WO2021034096A1 - 시력 보정 기능을 구비하는 증강 현실용 광학 장치 - Google Patents

시력 보정 기능을 구비하는 증강 현실용 광학 장치 Download PDF

Info

Publication number
WO2021034096A1
WO2021034096A1 PCT/KR2020/011026 KR2020011026W WO2021034096A1 WO 2021034096 A1 WO2021034096 A1 WO 2021034096A1 KR 2020011026 W KR2020011026 W KR 2020011026W WO 2021034096 A1 WO2021034096 A1 WO 2021034096A1
Authority
WO
WIPO (PCT)
Prior art keywords
augmented reality
image light
unit
correction function
vision correction
Prior art date
Application number
PCT/KR2020/011026
Other languages
English (en)
French (fr)
Inventor
하정훈
박순기
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Priority to CN202080056662.4A priority Critical patent/CN114207504A/zh
Priority to US17/635,262 priority patent/US20220291508A1/en
Publication of WO2021034096A1 publication Critical patent/WO2021034096A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/14Mirrors; Prisms

Definitions

  • the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality that can provide a vision correction function for a user having a refractive error such as nearsightedness or farsightedness.
  • Augmented Reality means providing a virtual image or image generated by a computer or the like superimposed on an actual image of the real world, as is well known.
  • an optical system In order to implement such augmented reality, an optical system is required that allows a virtual image or image generated by a device such as a computer to be superimposed on an image of the real world and provided.
  • a technique using optical means such as a prism for reflecting or refracting a virtual image using a head mounted display (HMD) or a glasses-type device is known.
  • HMD head mounted display
  • refractive abnormalities such as myopia and farsightedness are a very common problem that more than 50% of Koreans experience.Users with such refractive errors must wear vision correction devices such as glasses, and therefore vision correction to observe augmented reality images In addition to the device, there is a problem that a separate device for providing augmented reality must be worn twice.
  • FIG. 1 shows an augmented reality device implemented in a glasses type and a holographic film attached to a lens of the augmented reality device and used as an optical synthesizer.
  • the holographic film since the holographic film has a small area, there is a problem in that the conditions of use of an augmented reality image (virtual image) (a viewing angle, an eyebox, etc.) are severely limited. In addition, there is a problem in that the image quality, resolution, and color expression are significantly limited due to the limitation of the available displays (eg, laser projection). Furthermore, since vision correction is performed with a single curved surface, there is a limitation that the vision correction range is limited to the range of -4D to +2D.
  • FIG. 2 shows that a separate focus correction lens is mounted in the form of a clip on the glasses-type augmented reality device.
  • This method is a method of attaching and using a focus correction lens to a glasses-type augmented reality device with a magnetic clip. Since the focus correction lens must be additionally mounted, it has the disadvantage of increasing the volume and weight, and also has the disadvantage of increasing virtual images and real images. In order to correct vision for an image, there is a limitation in design because the lens clip must be worn only in the direction of the inside of the glasses (user side).
  • An object of the present invention is to solve the above-described problems, and an object thereof is to provide an optical device for augmented reality that can provide a vision correction function for a user having a refractive error such as nearsightedness or farsightedness.
  • the present invention provides a visual acuity correction function for a user having a refractive error by allowing a combination of at least one of a method of designing a curved surface of an optical means, a method of designing a curved surface of a reflector, and a method of using an auxiliary optical element.
  • Another object of the present invention is to provide an optical device for augmented reality that can be efficiently provided, has a small volume and is light in weight, and can increase a degree of freedom in design and design.
  • an augmented reality optical device having a vision correction function, comprising: an image output unit for emitting augmented reality image light corresponding to an image for augmented reality; A reflection unit for providing an augmented reality image to a user by reflecting and transmitting the augmented reality image light emitted from the image output unit toward the pupil of the user's eye; And an optical means for transmitting at least a part of the real object image light, which is the image light emitted from the real object, toward the pupil of the user's eye, wherein the reflecting unit is disposed, wherein the optical means includes an augmented reality image reflected from the reflecting unit.
  • a first surface in which light and at least a part of the image light of the real object are emitted toward the pupil of the user, and a second surface that faces the first surface and into which the image light of the real object is incident is provided, and the reflecting unit includes the optical means
  • the curved surface is a concave surface or a convex surface.
  • a surface other than the curved surface may be formed as one of a flat surface, a concave surface, or a convex surface.
  • first surface is formed as a concave surface
  • second surface is formed as a convex surface
  • curvature of the first surface may be greater than that of the second surface
  • first surface is formed as a concave surface
  • second surface is formed as a convex surface
  • curvature of the second surface may be greater than that of the first surface
  • the augmented reality image light emitted from the image output unit is totally reflected at least once or more by at least one of the first and second surfaces of the optical unit and then transmitted to the reflecting unit, and the first surface and the second surface of the optical unit At least one of the second surfaces may have a total reflection area formed as a plane for total reflection of the augmented reality image light emitted from the image output unit.
  • the reflector may be formed in a curved surface.
  • the augmented reality image light emitted from the image output unit may be transmitted to the reflection unit through an auxiliary optical element.
  • an optical device for augmented reality having a vision correction function comprising: an image output unit for emitting augmented reality image light corresponding to an image for augmented reality; A reflection unit for providing an augmented reality image to a user by reflecting and transmitting the augmented reality image light emitted from the image output unit toward the pupil of the user's eye; And optical means for transmitting at least a part of the image light of the real object, which is the image light emitted from the real object, toward the pupil of the user's eye, wherein the reflecting unit has a curved surface. It provides an optical device for augmented reality having a function.
  • the surface of the reflective part may be a concave surface or a convex surface.
  • the reflecting unit may be formed in plural, and the plurality of reflecting units may be formed of at least some of unit reflecting units obtained by dividing one reflecting unit having a curved surface into a plurality of units.
  • the plurality of reflecting units are divided into a plurality of unit reflecting units while one reflecting unit is placed in the front direction of the pupil, and the unit reflecting unit to be used as the reflecting unit among them is in a direction horizontal to the pupil front direction while maintaining its shape. It may be disposed so as to be moved along and positioned between the first side and the second side of the optical means.
  • the optical means includes a first surface in which at least a part of the augmented reality image light reflected from the reflecting unit and the real object image light is emitted toward the pupil of the user, and the real object image light is opposite to the first surface.
  • a second surface to be incident is provided, and the reflective unit is disposed inside between the first surface and the second surface of the optical means, and at least one of the first surface and the second surface of the optical means is formed as a curved surface. It can also be configured as possible.
  • the augmented reality image light emitted from the image output unit may be transmitted to the reflection unit through an auxiliary optical element.
  • an optical device for augmented reality having a vision correction function comprising: an image output unit for emitting augmented reality image light corresponding to an image for augmented reality; A reflection unit for providing an augmented reality image to a user by reflecting and transmitting the augmented reality image light emitted from the image output unit toward the pupil of the user's eye; And optical means for transmitting at least a part of the image light of the real object, which is image light emitted from the real object, toward the pupil of the user's eye, wherein the augmented reality image light emitted from the image output unit is an auxiliary optical unit. It provides an optical device for augmented reality having a vision correction function, characterized in that it is transmitted to the reflector through the element.
  • the auxiliary optical element may be at least one of a refraction means, a diffraction means, or a hologram element.
  • the refractive means may be a concave lens or a convex lens.
  • the image output unit includes a display device that emits augmented reality image light through the screen by displaying an augmented reality image on the screen, and a collimator that emits light collimating the augmented reality image light emitted from the display device, By changing the focal length of the collimator or changing the distance between the display device and the collimator, the optical path through which the augmented reality image light is transmitted to the optical means may be changed.
  • the optical means includes a first surface in which at least a part of the augmented reality image light reflected from the reflecting unit and the real object image light is emitted toward the pupil of the user, and the real object image light is opposite to the first surface.
  • a second surface to be incident is provided, and the reflective unit is disposed inside between the first surface and the second surface of the optical means, and at least one of the first surface and the second surface of the optical means is formed as a curved surface. Can be.
  • the reflector may be formed in a curved surface.
  • an augmented reality optical device capable of providing a vision correction function for a user having a refractive error such as nearsightedness or farsightedness.
  • the present invention provides a visual acuity correction function for a user having a refractive error by allowing a combination of at least one of a method of designing a curved surface of an optical means, a method of designing a curved surface of a reflector, and a method of using an auxiliary optical element. It is possible to provide an optical device for augmented reality that can be efficiently provided, has a small volume and is light in weight, and can increase a degree of freedom in design and design.
  • FIG. 1 shows an augmented reality device implemented in a glasses type and a holographic film attached to a lens of the augmented reality device and used as an optical synthesizer.
  • FIG. 2 shows that a separate focus correction lens is mounted in the form of a clip on the glasses-type augmented reality device.
  • FIG 3 is a view showing an optical device 100 for augmented reality as disclosed in Patent Document 1 above.
  • FIG. 4 is a view showing the overall configuration of an augmented reality optical device 200 having a vision correction function according to an embodiment of the present invention.
  • FIG 5 is a view showing the overall configuration of an augmented reality optical device 300 having a vision correction function according to another embodiment of the present invention.
  • FIG. 6 is a view showing the overall configuration of an augmented reality optical device 400 having a vision correction function according to another embodiment of the present invention.
  • FIG. 7 is a view showing the overall configuration of an augmented reality optical device 500 having a vision correction function according to another embodiment of the present invention.
  • FIG 8 is a view showing the overall configuration of an augmented reality optical device 600 having a vision correction function according to another embodiment of the present invention.
  • FIG. 9 is a view showing the overall configuration of an augmented reality optical device 700 having a vision correction function according to another embodiment of the present invention.
  • FIG. 10 and 11 are views for explaining an augmented reality optical device 800 having a vision correction function according to another embodiment of the present invention
  • FIG. 10 is an overall configuration of an augmented reality optical device 800 It is a side view showing
  • FIG. 11 is a diagram for explaining the configuration of the reflective parts 21A and 21B.
  • FIG. 12 and 13 are views for explaining an optical device 900 for augmented reality according to another embodiment of the present invention
  • FIG. 12 is a side view showing the overall configuration of an optical device 900 for augmented reality
  • FIG. 13 is a diagram for explaining the configuration of the reflecting portions 22A and 22B.
  • FIGS. 14 and 15 are diagrams showing optical devices 1000 and 1100 for augmented reality according to still another embodiment of the present invention.
  • 16 is a diagram for explaining a vision correction function using collimators 12A and 12B.
  • FIGS. 4 to 16 illustrate the optical devices 1200 and 1300 for augmented reality according to another embodiment of the present invention, and illustrate a case in which the embodiments of FIGS. 4 to 16 are used in combination.
  • Patent Document 1 is a problem of a device for implementing augmented reality using a conventional optical system, that is, it is inconvenient for the user to wear it because the configuration is complex and the weight and volume are significant, and the manufacturing process is also complicated, so the manufacturing cost It is to solve the high problem.
  • the conventional augmented reality realization apparatus using an optical system has a limitation in that the focus of the virtual image is out of focus when the user changes the focal length when gazing at the real world.
  • the focus on the virtual image Techniques such as using a configuration such as a prism capable of adjusting the distance or electrically controlling a variable focus lens according to a change in the focal length have been proposed.
  • this technology also has a problem in that a user must perform a separate operation in order to adjust the focal length or hardware and software such as a separate processor for controlling the focal length are required.
  • the applicant of the present invention can significantly reduce the volume and weight and simplify the manufacturing process by projecting a virtual image onto the retina through the pupil using a reflector having a size smaller than that of a human pupil, as described in Patent Document 1,
  • a device for implementing an augmented reality that can always provide a clear virtual image regardless of whether the user changes the focal length has been proposed.
  • FIG 3 is a view showing an optical device 100 for augmented reality as disclosed in Patent Document 1 above.
  • the optical device 100 for augmented reality of FIG. 3 includes an image output unit 10, a reflection unit 20, and an optical unit 30.
  • the image output unit 10 is a means for emitting image light corresponding to an image for augmented reality, and may be implemented as, for example, a small display device.
  • the reflecting unit 20 provides an image for augmented reality by reflecting the image light corresponding to the augmented reality image emitted from the image output unit 10 toward the pupil of the user.
  • the reflecting unit 20 has an optical means 30 having an appropriate angle so as to reflect the image light corresponding to the image for augmented reality emitted from the image output unit 10 between the image output unit 10 and the pupil to the pupil. ) Are placed inside.
  • the optical means 30 is a means for transmitting at least a portion of the image light emitted from an actual object, and may be, for example, a spectacle lens or a lens module that can be used by attaching to the glasses, and a reflective part 20 is embedded therein.
  • the frame portion 40 is a means for fixing and supporting the image output portion 10 and the optical means 30.
