WO2019154431A1 - 穿戴式ar系统和ar显示设备 - Google Patents

穿戴式ar系统和ar显示设备 Download PDF

Info

Publication number
WO2019154431A1
WO2019154431A1 PCT/CN2019/074871 CN2019074871W WO2019154431A1 WO 2019154431 A1 WO2019154431 A1 WO 2019154431A1 CN 2019074871 W CN2019074871 W CN 2019074871W WO 2019154431 A1 WO2019154431 A1 WO 2019154431A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
beam splitter
projection source
light
display device
Prior art date
Application number
PCT/CN2019/074871
Other languages
English (en)
French (fr)
Inventor
肖冰
梁晓斌
徐驰
Original Assignee
杭州太若科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州太若科技有限公司 filed Critical 杭州太若科技有限公司
Priority to CN201980001718.3A priority Critical patent/CN110603477A/zh
Priority to EP19751963.0A priority patent/EP3754412A4/en
Publication of WO2019154431A1 publication Critical patent/WO2019154431A1/zh
Priority to US16/991,186 priority patent/US11867906B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present application relates to the field of Augmented Reality (AR) technology.
  • AR Augmented Reality
  • the present application relates to a wearable AR system and its AR display device.
  • Augmented Reality (AR) technology is a technology that combines virtual images and real-world scenes in real time.
  • the basic optical principle of augmented reality technology is to simultaneously inject the real scene scene information and the virtual image information into the human eye, so that the image information transmitted on the two optical paths is fused at the human eye, so that the human eye simultaneously obtains the real scene.
  • a mixture of scene information and virtual images achieves augmented reality.
  • Transmissive display devices are key devices in augmented reality systems. According to different real scenes, transmissive display devices are classified into video see-through display devices and optical see-through display devices. Common augmented reality glasses or helmets (also known as AR glasses or AR helmets) are examples of optical see-through AR display devices.
  • FIG. 1 is an optical schematic diagram of a conventional AR display device mainly including a projection source 1, a lens 2 as a beam shaper, a beam splitter 3, and a curved mirror 4.
  • the virtual image light VL from the projection source 1 carrying the virtual image information is incident on the lens 2, and the light is shaped through the lens 2.
  • the shaped virtual image light VL is incident on the beam splitter 3, and a part of the light is in the beam splitter 3.
  • the spectroscopic surface is reflected and incident on the mirror 4 (a part of the light is transmitted through the spectroscope 3 and disappears in the external environment), is reflected on the mirror 4, and is incident on the spectroscope 3 again, after which the virtual image ray VL is transmitted through the spectroscopic beam.
  • the mirror 3 enters the human eye E.
  • the real light AL carrying the real scene scene is transmitted from the outside of the mirror 4 through the mirror 4 and the beam splitter 3 to enter the human eye E.
  • the human eye E can simultaneously observe the virtual image and the image of the real scene scene.
  • the interfering light IL is incident on the mirror 3, and is reflected into the human eye E, causing interference to the human eye E to observe the image.
  • some AR display devices In order to make AR glasses available to users with poor eyesight, some AR display devices also provide refractive correction lenses between the beam splitter 3 and the human eye E, which makes the structure of the AR display device more complicated and weight-increasing. A large exit distance can be worn, which requires high system performance.
  • the existing AR display device has one or more of the following main defects: the optical system structure composed of various optical devices is not compact; the optical structure is too simple, and the design parameters capable of providing design freedom are too small.
  • the imaging quality is low, the optical performance is low, the field of view is small, the diameter of the exit pupil is small, the exit pupil distance is small, and some devices are difficult to manufacture or assemble, which is not conducive to mass production; in addition to image information and actual information can enter the human eye, there is interference.
  • the present application greatly improves the design freedom of the optical system by providing two optical path modules each including a beam splitter and a mirror. On this basis, the Applicant has further improved a plurality of optical devices or modules in the optical system to solve one or more of the above technical problems.
  • an augmented reality display device comprising: a projection source module including a projection source; a first optical path module including a first beam splitter and a first mirror; and a second beam splitter And a second optical path module of the second mirror, wherein the first beam splitter and the second beam splitter respectively comprise a beam splitter substrate, and the first mirror and the second mirror respectively comprise a reflective film,
  • the virtual image light that is projected from the projection source module and carries the virtual image information is first reflected by the first optical path module, by the first beam splitter and the first mirror, and at least twice In one transmission, the virtual image light from the first optical path module enters the second optical path module, and at least one transmission and at least two reflections enter the human eye by means of the dichroic mirror and the second mirror; The actual light enters the human eye through the second optical path module.
