WO2019042133A1 - 一种近眼显示系统及近眼显示器 - Google Patents

一种近眼显示系统及近眼显示器 Download PDF

Info

Publication number
WO2019042133A1
WO2019042133A1 PCT/CN2018/100674 CN2018100674W WO2019042133A1 WO 2019042133 A1 WO2019042133 A1 WO 2019042133A1 CN 2018100674 W CN2018100674 W CN 2018100674W WO 2019042133 A1 WO2019042133 A1 WO 2019042133A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
microdisplay
user
eye
display
Prior art date
Application number
PCT/CN2018/100674
Other languages
English (en)
French (fr)
Inventor
管亮
李琨
Original Assignee
芋头科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芋头科技(杭州)有限公司 filed Critical 芋头科技(杭州)有限公司
Publication of WO2019042133A1 publication Critical patent/WO2019042133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of augmented reality imaging technologies, and in particular, to a near-eye display system and a near-eye display.
  • HMD Helmet-Mounted Display
  • NED Near-to-Eye Display
  • a head-mounted display which is similar in appearance to glasses, can also be called a glasses-type display or video glasses, which can transmit optical signals to the eyes through various head-mounted display devices, thereby realizing different AR technologies. display effect.
  • the so-called near-eye display is a head-mounted display (HMD) that can project an image directly into the viewer's eyes.
  • the display of the NED is within 10 cm of the human eye.
  • Such near images are generally invisible to the human eye, but the image can be focused on the retina of the human eye by designing a specific lens array in the NED optical system. Then, through the visual nervous system processing, it is possible to present a virtual large-format image in front of the user's eyes, thereby realizing various display effects of the AR technology.
  • the size of the field of view determines the size of the field of view of the near-eye display.
  • the larger the field of view the larger the field of view.
  • the increase in the viewing angle is often accompanied by an increase in the complexity of the hardware device, making the entire near-eye display more cumbersome, thereby impairing the user experience comfort.
  • a technical solution of a near-eye display system and a near-eye display which aims to improve the visual field of the near-eye display device while maintaining the light comfort of the device, and at the same time reducing the complexity of the entire display device. degree.
  • a near-eye display system comprising:
  • the curved surface component includes at least one curved surface, an inner surface of the curved surface is disposed toward an eye of the user, and an outer surface of the curved surface is disposed offset from the inner surface by a predetermined distance along a main optical axis direction, the inner surface Coating the light partially transmissive portion of the reflective material;
  • An imaging device disposed at a position close to an eye of the user
  • the imaging device further includes a light source for illuminating the microdisplay, and a light beam emitted by the light source is reflected by the curved surface in the curved component into the eye of the user;
  • the curved surface is used to transmit external light into the eyes of the user.
  • the near-eye display system wherein the curved surface of the curved surface component forms a free-form surface form, and the relationship between the free-form surface form and the coordinates (x, y, z) in the XYZ coordinate system is as follows: Polynomial processing results in:
  • z is used to represent the value of the freeform form
  • c is used to represent the curvature
  • k is a conic coefficient
  • N is used to represent the number of coefficients in the polynomial.
  • the near-eye display system wherein the curved component includes a curved surface
  • the microdisplay in the imaging device is an active microdisplay, and the light source is included in the micro display;
  • the microdisplay is in contact with the forehead of the user by an isolating material and is at a first predetermined angle with the forehead of the user, and the display surface of the microdisplay is disposed toward the curved surface component;
  • a mechanical mount is disposed between the microdisplay and the curved surface for fixing a relative position of the microdisplay and the curved surface.
  • the near-eye display system wherein the thickness of the curved surface is unevenly distributed in the xy coordinate space.
  • the near-eye display system wherein the curved component includes a curved surface
  • the microdisplay in the imaging device is a passive microdisplay
  • the light source is disposed in front of an eye of the user
  • the micro display is perpendicular to the light source and disposed above the light source, and a display surface of the micro display is disposed toward the curved surface component;
  • a polarization beam splitter is disposed between the light source and the microdisplay.
  • the near-eye display system wherein the curved surface component includes a plurality of the curved surfaces arranged in order from top to bottom, and the plurality of curved surfaces are in end-to-end contact;
  • the microdisplay in the imaging device is an active microdisplay, and the light source is included in the micro display;
  • the microdisplay is in contact with the forehead of the user by an isolating material and is at a first predetermined angle with the forehead of the user, and the display surface of the microdisplay is disposed toward the curved surface component;
  • a mechanical mount is disposed between the microdisplay and the curved surface for fixing a relative position of the microdisplay and the curved surface.
  • the near-eye display system wherein the curved component includes a curved surface
  • the microdisplay in the imaging device is an active microdisplay, and the light source is included in the micro display;
  • the microdisplay is in contact with the forehead of the user by an isolating material and is at a first predetermined angle with the forehead of the user, and the display surface of the microdisplay is disposed toward the curved surface component;
  • the polarizer is for converting unpolarized light emitted by the light source into polarized light.
  • the near-eye display system wherein the curved component includes a curved surface
  • the microdisplay in the imaging device is an active microdisplay, and the light source is included in the micro display;
  • One end of the micro display is in contact with the curved surface, and the other end is fixed by a mechanical mount such that the display surface of the micro display faces the eyes of the user;
  • the mirror Placing a mirror on the forehead of the user, the mirror being fixed by the mechanical mount and at a second predetermined angle with the forehead of the user, the mirror for Light emitted by the light source in the microdisplay is reflected onto the inner surface of the curved surface.
  • a near-eye display wherein each of the eyes of the user is provided with one of the above-mentioned near-eye display systems;
  • the microdisplays in each of the near-eye display systems are respectively disposed outside or above the corresponding eyes.
  • the near-eye display wherein the micro-displays in the two near-eye display systems are integrated in one display device;
  • the display device is located above the center of the two eyes of the user.
  • the above technical solution has the beneficial effects of providing a near-eye display system capable of expanding the field of view of the near-eye display device (up to 50 degrees or more) while maintaining compactness and lightness of the entire display structure, thereby improving light propagation efficiency and saving Energy consumption, reducing the process complexity and manufacturing cost of the display device, fully expanding the aesthetic design space of the AR glasses industry, and improving the user's wearing comfort and experience.
  • FIG. 1 is a schematic view showing the general structure of a near-eye display system in a preferred embodiment of the present invention
  • FIGS. 2-7 are schematic structural views of a near-eye display system in different embodiments of the present invention.
