사한다. 여기에서, 제1 방향으로 편광된 가상 영상 화상광(VL1)은 s-편광인 것으로 가정한다.
편광 광학 소자(50)는 전술한 바와 같이 제1 방향으로 편광된 가상 영상 화상광(VL1)을 반사시켜서 동공(40)으로 출사한다. 따라서, 편광 광학 소자(50)에서 출사하는 가상 영상 화상광(VL2) 또한 s-편광이며, 편광 광학 소자(50)의 s-편광에 대한 반사율이 100% 라고 가정할 때 VL1과 VL2의 광량은 원칙적으로는 동일하다.
한편, 편광 광학 소자(50)는, 편광 광학 소자(50)로 입사하는 편광되지 않은(unpolarized) 실제 사물 화상광(EL1) 중에서 제1 방향에 수직한 제2 방향으로 편광된 실제 사물 화상광을 투과시켜 동공(40)으로 전달한다.
따라서, 편광 광학 소자(50)를 투과하여 출사되는 실제 사물 화상광(EL2)은 p-편광이며, 이는 편광되지 않은 실제 사물 화상광(EL1)의 광량의 대략 50%에 상응하는 것으로 볼 수 있다.
이와 같이, 편광 광학 소자(50)는 s-편광만을 반사시키기 때문에, 화상 출사부(30)에서 s-편광인 가상 영상 화상광을 출사하도록 함으로써 가상 영상 화상광에 대한 광효율을 유지할 수 있다.
또한, 편광 광학 소자(50)는 p-편광은 투과시키기 때문에, 실제 사물 화상광 중에서 p-편광을 투과시켜 동공(40)으로 전달할 수 있다. 따라서 도 1 및 도 2의 증강 현실용 광학 장치(100,200)에 비해 실제 사물 화상광에 대한 광효율을 높일 수 있다는 장점이 있다.
한편, 전술한 바와 같이, 편광 광학 소자(50)는 s-편광을 반사하고 p-편광을 투과시키기 때문에, 편광 광학 소자(50)는 실제 사물 화상광 중에서 s-편광을 반사시킬 수 있다.
도 5는 실제 사물 화상광 중에서 편광 광학 소자(50)에서 반사되는 편광을 설명하기 위한 도면이다.
도 5에 나타낸 바와 같이, 실제 사물 화상광 중에서 제1 방향의 편광(EL3) 즉, s-편광은 편광 광학 소자(50)에서 반사될 수 있는데, 이는 고스트 이미지를 발생시키는 요인으로 작용할 수 있다.
이를 해결하기 위해서, 편광 광학 소자(50)에 제1 방향의 편광을 차단하는 편광 필터를 배치하는 방법을 생각할 수 있다.
도 6은 편광 광학 소자(50)에 편광 필터(60)가 추가적으로 배치된 예를 나타낸 것이다.
도 6에 나타낸 바와 같이, 편광 광학 소자(50)의 표면 중에서 실제 사물 화상광이 입사하는 면 위에 편광 필터(60)를 배치할 수 있다.
편광 필터(60)는 편광 광학 소자(50)가 반사시키는 편광 방향 즉 제1 방향의 편광을 흡수하는 기능을 수행한다. 또한, 편광 필터(60)는 제1 방향에 수직한 방향의 편광은 투과시킨다.
따라서, 실제 사물 화상광 중에서 편광 광학 소자(50)에서 반사되는 편광을 차단할 수 있다.
한편, 편광 광학 소자(50)는 앞서 배경 기술에서 설명한 바와 같이, 심도를 깊게 하여 핀홀 효과(pinhole effect)를 얻을 수 있도록 사람의 일반적인 동공 크기보다 작은 크기 즉, 8mm 이하로 형성하는 것이 바람직하며, 보다 바람직하게는 4mm 이하로 형성한다.
이에 의하여, 편광 광학 소자(50)에 의해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있고, 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과(pinhole effect)를 발생시킬 수 있다.
여기에서, 편광 광학 소자(50)의 크기라 함은, 편광 광학 소자(50)의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이를 의미하는 것으로 정의한다.
다만, 편광 광학 소자(50)의 크기가 지나치게 작은 경우에는 회절(diffraction) 현상이 커지기 때문에, 편광 광학 소자(50)의 크기는 적어도 0.3mm 보다는 크게 하는 것이 바람직하다.
또한, 편광 광학 소자(50)의 형상은 원형일 수 있다.