  • the virtual image ray from the projection source module is along its propagation path:
  • the first optical module is sequentially transmitted: after being transmitted through the first beam splitter, reflected on the first mirror, and then reflected by the first beam splitter to leave the first optical module, and then enter the second optical module in sequence: Reflecting on the second beam splitter, then reflecting on the second mirror, then passing through the second beam splitter to leave the second optical module, and finally entering the human eye; or
  • the first optical module is sequentially transmitted: after being transmitted through the first beam splitter, reflected on the first mirror, and then reflected by the first beam splitter to leave the first optical module, and then enter the second optical module in sequence: Transmitted through the second beam splitter and reflected on the second mirror, and then reflected by the second beam splitter to leave the second optical module and finally enter the human eye; or
  • the first optical module is sequentially arranged: firstly reflected by the first beam splitter onto the first mirror, reflected by the first mirror, transmitted through the first beam splitter to leave the first optical module, and then enter the second optical In the module, the reflection occurs on the second beam splitter, and then the reflection is made on the second mirror, and then transmitted through the second beam splitter to leave the second optical module and finally enter the human eye; or
  • the first optical module is sequentially arranged: firstly reflected by the first beam splitter onto the first mirror, reflected by the first mirror, transmitted through the first beam splitter to leave the first optical module, and then enter the second optical
  • the module is sequentially transmitted: after being transmitted through the second beam splitter, reflected on the second mirror, and then reflected by the second beam splitter to leave the second optical module and finally enter the human eye.
  • the projection source is a planar projection source or a curved projection source.
  • the projection source module further includes a beam shaper for shaping a virtual image ray from the projection source, wherein the beam shaper is disposed apart from the projection source; or the beam shaper Integrating with the projection source directly into a monolithic piece in a gapless manner.
  • the projection source module further includes a beam shaper for shaping a virtual image ray from the projection source, the beam shaper being indirectly integrated with the projection source as a unitary piece via an intermediate matching component ,
  • the intermediate matching member has a refractive index of 1 to 2.7; or preferably, the intermediate matching member is formed by at least one of the group consisting of a liquid medium, a liquid crystal medium, a semi-solid medium, and a solid medium; or Preferably, the intermediate matching member is formed of a liquid medium and/or a liquid crystal medium, and the projection source module further includes a sealing structure that seals a medium forming the intermediate matching member between the projection source and the beam shaper.
  • the projection source is a planar projection source having an integrated fiber optic panel that receives virtual image light from the projection source.
  • the projection source module further includes a beam shaper for shaping virtual image rays from the fiber optic panel, wherein the beam shaper is disposed apart from the fiber optic panel; or the beam shaper The fiber optic panel is directly integrated into a monolithic piece in a gapless manner.
  • the projection source module further includes a beam shaper for shaping virtual image light from the fiber optic panel, the beam shaper being indirectly integrated with the fiber optic panel as a unitary piece via an intermediate matching component ,
  • the intermediate matching member has a refractive index of 1 to 2.7; or preferably, the intermediate matching member is formed by at least one of the group consisting of a liquid medium, a liquid crystal medium, a semi-solid medium, and a solid medium; or Preferably, the intermediate matching component is formed of a liquid medium and/or a liquid crystal medium, and the projection source module further includes a sealing structure that seals a medium forming the intermediate matching component between the beam shaper and the fiber optic panel.
  • the projection source is an integrated projection source, such as an OLED or LCD.
  • the projection source includes a light source and an image source that are separated from each other, wherein
  • the image source is an LCOS, MEMS or DMD image source;
  • the projection source module further includes a beam shaper for integrating the virtual image light from the image source between the image source and the first optical path module, and/or the projection The source module further includes a beam shaper for integrating light from the light source between the light source and the first optical path module.
  • the first beam splitter and the second beam splitter are polarization beam splitters including a polarization beam splitting film, between the first beam splitter and the first mirror of the first light path module, and the first a first wave plate assembly and a second wave plate assembly are respectively disposed between the second beam splitter and the second mirror of the two optical path module, preferably the first wave plate assembly and the second wave plate assembly are one quarter Wave plate.
  • both the first beam splitter and the second beam splitter are configured to allow polarized light in a first direction to pass while polarizing light in a second direction, the first direction being perpendicular to the second direction.
  • a half wave plate is disposed between the first optical path module and the second optical path module.
  • the first beam splitter is configured to allow polarized light in a first direction to simultaneously pass polarized light in a second direction
  • the second beam splitter is configured to allow polarized light in a second direction to pass while simultaneously reflecting polarization in the first direction Light, the first direction being perpendicular to the second direction.
  • the second beam splitter further includes a polarizing film configured to allow the polarized light in the first direction to pass through the polarized light in the second direction while absorbing the virtual image light from the first optical module.