  • FIGS. 8-10 are schematic diagrams showing the structure of a near-eye display constituting a binocular vision of a user using a near-eye display system in a different embodiment of the present invention.
  • a technical solution of a near-eye display system is provided, which is specifically applicable to an HMD device or an NED device, and is used in an AR technology.
  • the general structural configuration of the near-eye display system specifically includes:
  • the curved surface component includes at least one curved surface 11 disposed on the inner surface 11a of the curved surface 11 facing away from the user's eye 12, and the outer surface 11b of the curved surface is disposed along the main optical axis by moving the inner surface 11a at a distance (the distance is in the form of a free curved surface Thickness), the concave surface 11a is coated with a light transflective material having a specific reflection/transmittance, and the convex surface 11b is not coated with any material;
  • the imaging device 2 is disposed at a position close to the eye 12 of the user;
  • the above imaging device 2 further includes a light source and a microdisplay (the relationship between the light source and the microdisplay will be described in detail hereinafter), the light source is used to illuminate the microdisplay, and the light beam emitted by the light source is reflected by the curved surface 11 in the curved component and enters the user. Eyes 12;
  • the curved surface 11 is also used to transmit external light into the user's eye 12.
  • the near-eye display system is designed to enhance the field of view (FOV) and the eye movement frame (EMB) of the HMD device or the NED device through an integrated configuration of the plurality of optical components.
  • FOV field of view
  • EMB eye movement frame
  • At least one of the curved surfaces 11 is a free-form curved surface, also referred to as a free-form surface form, and the free form of the free-form surface form may include Toroid, non-circular or biconic, non-cylindrical, off-axis parabola, anamorph, and polynomial, generated using AR techniques
  • the display content of the virtual image is transmitted to the inner surface 11a in the form of a free-form surface, and 13 in Fig. 1 is a front view of the curved surface 11.
  • the inner surface 11a of the curved surface 11 is a portion of the transmissive partial reflecting surface, which is collimated to reflect infinity of the light beam 3 emitted by the imaging device 2 in FIG. 1 by a predetermined curvature in the form of a free curved surface.
  • a parallel beam 4 is created to simulate the light produced by a real object in a real environment, in other words, the freeform form can reflect light from the imaging device 2 and transmit light from the external environment into the user's eyes, thus enabling " The "virtual" light is combined with the "real” light to pass into the user's eyes, creating a user experience that is closer to the "augmented reality" of the display.
  • the ratio between the reflected light and the transmitted light is determined by the polymer coating applied to the inner surface 11a of the curved surface 11.
  • a polymer film may also be coated on the inner surface 11a, and an anti-reflective material may be coated on the outer surface 11b to reduce glare.
  • the light source in the imaging device 2 is used to illuminate a microdisplay, which may be an LED light source, a laser or other type of illuminator.
  • a microdisplay which may be an LED light source, a laser or other type of illuminator.
  • the light source can be integrated inside the micro display, that is, the micro display itself has a illuminator, and no additional is needed. External light source.
  • OLED Organic Light-Emitting Diode
  • passive microdisplays are usually used. In this case, it is necessary to illuminate the microdisplay by introducing an external light source for imaging purposes.
  • the relationship between the coordinates (x, y, z) of the free-form surface form formed by the curved surface 11 in the XYZ coordinate system is obtained according to the following polynomial processing:
  • z is used to represent the value in the form of a freeform surface
  • c is used to represent the curvature
  • k is a conic coefficient
  • N is used to represent the number of coefficients in the polynomial.
  • the relationship between the free-form surface form and the coordinates (x, y, z) of the XYZ coordinate axis is as shown in the above polynomial (1), where x and y are respectively the XOY where the free-form surface form is located.
  • the origin coordinate from the above XOY coordinates is a point in the form of a free curved surface formed by the main optical axis passing through the curved surface 11 in the optical design, and the position thereof is determined according to a specific different design.
  • Ai is a coefficient of the i-th extended polynomial term
  • the polynomial (1) is a power series of x and y, wherein the first term is x, the second term is y, and then x* x, x*y, y*y, etc.
  • the order of a polynomial with 2 terms is 1, the order of the 3 terms is 2, the order of the 4 terms is 3, and so on.
  • the above coordinate values x and y are divided by the normalized radius, so the coefficients in the above polynomial (1) are dimensionless.
  • Each of the coefficients in the above polynomial (1) is optimized such that the exit beam is collimated and reaches a maximum field of view within the phase difference range.
  • the thickness of the free-form surface form is consistent within the physical space of the xy-axis, optimized to minimize the curvature of the portion to make the appearance of the eyepiece as normal as possible.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the above curved surface assembly includes a curved surface 11;
  • the microdisplay 21 in the imaging device 2 is an active microdisplay, and the light source is included in the micro display 21;
  • the microdisplay 21 is in contact with the forehead 22 of the user through the isolation material, and is at a first preset angle ⁇ between the forehead 22 of the user, and the display surface of the micro display 21 is disposed toward the curved surface component;
  • a mechanical mount 23 is provided between the microdisplay 21 and the curved surface 11 for fixing the relative positions of the microdisplay 21 and the curved surface 11.
  • the microdisplay 21 is an active type display such as an OLED display, so that the microdisplay 21 has a illuminator as a light source, and the design does not require an additional light source in the display device.
  • the structure of the entire display device is more compact.
  • the microdisplay 21 is positioned by abutting some of the sealed and isolated material on the back of the user's forehead 22, and a predetermined angle ⁇ is formed between the microdisplay 21 and the user's forehead 22.
  • the microdisplay 21 and the curved surface 11 are connected by a mechanical mount 23 to fix both of them.
  • the first preset angle ⁇ is determined according to various implementation factors such as a specific implementation form of the curved surface 11, an optimization result under different viewing angle requirements, and a height of the microdisplay.
  • the near-eye display system in this embodiment is applied to the near-eye display device, and the field of view angle can still exceed 50 degrees under the premise of being easy to wear and the device is relatively compact, and the eye-moving frame size can reach 8 mm*8 mm.
  • the manufacturing process in the form of a free-form surface is also very convenient, and a plastic material having a refractive index of 1.3-1.9 is diamond-turned or injection molded. Therefore, the design of the near-eye display system in the technical solution of the present invention is more suitable for mass production, and the cost is lower than that of the conventional near-eye display or the head-mounted display.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the thickness of the curved surface 11 may be unevenly distributed in the xy coordinate space, that is, the outer surface 11b adopts a free curved surface form different from the inner surface 11a, and is specifically provided to have Users with visual impairments such as myopia or farsightedness.