  • the reflective part 20 of FIG. 3 is formed to have a size smaller than the size of a human pupil, that is, 8 mm or less, and by forming the reflective part 20 to be smaller than the pupil size as described above, it enters the pupil through the reflective part 20
  • the depth of field for light can be almost infinite, that is, the depth of field can be made very deep.
  • the depth of field refers to the range in which the focus is recognized as being in focus.
  • the focus range for an augmented reality image increases. Therefore, the focal length of the real world while the user gazes at the real world. Regardless of this, the focus of the augmented reality image is always recognized as being correct. This can be seen as a kind of pin hole effect. Therefore, the augmented reality optical device 100 as shown in FIG. 3 always provides a clear virtual image for an augmented reality image regardless of whether the user changes the focal length while gazing at a real object existing in the real world. can do.
  • the present invention is characterized in that it provides an augmented reality optical device having a vision correction function based on the technology as described in Patent Document 1, and has a vision correction function according to the present invention with reference to FIG.
  • the augmented reality optical device 100 will be described in detail.
  • FIG. 4 is a view showing the overall configuration of an augmented reality optical device 200 having a vision correction function according to an embodiment of the present invention.
  • FIG. 4A is a side view of an augmented reality optical device 200 having a vision correction function according to an embodiment of the present invention, and FIG. 4B is for comparison with the present embodiment.
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • the augmented reality optical device 200 (hereinafter, simply referred to as "augmented reality optical device 200") having a vision correction function according to the present embodiment includes an image output unit 10, a reflection It includes a part 20 and optical means 30.
  • the image output section 10 is a means for emitting image light corresponding to the image light for augmented reality.
  • the image output unit 10 is a means for emitting augmented reality image light, which is an image light corresponding to an augmented reality image, toward the optical means 30, for example, by displaying an augmented reality image on the screen. It may be composed of a display device 11 such as a small LCD that emits light and a collimator 12 that emits light collimating the augmented reality image light emitted from the display device 11.
  • a display device 11 such as a small LCD that emits light
  • a collimator 12 that emits light collimating the augmented reality image light emitted from the display device 11.
  • FIG. 4 a case including the collimator 12 is exemplarily shown, but this is not essential and may be omitted.
  • reflection means, refraction means, or diffraction means for reflecting, refracting, or diffracting the augmented reality image light emitted from the display device 11 and transmitting it toward the optical means 30 may be used.
  • Such an image output unit 10 itself is not a direct object of the present invention and is known by the prior art, and thus a detailed description thereof will be omitted.
  • the augmented reality image is a virtual image displayed on the screen of the display device 11 and transmitted to the user's pupil 40 through the image output unit 10, the reflective unit 20, and the optical means 30. It refers to an image, and may be a still image in the form of an image or a moving image.
  • the augmented reality image is emitted as image light from the display device 11 and transmitted to the user's pupil 40 by the image emitting unit 10, the reflecting unit 20, and the optical means 30, thereby providing a virtual image to the user.
  • the user is provided with an augmented reality service by directly staring at the real object image light, which is the image light emitted from the real object existing in the real world, through the optical means 30.
  • the reflecting unit 20 is a means for providing an image for augmented reality to a user by reflecting and transmitting the augmented reality image light emitted from the image output unit 10 toward the pupil 40 of the user's eye.
  • the reflecting part 20 is disposed inside between the first surface 31 and the second surface 32 of the optical means 30.
  • the first surface 31 refers to the surface of the user's pupil 40
  • the second surface 32 refers to the opposite surface. It is defined as doing.
  • the optical means 30 includes a first surface 31 through which at least a portion of the augmented reality image light reflected from the reflecting unit 20 and the actual object image light exits toward the pupil 40 of the user, and the first surface ( 31) and having a second surface 32 on which the image light of an actual object is incident, and the reflective unit 20 is the interior of the optical means 30 between the first surface 31 and the second surface 32 Is placed in
  • FIG. 4 it is shown that the augmented reality image light emitted from the image output unit 10 is totally reflected once on the second surface 32 of the optical means 30 and then transmitted to the reflection unit 20.
  • the optical means 30 may be configured to be totally reflected twice or more on the first surface 31 or the second surface 32 to be transmitted to the reflecting unit 20.
  • the augmented reality image light emitted from the image output unit 10 may be configured to be directly transmitted to the reflection unit 20 without being totally reflected on the inner surface of the optical means 30.
  • the reflecting unit 20 is disposed with an appropriate inclination angle on the inner surface of the optical means 20 so that the augmented reality image light emitted from the image output unit 10 can be reflected and transmitted toward the pupil 40 of the user's eye. .
  • the augmented reality image light emitted from the image output unit 10 is totally reflected once on the second surface 32 of the optical means 30 and transmitted to the reflection unit 20.
  • the inclination angle of the reflector 20 is appropriately arranged.
  • the reflective part 20 is preferably formed to have a size smaller than the size of a human pupil, that is, 8 mm or less so that a pinhole effect can be obtained by increasing a depth of field.
  • the reflecting part 20 is formed to have a size smaller than the general pupil size of a person, that is, 8 mm or less, and more preferably 4 mm or less, whereby the depth of light entering the pupil through the reflecting part 20 ( Depth of Field) can be made close to infinity, i.e. a very deep depth of field, so even if the user changes the focal length to the real world while gazing at the real world, the focus of the image for augmented reality is always recognized as correct. A pin hole effect can be generated.
  • the reflective portion 20 may be formed in a plurality of two or more, each of the plurality of reflective portions 20, as shown in Figure 4, total reflection from the second surface 32 of the optical means 30
  • the augmented reality image light is appropriately arranged so as not to block transmission of the other reflecting unit 20.
  • the size of each reflector 20 is formed to be 8 mm or less, more preferably 4 mm or less.
  • the optical means 30 is a means in which the reflective unit 20 is disposed and transmits at least a part of the actual object image light, which is the image light emitted from the actual object, toward the pupil 40 of the user's eye.
  • the fact that at least a part of the image light of the real object is transmitted toward the pupil 40 means that the light transmittance of the image light of the real object is not necessarily 100%.
  • the optical means 30, as shown in Fig. 4 in the case of using a configuration that totally reflects the augmented reality image light emitted from the image output unit 10, the augmented reality image light emitted from the image output unit 10 Is reflected at least once or more from the first surface 31 or the second surface 32 and transmitted to the reflecting unit 20.
  • the optical means 10 includes a first surface 31 through which at least a part of the augmented reality image light reflected from the reflecting unit 20 and the actual object image light is emitted toward the pupil of the user, and the first A second surface 32 facing the surface 31 and on which the image light of an object is incident is provided, and the reflective unit 20 is disposed inside between the first surface 31 and the second surface 32.
  • the optical means 10 may be formed of a lens made of glass or plastic and other synthetic resin materials.
  • first surface 31 and the second surface 32 of the optical means 10 may be formed as a curved surface. That is, either the first surface 31 or the second surface 32 may be curved, and both the first surface 31 and the second surface 32 may be formed as curved surfaces.
  • the curved surface may be a concave surface or a convex surface
  • the concave surface means that the central part is formed thinner than the edge part when the surface is viewed from the front, and the convex surface is a corresponding surface. When viewed from the front, it means that the central part is formed thicker than the edge part and protrudes convexly.
  • the second surface 32 may be formed as one of a flat surface, a concave surface, or a convex surface.
  • FIG. 4A shows a case where the first surface 31 is formed as a concave surface and the second surface 32 is formed as a flat surface, and is for correcting visual acuity of a nearsighted user.
  • the augmented reality image light indicated by the dotted line is emitted from the display device 11 and passes through the collimator 12 to the optical device. It is incident on the second surface 32 of 30, is totally reflected from the second surface 32 of the optical means 30, is incident on the reflective unit 20, and is then reflected from the reflective unit 20 to the pupil 40 Is delivered. At this time, since the first surface 31 is formed as a plane, the augmented reality image light passes through the first surface 31 as it is, and thus an image is formed in front of the retina.
  • the augmented reality image light indicated by the dotted line is emitted from the display device 11, through the collimator 12, the optical means 30 It is incident on the second surface 32, is totally reflected from the second surface 32 of the optical means 30, is incident on the reflecting unit 20, and is then reflected by the reflecting unit 20 and transmitted to the pupil 40.
  • the first surface 31 is formed as a concave surface, the augmented reality image light is radiated outward while passing through the first surface 31, so that the focal length increases as it passes through the pupil 40, the retina It can be seen that it is delivered so that the prize is formed.
  • the actual object image light shown by a solid line is also emitted in an outward direction while passing through the first surface 31, so that the pupil 40 It can be seen that the focal length increases as it passes through and is transmitted to form an image on the retina.
  • the augmented reality optical device 200 may provide a vision correction function for both augmented reality image light and real object image light to a nearsighted user.
  • the first surface 31 of the optical means 30 may be formed as a convex surface.
  • the second surface 32 may be formed as one of a flat surface, a concave surface, or a convex surface.
  • FIG 5 is a view showing the overall configuration of an augmented reality optical device 300 having a vision correction function according to another embodiment of the present invention.
  • Figure 5 (a) is a side view of an augmented reality optical device 300 having a vision correction function according to another embodiment of the present invention
  • Figure 5 (b) is for comparison with the present embodiment
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • the first surface 31 of the optical means 30 is formed as a convex surface, and the second surface 32 is formed as a flat surface, and the vision of a primitive user It is for correction.
  • both the augmented reality image light indicated by the dotted line and the actual object image light indicated by the solid line are imaged behind the retina.
  • the augmented reality image light indicated by the dotted line is emitted from the display device 11 and passes through the collimator 12 to the optical means 30. It is incident on the second surface 32, is totally reflected from the second surface 32 of the optical means 30, is incident on the reflecting unit 20, and is reflected by the reflecting unit 20 and transmitted to the pupil 40. .
  • the first surface 31 is formed as a convex surface, the augmented reality image light converges in the inward direction while passing through the first surface 31, and thus the focal length is shortened as it passes through the pupil 40 It can be seen that it is transmitted to form an image on the retina.
  • the actual object image light shown by a solid line is also converged in the inward direction while passing through the first surface 31, thus forming the pupil 40 It can be seen that the focal length is shortened over time, so that the image is transferred to the retina.
  • the embodiment of FIG. 5A may provide a vision correction function for both augmented reality image light and real object image light for a primitive user.
  • FIG. 6 is a view showing the overall configuration of an augmented reality optical device 400 having a vision correction function according to another embodiment of the present invention.
  • FIG. 6(a) is a side view of an augmented reality optical device 400 having a vision correction function according to another embodiment of the present invention
  • FIG. 6(b) is for comparison with the present embodiment.
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • the embodiment shown in FIG. 6A is characterized in that the second surface 32 of the optical means 30 is formed as a concave surface, and the first surface 31 is formed as a flat surface. It is for visual acuity correction for real object image light.
  • both the first surface 31 and the second surface 32 are formed as flat, dotted lines Both the augmented reality image light represented by and the real object image light represented by a solid line are imaged in front of the retina.
  • the actual object image light represented by a solid line passes through the second surface 32 and radiates outward, and thereafter, the first surface ( 31) and the pupil 40, it can be seen that the focal length is increased so that an image is formed on the retina.
  • the vision correction function for the augmented reality image light cannot be provided. .
  • the embodiment of FIG. 6A may provide a vision correction function limited only to image light of an actual object to a nearsighted user.
  • the augmented reality image light emitted from the image output unit 10 is totally reflected once on the second surface 32 of the optical means 30, and then the reflection unit 20 It is configured to enter.
  • the second surface 32 of the optical means 30 should have a total reflection area 33 formed as a plane for total reflection of the augmented reality image light from the image output unit 10.
  • the augmented reality image light emitted from the image output unit 10 is totally reflected at least two times or more on the first surface 31 and the second surface 32 of the optical means 30, the first surface 31 in which total reflection occurs.
  • the second surface 32 both have a total reflection area 33 formed in a plane.
  • the augmented reality image light emitted from the image output unit 10 is totally reflected at least one or more times by at least one of the first surface 31 and the second surface 32 of the optical means 30, and then the reflection unit At this time, at least one of the first surface 31 and the second surface 32 of the optical means 30, which can be transmitted to 20, wherein total reflection is performed, is an augmented reality emitted from the image output unit 10 It is preferable to provide a planar total reflection area 33 for total reflection of image light.
  • FIG. 7 is a view showing the overall configuration of an augmented reality optical device 500 having a vision correction function according to another embodiment of the present invention.
  • Figure 7 (a) is a side view of an augmented reality optical device 500 having a vision correction function according to another embodiment of the present invention
  • Figure 7 (b) is for comparison with the present embodiment
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • Fig. 7A shows a case where the second surface 32 is formed as a convex surface and the first surface 31 is formed as a flat surface. It is for vision correction.
  • both the first surface 31 and the second surface 32 are formed in a plane shape, Both the augmented reality image light shown and the real object image light shown by a solid line are imaged behind the retina.