  • the polarizing beam splitting film is reached before reaching the polarizing film.
  • the second beam splitter further includes a spectroscope wave plate, wherein the virtual image light incident on the second beam splitter sequentially reaches the polarization beam splitting film, the polarizing film, and the beam splitter wave plate.
  • the beam splitter wave plate is used as the beam splitter substrate.
  • the first beam splitter and/or the second beam splitter are planar beamsplitters or cube-type beamsplitters.
  • the projection source module further includes a projection source polarization component, and the virtual image light from the projection source is incident on the polarization component and transmitted from the projection source module.
  • the projection source polarization component is disposed between the projection source and the first beam splitter of the first optical path module;
  • the projection source module includes a beam shaper for shaping a virtual image ray from a projection source, the projection source polarization component being disposed between the projection source and the beam shaper or disposed on the beam shaper and the first optical path Between the first beamsplitters of the module; or
  • the projection source includes a light source and an image source that are separated from each other, and the projection source polarization component is disposed between the light source and a first beam splitter of the first optical path module.
  • the projection source polarization component is a polarizing film and/or a polarization beam splitting film and/or a projection source wave plate.
  • each of the first waveplate component and the second waveplate component is provided as a separate component; or the first waveplate component and the second waveplate component are respectively integrated into the first a mirror and a second mirror.
  • the first wave plate assembly and the second wave plate assembly are integrated into a first mirror and a second mirror, respectively, and the first wave plate assembly and the second wave plate assembly are respectively used as A mirror substrate of the first mirror and the second mirror.
  • either or both of the first mirror and the second mirror further comprise a mirror substrate, the reflective film being disposed on either side of the mirror substrate, preferably The reflective film is disposed on the other side of the mirror substrate opposite to the incident side of the virtual image light.
  • the reflective surface of the first mirror is a total reflection film or a semi-reflective film
  • the reflective surface of the second mirror is a semi-reflective film
  • the mirror substrate of the second mirror is a refractive correction substrate, wherein the virtual image light incident on the mirror reaches the refractive correction substrate or reaches before reaching the semi-reflective film.
  • Semi-reflective film Semi-reflective film.
  • either or both of the first mirror and the second mirror further comprise an anti-reflection film, and the virtual image light rays from the second beam splitter and the second wave plate assembly are incident on the corresponding The mirror first passes through the AR coating of the mirror and then enters the mirror substrate and the semi-reflective film.
  • the second mirror further includes a mirror wave plate and a mirror polarizing film, and the virtual image light rays from the second beam splitter and the second wave plate assembly are incident on the second mirror.
  • the portion of the light that has passed through the reflective film of the second mirror first passes through the mirror wave plate of the second mirror to become polarized light that can be absorbed by the polarizing film of the mirror, and is absorbed by the polarizing film of the mirror.
  • the mirror wave plate is a quarter wave plate.
  • the mirror wave plate and the mirror polarizing film are disposed apart, or the mirror wave plate and the mirror polarizing film are bonded together without gaps to form a unitary body.
  • the mirror waveplate and the mirror polarizing film are integrally along a lateral direction of a wearer's head of the augmented reality display device and/or a longitudinal direction perpendicular to the lateral direction.
  • the bending is generally to follow the shape of the second reflecting mirror, and more preferably, the entirety which is bent as described above is attached to the semi-reflective film without a gap.
  • the second mirror further includes a protective lens located at an outermost side along an incident direction of the virtual image light incident from the second beam splitter onto the second mirror, the protective lens being a light energy attenuating sheet Or electrochromic lenses or photochromic lenses.
  • the present application also provides a wearable augmented reality system comprising the augmented reality display device according to the above, preferably the wearable augmented reality system is an augmented reality glasses or an augmented reality helmet or an augmented reality mask.
  • Figure 1 shows an embodiment of a prior art AR display device
  • Figure 5 illustrates an alternate embodiment of a mirror that can be used in an AR display device in accordance with the present application
  • Figure 6 shows an alternative embodiment of the AR display device of Figure 2
  • Figure 7 illustrates an alternate embodiment of a mirror that can be used in the AR display device of Figure 6;
  • Figures 8 and 8a illustrate two alternative embodiments of a beam splitter that can be used in the AR display device of Figure 6;
  • Figures 9a-9b illustrate two alternative embodiments of a projection source module in an AR display device of the present application
  • FIG. 10a-10c illustrate three additional alternative embodiments of a projection source module in an AR display device of the present application
  • Figures 11a-11c illustrate yet another alternative embodiment of a projection source module in an AR display device of the present application
  • Figure 13 illustrates another embodiment of the AR display device of the present application
  • Figure 14 shows still another embodiment of the AR display device of the present application.