  • a transflective polymer may be coated on the inner surface 11a of the curved surface 11 to be responsible for collimating and combining light, and on the outer surface of the curved surface 11 described above.
  • Some optical processing of the glasses for the visually impaired user is performed on 11b, so that the thickness of the curved surface 11 changes as described above.
  • the inner surface 11a of the curved surface 11 described above needs to be further optimized to eliminate distortion and deformation which may be caused by optical processing, and to ensure the image quality observed by the user through the near-eye display system.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the curved surface assembly includes a curved surface 11;
  • the micro display 21 in the imaging device 2 is a passive micro display
  • the light source is disposed in front of the user's eyes 12;
  • the microdisplay 21 is perpendicular to the light source 45 and disposed above the light source, and the display surface 41 of the micro display 21 is disposed toward the curved surface 11 in the curved component;
  • a polarization beam splitter 42 is disposed between the light source and the microdisplay 21.
  • the microdisplay 21 is a passive microdisplay, such as a liquid crystal display (LCD), or a liquid crystal on silicon (LCOS), or a digital micromirror device. (Digital Mirror Device, DMD), or a micro-electromechanical systems (MEMS) scanner or an actuated fiber bundle.
  • a passive microdisplay such as a liquid crystal display (LCD), or a liquid crystal on silicon (LCOS), or a digital micromirror device. (Digital Mirror Device, DMD), or a micro-electromechanical systems (MEMS) scanner or an actuated fiber bundle.
  • the internal light source does not have its own light, so it is necessary to additionally add an external light source to illuminate it.
  • the external light source may be an LED, a laser or other type of illumination as described above.
  • RGB three-color light sources For the purpose of displaying the effect in full color, it is also possible to form a combination of light sources including RGB three-color light sources.
  • a polarization beam splitter 42 (PBS) is disposed between the light source and the microdisplay 21.
  • the incident surface 44 of the polarizing beam splitter 42 faces the exit surface of the light source, and the polarizing beam splitter 42 abuts one side of the incident surface 44.
  • a polarizing beam splitting surface 43 is formed at an angle of forty-five degrees to the incident surface 44 inside the polarizing beam splitter 42, the spectroscopic surface 43 being arranged to reflect one type of polarized light and transmit the other Kinds of polarized light, for example, is arranged to reflect S-polarized light and to transmit P-polarized light.
  • the reflected light after several times of reflection/transmission of the optical path carries the display content from the microdisplay 21, and its polarized light is changed in type. (for example, converted from S light to P light) so as not to be reflected by the dichroic prism 43, which reaches the curved surface 11 and is focused to infinity and reflected into the user's eye 12 for the user to observe
  • the display content is imaged and displayed on the display surface 41 of the microdisplay 21.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a plurality of curved surfaces 11 arranged in order from top to bottom are included in the curved surface assembly, and the plurality of curved surfaces 11 are in contact with each other through the use.
  • microdisplay 21 in the imaging device 2 is an active microdisplay, and the light source is included in the micro display;
  • the microdisplay 21 is in contact with the user's forehead 22 by the isolating material and is at a first predetermined angle ⁇ between the user's forehead 22, and the display surface of the microdisplay 21 is disposed toward the curved component;
  • a mechanical mount 23 is disposed between the microdisplay 21 and the curved surface 11 for fixing the relative positions of the microdisplay and the curved surface.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • one of the defects is that when the curved surface 11 partially reflects the display content of the microdisplay 21, it is possible to partially transmit the display content to the external environment, thereby exposing the display content portion to other users. Moreover, since the curved surface needs to transmit external ambient light to the inside of the near-eye display system, the above problems prevent the privacy of the user from being secured.
  • the polarization selective polymer film 61 is coated on the inner surface 11a of the curved surface 11, and the polarization selective polymer film 61 is capable of completely reflecting a polarized light (for example, it can be designed as S-light or P-light total reflection without transmission, and a polarizer 62 is disposed between the micro-display 21 and the curved surface 11 in the curved surface assembly, specifically before the micro-display 21, the polarizer 62 can be a linear optical polarizer or a circular polarizer, or other suitable type of polarizer.
  • the polarizer 62 can convert the unpolarized light emitted from the microdisplay 21 into polarized light, which is completely reflected by the inner surface 11a of the curved surface 11, so that the user can observe 50% of the illumination light.
  • This 50% loss comes from the polarizer, which avoids the loss of light on the curved surface 11. Therefore, the near-eye display system in the present embodiment can eliminate the problem that the display content lacks privacy while being able to provide the same optical efficiency as the previous embodiment, and the privacy of the user is secured.
  • the curved surface assembly includes a curved surface 11;
  • the microdisplay 21 in the imaging device 2 is an active microdisplay, and the light source is included in the micro display 21;
  • One end of the microdisplay 21 is in contact with the curved surface 11 and the other end is fixed by a mechanical mount 23 such that the display surface of the microdisplay 21 faces the eyes of the user;
  • a mirror 71 is placed on the forehead 22 of the user.
  • the mirror 71 is also fixed by a mechanical mounting 23 and has a second predetermined angle ⁇ between the user's forehead 22, and the mirror 71 is used to place the microdisplay 21.
  • the light from the light source is reflected onto the curved surface 11.
  • the second preset angle ⁇ needs to be determined according to various implementation factors such as the specific implementation form of the curved surface 11, the optimization result under different viewing angle requirements, and the height of the micro display.
  • the arrangement of the mirror 71 can reflect the light from the microdisplay 21 onto the curved surface 11, and the mirror is inclined at the second predetermined angle ⁇ , which can collect and reflect from the micro with the highest light efficiency.
  • the light emitted by the display 21 can also prevent the display content from being leaked to the external environment and being known by other users, thereby ensuring the privacy of the user.
  • the first to sixth embodiments described above are optical structures of a near-eye display system that realizes monocular observation by a user.
  • it is necessary to improve the near-eye display system in the above embodiment specifically:
  • a near-eye display corresponding to the binocular vision of the user is disposed, wherein each eye of the corresponding user is provided with a near-eye display system;
  • the microdisplays 21 in each near-eye display system are respectively disposed on the outer side (as shown in FIG. 8) or above (as shown in FIG. 9) of the corresponding eye 12.
  • each of the above-mentioned near-eye display systems includes a microdisplay 21 included in the imaging device 2 and a curved surface 11 included in the curved component.
  • the rest of the configuration can be referred to the above embodiments 1 to 6 and according to actual conditions. The situation is set.