  • the actual object image light represented by a solid line passes through the second surface 32 and converges in the inward direction, and thereafter, the first surface 31 ) And the pupil 40, the focal length is shortened so that the image is transmitted to the retina.
  • the vision correction function for the augmented reality image light cannot be provided. .
  • the embodiment of FIG. 7A may provide a vision correction function limited only to the actual object image light to a primitive user.
  • the vision correction function for the augmented reality image light cannot be provided, but when these are used with other auxiliary optical devices, augmented It is possible to provide a vision correction function for real image light.
  • the augmented reality optical devices 400 and 500 are formed as separate lens modules and are used in a form of combining them with general glasses by means such as clips, or the augmented reality optical devices 400 and 500 are used in the form of glasses. Since it can be implemented and used in combination in a form such as using a separate lens module for vision correction of the augmented reality image light, there is an advantage that the degree of freedom in design and design can be increased.
  • FIG 8 is a view showing the overall configuration of an augmented reality optical device 600 having a vision correction function according to another embodiment of the present invention.
  • Figure 8 (a) is a side view of an augmented reality optical device 600 having a vision correction function according to another embodiment of the present invention
  • Figure 8 (b) is for comparison with the present embodiment
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • the first surface 31 of the optical means 30 is formed as a concave surface
  • the second surface 32 is formed as a convex surface
  • the second surface 32 It shows a case in which the optical means 30 as a whole is formed to act as a concave lens by making the curvature of the first surface 31 larger than the curvature of the augmented reality image light and the real object image light for the nearsighted user It is for vision correction.
  • both the first surface 31 and the second surface 32 are formed as flat, dotted lines Both the augmented reality image light represented by and the real object image light represented by a solid line are imaged in front of the retina.
  • the augmented reality image light indicated by the dotted line is emitted from the display device 11 It is incident on the second surface 32 of the optical means 30 through the collimator 12, is totally reflected from the second surface 32 of the optical means 30 and is incident on the reflecting unit 20, and then the reflecting unit ( It is reflected from 20) and transmitted to the pupil 40.
  • the first surface 31 is formed as a concave surface, the augmented reality image light is radiated outward while passing through the first surface 31, so that the focal length increases as it passes through the pupil 40, the retina It can be seen that it is delivered so that the prize is formed.
  • the actual object image light represented by a solid line passes through the second surface 32 formed as a convex surface and converges slightly inward.
  • the first surface 31 which has a greater curvature than the curvature of the 2 surface 32, it diverges outward, so the focal length as a whole increases as it passes through the pupil 40, so that the image is transmitted to the retina. Can be seen.
  • the embodiment of FIG. 8A may provide a vision correction function for both augmented reality image light and real object image light for a nearsighted user.
  • the optical means 30 can be implemented as a spectacle lens used by real nearsighted users, only the augmented reality optical device 600 can be used as an augmented reality providing device in the form of glasses without a separate auxiliary optical means. have.
  • FIG. 9 is a view showing the overall configuration of an augmented reality optical device 700 having a vision correction function according to another embodiment of the present invention.
  • FIG. 9(a) is a side view of an augmented reality optical device 700 having a vision correction function according to another embodiment of the present invention, and FIG. 9(b) is for comparison with the present embodiment.
  • a side view of a prior art optical device 100 for augmented reality as described in Patent Document 1 is shown.
  • the embodiment shown in (a) of FIG. 9 is similar to the embodiment of (a) of FIG. 8, but the optical means 30 as a whole is formed by forming both the first and second surfaces 31 and 32 as convex surfaces. ) Is formed to serve as a convex lens, and is for visual acuity correction for augmented reality image light and real object image light for a primitive user. Other configurations are the same as those described in FIG. 8, so detailed descriptions are omitted.
  • the first surface 31 of the optical means 30 is formed as a concave surface, and the second surface 32 is formed as a convex surface, but the second surface than the curvature of the first surface 31
  • the optical means 30 may perform a role as a convex lens (such a lens is usually referred to as a positive meniscus lens).
  • a vision correction function for real object image light may be provided to a primitive user, but the vision correction effect for augmented reality image light is insufficient.
  • the vision correction function for the augmented reality image light is provided for the far-sighted user by using other components (eg, the curved structure of the reflector, adjusting the thickness or spacing of the collimator) to correct the vision of the augmented reality image light. Needs to be.
  • first and second surfaces 31 and 32 are curved
  • the first surface 31 and the second surface 32 are formed as a combination of a concave surface and a convex surface, but by appropriately adjusting the curvature, the optical means 30 can be used as a whole depending on whether the user is nearsighted or farsighted. It can be made to function as a concave lens or a convex lens.
  • FIG. 10 and 11 are views for explaining an augmented reality optical device 800 having a vision correction function according to another embodiment of the present invention
  • FIG. 10 is an overall configuration of an augmented reality optical device 800 It is a side view showing
  • FIG. 11 is a diagram for explaining the configuration of the reflective parts 21A and 21B.
  • FIG. 10 has the same basic configuration as the optical device for augmented reality 100 described in Patent Document 1 described with reference to FIGS. 4 to 9, but the surfaces of the reflecting portions 21A and 21B are formed in curved surfaces. There is a difference in that it is done.
  • the reflective portions 21A and 21B may be formed in a plurality of two or more.
  • the surfaces of the reflective portions 21A and 21B may be formed as a convex surface or a concave surface.
  • two reflective portions 21A and 21B having a convex surface are formed to provide a vision correction function of augmented reality image light to a nearsighted user.
  • the augmented reality image light indicated by the dotted line is totally reflected from the second surface 32 of the optical means 30 and then enters the reflective portions 21A and 21B, and then enters the reflective portions 21A and 21B. It is reflected and transmitted to the pupil 40.
  • the augmented reality image light is radiated outward by the reflecting parts 21A and 21B, which are convex surfaces. It is transmitted to the pupil 40. Accordingly, the augmented reality image light may be transmitted so that an image is formed on the retina through the pupil 40 due to a longer focal length, thereby providing a vision correction function of the augmented reality image light to a nearsighted user.
  • the plurality of reflective portions 21A and 21B are at least among unit reflective means obtained by dividing one reflecting means 21 having a curved surface into a plurality of pieces. It can be composed of parts.
  • 11 is a diagram for explaining the configuration of the reflecting portions 21A and 21B.
  • the two reflecting portions 21A and 21B may be formed by using two unit reflecting means of the unit reflecting means 1 and the unit reflecting means 3 except for the unit reflecting means 2.
  • FIG. 11 it is shown a case where three unit reflection means are obtained by dividing one reflection means 21, but this is an example and in some cases, four, five or more unit reflection means are divided and formed. It goes without saying that the reflector may be configured using some of them.
  • the reflecting parts 21A and 21B are divided into a plurality of unit reflecting means with one reflecting means 21 in the front direction of the pupil 40, and among them, the reflecting part 21A , While maintaining the shape of the unit reflection means to be used as 21B), moving along a direction horizontal to the front direction of the pupil 40, between the first side 31 and the second side 32 of the optical means 30 Can be arranged to be located.
  • the reflecting portions 21A and 21B disposed between the first surface 31 and the second surface 32 of the optical means 30 are formed by the first surface 31 and the second surface of the optical means 30. It may be arranged side by side so as to be horizontal to the surface 32, but this is not necessarily the case, and as described above, each of the reflectors 21A and 21B is arranged to have an appropriate angle so as not to block the augmented reality image light with respect to other reflectors. Can be.
  • FIG. 12 and 13 are views for explaining an optical device 900 for augmented reality according to another embodiment of the present invention
  • FIG. 12 is a side view showing the overall configuration of an optical device 900 for augmented reality
  • FIG. 13 is a diagram for explaining the configuration of the reflective portions 22A and 22B.
  • FIGS. 12 and 13 are the same as those of the embodiments described in FIGS. 10 and 11, but differ in that the surfaces of the reflecting portions 22A and 22B are formed as concave surfaces.
  • two reflecting portions 22A and 22B having surfaces formed as concave surfaces are formed, which is for providing a vision correction function of augmented reality image light to a primitive user.
  • the augmented reality image light indicated by the dotted line is totally reflected on the second surface 32 of the optical means 30 and then enters the reflecting portions 22A and 22B, and is then incident on the reflecting portions 22A and 22B. It is reflected and transmitted to the pupil 40.
  • the augmented reality image light converges in the inward direction by the reflecting portions 22A, 22B, which are concave surfaces. It is delivered to (40). Accordingly, the augmented reality image light may be transmitted so that the focal length is shortened and an image is formed on the retina through the pupil 40, thereby providing a vision correction function of the augmented reality image light for a primitive user.
  • the plurality of reflective parts 22A and 22B are unit reflective means in which one reflecting means 21 having a curved surface is divided into a plurality of units. It may be composed of at least some of the.
  • 13 is a diagram for explaining the configuration of the reflecting portions 22A and 22B.
  • the configurations of the reflective parts 22A and 22B of FIG. 13 are the same as those described in FIG. 11, except that the reflective parts 22A and 22B are formed in concave surfaces.
  • the two reflecting portions 22A and 22B may be formed by using two unit reflecting means of the unit reflecting means 1 and the unit reflecting means 3.
  • the reflective portions 22A and 22B are also divided into a plurality of unit reflecting means with one reflecting means 22 placed in the front direction of the pupil 40, as described in FIG. 11, and among them, the reflecting portions 22A,
  • the unit reflection means to be used as 22B) is positioned between the first side (31) and the second side (32) of the optical means (30) by moving along the horizontal direction to the front direction of the pupil (40) while maintaining its shape. Can be arranged to do so.
  • the reflective portions 22A and 22B disposed between the first and second surfaces 31 and 32 of the optical means 30 are provided with the first surface 31 and the second surface of the optical means 30. It can be arranged side by side so as to be horizontal on the two sides (32). Alternatively, each of the reflecting units 22A and 22B may be disposed to have an appropriate angle so as not to block the augmented reality image light with respect to the other reflecting units.
  • FIGS. 14 and 15 are diagrams showing optical devices 1000 and 1100 for augmented reality according to still another embodiment of the present invention.
  • the augmented reality optical devices 1000 and 1100 of the embodiments of FIGS. 14 and 15 have the same basic configuration as the augmented reality optical device 100 of Patent Document 1 described with reference to FIGS. 4 to 9, but It is characterized in that the vision correction function is provided by using the optical elements 50 and 60.
  • auxiliary optical elements 50 and 60 are disposed between the image output unit 10 and the optical unit 30 to refract the augmented reality image light emitted from the image output unit 10 and transmit it to the optical unit 30 Characterized in that.
  • auxiliary optical elements 50 and 60 may be refractive means such as a concave lens or a convex lens.
  • FIG. 14 shows a case where a concave lens 50 is used as an auxiliary optical element
  • the embodiment of FIG. 15 shows a case where a convex lens 60 is used.
  • the auxiliary optical element 50 refracts the augmented reality image light to emanate outward, so that it is transmitted to the retina through the pupil 40 through the reflector 20.
  • a vision correction function for a nearsighted user can be provided.
  • the auxiliary optical element 60 refracts the augmented reality image light to converge in the inward direction, so that it will be transmitted to the retina through the pupil 40 through the reflector 20.
  • a vision correction function for a far-sighted user may be provided.
  • auxiliary optical elements 50 and 60 optical elements such as diffraction means or hologram elements may be used in addition to refractive means such as concave or convex lenses.
  • a vision correction function for augmented reality image light may be obtained by adjusting the distance between the display device 11 and the collimator 12 or using the collimator 12 having a different focal length.
  • 16 is a diagram for explaining a vision correction function using collimators 12A and 12B.
  • the augmented reality image light can be refracted to diverge or converge. It shows the principle of providing the vision correction function of real image light.
  • the augmented reality image light can be provided with a vision correction function by changing the optical path transmitted to the optical means 30. have.
  • the method of changing the focal length of the collimators 12A and 12B and the method of changing the distance between the display device 11 and the collimators 12A and 12B may be used in combination.
  • FIG. 16 may be used in combination with the embodiments described in FIGS. 14 and 15.
  • FIGS. 4 to 16 may be used in combination by combining with each other.
  • FIGS. 4 to 16 illustrate the optical devices 1200 and 1300 for augmented reality according to another embodiment of the present invention, and illustrate a case in which the embodiments of FIGS. 4 to 16 are used in combination.
  • FIG. 17 shows an augmented reality optical device 1200 to which the embodiment of FIG. 6 and the embodiment of FIG. 10 are applied in combination.
  • the augmented reality optical device 1200 of the embodiment of FIG. 17 forms the second surface 32 as a concave surface as in the embodiment of FIG. 6 to provide a myopia correction function for the image light of an actual object.
  • a nearsighted correction function for the augmented reality image light may be provided.
  • FIG. 18 shows the optical device 1300 for augmented reality to which the embodiment of FIG. 8 and the embodiment of FIG. 10 are applied in combination.
  • the first surface 31 of the optical means 30 is formed as a concave surface and the second surface 32 is formed as a convex surface, but the second surface
  • the optical means 30 acts as a concave lens as a whole, thereby correcting vision for augmented reality image light and real object image light for the nearsighted user.
  • a vision correction function of the augmented reality image light may be additionally provided to a nearsighted user.
  • FIGS. 17 and 18 are exemplary, and in addition to these embodiments, a complex vision correction function may be provided according to a usage example by combining the embodiments of FIGS. 4 to 16 in various ways.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Lenses (AREA)