또한, 동공(40)에서 편광 광학 소자(50)를 바라보았을 때 원형으로 보이도록 편광 광학 소자(50)를 타원형으로 형성할 수도 있다.
도 7 내지 도 9는 본 발명의 다른 실시예에 의한 광학 장치(400)를 설명하기 위한 도면으로서, 도 7은 측면도, 도 8은 사시도, 도 9는 정면도를 나타낸 것이다.
도 7 내지 도 9의 광학 장치(400)는 도 3의 광학 장치(300)와 기본적인 원리는 동일하되, 복수개의 편광 광학 소자(50)가 어레이 형태로 광학 수단(10) 내부에 배치된다는 점에서 차이가 있다.
도 7 내지 도 9의 실시예에서는, 화상 출사부(30)에서 출사된 제1 방향으로 편광된 가상 영상 화상광은 광학 수단(10)의 제2 면(12)을 향해 출사하고, 광학 수단(10)의 제2 면(12)에서 전반사된 후 복수개의 편광 광학 소자(50)로 전달된다.
복수개의 편광 광학 소자(50)는 앞서 설명한 바와 같이 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 동공(40)으로 전달하는 한편, 편광 광학 소자(50)로 입사하는 실제 사물 화상광 중 제1 방향에 수직한 제2 방향으로 편광된 편광을 투과시켜 동공(40)으로 전달한다.
따라서, 복수개의 편광 광학 소자(50)들은 이러한 광 경로에 따라 입사하는 편광된 가상 영상 화상광을 동공(40)으로 전달할 수 있도록 광학 수단(10)의 제1 면(11) 및 제2 면(12)에 대해 적절한 경사각을 가지고 배치된다.
또한, 복수개의 편광 광학 소자(50) 각각은 화상 출사부(30)로부터 전달되는 가상 영상 화상광이 다른 편광 광학 소자(50)로 전달되는 것을 차단하지 않도록 배치되는 것이 바람직하다.
예컨대, 복수개의 편광 광학 소자(50)들은 도 7에 나타낸 바와 같은 형태로 광학 장치(400)를 측면에서 보았을 때 수직선을 따라 일렬로 배치될 수 있다.
다른 방법으로서는, 광학 장치(400)를 측면에서 보았을 때 경사진 사선이나 완만한 곡선을 따라 배치될 수 있다.
도 10 내지 도 12는 본 발명의 또 다른 실시예에 의한 광학 장치(500)를 설명하기 위한 도면으로서, 도 10은 측면도, 도 11은 사시도, 도 12는 정면도를 나타낸 것이다.
도 10 내지 도 12의 광학 장치(500)는 도 7 내지 도 9의 광학 장치(400)와 기본적인 원리는 동일하지만, 콜리메이터로서의 기능을 수행하는 보조 광학 소자(80)가 광학 수단(10) 내부에 매립 배치된다는 점에서 차이가 있다. 따라서, 광학 장치(500)의 화상 출사부(30)에는 콜리메이터와 같은 구성을 포함하지 않아도 되므로, 광학 장치(500)의 폼팩터를 줄일 수 있는 장점이 있다.
보조 광학 소자(80)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 반사하여 시준된 평행광으로 변환하여 출사하는 기능을 수행한다. 따라서, 보조 광학 소자(80)에서 출사되는 가상 영상 화상광은 시준된 평행광 또는 초점 거리가 의도된 화상광이다.
보조 광학 소자(80)에서 반사되어 출사된 가상 영상 화상광은 편광 광학 소자(50)로 전달된다.
보조 광학 소자(80)는, 입사하는 가상 영상 화상광을 반사시키면서 시준된 평행광으로 출사하는 반사 수단으로 구현될 수 있다. 예컨대, 금속재 등과 같이 100% 또는 100%에 거의 근접하는 높은 반사율을 갖는 재질로 보조 광학 소자(80)를 형성할 수 있다.
한편, 보조 광학 소자(80) 또한 전술한 바와 같은 편광 광학 소자(50)의 성질을 갖는 광학 소자로 구현할 수 있다.
즉, 보조 광학 소자(80)는, 화상 출사부(30)로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 편광 광학 소자(50)로 전달하는 한편, 보조 광학 소자(80)로 입사하는 실제 사물 화상광 중 제1 방향에 수직한 제2 방향의 편광을 투과시키는 광학 소자로 구현할 수 있다.
보조 광학 소자(80)는, 도 10 내지 도 12에 나타낸 바와 같이, 화상 출사부(30)와 대향하도록 광학 수단(10)의 내부에 매립되어 배치된다.