  • the light beam emitted from the microdisplay 21 illuminates the curved surface 11 in front of each eye 12, each curved surface 11 collimates and reflects light, and combines the light of the virtual image with the light in the external environment. And finally transmitted to the user's eyes for display, so that the user can observe the display content in the near-eye display with both eyes.
  • the two microdisplays 21 can be located at the side of the user's eyes at the same time (as shown in FIG. 8), or at the same time above the user's eyes (as shown in FIG. 9), two microdisplays.
  • the display content displayed by 21 can be identical or different, thereby creating a three-dimensional imaging view of the user's binocular vision.
  • the distance between the two curved surfaces 11 needs to be adjusted according to the distance between the two eyes of the user and the eye movement frame to avoid the two displays.
  • the image is not fully aligned to the user to cause viewing obstacles such as vertigo, etc., thereby enhancing the user's viewing experience.
  • the microdisplays in the two near-eye display systems are integrated into one display device 101. (as shown in FIG. 10), that is, two near-eye display systems share one display device 101, and some additional optical elements can be added between the display device 101 and the curved surface 11 to decompose and guide the light to the two curved surfaces 11 On, to achieve the user's binocular visual experience.
  • the technical solution of the present invention provides a near-eye display system design applied to an HMD device and a NED device in an AR technology, and the near-eye display system is designed to be a relatively compact structure, and at the same time, a large field of view angle is achieved (more than 50 degrees), and the eye movement frame is larger than 8mm*8mm, which makes the user's viewing experience better.
  • all optical components in the near-eye display system can be mounted on the mechanical mount, which makes the mechanical installation and packaging of the whole system easier, and the structure is more secure. Therefore, the near-eye display system in the technical solution of the present invention can be used for batch In the projection or imaging system produced, the complexity of the process is reduced while reducing the manufacturing cost while ensuring the image quality and the user's viewing experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种近眼显示系统及近眼显示器,属于增强现实成像技术领域;近眼显示系统包括曲面组件,曲面组件中包括至少一个曲面(11),曲面(11)的内表面(11a)朝向用户的眼睛(12)设置,曲面的外表面(11b)沿主光轴移开内表面(11a)一厚度距离设置,内表面(11a)涂覆有光部分透射部分反射材料;成像装置(2),设置于靠近用户的眼睛(12)的位置;成像装置(2)进一步包括光源(45)和微型显示器(21),光源(45)用于照射微型显示器(21),微型显示器(21)发出的光束(3)经由曲面组件中的曲面(11)反射后进入用户的眼睛(12)中;曲面(11)还用于将外部的光线透射至用户的眼睛(12)中。在提升近眼显示设备的视场角的同时保持紧凑轻便的结构,提升用户的观看体验和美观度,降低显示设备的工艺复杂度和制造成本。

Description

一种近眼显示系统及近眼显示器 技术领域
本发明涉及增强现实成像技术领域,尤其涉及一种近眼显示系统及近眼显示器。
背景技术
随着增强现实(Augmented Reality,AR)技术的发展,应用于AR技术的便携式设备和可穿戴设备的市场也在迅速增长。在诸多应用AR技术的硬件实现方式中,头戴式显示器(Helmet-Mounted Display,HMD)和近眼显示器(Near-to-Eye Display,NED)是最有效且在现有技术中能够给使用者带来最佳体验的实现方式。
所谓头戴式显示器(HMD),因其外形类似眼镜,又可被称为眼镜式显示器或者视频眼镜,其可以通过各种头戴式显示设备向眼睛发送光学信号,从而实现AR技术中的不同显示效果。
所谓近眼显示器(NED),是一种可以将图像直接投射到观看者眼中的头戴式显示器(HMD)。NED的显示屏距离人的眼球在10厘米以内,这么近的图像通常来说对于人眼是无法看清的,但是通过NED光学系统中设计特定的透镜阵列能够将图像聚焦到人眼的视网膜上,再经过视觉神经系统进行加工,从而能够在用户眼前呈现出虚拟大幅面的图像,由此可以实现AR技术的各种不同显示效果。
现有技术中的近眼显示器,其视场角(Field of View,FOV)的的大小决定了近眼显示器的视野范围大小,通常来讲,视场角越大,视野范围越大。而在近眼显示器中,视场角的提升往往伴随着硬件设备复杂度的增加,使得整个近眼显示器更笨重,从而削弱用户体验舒适感。
发明内容