Abstract

본 발명은 시력 보정 기능을 구비하는 증강 현실용 광학 장치에 관한 것으로서, 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고, 상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치를 제공한다.

Description

시력 보정 기능을 구비하는 증강 현실용 광학 장치
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 근시나 원시 등과 같은 굴절 이상을 갖는 사용자에 대한 시력 보정 기능을 제공할 수 있는 증강 현실용 광학 장치에 관한 것이다.
증강 현실(Augmented Reality, AR)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 생성되는 가상의 영상이나 이미지를 겹쳐서 제공하는 것을 의미한다.
이러한 증강 현실을 구현하기 위해서는, 컴퓨터와 같은 디바이스에 의해 생성되는 가상의 영상이나 이미지를 현실 세계의 영상에 겹쳐서 제공할 수 있도록 하는 광학계를 필요로 한다. 이러한 광학계로서는 HMD(Head Mounted Display)나 안경형의 장치를 이용하여 가상 영상을 반사 또는 굴절시키는 프리즘 등과 같은 광학 수단을 사용하는 기술이 알려져 있다.
한편, 근시나 원시 등과 같은 굴절 이상은 한국인의 50% 이상이 겪는 매우 흔한 문제인데, 이러한 굴절 이상을 갖는 사용자는 안경과 같은 시력 보정 기구를 착용해야 하며, 따라서 증강 현실 영상을 관찰하기 위해서는 시력 보정 기구와 더불어서 증강 현실을 제공하기 위한 별도의 장치를 이중으로 착용해야 한다는 문제가 있다.
종래의 증강 현실 장치에서는, 이러한 문제를 해결하기 위해서 시력 교정용 렌즈에 거울 역할을 하는 홀로그램 필름을 붙여서 광학 합성기로 사용하는 방식이 제안되어 있다.
도 1은 안경형으로 구현된 증강 현실 장치와 상기 증강 현실 장치의 렌즈에 부착되어 광학 합성기로 사용되는 홀로그램 필름을 나타낸 것이다.
이러한 방식은, 홀로그램 필름이 좁은 면적을 가지기 때문에 이로 인하여 증강 현실 화상(가상 영상)의 사용 조건(시야각, 아이박스(eyebox) 등)이 심하게 제한된다는 문제가 있다. 또한, 사용할 수 있는 디스플레이의 제한으로 인하여(예: 레이저 프로젝션) 영상품질, 해상도, 색상 표현력에서 현저하게 제한된다는 문제도 있다. 나아가, 단일 곡면으로 시력 보정을 하기 때문에, 시력 보정 범위가 -4D~+2D 범위로 한정된다는 한계도 있다.
한편, 안경형 증강 현실 장치에 별도의 렌즈 클립을 장착하는 방식도 알려져 있다.
도 2는 안경형 증강 현실 장치에 별도의 초점 교정용 렌즈를 클립 형태로 장착한 것을 나타낸 것이다.
이 방식은 초점 교정용 렌즈를 자석형 클립으로 안경형 증강 현실 장치에 장착하여 사용하는 방식으로서, 초점 교정용 렌즈를 별도로 추가로 장착하여야 하므로 부피 및 무게가 증가하는 단점이 있고, 또한 가상 영상과 실상 영상에 대한 시력 교정을 위해서는 렌즈 클립을 항상 안경 안쪽(사용자 쪽) 방향에만 착용해야 하므로 디자인상의 제약이 발생한다는 한계가 있다.
따라서, 증강 현실 광학 장치에 있어서 간편하고 효율적인 방식으로 시력 교정 기능을 제공하는 기술의 개발이 요망되고 있다.
[선행기술문헌]
대한민국 등록특허공보 10-1660519호(2016.09.29 공고)
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 근시나 원시 등과 같은 굴절 이상을 갖는 사용자에 대한 시력 보정 기능을 제공할 수 있는 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 광학 수단의 곡면 설계 방식, 반사부의 곡면 설계 방식 및 보조 광학 소자를 이용하는 방식 중 적어도 어느 하나의 방식을 조합하여 사용할 수 있도록 함으로써, 굴절 이상을 갖는 사용자에 대한 시력 보정 기능을 효율적으로 제공할 수 있으며, 부피가 작고 무게가 가벼우면서도 설계 및 디자인의 자유도를 높일 수 있는 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서, 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고, 상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 곡면은 오목면 또는 볼록면인 것이 바람직하다.
또한, 상기 곡면으로 형성된 면이 아닌 다른 면은 평면, 오목면 또는 볼록면 중 어느 하나로 형성될 수 있다.
또한, 상기 제1 면은 오목면으로 형성되고, 상기 제2 면은 볼록면으로 형성하되, 상기 제1 면의 곡률은 상기 제2 면의 곡률보다 크게 할 수도 있다.
또한, 상기 제1 면은 오목면으로 형성되고, 상기 제2 면은 볼록면으로 형성하되, 상기 제2 면의 곡률은 상기 제1 면의 곡률보다 크게 할 수도 있다.
또한, 상기 화상 출사부로부터 출사된 증강 현실 화상광은 광학 수단의 제1 면 및 제2 면 중 적어도 어느 하나에 의해 적어도 1회 이상 전반사된 후 반사부로 전달되고, 상기 광학 수단의 제1 면 및 제2 면 중 적어도 어느 하나는 화상 출사부로부터 출사된 증강 현실 화상광을 전반사하기 위한 평면으로 형성된 전반사 영역을 구비할 수 있다.
또한, 상기 반사부는, 곡면으로 형성될 수 있다.
또한, 상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달될 수 있다.
본 발명의 다른 측면에 의하면, 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서, 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 반사부의 표면은 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 반사부의 표면은 오목면 또는 볼록면일 수 있다.
또한, 상기 반사부는 복수개로 형성되고, 상기 복수개의 반사부는, 곡면으로 형성된 표면을 갖는 하나의 반사 수단을 복수개로 분할한 단위 반사 수단들 중 적어도 일부로 구성될 수 있다.
또한, 상기 복수개의 반사부는 하나의 반사 수단을 동공 정면 방향에 둔 상태에서 복수개의 단위 반사 수단으로 분할하고, 이들 중 반사부로 사용할 단위 반사 수단을 그 형태를 유지한 채 동공 정면 방향에 수평한 방향을 따라 이동시켜 광학 수단의 제1 면과 제2 면 사이에 위치하도록 배치될 수도 있다.
또한, 상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고, 상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성되도록 구성할 수도 있다.
또한, 상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달될 수 있다.
본 발명의 또 다른 측면에 의하면, 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서, 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달되는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 보조 광학 소자는, 굴절 수단, 회절 수단 또는 홀로그램 소자 중 적어도 어느 하나일 수 있다.
또한, 상기 굴절 수단은, 오목 렌즈 또는 볼록 렌즈일 수 있다.
또한, 상기 화상 출사부는, 증강 현실용 화상을 화면에 표시함으로써 화면을 통해 증강 현실 화상광을 출사하는 디스플레이 장치와 디스플레이 장치에서 출사되는 증강 현실 화상광을 시준한 광을 출사하는 콜리메이터를 구비하고, 상기 콜리메이터의 초점 거리를 변경시키거나 상기 디스플레이 장치와 상기 콜리메이터의 거리를 변경함으로써 증강 현실 화상광이 광학 수단으로 전달되는 광 경로를 변경시킬 수 있다.
또한, 상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고, 상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성될 수 있다.
또한, 상기 반사부는, 곡면으로 형성될 수 있다.
본 발명에 의하면, 근시나 원시 등과 같은 굴절 이상을 갖는 사용자에 대한 시력 보정 기능을 제공할 수 있는 증강 현실용 광학 장치를 제공할 수 있는 효과가 있다.
또한, 본 발명은, 광학 수단의 곡면 설계 방식, 반사부의 곡면 설계 방식 및 보조 광학 소자를 이용하는 방식 중 적어도 어느 하나의 방식을 조합하여 사용할 수 있도록 함으로써, 굴절 이상을 갖는 사용자에 대한 시력 보정 기능을 효율적으로 제공할 수 있으며, 부피가 작고 무게가 가벼우면서도 설계 및 디자인의 자유도를 높일 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
도 1은 안경형으로 구현된 증강 현실 장치와 상기 증강 현실 장치의 렌즈에 부착되어 광학 합성기로 사용되는 홀로그램 필름을 나타낸 것이다.
도 2는 안경형 증강 현실 장치에 별도의 초점 교정용 렌즈를 클립 형태로 장착한 것을 나타낸 것이다.
도 3은 상기 특허 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 4는 본 발명의 일실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(200)의 전체적인 구성을 나타낸 도면이다.
도 5는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(300)의 전체적인 구성을 나타낸 도면이다.
도 6은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(400)의 전체적인 구성을 나타낸 도면이다.
도 7은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(500)의 전체적인 구성을 나타낸 도면이다.
도 8은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(600)의 전체적인 구성을 나타낸 도면이다.
도 9는 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(700)의 전체적인 구성을 나타낸 도면이다.
도 10 및 도 11은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(800)를 설명하기 위한 도면으로서, 도 10은 증강 현실용 광학 장치(800)의 전체적인 구성을 나타낸 측면도이고, 도 11은 반사부(21A, 21B)의 구성을 설명하기 위한 도면이다.
도 12 및 도 13은 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(900)를 설명하기 위한 도면으로서, 도 12는 증강 현실용 광학 장치(900)의 전체적인 구성을 나타낸 측면도이고, 도 13은 반사부(22A, 22B)의 구성을 설명하기 위한 도면이다.
도 14 및 도 15는 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(1000, 1100)를 나타낸 도면이다.
도 16은 콜리메이터(12A, 12B)를 이용한 시력 보정 기능을 설명하기 위한 도면이다.
도 17 및 도 18은 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(1200, 1300)를 나타낸 것으로서, 도 4 내지 도 16의 실시예를 조합하여 사용한 경우를 예시적으로 나타낸 것이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예를 상세하게 설명하기로 한다.
우선, 본 발명의 기본 원리를 상기 특허 문헌 1을 참조하여 간략하게 설명한다.
특허 문헌 1에 기재된 기술은, 종래의 광학계를 이용한 증강 현실 구현 장치의 문제점, 즉, 그 구성이 복잡하여 무게와 부피가 상당하므로 사용자가 착용하기에 불편함이 있고 제조 공정 또한 복잡하므로 제조 비용이 높다는 문제점을 해결하기 위한 것이다.
또한 ,종래의 광학계를 이용한 증강 현실 구현 장치는, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있으며, 이러한 문제점을 해결하기 위하여, 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘과 같은 구성을 이용하거나 초점 거리의 변경에 따라 가변형 초점 렌즈를 전기적으로 제어하는 등의 기술이 제안되어 있다. 그러나, 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 초점 거리의 제어를 위한 별도의 프로세서 등과 같은 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