도 10에 나타난 바와 같이, 화상 출사부(30)는 광학 수단(10)의 제2 면(12)을 향해 제1 방향으로 편광된 가상 영상 화상광을 출사하고, 광학 수단(10)의 제2 면(12)에서 전반사되는 편광된 가상 영상 화상광은 보조 광학 소자(80)로 전달된다.
보조 광학 소자(80)에서 시준된 평행광으로 변환되어 출사하는 편광된 가상 영상 화상광은 광학 수단(10)의 제2 면(12)에서 다시 전반사된 후 편광 광학 소자(50)로 전달된다.
편광 광학 소자(50)는 전술한 실시예에서 설명한 바와 같이 입사하는 편광된 가상 영상 화상광을 반사시켜 동공(40)으로 전달한다.
따라서, 보조 광학 소자(80)는, 상기와 같은 광경로를 통해 편광된 가상 영상 화상광을 편광 광학 소자(50)로 전달할 수 있도록, 화상 출사부(30), 편광 광학 소자(50) 및 동공(40)의 상대적인 위치를 고려하여 광학 수단(10)의 제1 면(11)과 제2 면(12) 사이의 광학 수단(10)의 내부의 적절한 위치에 배치된다.
도 10 내지 도 12의 실시예에서, 보조 광학 소자(80)는, 편광된 가상 영상 화상광을 반사시키는 반사면(81)이 광학 수단(10)의 제2 면(12)을 향하도록 광학 수단(10)의 내부에 매립되어 배치된다.
여기에서, 상기 반사면(81)의 중심으로부터 수직 방향으로의 직선과 광학 수단(10)의 제2 면(12)은 서로 평행하지 않도록 경사지게 배치될 수 있다.
다만, 이는 예시적인 것이며, 보조 광학 소자(80)의 반사면(81)이 광학 수단(10)의 제1 면(11)을 향하도록 광학 수단(10)의 내부에 매립되어 배치될 수도 있음은 물론이다.
한편, 보조 광학 소자(80)의 반사면(81)은 곡면으로 형성될 수 있다. 예컨대, 보조 광학 소자(80)의 반사면(81)은 도 10 내지 도 12에 나타낸 바와 같이 광학 수단(10)의 제2 면(12) 방향으로 오목하게 형성될 수 있다.
이러한 구성에 의하여 보조 광학 소자(80)는 광학 수단(10)에 내장되어 화상 출사부(30)에서 출사되는 편광된 가상 영상 화상광을 시준시키는 내장 콜리메이터로서의 역할을 수행할 수 있고, 따라서 화상 출사부(30)에 콜리메이터와 같은 구성을 사용할 필요가 없다.
또한, 보조 광학 소자(80)는, 사용자가 가급적 인식할 수 없도록 하기 위하여 사용자가 동공(40)을 통해 정면을 바라 보았을 때의 두께가 얇게 보이도록 하는 것이 바람직하다.
한편, 보조 광학 소자(80)는 빛을 부분적으로 반사시키는 하프 미러(half mirror)와 같은 수단으로 구성할 수도 있다.
또한, 보조 광학 소자(80)는 반사 수단 이외의 굴절 소자 또는 회절 소자로 형성하거나, 이들 중 적어도 하나의 조합으로 형성할 수도 있다.
또한, 보조 광학 소자(80)는 빛을 파장에 따라 선택적으로 투과시키는 노치 필터(notch filter) 등과 같은 광학 소자로 형성할 수도 있다
또한, 보조 광학 소자(80)의 반사면(81)의 반대면을 빛을 반사하지 않고 흡수하는 재질로 코팅할 수도 있다.
한편, 보조 광학 소자(80)는, 도 11 및 도 12에 나타낸 바와 같이, 동공(40)에서 정면 방향으로 광학 수단(10)을 바라보았을 때, 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 화상 출사부(30)에 더 가깝도록 연장되어 형성될 수 있다.
즉, 보조 광학 소자(80)는, 정면에서 바라볼 때 전체적으로 완만한 "U"자의 바(bar) 형태로 형성될 수 있다. 이에 의하여, 보조 광학 소자(80)의 콜리메이터로서의 기능을 보다 향상시킬 수 있다.
한편, 도 10 내지 도 12의 광학 장치(500)의 경우에도, 앞서 도 3에서 설명한 바와 같이 하나의 편광 광학 소자(50)만을 사용하는 것도 가능함은 물론이다.
이상에서 본 발명의 바람직한 실시예를 참조하여 본 발명을 설명하였으나, 본 발명은 상기 실시예에 한정되는 것이 아니며, 기타 다양한 수정 및 변형 실시가 가능함은 물론이다.