根据现有技术中存在的上述问题,现提供一种近眼显示系统及近眼显示器的技术方案,旨在提升近眼显示设备的视场的同时保持设备的轻便舒适度,同时降低整个显示设备的工艺复杂度。
上述技术方案具体包括:
一种近眼显示系统,其中,包括:
曲面组件,所述曲面组件中包括至少一个曲面,所述曲面的内表面朝向用户的眼睛设置,所述曲面的外表面沿主光轴方向偏移内表面一预设距离设置,所述内表面涂覆有光部分透射部分反射材料;
成像装置,设置于靠近所述用户的眼睛的位置;
所述成像装置进一步包括光源和微型显示器,所述光源用于照射所述微型显示器,所述光源发出的光束经由所述曲面组件中的所述曲面反射后进入所述用户的眼睛中;
所述曲面用于将外部的光线透射至所述用户的眼睛中。
优选的,该近眼显示系统,其中,所述曲面组件的所述曲面形成一自由曲面形式,所述自由曲面形式在XYZ坐标系中的坐标(x,y,z)之间的关系依照下述多项式处理得到:
Figure PCTCN2018100674-appb-000001
其中,
z用于表示所述自由曲面形式的数值;
c用于表示所述曲率;
k为圆锥系数;
N用于表示所述多项式中的系数数量。
优选的,该近眼显示系统,其中,所述曲面组件中包括一个曲面;
所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置。
优选的,该近眼显示系统,其中,所述曲面的厚度在xy坐标空间不均匀分布。
优选的,该近眼显示系统,其中,所述曲面组件中包括一个曲面;
所述成像装置中的所述微型显示器为无源式微型显示器;
所述光源设置于所述用户的眼睛的前方;
所述微型显示器垂直于所述光源并设置于所述光源的上方,所述微型显示器的显示面朝向所述曲面组件设置;
于所述光源和所述微型显示器之间设置一偏振分光器。
优选的,该近眼显示系统,其中,所述曲面组件中包括多个由上至下依序排列的所述曲面,多个所述曲面之间首尾相触;
所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置。
优选的,该近眼显示系统,其中,所述曲面组件中包括一个曲面;
所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置;
于所述曲面的内表面涂覆偏振选择性聚合物膜;
在所述微型显示器和所述曲面组件之间插入一偏振器,所述偏振器平行于所述微型显示器设置;
所述偏振器用于将所述光源发出的非偏振光转换成偏振光。
优选的,该近眼显示系统,其中,所述曲面组件中包括一个曲面;
所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
所述微型显示器的一端抵触在所述曲面上,另一端通过一机械安装座固定,以使所述微型显示器的显示面朝向所述用户的眼睛;
于所述用户的前额上放置一反射镜,所述反射镜通过所述机械安装座固定,并与所述用户的前额之间呈一第二预设角度,所述反射镜用于将所述微型显示器中的所述光源发出的光反射到所述曲面的所述内表面上。
一种近眼显示器,其中,对应所述用户的每只眼睛各设置一上述的近眼显示系统;
每个所述近眼显示系统中的所述微型显示器分别设置在对应的眼睛的外侧或者上方。
优选的,该近眼显示器,其中,两个所述近眼显示系统中的所述微型显示器被集成于一个显示装置中;
所述显示装置位于所述用户的两只眼睛中心的上方。
上述技术方案的有益效果是:提供一种近眼显示系统,能够在扩大近眼显示设备的视场角(达到50度以上)的同时保持整个显示结构的紧凑轻便,以此提高光的传播效率从而节省能耗,降低显示设备的工艺复杂度和制造成本,全面扩大了AR眼镜工业设计美观的空间,提升了用户佩戴的舒 适度和使用体验。
附图说明
图1是本发明的较佳的实施例中,近眼显示系统的一般结构示意图;
图2-7是本发明的不同的实施例中,近眼显示系统的结构示意图;
图8-10是本发明的不同的实施例中,采用近眼显示系统构成用户双目视觉的近眼显示器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
根据现有技术中存在的上述问题,现提供一种近眼显示系统的技术方案,该技术方案具体适用于HMD设备或者NED设备中,并且用在AR技术中。
则如图1中所示,本发明的较佳的实施例中,上述近眼显示系统的一般结构构成具体包括:
曲面组件,曲面组件中包括至少一个曲面11,曲面11的内表面11a朝向用户的眼睛12设置,曲面的外表面11b沿主光轴移开内表面11a一距离设置(该距离为自由曲面形式的厚度),凹面11a涂覆有特定反射/透射比的光透反射材料,凸面11b未涂任何材料;
成像装置2,设置于靠近用户的眼睛12的位置;
上述成像装置2进一步包括光源和微型显示器(光源和微型显示器之间的相互关系在下文中会详述),光源用于照射微型显示器,并且光源发出的光束经由曲面组件中的曲面11反射后进入用户的眼睛12中;
曲面11还用于将外部的光线透射至用户的眼睛12中。
具体地,本实施例中,上述近眼显示系统的设计目的在于通过多个光学部件的集成配置提升HMD设备或者NED设备的视场角(FOV)以及眼动框(Eye Movement Box,EMB)。
在如图1所示的结构中,上述曲面组件中的至少一个曲面11(图1中为一个曲面11)为自由形式的曲面,也称为自由曲面形式,该自由曲面形 式的自由形式可以包括环形(toroid)、非环形或者双锥形(atoroid/biconic)、非圆柱形(acylinder)、离轴抛物线(off-axis parabola)、渐变型(anamorph)及多项式等几种形式,采用AR技术生成的虚拟图像的显示内容被传递到自由曲面形式的内表面11a上,图1中的13为该曲面11的正视图。该曲面11中的内表面11a为一部分透射部分反射表面,通过预先设定的自由曲面形式的曲率,该自由曲面形式将图1中由成像装置2发出的光束3准直反射到无限远,从而创建了平行光束4,以模拟真实环境中的真实物体产生的光线,换言之,自由曲面形式可以反射来自成像装置2的光,并且将来自外部环境的光透射到用户的眼睛中,因此能够将“虚拟”的光线和“现实”的光线结合起来传递到用户的眼睛中,创建出更加接近显示的“增强现实”的用户体验。本实施例中,上述反射光和透射光之间的比率由涂覆在曲面11的内表面11a的聚合物涂层来确定。具体地,还可以在内表面11a上涂覆聚合物膜,并且在外表面11b上涂覆抗反射材料来减少眩光。
本实施例中,上述成像装置2中的光源用于照射微型显示器,该光源可以为LED光源、激光器或者其他类型的照明器。为了实现全彩色的显示效果,需要采用包含红色、绿色和蓝色的三个光源组成的光源组合来照射微型显示器。
本实施例中,对于有源类型的微型显示器例如有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,其光源可以集成于微型显示器的内部,即微型显示器本身带有照明器,不需要额外的外部光源。但是在一些传统的NED中采用的通常是无源的微型显示器,此时需要通过引入外部光源照射微型显示器来达到成像的目的。
本发明的较佳的实施例中,上述曲面11形成的自由曲面形式在XYZ坐标系中的坐标(x,y,z)之间的关系依照下述多项式处理得到:
Figure PCTCN2018100674-appb-000002
其中,
z用于表示自由曲面形式的数值;
c用于表示曲率;
k为圆锥系数;
N用于表示多项式中的系数数量。
具体地,本实施例中,上述自由曲面形式在其XYZ坐标轴的坐标(x,y,z)之间的关系如上述多项式(1)所示,其中x和y分别为自由曲面形式所在XOY坐标系的坐标(x,y),z为垂直于自由曲面形式方向的坐标轴上的坐标。 具体地,上述XOY坐标起的原点坐标为光学设计中主光轴穿过曲面11形成的自由曲面形式的一点,其位置根据具体的不同设计而定。
上述多项式(1)中,Ai是第i个扩展多项式项的系数,该多项式(1)是x和y的幂级数,其中第一项是x,第二项是y,随后依次为x*x,x*y,y*y等。有2项的多项式的阶数为1,3项的阶数为2,4项的阶数为3,以此类推。上述坐标值x和y除以归一化半径,因此上述多项式(1)中的系数是无量纲的。