따라서, 본 출원인은, 특허 문헌 1에 기재된 바와 같이, 사람의 동공보다 작은 크기의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영함으로써 부피 및 무게를 현저하게 줄이고 제조 공정을 단순화시킬 수 있으며, 사용자의 초점 거리 변경 여부에 관계없이 항상 선명한 가상 영상을 제공할 수 있는 증강 현실 구현 장치를 제안한 바 있다.
도 3은 상기 특허 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 3의 증강 현실용 광학 장치(100)는 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 포함한다.
화상 출사부(10)는 증강 현실용 화상에 상응하는 화상광을 출사하는 수단으로서 예컨대 소형 디스플레이 장치로 구현될 수 있다.
반사부(20)는 화상 출사부(10)로부터 출사된 증강 현실용 화상에 상응하는 화상광을 사용자의 동공을 향해 반사시킴으로써 증강 현실용 화상을 제공한다. 반사부(20)는, 화상 출사부(10)와 동공 사이에서 화상 출사부(10)로부터 출사되는 증강 현실용 화상에 상응하는 화상광을 동공으로 반사시킬 수 있도록 적절한 각도를 가지고 광학 수단(30) 내부에 배치된다.
광학 수단(30)는 실제 사물로부터 출사된 화상광의 적어도 일부를 투과시키는 수단으로써 예컨대 안경 렌즈이거나 안경에 부착하여 사용할 수 있는 렌즈 모듈 형태일 수 있으며, 그 내부에 반사부(20)가 매립되어 있다. 프레임부(40)는 화상 출사부(10)와 광학 수단(30)을 고정 및 지지하는 수단이다.
도 3의 반사부(20)는, 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로 형성되어 있는데, 이와 같이 반사부(20)를 동공 크기보다 작게 형성함으로써 반사부(20)를 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있다. 여기서, 심도라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지게 되면 증강 현실용 화상에 대한 초점 범위도 넓어진다는 것을 의미하고 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pin hole effect)라고 볼 수 있다. 따라서, 도 3에 나타낸 바와 같은 증강 현실용 광학 장치(100)는, 사용자가 실제 세계에 존재하는 실제 사물을 응시하면서 초점 거리를 변경하는 것과 상관없이 증강 현실용 화상에 대해서는 항상 선명한 가상 영상을 제공할 수 있다.
본 발명은 이러한 특허 문헌 1에 기재된 바와 같은 기술에 기초하여 시력 보정 기능을 구비하는 증강 현실용 광학 장치를 제공하는 것을 특징으로 하는 바, 도 4 이하를 참조하여 본 발명에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(100)를 상세하게 설명한다.
도 4는 본 발명의 일실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(200)의 전체적인 구성을 나타낸 도면이다.
도 4의 (a)는 본 발명의 일실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(200)의 측면도를 나타낸 것이고, 도 4의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 4에 나타낸 바와 같이, 본 실시예의 시력 보정 기능을 구비하는 증강 현실용 광학 장치(200, 이하, 간단히 "증강 현실용 광학 장치(200)"라 한다)는, 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 포함한다.
화상 출사부(10)는, 증강 현실용 화상광에 상응하는 화상광을 출사하는 수단이다.
화상 출사부(10)는 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 광학 수단(30)을 향해 출사하는 수단으로서, 예컨대 증강 현실용 화상을 화면에 표시함으로써 화면을 통해 증강 현실 화상광을 출사하는 소형의 LCD와 같은 디스플레이 장치(11)와 디스플레이 장치(11)에서 출사되는 증강 현실 화상광을 시준한 광을 출사하는 콜리메이터(12)로 구성될 수 있다.
도 4에서는 콜리메이터(12)를 포함하는 경우를 예시적으로 나타내었으나, 이는 필수적인 것이 아니며 생략할 수도 있음은 물론이다. 또한, 콜리메이터(12) 이외에 디스플레이 장치(11)로부터 출사되는 증강 현실 화상광을 반사, 굴절 또는 회절시켜서 광학 수단(30)을 향해 전달하는 반사 수단, 굴절 수단 또는 회절 수단을 사용할 수도 있다.
이러한 화상 출사부(10) 자체는 본 발명의 직접적인 목적이 아니며 종래 기술에 의해 알려져 있는 것이므로 여기에서는 상세 설명은 생략한다.
한편, 증강 현실용 화상이라 함은, 디스플레이 장치(11)의 화면에 표시되어 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 통해 사용자의 동공(40)으로 전달되는 가상 화상을 의미하며, 이미지 형태의 정지 영상이거나 동영상과 같은 것일 수 있다.
이러한 증강 현실용 화상은 디스플레이 장치(11)로부터 화상광으로 출사되어 화상 출사부(10), 반사부(20) 및 광학 수단(30)에 의해 사용자의 동공(40)으로 전달됨으로써 사용자에게 가상 화상을 제공하게 되고, 이와 동시에 사용자는 광학 수단(30)을 통해 실제 세계에 존재하는 실제 사물로부터 출사되는 화상광인 실제 사물 화상광을 눈으로 직접 응시함으로써 증강 현실 서비스를 제공받게 된다.
반사부(20)는, 화상 출사부(10)로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공(40)을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 수단이다.
반사부(20)는, 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부에 배치된다.
여기에서, 제1 면(31)은, 사용자가 증강 현실용 광학 장치(100)를 착용했을 경우 사용자의 동공(40)쪽의 면을 의미하고, 제2 면(32)은 그 반대면을 의미하는 것으로 정의한다.
즉, 광학 수단(30)은 반사부(20)에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공(40)을 향해 출사하는 제1 면(31)과, 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하며, 반사부(20)는 제1 면(31)과 제2 면(32) 사이의 광학 수단(30)의 내부에 배치된다.
한편, 도 4에서는, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30)의 제2 면(32)에서 1회 전반사된 후 반사부(20)로 전달되는 것으로 나타내었으나, 이는 예시적인 것이며, 광학 수단(30)의 제1 면(31) 또는 제2 면(32)에서 2회 이상 전반사되어 반사부(20)로 전달되도록 구성할 수도 있음은 물론이다.
또한, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은, 광학 수단(30)의 내면에서 전반사되지 않고 직접 반사부(20)로 전달되도록 구성할 수도 있다.
반사부(20)는, 화상 출사부(10)로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공(40)을 향해 반사시켜 전달할 수 있도록 광학 수단(20)의 내면에서 적절한 경사각을 가지고 배치된다.
도 4에 나타낸 바와 같이, 화상 출사부(10)로부터 출사된 증강 현실 화상광이 광학 수단(30)의 제2 면(32)에서 1회 전반사되어 반사부(20)로 전달되는 구성을 사용하는 경우, 화상 출사부(10)로부터 광학 수단(30)의 제2 면(32)으로 입사하는 증강 현실 화상광과 제2 면(32)에서 전반사되어 반사부(20)로 출사하는 증강 현실 화상광 그리고 동공(40)의 위치를 고려하여 반사부(20)의 경사각을 적절하게 배치한다.
한편, 반사부(20)는, 앞서 도 3을 참조하여 설명한 바와 같이, 심도를 깊게 하여 핀홀 효과를 얻을 수 있도록 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로 형성되는 것이 바람직하다.
즉, 반사부(20)는, 사람의 일반적인 동공 크기보다 작은 크기 즉, 8mm 이하, 보다 바람직하게는 4mm 이하로 형성되는데, 이에 의해 반사부(20)를 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있고, 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과(pin hole effect)를 발생시킬 수 있다.
한편, 반사부(20)는, 2 이상의 복수개로 형성할 수도 있는데, 복수개의 반사부(20) 각각은, 도 4에 나타낸 바와 같이, 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광이 다른 반사부(20)에 전달되는 것을 차단하지 않도록 적절히 배치된다. 이 경우에도 각각의 반사부(20)의 크기는 8mm 이하 보다 바람직하게는 4mm 이하로 형성한다.
한편, 광학 수단(30)은, 반사부(20)가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공(40)을 향해 투과시키는 수단이다.
여기에서, 실제 사물 화상광의 적어도 일부를 동공(40)을 향해 투과시킨다는 것은 실제 사물 화상광의 빛 투과율이 반드시 100%일 필요는 없다는 의미이다.
또한, 광학 수단(30)은, 도 4에 나타낸 바와 같이 화상 출사부(10)로부터 출사되는 증강 현실 화상광을 전반사시키는 구성을 사용하는 경우에는 화상 출사부(10)로부터 출사된 증강 현실 화상광을 제1 면(31) 또는 제2 면(32)에서 적어도 1회 이상 반사시켜 반사부(20)로 전달한다.
광학 수단(10)은, 전술한 바와 같이, 반사부(20)에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면(31)과, 상기 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하며, 반사부(20)는 제1 면(31)과 제2 면(32) 사이의 내부에 배치된다.
광학 수단(10)은, 유리 또는 플라스틱 재질 및 기타 합성 수지재의 렌즈로 형성할 수 있다.
한편, 광학 수단(10)의 제1 면(31)과 제2 면(32) 중 적어도 어느 하나는 곡면으로 형성될 수 있다. 즉, 제1 면(31) 또는 제2 면(32) 중 어느 하나가 곡면일 수 있고, 제1 면(31) 및 제2 면(32) 모두 곡면으로 형성될 수 있다.
여기에서, 상기 곡면은 오목면 또는 볼록면일 수 있는데, 오목면이라 함은, 해당 면을 정면에서 보았을 때 중앙 부분이 가장자리 부분보다 얇게 형성되어 오목하게 된 것을 의미하며, 볼록면이라 함은 해당 면을 정면에서 보았을 때 중앙 부분이 가장자리 부분보다 두껍게 형성되어 볼록하게 돌출된 것을 의미하는 것으로 한다.
제1 면(31)이 오목면으로 형성된 경우, 제2 면(32)은 평면, 오목면 또는 볼록면 중의 어느 하나로 형성될 수 있다.
도 4의 (a)에 나타낸 실시예는, 제1 면(31)이 오목면으로 형성되고, 제2 면(32)은 평면으로 형성된 경우를 나타낸 것으로서, 근시인 사용자의 시력 보정을 위한 것이다.
즉, 사용자가 근시인 경우, 도 4의 (b)의 증강 현실용 광학 장치(100)에 의하면, 점선으로 나타낸 증강 현실 화상광은 디스플레이 장치(11)에서 출사되어 콜리메이터(12)를 거쳐 광학 수단(30)의 제2 면(32)에 입사하고, 광학 수단(30)의 제2 면(32)에서 전반사되어 반사부(20)로 입사하며 이후 반사부(20)에서 반사되어 동공(40)으로 전달된다. 이 때 제1 면(31)은 평면으로 형성되어 있으므로 증강 현실 화상광은 제1 면(31)을 그대로 통과하게 되고 따라서 망막보다 앞쪽에 상이 맺히게 된다.
또한, 실선으로 나타낸 실제 사물 화상광 또한 제1 면(31)과 제2 면(32)이 모두 평면으로 형성되어 있으므로, 도 4의 (b)에 나타낸 바와 같이, 실제 사물 화상광도 망막보다 앞쪽에 상이 맺히게 된다.
한편, 도 4의 (a)의 실시예의 증강 현실용 광학 장치(200)에 의하면, 점선으로 나타낸 증강 현실 화상광은 디스플레이 장치(11)에서 출사되어 콜리메이터(12)를 거쳐 광학 수단(30)의 제2 면(32)에 입사하고, 광학 수단(30)의 제2 면(32)에서 전반사되어 반사부(20)로 입사하며 이후 반사부(20)에서 반사되어 동공(40)으로 전달된다. 이 때 제1 면(31)이 오목면으로 형성되어 있으므로 증강 현실 화상광은 제1 면(31)을 통과하면서 바깥쪽 방향으로 발산하게 되므로, 동공(40)을 지나면서 초점 거리가 길어져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