Claims (14)

  1. 편광 광학 소자를 이용한 증강 현실용 광학 장치로서,
    가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공으로 전달하는 편광 광학 소자;
    상기 편광 광학 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 광학 수단
    을 포함하고,
    상기 화상 출사부는 제1 방향으로 편광된 가상 영상 화상광을 출사하고,
    상기 편광 광학 소자는,
    상기 화상 출사부로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공으로 전달하고, 편광 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 증강 현실용 광학 장치.
  2. 청구항 1에 있어서,
    상기 편광 광학 소자는 반사형 편광판인 것을 특징으로 하는 증강 현실용 광학 장치.
  3. 청구항 1에 있어서,
    상기 화상 출사부는, LCoS(Liquid Crystal on Silicon)로 구현된 디스플레이부를 포함하는 것을 특징으로 하는 증강 현실용 광학 장치.
  4. 청구항 1에 있어서,
    상기 편광 광학 소자의 표면 중에서 실제 사물 화상광이 입사하는 면 위에 상기 제1 방향의 편광을 흡수하는 편광 필터가 배치된 것을 특징으로 하는 증강 현실용 광학 장치.
  5. 청구항 1에 있어서,
    상기 편광 광학 소자는 어레이 형태로 배치되는 복수개로 구성된 것을 특징으로 하는 증강 현실용 광학 장치.
  6. 편광 광학 소자를 이용한 증강 현실용 광학 장치로서,
    가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사된 가상 영상 화상광을 반사하여 시준된 평행광으로 변환하여 출사하는 보조 광학 소자;
    상기 보조 광학 소자로부터 출사되는 가상 영상 화상광을 사용자의 눈의 동공으로 전달하는 편광 광학 소자;
    상기 보조 광학 소자 및 편광 광학 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 광학 수단
    을 포함하고,
    상기 화상 출사부는 제1 방향으로 편광된 가상 영상 화상광을 출사하고,
    상기 편광 광학 소자는,
    상기 보조 광학 소자로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 사용자의 눈의 동공으로 전달하고, 편광 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시켜 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 증강 현실용 광학 장치.
  7. 청구항 6에 있어서,
    상기 편광 광학 소자는 반사형 편광판인 것을 특징으로 하는 증강 현실용 광학 장치.
  8. 청구항 6에 있어서,
    상기 화상 출사부는, LCoS(Liquid Crystal on Silicon)로 구현된 디스플레이부를 포함하는 것을 특징으로 하는 증강 현실용 광학 장치.
  9. 청구항 6에 있어서,
    상기 편광 광학 소자의 표면 중에서 실제 사물 화상광이 입사하는 면 위에 상기 제1 방향의 편광을 흡수하는 편광 필터가 배치된 것을 특징으로 하는 증강 현실용 광학 장치.
  10. 청구항 6에 있어서,
    상기 편광 광학 소자는 어레이 형태로 배치되는 복수개로 구성된 것을 특징으로 하는 증강 현실용 광학 장치.
  11. 청구항 6에 있어서,
    상기 보조 광학 소자는, 상기 화상 출사부로부터 출사된 제1 방향으로 편광된 가상 영상 화상광을 반사시켜 편광 광학 소자로 전달하고, 보조 광학 소자로 입사하는 실제 사물 화상광 중 상기 제1 방향에 수직한 제2 방향의 편광을 투과시키는 광학 소자인 것을 특징으로 하는 증강 현실용 광학 장치.
  12. 청구항 6에 있어서,
    상기 광학 수단은 편광된 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 가지며,
    입사하는 편광된 가상 영상 화상광을 반사시키는 상기 보조 광학 소자의 반사면은 상기 광학 수단의 제1 면 또는 제2 면을 향하도록 배치된 것을 특징으로 하는 증강 현실용 광학 장치.
  13. 청구항 12에 있어서,
    상기 보조 광학 소자의 반사면은 오목하게 형성된 곡면인 것을 특징으로 하는 증강 현실용 광학 장치.
  14. 청구항 6에 있어서,
    상기 보조 광학 소자는, 동공에서 정면 방향을 향해 광학 수단을 바라보았을 때, 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 화상 출사부에 더 가깝도록 연장되어 형성된 것을 특징으로 하는 증강 현실용 광학 장치.
PCT/KR2023/000355 2022-01-25 2023-01-09 편광 광학 소자를 이용한 증강 현실용 광학 장치 WO2023146157A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220010800A KR20220017455A (ko) 2022-01-25 2022-01-25 편광 광학 소자를 이용한 증강 현실용 광학 장치
KR10-2022-0010800 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023146157A1 true WO2023146157A1 (ko) 2023-08-03