上述多项式(1)中的每个系数均经过优化,使得出射光束准直并且达到相差范围内的最大视场角。并且自由曲面形式的厚度在xy坐标轴物理空间内保持一致,优化尽量使该部分具有最小的曲率以使目镜的外观尽可能正常。
实施例一:
如图2中所示,上述曲面组件中包括一个曲面11;
成像装置2中的微型显示器21为有源式微型显示器,光源被包括在微型显示器21中;
则微型显示器21通过隔离材料抵触在用户的前额22,并与用户的前额22之间呈一第一预设角度α,微型显示器21的显示面朝向曲面组件设置;
于微型显示器21和曲面11之间设置一机械安装座23,用于固定微型显示器21和曲面11的相对位置。
具体地,本实施例中,上述微型显示器21为有源类型的显示器例如OLED显示器,因此该微型显示器21内自带有照明器作为光源,这样的设计无需显示设备中另加额外的光源,使得整个显示设备的结构更紧凑。
本实施例中,微型显示器21通过背面的一些密封和隔离的材料抵靠在用户的前额22上来进行定位,并且该微型显示器21与用户的前额22之间形成一第一预设角度α。同时通过一机械安装座23连接微型显示器21和曲面11,以固定上述两者。
本实施例中,上述第一预设角度α根据曲面11的具体实现形式、不同视场角要求下的优化结果以及微型显示器的高度等多种因素决定。
本实施例中的近眼显示系统应用在近眼显示设备中,在容易穿戴并且设备较为紧凑的前提下,其视场角仍然能够超过50度,并且眼动框大小可以达到8mm*8mm。而该自由曲面形式的制造工艺也十分便利,将折射率1.3-1.9的塑料材料通过金刚石车削或者注塑成型。因此本发明技术方案中的近眼显示系统的设计更适合大批量生产,成本也较传统的近眼显示器或者头戴式显示器更低。
实施例二:
如图3所示,在上述实施例一的基础上,上述曲面11的厚度可以在xy坐标空间内不均匀分布,即外表面11b采取与内表面11a不同的自由曲面形式,以专门提供给具有近视或者远视等视力缺陷的用户。例如,为了使近眼显示系统更适合于视力缺陷的用户,可以在上述曲面11的内表面11a上涂覆半透反射的聚合物,以负责准直和组合光,并且在上述曲面11的外表面11b上进行一些专为视力缺陷用户配置眼镜的光学处理,从而使得曲面11的厚度发生上文中所述的变化。在进行光学处理之后,需要对上述曲面11的内表面11a再进行优化,以消除进行光学处理后可能引起的畸变和变形,保证用户通过该近眼显示系统观察到的图像质量。
实施例三:
如图4所示,上述曲面组件中包括一个曲面11;
成像装置2中的微型显示器21为无源式微型显示器;
光源设置于用户的眼睛12的前方;
微型显示器21垂直于光源45并设置于光源的上方,微型显示器21的显示面41朝向曲面组件中的曲面11设置;
于光源和微型显示器21之间设置一偏振分光器42。
具体地,本实施例中,上述微型显示器21为无源式的微型显示器,例如液晶显示器(Liquid Crystal Display,LCD),或者硅基液晶显示器(Liquid Crystal on Silicon,LCOS),或者数字微镜器件(Digital Mirror Device,DMD),或者微机电系统(Micro-electromechanical Systems,MEMS)的扫描器或者驱动纤维束(actuated fiber bundle)等。由于上述微型显示器21为无源式的显示器,其内部不自带光源,因此需要额外添加一个外部光源对其进行照射,该外部的光源如上文中所述,可以为LED、激光器或者其它类型的照明器,若为了全彩色显示效果的需要,还可以形成包括RGB三色光源的光源组合等形式。
本实施例中,在光源和微型显示器21之间还设置一偏振分光器42(PBS),该偏振分光器42的入射面44朝向光源的出射面,偏振分光器42邻接上述入射面44的一面朝向微型显示器21的显示面41,在偏振分光器42的内部有一偏振分光面43与入射面44成四十五度角,该分光面43被设置为反射一种类型的偏振光并透射另一种类型的偏振光,例如被设置为反射S偏振光并透射P偏振光。则当来自光源的偏振S光经过偏振分光器42中的分光棱镜43被反射,光路经过几次的反射/透射之后的反射光携带有来自微型显示器21的显示内容,并且其偏振光被改变类型(例如由S光转化为P光),以便透过分光棱镜43并不被反射,该透射光到达曲面11并被聚焦到无穷 远处以及被反射到用户的眼睛12中,以使用户观察到在微型显示器21的显示面41上成像并显示的显示内容。
实施例四:
在通常的HMD和NED的应用中,较为重要的是增大显示设备的视场角。然而随着视场角的增大,曲面组件中的曲面就被要求具有更大的曲率,这就使得显示设备上的目镜的外观比较不自然,呈现出一种类似于“昆虫眼”的形状。
为了解决这个问题,如图5所示,在上述实施例二的基础上,在曲面组件中包括多个由上至下依序排列的曲面11,多个曲面11之间首尾相触,通过使用多个曲面组成的级联阵列,每个小的曲面可以增加曲率来优化相应光束的局部光功率,从而能够提升整体的视场角,并且不会影响到目镜的外观。
本实施例中的其他构成均类似实施例二中所述,例如成像装置2中的微型显示器21为有源式微型显示器,光源被包括在微型显示器中;
微型显示器21通过隔离材料抵触在用户的前额22,并与用户的前额22之间呈一第一预设角度α,微型显示器21的显示面朝向曲面组件设置;
于微型显示器21和曲面11之间设置一机械安装座23,用于固定微型显示器和曲面的相对位置。
实施例五:
上述实施例二中的近眼显示系统,其中一个缺陷在于曲面11在部分反射微型显示器21的显示内容时,有可能会将显示内容部分透射到外部环境中,从而将显示内容部分暴露给其他用户,又由于曲面需要将外部的环境光透射到近眼显示系统内部,因此上述问题使得用户的观看私密性无法得到保障。
在这种情况下,本实施例中,如图6所示,在曲面11的内表面11a涂覆偏振选择性聚合物膜61,该偏振选择性聚合物膜61能够完全反射一种偏振光(比如可以设计为S光或者P光全反射)而不进行透射,同时将一个偏振器62设置在微型显示器21和曲面组件中的曲面11之间,具体地设置在微型显示器21之前,该偏振器62可以为线性光学偏振器或者圆偏振器,或者其他适合类型的偏振器。以线性偏振器为例,该偏振器62可以将微型显示器21发出的非偏振光转换成偏振光,该偏振光完全被曲面11的内表面11a反射,因此用户可以观察到照明光的50%,这50%的损耗来自偏振器,这样可以避免将光损耗在曲面11上。因此本实施例中的近眼显示系统在能够提供与之前实施例相同的光学效率的同时消除了显示内容缺乏私密性的 问题,保障了用户的隐私。
实施例六:
本实施例为在实施例二的基础上为解决用户隐私问题实现的另一种方式。在本实施例中,如图7中所示,曲面组件中包括一个曲面11;
成像装置2中的微型显示器21为有源式微型显示器,光源被包括在微型显示器21中;
微型显示器21的一端抵触在曲面11上,另一端通过一机械安装座23固定,以使微型显示器21的显示面朝向用户的眼睛;
于用户的前额22上放置一反射镜71,反射镜71同样通过机械安装23座固定,并与用户的前额22之间呈一第二预设角度β,反射镜71用于将微型显示器21中的光源发出的光反射到曲面11上。
本实施例中,上述第二预设角度β同样需要根据曲面11的具体实现形式、不同视场角要求下的优化结果以及微型显示器的高度等多种因素决定。
具体地,本实施例中,反射镜71的设置可以将来自微型显示器21的光反射到曲面11上,并且反射镜以第二预设角度β倾斜,能够以最高的光效率收集并反射来自微型显示器21发射的光。这样的结构同样可以避免显示内容外泄到外部环境中并被其他用户知晓,从而保证了用户的观看隐私。
上述实施例一至六均为实现用户的单眼观察制作的近眼显示系统的光学结构。在下述实施例中,为了实现用于双眼观察的显示器,需要对上述实施例中的近眼显示系统进行改进,具体地:
实施例七:
如图8中所示,设置一对应用户双目视觉的近眼显示器,该近眼显示器中,对应用户的每只眼睛各设置一近眼显示系统;
每个近眼显示系统中的微型显示器21分别设置在对应的眼睛12的外侧(如图8中所示)或者上方(如图9中所示)。
具体地,本实施例中,上述每个近眼显示系统中包括一个包含在成像装置2中的微型显示器21以及包含在曲面组件中的曲面11,其余的构造可以参照上述实施例一至六并根据实际情况进行设置。