또한, 도 4의 (a)의 실시예의 증강 현실용 광학 장치(200)에 의하면, 실선으로 나타낸 실제 사물 화상광 또한 제1 면(31)을 통과하면서 바깥쪽 방향으로 발산하게 되므로 동공(40)을 지나면서 초점 거리가 길어져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
따라서, 도 4의 (a)의 실시예에 의한 증강 현실용 광학 장치(200)는, 근시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광 모두에 대한 시력 보정 기능을 제공할 수 있다.
한편, 광학 수단(30)의 제1 면(31)은 볼록면으로 형성될 수도 있다. 이 경우에도, 제2 면(32)은 평면, 오목면 또는 볼록면 중 어느 하나로 형성될 수 있다.
도 5는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(300)의 전체적인 구성을 나타낸 도면이다.
도 5의 (a)는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(300)의 측면도를 나타낸 것이고, 도 5의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 5의 (a)에 나타낸 실시예는, 광학 수단(30)의 제1 면(31)이 볼록면으로 형성되고, 제2 면(32)은 평면으로 형성된 것을 특징으로 하며, 원시인 사용자의 시력 보정을 위한 것이다.
즉, 사용자가 원시인 경우 도 5의 (b)의 증강 현실용 광학 장치(100)에 의하면, 제1 면(31)과 제2 면(32)이 모두 평면으로 형성되어 있으므로, 도 5의 (b)에 나타낸 바와 같이, 점선으로 나타낸 증강 현실 화상광과 실선으로 나타낸 실제 사물 화상광 모두가 망막보다 뒤쪽에 상이 맺히게 된다.
한편, 도 5의 (a)의 실시예의 증강 현실용 광학 장치(300)에 의하면, 점선으로 나타낸 증강 현실 화상광은 디스플레이 장치(11)에서 출사되어 콜리메이터(12)를 거쳐 광학 수단(30)의 제2 면(32)에 입사하고, 광학 수단(30)의 제2 면(32)에서 전반사되어 반사부(20)로 입사하고, 이후 반사부(20)에서 반사되어 동공(40)으로 전달된다. 이 때, 제1 면(31)이 볼록면으로 형성되어 있으므로 증강 현실 화상광은 제1 면(31)을 통과하면서 안쪽 방향으로 수렴하게 되고, 따라서 동공(40)을 지나면서 초점 거리가 짧아져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
또한, 도 5의 (a)의 실시예의 증강 현실용 광학 장치(300)에 의하면, 실선으로 나타낸 실제 사물 화상광 또한 제1 면(31)을 통과하면서 안쪽 방향으로 수렴하게 되므로 동공(40)을 지나면서 초점 거리가 짧아져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
따라서, 도 5의 (a)의 실시예는, 원시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광 모두에 대한 시력 보정 기능을 제공할 수 있다.
도 6은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(400)의 전체적인 구성을 나타낸 도면이다.
도 6의 (a)는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(400)의 측면도를 나타낸 것이고, 도 6의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 6의 (a)에 나타낸 실시예는, 광학 수단(30)의 제2 면(32)이 오목면으로 형성되고, 제1 면(31)은 평면으로 형성된 것을 특징으로 하며, 근시인 사용자에 대해 실제 사물 화상광에 대한 시력 보정을 위한 것이다.
즉, 사용자가 근시인 경우 도 6의 (b)의 증강 현실용 광학 장치(100)에 의하면 앞서 설명한 바와 같이 제1 면(31)과 제2 면(32)이 모두 평면으로 형성되어 있으므로, 점선으로 나타낸 증강 현실 화상광과 실선으로 나타낸 실제 사물 화상광 모두가 망막보다 앞쪽에 상이 맺히게 된다.
한편, 도 6의 (a)의 실시예의 증강 현실용 광학 장치(400)에 의하면, 실선으로 나타낸 실제 사물 화상광은 제2 면(32)을 통과하면서 바깥쪽 방향으로 발산하고 이후 제1 면(31) 및 동공(40)을 지나면서 초점 거리가 길어져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
다만, 도 6의 (a)의 실시예의 증강 현실용 광학 장치(400)의 경우에는, 제1 면(31)은 평면으로 형성되어 있으므로, 증강 현실 화상광에 대한 시력 보정 기능은 제공할 수 없다.
따라서, 도 6의 (a)의 실시예는, 근시인 사용자에 대해 실제 사물 화상광에만 한정된 시력 보정 기능을 제공할 수 있다.
한편, 도 6의 (a)의 실시예에서는, 화상 출사부(10)로부터 출사된 증강 현실 화상광은 광학 수단(30)의 제2 면(32)에서 1회 전반사된 후 반사부(20)로 입사하도록 구성되어 있다. 이러한 경우, 광학 수단(30)의 제2 면(32)은 화상 출사부(10)로부터의 증강 현실 화상광을 전반사하기 위한 평면으로 형성된 전반사 영역(33)을 구비해야 한다.
화상 출사부(10)로부터 출사된 증강 현실 화상광은 광학 수단(30)의 제1 면(31) 및 제2 면(32)에서 적어도 2회 이상 전반사되는 경우, 전반사가 이루어지는 제1 면(31) 및 제2 면(32)은 모두 평면으로 형성된 전반사 영역(33)을 구비한다.
즉, 화상 출사부(10)로부터 출사된 증강 현실 화상광은 광학 수단(30)의 제1 면(31) 및 제2 면(32) 중 적어도 어느 하나에 의해 적어도 1회 이상 전반사된 후 반사부(20)로 전달될 수 있고, 이 때 전반사가 이루어지는 광학 수단(30)의 제1 면(31) 및 제2 면(32) 중 적어도 어느 하나는, 화상 출사부(10)로부터 출사된 증강 현실 화상광을 전반사하기 위한 평면의 전반사 영역(33)을 구비하는 것이 바람직하다.
도 7은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(500)의 전체적인 구성을 나타낸 도면이다.
도 7의 (a)는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(500)의 측면도를 나타낸 것이고, 도 7의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 7의 (a)에 나타낸 실시예는, 제2 면(32)이 볼록면으로 형성되고, 제1 면(31)은 평면으로 형성된 경우를 나타낸 것으로서, 원시인 사용자에 대해 실제 사물 화상광에 대한 시력 보정을 위한 것이다.
즉, 사용자가 원시인 경우 도 7의 (b)의 증강 현실용 광학 장치(100)에 의하면 앞서 설명한 바와 같이 제1 면(31)과 제2 면(32)이 모두 평면으로 형성되어 있으므로, 점선으로 나타낸 증강 현실 화상광과 실선으로 나타낸 실제 사물 화상광 모두가 망막보다 뒤쪽에 상이 맺히게 된다.
한편, 도 7의 (a)의 실시예의 증강 현실용 광학 장치(500)에 의하면, 실선으로 나타낸 실제 사물 화상광은 제2 면(32)을 통과하면서 안쪽 방향으로 수렴하고 이후 제1 면(31) 및 동공(40)을 지나면서 초점 거리가 짧아져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
다만, 도 7의 (a)의 실시예의 증강 현실용 광학 장치(500)의 경우에는, 제1 면(31)은 평면으로 형성되어 있으므로, 증강 현실 화상광에 대한 시력 보정 기능은 제공할 수 없다.
따라서, 도 7의 (a)의 실시예는, 원시인 사용자에 대해 실제 사물 화상광에만 한정된 시력 보정 기능을 제공할 수 있다.
도 6 및 도 7의 실시예에 의한 증강 현실용 광학 장치(400,500)를 단독으로 사용하는 경우 증강 현실 화상광에 대한 시력 보정 기능을 제공할 수는 없으나, 이들을 다른 보조 광학 장치와 사용하는 경우 증강 현실 화상광에 대한 시력 보정 기능을 제공할 수 있다. 예컨대, 증강 현실용 광학 장치(400, 500)를 별도의 렌즈 모듈로 형성하고 이를 예컨대 클립 등과 같은 수단으로 일반적인 안경에 결합시키는 형태로 사용하거나 증강 현실용 광학 장치(400, 500)를 안경 형태로 구현하고 증강 현실 화상광의 시력 보정을 위한 별도의 렌즈 모듈을 사용하는 등과 같은 형태로 결합하여 사용할 수 있으므로, 디자인 및 설계 상의 자유도를 높일 수 있다는 장점이 있다.
도 8은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(600)의 전체적인 구성을 나타낸 도면이다.
도 8의 (a)는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(600)의 측면도를 나타낸 것이고, 도 8의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 8의 (a)에 나타낸 실시예는, 광학 수단(30)의 제1 면(31)을 오목면으로 형성하고, 제2 면(32)을 볼록면으로 형성하되, 제2 면(32)의 곡률보다 제1 면(31)의 곡률을 크게 함으로써 전체적으로 광학 수단(30)이 오목 렌즈의 역할을 하도록 형성한 경우를 나타낸 것으로서, 근시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광에 대한 시력 보정을 위한 것이다.
즉, 사용자가 근시인 경우 도 8의 (b)의 증강 현실용 광학 장치(100)에 의하면 앞서 설명한 바와 같이 제1 면(31)과 제2 면(32)이 모두 평면으로 형성되어 있으므로, 점선으로 나타낸 증강 현실 화상광과 실선으로 나타낸 실제 사물 화상광 모두가 망막보다 앞쪽에 상이 맺히게 된다.
한편, 도 8의 (a)의 실시예의 증강 현실용 광학 장치(600)에 의하면, 앞서 도 4의 (a)에서 설명한 바와 같이, 점선으로 나타낸 증강 현실 화상광은 디스플레이 장치(11)에서 출사되어 콜리메이터(12)를 거쳐 광학 수단(30)의 제2 면(32)에 입사하고, 광학 수단(30)의 제2 면(32)에서 전반사되어 반사부(20)로 입사하고, 이후 반사부(20)에서 반사되어 동공(40)으로 전달된다. 이 때 제1 면(31)이 오목면으로 형성되어 있으므로 증강 현실 화상광은 제1 면(31)을 통과하면서 바깥쪽 방향으로 발산하게 되므로, 동공(40)을 지나면서 초점 거리가 길어져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
또한, 도 8의 (a)의 실시예의 증강 현실용 광학 장치(600)에 의하면, 실선으로 나타낸 실제 사물 화상광은 볼록면으로 형성된 제2 면(32)을 통과하면서 약간 안쪽 방향으로 수렴하지만 제2 면(32)의 곡률보다 큰 곡률을 갖는 제1 면(31)을 통과하면서 바깥쪽 방향으로 보다 크게 발산하게 되므로 동공(40)을 지나면서 전체적으로는 초점 거리가 길어져서 망막에 상이 맺히도록 전달됨을 알 수 있다.
따라서, 도 8의 (a)의 실시예는, 근시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광 모두에 대한 시력 보정 기능을 제공할 수 있다. 이 경우, 광학 수단(30)은 실제 근시 사용자들이 사용하는 안경 렌즈로 구현할 수 있으므로, 증강 현실용 광학 장치(600)만으로 별도의 보조 광학 수단 없이 안경 형태의 증강 현실 제공 장치로 사용할 수 있는 장점이 있다.
도 9는 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(700)의 전체적인 구성을 나타낸 도면이다.
도 9의 (a)는 본 발명의 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(700)의 측면도를 나타낸 것이고, 도 9의 (b)는 본 실시예와의 비교를 위해 특허 문헌 1에 기재된 바와 같은 종래 기술의 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 9의 (a)에 나타낸 실시예는, 도 8의 (a)의 실시예와 유사하지만, 제1 면(31)과 제2 면(32)을 모두 볼록면으로 형성하여 전체적으로 광학 수단(30)이 볼록 렌즈의 역할을 하도록 형성한 경우를 나타낸 것으로서, 원시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광에 대한 시력 보정을 위한 것이다. 기타 구성은 도 8에서 설명한 바와 동일하므로 상세 설명은 생략한다.