Family

ID=80266530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000355 WO2023146157A1 (ko) 2022-01-25 2023-01-09 편광 광학 소자를 이용한 증강 현실용 광학 장치

Country Status (2)

Country Link
KR (1) KR20220017455A (ko)
WO (1) WO2023146157A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220017455A (ko) * 2022-01-25 2022-02-11 주식회사 레티널 편광 광학 소자를 이용한 증강 현실용 광학 장치
KR20230146897A (ko) * 2022-04-13 2023-10-20 주식회사 레티널 확장된 아이박스를 갖는 증강 현실용 광학 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017991A (ja) * 2004-07-01 2006-01-19 Konica Minolta Holdings Inc 映像表示装置
JP2010224479A (ja) * 2009-03-25 2010-10-07 Olympus Corp 頭部装着型画像表示装置
KR20190063443A (ko) * 2017-11-29 2019-06-07 주식회사 레티널 광학 장치
KR20220005423A (ko) * 2021-12-27 2022-01-13 주식회사 레티널 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
KR20220006023A (ko) * 2021-12-28 2022-01-14 주식회사 레티널 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
KR20220017455A (ko) * 2022-01-25 2022-02-11 주식회사 레티널 편광 광학 소자를 이용한 증강 현실용 광학 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894556B1 (ko) 2016-09-08 2018-10-04 주식회사 레티널 광학 장치
KR102192942B1 (ko) 2019-09-18 2020-12-18 주식회사 레티널 광 효율을 개선한 증강 현실용 광학 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017991A (ja) * 2004-07-01 2006-01-19 Konica Minolta Holdings Inc 映像表示装置
JP2010224479A (ja) * 2009-03-25 2010-10-07 Olympus Corp 頭部装着型画像表示装置
KR20190063443A (ko) * 2017-11-29 2019-06-07 주식회사 레티널 광학 장치
KR20220005423A (ko) * 2021-12-27 2022-01-13 주식회사 레티널 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
KR20220006023A (ko) * 2021-12-28 2022-01-14 주식회사 레티널 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
KR20220017455A (ko) * 2022-01-25 2022-02-11 주식회사 레티널 편광 광학 소자를 이용한 증강 현실용 광학 장치

Also Published As

Publication number Publication date
KR20220017455A (ko) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023146157A1 (ko) 편광 광학 소자를 이용한 증강 현실용 광학 장치
US9551874B2 (en) Substrate-guide optical device
JP2022160457A (ja) ウェアラブルディスプレイのための照明装置
US6005720A (en) Reflective micro-display system
EP2138886A2 (en) Compact virtual display
WO2020235816A1 (en) Glasses-type display apparatus
US20040150888A1 (en) Multiple imaging arrangements for head mounted displays
JPH06315125A (ja) 映像表示装置
WO2017022998A1 (ko) 헤드 마운트 디스플레이용 광학 시스템
KR20020021111A (ko) 헤드-장착형 디스플레이
WO2020004850A1 (ko) 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2023128167A1 (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2023128168A1 (ko) 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
JP2022517796A (ja) 小型ホモジナイザーを有する画像装置
EP0577268B1 (en) Optical system
WO2021034096A1 (ko) 시력 보정 기능을 구비하는 증강 현실용 광학 장치
JP2004145367A (ja) 画像表示装置
KR100397897B1 (ko) 반사형 디스플레이 조사 시스템
EP3811144A1 (en) Glasses-type display apparatus
WO2023017923A1 (ko) 회절 소자를 이용한 증강 현실용 광학 장치
WO2020045916A1 (ko) 잠망경 방식의 전방 주시 수단을 갖는 투과형 hmd 광학시스템
WO2023163411A1 (ko) 편광판을 구비하는 증강 현실용 광학 장치
WO2020138669A1 (ko) 증강 현실용 광학 장치
JPH11352903A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747200

Country of ref document: EP

Kind code of ref document: A1