本实施例中,来自微型显示器21发出的光束照亮每只眼睛12前方的曲面11,每个曲面11分别对光进行准直和反射,以及将虚拟图像的光与外部环境中的光进行组合,最终分别传输到用户的双眼中显示,以使用户能够用双眼观察到近眼显示器中的显示内容。
本实施例中,上述两个微型显示器21可以同时位于用户的眼睛的侧面(如图8中所示),也可以同时位于用户的眼睛的上方(如图9中所示), 两个微型显示器21所显示的显示内容可以完全相同也可以各不相同,以此来创建用户双目视觉的三维成像视图。
本实施例中,当两个微型显示器21的显示内容完全相同时,需要根据用户两只眼睛的瞳距以及眼动框等关联信息来调整两个曲面11之间的距离,来避免两个显示图像未完全对齐给用户带来的观看障碍例如产生眩晕等,从而提升用户的观看体验。
实施例八:
为了进一步解决因两个微型显示器的显示图像未完全对齐给用户带来的观看障碍例如产生眩晕的问题,在本实施例中,两个近眼显示系统中的微型显示器被集成到一个显示装置101中(如图10中所示),即两个近眼显示系统公用一个显示装置101,并且可以在显示装置101和曲面11之间添加一些额外的光学元件,以将光分解并引导到两个曲面11上,从而实现用户的双目视觉体验。
综上,本发明技术方案提供了一种应用于AR技术中HMD设备和NED设备的近眼显示系统设计,将近眼显示系统设计成较为紧凑的结构,并且同时实现了较大的视场角(超过50度),并且眼动框大于8mm*8mm,使得用户的观看体验更佳。同时该近眼显示系统中的所有光学元器件均可以安装在机械安装座上,使得整个系统的机械安装和包装更容易,结构固定更牢靠,因此本发明技术方案中的近眼显示系统能够用于批量生产的投影或者成像系统中,在保证成像质量和用户观看体验的同时降低了工艺的复杂度,并且降低了制造成本。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

  1. 一种近眼显示系统,其特征在于,包括:
    曲面组件,所述曲面组件中包括至少一个曲面,所述曲面的内表面朝向用户的眼睛设置,所述曲面的外表面沿主光轴方向偏移内表面一厚度距离设置,所述内表面涂覆有光部分透射部分反射材料;
    成像装置,设置于靠近所述用户的眼睛的位置;
    所述成像装置进一步包括光源和微型显示器,所述光源用于照射所述微型显示器,所述光源发出的光束经由所述曲面组件中的所述曲面反射后进入所述用户的眼睛中;
    所述曲面用于将外部的光线透射至所述用户的眼睛中。
  2. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面由一自由曲面形式形成,所述自由曲面形式在XYZ坐标系中的坐标(x,y,z)之间的关系依照下述多项式处理得到:
    Figure PCTCN2018100674-appb-100001
    其中,
    z用于表示所述自由曲面形式的数值;
    c用于表示所述曲率;
    k为圆锥系数;
    N用于表示所述多项式中的系数数量。
  3. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面组件中包括一个曲面;
    所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
    所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
    于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置。
  4. 如权利要求3所述的近眼显示系统,其特征在于,所述曲面的所述内表面的自由曲面形式与所述曲面的所述外表面的所述自由曲面形式不一致,使得所述曲面的厚度在xy坐标空间不均匀分布。
  5. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面组件中包括一个曲面;
    所述成像装置中的所述微型显示器为无源式微型显示器;
    所述光源设置于所述用户的眼睛的前方;
    所述微型显示器垂直于所述光源并设置于所述光源的上方,所述微型显示器的显示面朝向所述曲面组件设置;
    于所述光源和所述微型显示器之间设置一偏振分光器。
  6. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面组件中包括多个由上至下依序排列的所述曲面,多个所述曲面之间首尾相触;
    所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
    所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
    于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置。
  7. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面组件中包括一个曲面;
    所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
    所述微型显示器通过隔离材料抵触在所述用户的前额,并与所述用户的前额之间呈一第一预设角度,所述微型显示器的显示面朝向所述曲面组件设置;
    于所述微型显示器和所述曲面之间设置一机械安装座,用于固定所述微型显示器和所述曲面的相对位置;
    于所述曲面的内表面涂覆偏振选择性聚合物膜;
    在所述微型显示器和所述曲面组件之间插入一偏振器,所述偏振器平行于所述微型显示器设置;
    所述偏振器用于将所述光源发出的非偏振光转换成偏振光。
  8. 如权利要求1所述的近眼显示系统,其特征在于,所述曲面组件中包括一个曲面;
    所述成像装置中的所述微型显示器为有源式微型显示器,所述光源被包括在所述微型显示器中;
    所述微型显示器的一端抵触在所述曲面上,另一端通过一机械安装座固定,以使所述微型显示器的显示面朝向所述用户的眼睛;
    于所述用户的前额上放置一反射镜,所述反射镜通过所述机械安装座固定,并与所述用户的前额之间呈一第二预设角度,所述反射镜用于将所述微型显示器中的所述光源发出的光反射到所述曲面的所述内表面上。
  9. 一种近眼显示器,其特征在于,对应所述用户的每只眼睛各设置一如权利要求1-8中任意一项所述的近眼显示系统;
    每个所述近眼显示系统中的所述微型显示器分别设置在对应的眼睛的外侧或者上方。
  10. 如权利要求1所述的近眼显示器,其特征在于,两个所述近眼显示系统中的所述微型显示器被集成于一个显示装置中;
    所述显示装置位于所述用户的两只眼睛中心的上方。
PCT/CN2018/100674 2017-08-30 2018-08-15 一种近眼显示系统及近眼显示器 WO2019042133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710762925.3A CN109425985B (zh) 2017-08-30 2017-08-30 一种近眼显示系统及近眼显示器
CN201710762925.3 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019042133A1 true WO2019042133A1 (zh) 2019-03-07

Family

ID=65502111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100674 WO2019042133A1 (zh) 2017-08-30 2018-08-15 一种近眼显示系统及近眼显示器

Country Status (2)

Country Link
CN (1) CN109425985B (zh)
WO (1) WO2019042133A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999889A (zh) * 2019-05-11 2020-11-27 京东方科技集团股份有限公司 曲面透镜和显示装置