한편, 도시하지는 않았으나, 광학 수단(30)의 제1 면(31)은 오목면으로 형성하고, 제2 면(32)은 볼록면으로 형성하되, 제1 면(31)의 곡률보다 제2 면(32)의 곡률을 크게 함으로써 전체적으로 광학 수단(30)이 볼록 렌즈(이러한 렌즈를 보통 포지티브 메니스커스(positive meniscus) 렌즈라 한다)로서의 역할을 수행하도록 할 수도 있다. 이러한 경우는, 원시인 사용자에 대해 실제 사물 화상광에 대한 시력 보정 기능을 제공할 수 있으나, 증강 현실 화상광에 대한 시력 보정 효과는 미흡한 점이 있다. 따라서, 이 경우에는, 증강 현실 화상광의 시력 보정을 위해 다른 구성 요소(예컨대, 반사부의 곡면 구조, 콜리메이터의 두께나 간격 조절)를 이용하여 원시 사용자에 대한 증강 현실 화상광에 대한 시력 보정 기능을 제공할 필요가 있다.
이러한 도 8 및 도 9의 실시예 이외에도 제1 면(31)과 제2 면(32)을 모두 곡면으로 형성하는 다양한 조합을 사용할 수 있다. 이 경우, 제1 면(31)과 제2 면(32)을 오목면과 볼록면의 조합으로 형성하되 곡률을 적절히 조정함으로써 사용자가 근시인지 또는 원시인지의 여부에 따라 광학 수단(30)이 전체적으로 오목 렌즈 또는 볼록 렌즈로서의 기능을 수행하도록 할 수 있다.
도 10 및 도 11은 본 발명의 또 다른 실시예에 의한 시력 보정 기능을 구비하는 증강 현실용 광학 장치(800)를 설명하기 위한 도면으로서, 도 10은 증강 현실용 광학 장치(800)의 전체적인 구성을 나타낸 측면도이고, 도 11은 반사부(21A, 21B)의 구성을 설명하기 위한 도면이다.
도 10의 실시예는, 도 4 내지 도 9를 참조하여 설명했던 특허 문헌 1에 기재된 증강 현실용 광학 장치(100)와 기본적인 구성이 동일하지만, 반사부(21A, 21B)의 표면이 곡면으로 형성되어 있다는 점에서 차이가 있다.
여기에서, 반사부(21A, 21B)는 2 이상의 복수개로 형성될 수 있다.
또한, 반사부(21A, 21B)의 표면은 볼록면 또는 오목면으로 형성될 수 있다.
도 10의 실시예에서는, 볼록면으로 형성된 표면을 갖는 2개의 반사부(21A, 21B)가 형성되어 있으며, 근시인 사용자에 대해 증강 현실 화상광의 시력 보정 기능을 제공하기 위한 것이다.
도 10에 나타낸 바와 같이, 점선으로 나타낸 증강 현실 화상광은 광학 수단(30)의 제2 면(32)에서 전반사된 후 반사부(21A, 21B)로 입사하고, 반사부(21A, 21B)에서 반사되어 동공(40)으로 전달되는데, 이 때 반사부(21A, 21B)가 볼록면으로 형성되어 있으므로, 증강 현실 화상광은 볼록면인 반사부(21A, 21B)에 의해 바깥쪽 방향으로 발산되면서 동공(40)으로 전달된다. 따라서, 증강 현실 화상광은 초점 거리가 길어져서 동공(40)을 거쳐 망막에 상이 맺히도록 전달될 수 있으며, 이에 의해 근시인 사용자에 대한 증강 현실 화상광의 시력 보정 기능을 제공할 수 있다.
한편, 반사부(21A, 21B)가 복수개로 형성된 경우, 복수개의 반사부(21A, 21B)는, 곡면으로 형성된 표면을 갖는 하나의 반사 수단(21)을 복수개로 분할한 단위 반사 수단들 중 적어도 일부로 구성될 수 있다.
도 11은 반사부(21A, 21B)의 구성을 설명하기 위한 도면이다.
도 11을 참조하면, 곡면으로 형성된 표면을 갖는 하나의 반사 수단(21)을 도시한 바와 같이 4개의 점선으로 분할하면 3개의 단위 반사 수단을 얻을 수 있다.
이 중에서 단위 반사 수단 2를 제외하고, 단위 반사 수단 1과 단위 반사 수단 3의 2개의 단위 반사 수단을 이용하여 2개의 반사부(21A, 21B)를 형성할 수 있다.
도 11에서는, 하나의 반사 수단(21)을 분할하여 3개의 단위 반사 수단을 얻은 경우를 나타내었으나, 이는 예시적인 것이며 경우에 따라 4개, 5개 또는 그 이상의 단위 반사 수단을 분할 형성하고, 이들 중 일부를 이용하여 반사부를 구성할 수도 있음은 물론이다.
한편, 반사부(21A, 21B)는 도 11에 나타낸 바와 같이, 하나의 반사 수단(21)을 동공(40) 정면 방향에 둔 상태에서 복수개의 단위 반사 수단으로 분할하고, 이들 중 반사부(21A, 21B)로 사용할 단위 반사 수단들을 그 형태를 유지한 채 동공(40) 정면 방향에 수평한 방향을 따라 이동시켜 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이에 위치하도록 배치할 수 있다.
이 때, 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이에 배치되는 반사부(21A, 21B)는, 광학 수단(30)의 제1 면(31)과 제2 면(32)에 수평하도록 나란히 배치될 수 있으나, 반드시 그러한 것은 아니며 전술한 바와 같이 각각의 반사부(21A, 21B)가 증강 현실 화상광을 다른 반사부에 대해 차단하지 않도록 적절한 각도를 가지도록 배치될 수 있다.
도 12 및 도 13은 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(900)를 설명하기 위한 도면으로서, 도 12는 증강 현실용 광학 장치(900)의 전체적인 구성을 나타낸 측면도이고, 도 13은 반사부(22A,22B)의 구성을 설명하기 위한 도면이다.
도 12 및 도 13의 실시예는, 도 10 및 도 11에서 설명한 실시예들과 기본적인 구성은 동일하지만, 반사부(22A, 22B)의 표면이 오목면으로 형성되어 있다는 점에서 차이가 있다.
도 12의 실시예에서는, 오목면으로 형성된 표면을 갖는 2개의 반사부(22A, 22B)가 형성되어 있으며, 이는 원시인 사용자에 대해 증강 현실 화상광의 시력 보정 기능을 제공하기 위한 것이다.
도 12에 나타낸 바와 같이, 점선으로 나타낸 증강 현실 화상광은 광학 수단(30)의 제2 면(32)에서 전반사된 후 반사부(22A, 22B)로 입사하고, 반사부(22A, 22B)에서 반사되어 동공(40)으로 전달되는데, 이 때 반사부(22A, 22B)가 오목면으로 형성되어 있으므로, 증강 현실 화상광은 오목면인 반사부(22A, 22B)에 의해 안쪽 방향으로 수렴하면서 동공(40)으로 전달된다. 따라서, 증강 현실 화상광은 초점 거리가 짧아져서 동공(40)을 거쳐 망막에 상이 맺히도록 전달될 수 있으며, 이에 의해 원시인 사용자에 대한 증강 현실 화상광의 시력 보정 기능을 제공할 수 있다.
이 경우에도, 반사부(22A, 22B)가 복수개로 형성된 경우, 복수개의 반사부(22A, 22B)는, 곡면으로 형성된 표면을 갖는 하나의 반사 수단(21)을 복수개로 분할한 단위 반사 수단들 중 적어도 일부로 구성될 수 있다.
도 13은 반사부(22A, 22B)의 구성을 설명하기 위한 도면이다.
도 13의 반사부(22A, 22B)의 구성은, 도 11에서 설명한 바와 동일하되, 반사부(22A,22B)가 오목면으로 형성되었다는 점에서만 차이가 있다.
즉, 도 13에 나타낸 바와 같이, 오목면으로 형성된 표면을 갖는 하나의 반사 수단(22)를 4개의 점선으로 나타낸 바와 같이 분할하면 3개의 단위 반사 수단을 얻을 수 있고, 이 중에서 단위 반사 수단 2를 제외하고, 단위 반사 수단 1과 단위 반사 수단 3의 2개의 단위 반사 수단을 이용하여 2개의 반사부(22A, 22B)를 형성할 수 있다.
반사부(22A, 22B) 또한, 도 11에서 설명한 바와 마찬가지로, 하나의 반사 수단(22)을 동공(40) 정면 방향에 둔 상태에서 복수개의 단위 반사 수단으로 분할하고, 이들 중 반사부(22A, 22B)로 사용할 단위 반사 수단을 그 형태를 유지한 채 동공(40) 정면 방향에 수평한 방향을 따라 이동시켜 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이에 위치하도록 배치할 수 있다.
이 경우에도, 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이에 배치되는 반사부(22A, 22B)는, 광학 수단(30)의 제1 면(31)과 제2 면(32)에 수평하도록 나란히 배치될 수 있다. 또는, 각각의 반사부(22A, 22B)가 증강 현실 화상광을 다른 반사부에 대해 차단하지 않도록 적절한 각도를 가지도록 배치될 수 있다.
도 14 및 도 15는 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(1000, 1100)를 나타낸 도면이다.
도 14 및 도 15의 실시예의 증강 현실용 광학 장치(1000, 1100)는, 도 4 내지 도 9를 참조하여 설명했던 특허 문헌 1의 증강 현실용 광학 장치(100)와 기본적인 구성은 동일하되, 보조 광학 소자(50, 60)를 이용하여 시력 보정 기능을 제공하는 것을 특징으로 한다.
즉, 화상 출사부(10)와 광학 수단(30) 사이에 보조 광학 소자(50, 60)를 배치하여 화상 출사부(10)로부터 출사되는 증강 현실 화상광을 굴절시켜 광학 수단(30)으로 전달하는 것을 특징으로 한다.
여기에서, 보조 광학 소자(50, 60)는, 오목 렌즈 또는 볼록 렌즈와 같은 굴절 수단일 수 있다.
도 14의 실시예는 보조 광학 소자로서 오목 렌즈(50)를 사용한 경우이고, 도 15의 실시예는 볼록 렌즈(60)를 사용한 경우를 나타낸 것이다.
도 14와 같이, 오목 렌즈(50)를 사용한 경우에는 보조 광학 소자(50)는 증강 현실 화상광을 바깥쪽 방향으로 발산하도록 굴절시키므로 반사부(20)를 통해 동공(40)을 거쳐 망막에 전달될 때 초점 거리가 길어지도록 하므로 근시 사용자에 대한 시력 보정 기능을 제공할 수 있다.
도 15와 같이, 볼록 렌즈(60)를 사용한 경우에는 보조 광학 소자(60)는 증강 현실 화상광을 안쪽 방향으로 수렴하도록 굴절시키므로 반사부(20)를 통해 동공(40)을 거쳐 망막에 전달될 때 초점 거리가 짧아지도록 하여 원시 사용자에 대한 시력 보정 기능을 제공할 수 있다.
한편, 보조 광학 소자(50, 60)로서는, 오목 렌즈 또는 볼록 렌즈와 같은 굴절 수단 이외에, 회절 수단이나 홀로그램 소자와 같은 광학 소자를 사용할 수도 있다.
한편, 디스플레이 장치(11)와 콜리메이터(12) 사이의 간격을 조절하거나 다른 초점 거리를 갖는 콜리메이터(12)를 사용함으로써 증강 현실 화상광에 대한 시력 보정 기능을 얻을 수도 있다.
도 16은 콜리메이터(12A, 12B)를 이용한 시력 보정 기능을 설명하기 위한 도면이다.
도 16의 (a) 및 (b)에 나타낸 바와 같이, 콜리메이터(12A)를 얇거나 두껍게 형성하여 초점거리를 다르게 하면 증강 현실 화상광을 발산 또는 수렴하도록 굴절시킬 수 있으므로 근시 또는 원시 사용자에 대한 증강 현실 화상광의 시력 보정 기능을 제공하는 원리를 나타낸 것이다.
또한, 도시된 바와 같이, 디스플레이 장치(11)와 콜리메이터(12A, 12B) 사이의 간격을 다르게 함으로써 증강 현실 화상광이 광학 수단(30)으로 전달되는 광 경로를 변경시킴으로써 시력 보정 기능을 제공할 수 있다.
콜리메이터(12A, 12B)의 초점 거리를 다르게 하는 방법과 디스플레이 장치(11)와 콜리메이터(12A, 12B) 사이의 간격을 다르게 하는 방법은 서로 조합하여 사용할 수 있다.
또한, 도 16에서 설명한 구성은 도 14 및 도 15에서 설명한 실시예와 조합하여 사용할 수도 있다.
한편, 도 4 내지 도 16에서 설명한 실시예는 서로 조합하여 복합적으로 사용할 수 있다.
도 17 및 도 18은 본 발명의 또 다른 실시예에 의한 증강 현실용 광학 장치(1200, 1300)를 나타낸 것으로서, 도 4 내지 도 16의 실시예를 조합하여 사용한 경우를 예시적으로 나타낸 것이다.
도 17의 실시예는, 도 6의 실시예와 도 10의 실시예를 복합적으로 적용한 증강 현실용 광학 장치(1200)를 나타낸 것이다.
즉, 도 17의 실시예의 증강 현실용 광학 장치(1200)는, 도 6의 실시예와 같이 제2 면(32)을 오목면으로 형성하여 실제 사물 화상광에 대한 근시 교정 기능을 제공하고, 도 10의 실시예와 같이 볼록면의 표면을 갖는 반사부(21A, 21B)를 배치하여 증강 현실 화상광에 대한 근시 교정 기능을 제공할 수 있다.
한편, 도 18의 실시예는 도 8의 실시예와 도 10의 실시예를 복합적으로 적용한 증강 현실용 광학 장치(1300)를 나타낸 것이다.
즉, 도 18의 실시예는, 도 8의 실시예와 같이 광학 수단(30)의 제1 면(31)을 오목면으로 형성하고 제2 면(32)을 볼록면으로 형성하되, 제2 면(32)의 곡률보다 제1 면(31)의 곡률을 크게 함으로써 전체적으로 광학 수단(30)이 오목 렌즈의 역할을 하도록 하여 근시인 사용자에 대해 증강 현실 화상광과 실제 사물 화상광에 대한 시력 보정 기능을 제공한다. 또한, 도 10의 실시예와 같이 볼록면의 표면을 갖는 반사부(21A, 21B)를 배치하여 근시 사용자에 대한 증강 현실 화상광의 시력 보정 기능을 추가적으로 제공할 수 있다.
도 17 및 도 18의 실시예는 예시적인 것이며, 이러한 실시예 이외에도 도 4 내지 도 16의 실시예들을 다양한 방식으로 조합함으로써 사용예에 따라 복합적인 시력 보정 기능을 제공할 수 있다.
이상에서, 본 발명에 의한 바람직한 실시예를 참조하여 본 발명을 설명하였으나 본 발명은 상기 실시예에 한정되는 것이 아님은 물론이며, 본 발명의 범위 내에서 다양한 수정 및 변형 실시가 가능하다는 점을 유의해야 한다.

Claims (20)

  1. 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서,
    증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및
    상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단
    을 포함하고,
    상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고,
    상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  2. 청구항 1에 있어서,
    상기 곡면은 오목면 또는 볼록면인 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  3. 청구항 2에 있어서,
    상기 곡면으로 형성된 면이 아닌 다른 면은 평면, 오목면 또는 볼록면 중 어느 하나로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  4. 청구항 1에 있어서,
    상기 제1 면은 오목면으로 형성되고, 상기 제2 면은 볼록면으로 형성하되, 상기 제1 면의 곡률은 상기 제2 면의 곡률보다 큰 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  5. 청구항 1에 있어서,
    상기 제1 면은 오목면으로 형성되고, 상기 제2 면은 볼록면으로 형성하되, 상기 제2 면의 곡률은 상기 제1 면의 곡률보다 큰 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  6. 청구항 1에 있어서,
    상기 화상 출사부로부터 출사된 증강 현실 화상광은 광학 수단의 제1 면 및 제2 면 중 적어도 어느 하나에 의해 적어도 1회 이상 전반사된 후 반사부로 전달되고, 상기 광학 수단의 제1 면 및 제2 면 중 적어도 어느 하나는 화상 출사부로부터 출사된 증강 현실 화상광을 전반사하기 위한 평면으로 형성된 전반사 영역을 구비하는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  7. 청구항 1에 있어서,
    상기 반사부는, 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  8. 청구항 1 또는 청구항 7에 있어서,
    상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달되는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  9. 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서,
    증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및
    상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단
    을 포함하고,
    상기 반사부의 표면은 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  10. 청구항 9에 있어서,
    상기 반사부의 표면은 오목면 또는 볼록면인 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  11. 청구항 9에 있어서,
    상기 반사부는 복수개로 형성되고,
    상기 복수개의 반사부는, 곡면으로 형성된 표면을 갖는 하나의 반사 수단을 복수개로 분할한 단위 반사 수단들 중 적어도 일부로 구성되는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  12. 청구항 11에 있어서,
    상기 복수개의 반사부는 하나의 반사 수단을 동공 정면 방향에 둔 상태에서 복수개의 단위 반사 수단으로 분할하고, 이들 중 반사부로 사용할 단위 반사 수단을 그 형태를 유지한 채 동공 정면 방향에 수평한 방향을 따라 이동시켜 광학 수단의 제1 면과 제2 면 사이에 위치하도록 배치된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  13. 청구항 9에 있어서,
    상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고,
    상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  14. 청구항 9 또는 청구항 13에 있어서,
    상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달되는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  15. 시력 보정 기능을 구비하는 증강 현실용 광학 장치로서,
    증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사된 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및
    상기 반사부가 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단
    을 포함하고,
    상기 화상 출사부로부터 출사하는 증강 현실 화상광은 보조 광학 소자를 통해 반사부로 전달되는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  16. 청구항 15에 있어서,
    상기 보조 광학 소자는, 굴절 수단, 회절 수단 또는 홀로그램 소자 중 적어도 어느 하나인 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  17. 청구항 16에 있어서,
    상기 굴절 수단은, 오목 렌즈 또는 볼록 렌즈인 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  18. 청구항 15에 있어서,
    상기 화상 출사부는, 증강 현실용 화상을 화면에 표시함으로써 화면을 통해 증강 현실 화상광을 출사하는 디스플레이 장치와 디스플레이 장치에서 출사되는 증강 현실 화상광을 시준한 광을 출사하는 콜리메이터를 구비하고,
    상기 콜리메이터의 초점 거리를 변경시키거나 상기 디스플레이 장치와 상기 콜리메이터의 거리를 변경함으로써 증강 현실 화상광이 광학 수단으로 전달되는 광 경로를 변경시키는 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  19. 청구항 15에 있어서,
    상기 광학 수단은, 상기 반사부에서 반사된 증강 현실 화상광과 상기 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 반사부는, 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 배치되고,
    상기 광학 수단의 제1 면과 제2 면 중 적어도 어느 하나는 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
  20. 청구항 15 또는 19에 있어서,
    상기 반사부는, 곡면으로 형성된 것을 특징으로 하는 시력 보정 기능을 구비하는 증강 현실용 광학 장치.
PCT/KR2020/011026 2019-08-21 2020-08-19 시력 보정 기능을 구비하는 증강 현실용 광학 장치 WO2021034096A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080056662.4A CN114207504A (zh) 2019-08-21 2020-08-19 具备视力矫正功能的增强现实用光学装置
US17/635,262 US20220291508A1 (en) 2019-08-21 2020-08-19 Optical apparatus for augmented reality with vision correction function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0102122 2019-08-21
KR1020190102122A KR102386259B1 (ko) 2019-08-21 2019-08-21 시력 보정 기능을 구비하는 증강 현실용 광학 장치

Publications (1)

Publication Number Publication Date
WO2021034096A1 true WO2021034096A1 (ko) 2021-02-25

Family

ID=74660110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011026 WO2021034096A1 (ko) 2019-08-21 2020-08-19 시력 보정 기능을 구비하는 증강 현실용 광학 장치

Country Status (4)

Country Link
US (1) US20220291508A1 (ko)
KR (1) KR102386259B1 (ko)
CN (1) CN114207504A (ko)
WO (1) WO2021034096A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506898B1 (en) * 2019-09-30 2022-11-22 Snap Inc. Polarized reflective pinhole mirror display
CN116413911A (zh) * 2021-12-31 2023-07-11 北京耐德佳显示技术有限公司 一种超薄型镜片、使用其的虚像成像装置和近眼显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219489A (ja) * 2014-05-21 2015-12-07 株式会社東芝 表示装置
KR20160091402A (ko) * 2013-11-27 2016-08-02 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
CN206178247U (zh) * 2016-09-14 2017-05-17 浙江舜通智能科技有限公司 头戴式显示装置
JP2018116219A (ja) * 2017-01-20 2018-07-26 株式会社Qdレーザ 画像投影装置
US20190072767A1 (en) * 2017-09-07 2019-03-07 Microsoft Technology Licensing, Llc Display apparatuses, systems and methods including curved waveguides

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886822A (en) * 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US9366869B2 (en) * 2014-11-10 2016-06-14 Google Inc. Thin curved eyepiece for see-through head wearable display
KR101660519B1 (ko) 2015-03-09 2016-09-29 하정훈 증강 현실 구현 장치
CN105259656B (zh) * 2015-09-10 2019-01-11 上海理鑫光学科技有限公司 具有屈光度眼镜效果的增强现实眼镜
DE102015122131B3 (de) * 2015-12-17 2017-03-02 Carl Zeiss Smart Optics Gmbh Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas
JP6660008B2 (ja) * 2016-02-10 2020-03-04 大日本印刷株式会社 表示装置
KR101894556B1 (ko) * 2016-09-08 2018-10-04 주식회사 레티널 광학 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091402A (ko) * 2013-11-27 2016-08-02 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
JP2015219489A (ja) * 2014-05-21 2015-12-07 株式会社東芝 表示装置
CN206178247U (zh) * 2016-09-14 2017-05-17 浙江舜通智能科技有限公司 头戴式显示装置
JP2018116219A (ja) * 2017-01-20 2018-07-26 株式会社Qdレーザ 画像投影装置
US20190072767A1 (en) * 2017-09-07 2019-03-07 Microsoft Technology Licensing, Llc Display apparatuses, systems and methods including curved waveguides

Also Published As

Publication number Publication date
CN114207504A (zh) 2022-03-18
US20220291508A1 (en) 2022-09-15
KR102386259B1 (ko) 2022-04-18
KR20210022860A (ko) 2021-03-04

Similar Documents

Publication Publication Date Title
AU2016279665B2 (en) Head mounted display apparatus
WO2016204433A1 (en) Head mounted display apparatus
KR102661322B1 (ko) 섬유 스캐닝 프로젝터를 위한 방법 및 시스템
WO2022255579A1 (ko) 굴절 공간을 구비하는 증강 현실용 광학 장치
WO2020235816A1 (en) Glasses-type display apparatus
WO2021054727A1 (ko) 광 효율을 개선한 증강 현실용 광학 장치
WO2023128168A1 (ko) 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2020096188A1 (ko) 증강 현실용 광학 장치
WO2019124769A1 (en) Optical system and wearable display apparatus having the same
WO2020004850A1 (ko) 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템
WO2021085960A1 (ko) 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
KR20180015620A (ko) 시스루 머리 착용가능 디스플레이를 위한 효율적인 얇은 곡선형 아이피스
WO2021034096A1 (ko) 시력 보정 기능을 구비하는 증강 현실용 광학 장치
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2017022998A1 (ko) 헤드 마운트 디스플레이용 광학 시스템
WO2023146157A1 (ko) 편광 광학 소자를 이용한 증강 현실용 광학 장치
WO2023128167A1 (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2019042133A1 (zh) 一种近眼显示系统及近眼显示器
US20210364802A1 (en) Image display device, head mounted display
WO2022050519A1 (ko) 헤드 마운트 디스플레이의 광학 시스템 및 이를 구비하는 헤드 마운트 디스플레이
WO2021010603A1 (ko) 근안 디스플레이 장치, 이를 포함한 증강 현실 안경 및 그 작동 방법
WO2018066962A1 (ko) 스마트 안경
WO2020166785A1 (ko) 근접 거리의 증강 현실용 화상을 제공할 수 있는 증강 현실용 광학 장치
EP3811144A1 (en) Glasses-type display apparatus
WO2023033263A1 (ko) 회절 소자를 이용한 컴팩트형 증강 현실용 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854137

Country of ref document: EP

Kind code of ref document: A1