US20200400956A1 (en) * 2019-06-20 2020-12-24 Firefly Dimension Inc. Head mounted augmented reality system, apparatus and device
CN110515212B (zh) * 2019-09-27 2021-12-14 北京耐德佳显示技术有限公司 一种近眼显示系统
CN110780447A (zh) * 2019-12-05 2020-02-11 杨建明 一种用于增强现实眼镜的光学系统
CN111158150A (zh) * 2020-02-10 2020-05-15 Oppo广东移动通信有限公司 镜片组件及头戴显示设备
CN111948820B (zh) * 2020-07-10 2021-04-27 东南大学 一种快速计算全息波导显示光效的方法
TWI796878B (zh) * 2021-12-17 2023-03-21 宏碁股份有限公司 擴增實境顯示裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399404A (zh) * 2013-08-14 2013-11-20 中国科学院长春光学精密机械与物理研究所 机载视透型头盔显示器光学系统
US20140104692A1 (en) * 2012-10-11 2014-04-17 Sony Computer Entertainment Europe Limited Head mountable display
CN104216118A (zh) * 2013-06-03 2014-12-17 约翰·T·默里 具有远程控制件的头部安装式显示器
US9170425B1 (en) * 2011-08-17 2015-10-27 Lockheed Martin Corporation Multi-focal augmented reality lenses
CN206387962U (zh) * 2016-12-30 2017-08-08 北京七鑫易维信息技术有限公司 一种头戴式显示装置及便携式设备
CN107065189A (zh) * 2017-04-28 2017-08-18 歌尔科技有限公司 一种光学模组及增强现实眼镜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816605B2 (ja) * 2007-09-17 2011-11-16 株式会社デンソー 車両用ヘッドアップディスプレイ装置
JP6065630B2 (ja) * 2013-02-13 2017-01-25 セイコーエプソン株式会社 虚像表示装置
JP2014219468A (ja) * 2013-05-02 2014-11-20 セイコーエプソン株式会社 虚像表示装置
US9291821B1 (en) * 2015-03-05 2016-03-22 Matvey Lvovskiy Wide-angle head-up display with three-component combiner
CN106918913A (zh) * 2017-04-01 2017-07-04 北京铅笔视界科技有限公司 一种自由曲面离轴反射近眼显示光学系统及建立方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170425B1 (en) * 2011-08-17 2015-10-27 Lockheed Martin Corporation Multi-focal augmented reality lenses
US20140104692A1 (en) * 2012-10-11 2014-04-17 Sony Computer Entertainment Europe Limited Head mountable display
CN104216118A (zh) * 2013-06-03 2014-12-17 约翰·T·默里 具有远程控制件的头部安装式显示器
CN103399404A (zh) * 2013-08-14 2013-11-20 中国科学院长春光学精密机械与物理研究所 机载视透型头盔显示器光学系统
CN206387962U (zh) * 2016-12-30 2017-08-08 北京七鑫易维信息技术有限公司 一种头戴式显示装置及便携式设备
CN107065189A (zh) * 2017-04-28 2017-08-18 歌尔科技有限公司 一种光学模组及增强现实眼镜

Also Published As

Publication number Publication date
CN109425985A (zh) 2019-03-05
CN109425985B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
TWI676047B (zh) 一種成像顯示系統
WO2019042133A1 (zh) 一种近眼显示系统及近眼显示器
WO2019154431A1 (zh) 穿戴式ar系统和ar显示设备
US10866422B2 (en) Micro LED display system
JP2022160457A (ja) ウェアラブルディスプレイのための照明装置
US6563648B2 (en) Compact wide field of view imaging system
US7589902B2 (en) Method of combining images in a wearable display system
US8867139B2 (en) Dual axis internal optical beam tilt for eyepiece of an HMD
US9248616B2 (en) Substrate-guide optical device
US8760765B2 (en) Optical beam tilt for offset head mounted display
US10890776B1 (en) Pancake lens ghosting mitigation
US20100002154A1 (en) Polarized head-mounted projection display
CN107024773B (zh) 一种轻薄型虚像成像装置
JP2015534108A (ja) 人間工学的な頭部搭載型ディスプレイデバイスおよび光学システム
KR20160008951A (ko) 홀로그래픽 시-쓰루 광학 장치, 이를 포함한 스테레오스코픽이미징 시스템, 및 멀티미디어 헤드 장착 시스템
JP2001249301A (ja) 観察光学系及びそれを用いた画像表示装置
US10809609B2 (en) Projection apparatus
WO2020172008A1 (en) Color management of display device
KR20200002616A (ko) 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템
KR20180106624A (ko) 수평 및 수직 출사동 확장수단을 갖는 투과형 hmd 광학계
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
WO2021068855A1 (zh) 一种显示设备模组及头戴式显示设备
CN208314329U (zh) 一种单眼大视场近眼显示光学系统及头戴式显示设备
TWI798853B (zh) 擴增實境顯示裝置
CN218824977U (zh) Ar眼镜组件及ar眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850979

Country of ref document: EP

Kind code of ref document: A1