  • Fig. 15 shows still another embodiment of the AR display device of the present application.
  • the wearable AR system according to the present application may be an AR glasses or an AR helmet or an AR mask including the AR display device according to the present application.
  • the AR display device of the present application generally includes a projection source module and an optical path module.
  • the projection source module is configured to provide light (hereinafter also referred to as virtual image light VL) carrying virtual image information
  • the optical path module is configured to enable virtual image light from the projection source module and a scene image from a real scene.
  • Realistic light rays (represented by the actual light ray AL in the drawings and in the following description) are transmitted into the human eye by transmission, reflection, or any combination thereof, and are configured as a series of optical devices arranged in a positional relationship. The combination.
  • the AR display device in order to solve or solve to some extent, at least one of the problems mentioned in the background art, in order to improve the design freedom of the AR display device, includes two optical path modules, and each optical path module respectively Includes a mirror and the first beam splitter.
  • beam splitter means that light incident on the spectroscopic surface of the beam splitter can be divided into at least two portions of light (usually reflected light and refracted or transmitted light) Any optical device or combination of optics.
  • the beam splitter can be cubic or planar.
  • the beam splitter has a spectroscopic surface.
  • the beam splitter In the case where the beam splitter is a cubic type, it is usually composed of two 45-degree right-angled prisms, and the inclined faces of the two prisms are attached to each other to form a beam splitting surface of the beam splitter; in the case where the beam splitter is a flat type
  • the beam splitting surface of the beam splitter is parallel to the plane of the beam splitter on which the light is incident. A part of the light incident on the spectroscopic surface of the beam splitter is partially reflected and refracted to separate the light into a portion of the reflected light and a portion of the refracted light.
  • the spectroscopic film or the polarizing beam splitting film of the spectroscope defines the spectroscopic surface, and the effective portion of the spectroscopic film or the polarizing beam splitting film may be one or more layers having a thickness of from several tens of nanometers to several hundred micrometers.
  • the attached polarizing beam splitting film in addition to the effective portion, a base film having a thickness of several tens of micrometers to several hundreds of micrometers may be included, and the base film serves as a support and protection.
  • the spectroscopic surface of the spectroscope is taken as an example, the reflection does not necessarily occur only on the spectroscopic surface of the spectroscope, but may occur over the entire effective thickness of the spectroscopic film or the polarizing beam splitter of the spectroscope. Inside.
  • the term "polarizing beam splitter” refers to a beam splitter having a polarization function comprising a polarizing beam splitting film, preferably a polarizing beam splitting film is coated or bonded or integrated with the beam splitter substrate in any other way. overall.
  • the polarizing beam splitting film functions to pass polarized light having a polarization state of a first direction while reflecting a polarized light of a second direction, wherein the first direction and the second direction are perpendicular to each other.
  • a common beam splitter that does not have a polarization function refers to a beam splitter substrate.
  • film or “sheet” refers broadly to a thin layer structure which may be a thin layer structure attached to another "film” or “sheet” or a thin layer structure that exists alone. .
  • mirror refers to a "half mirror", usually consisting of a mirror substrate and a semi-reflective film (also referred to as a “semi-transflective film”).
  • the light rays propagating in the first direction and incident thereon can be partially reflected back by the mirror, in particular by the semi-reflective film, and partially transparent through the mirror.
  • light rays propagating in a second direction opposite the first direction and incident thereon are at least partially transmissive through the mirror.
  • the term "reflective film” may be the above-described semi-reflective film, or may be a total reflection film that does not allow light transmitted in the second direction to pass therethrough.
  • mirrors are all shown as curved mirrors in the drawings, those skilled in the art will appreciate that the mirrors in the various embodiments of the present application may be planar unless otherwise specified. Reflector.
  • the light rays carrying the virtual image information are referred to as virtual image rays, denoted by reference numerals VL and larger solid arrows;
  • the light rays carrying the scene information of the actual scene are called Realistic light is indicated by the reference symbol AL and the open-hearted arrow;
  • the interfering light is indicated by the reference symbol IL and the smaller double solid arrow.
  • the AR display devices shown in FIGS. 2-4 each include a projection source module M1, a first optical path module M2, and a second optical path module M3.
  • the projection source module M1 includes only the projection source 12;
  • the first optical path module M1 includes a first beam splitter 20 and a first mirror 30;
  • the second optical path module M2 includes a second beam splitter. 50 and second mirror 60.
  • the mirrors in the embodiments of the present application are all described by taking a half mirror as an example.
  • the first mirror 30 of the first optical path module M1 may also be a mirror including a total reflection film.
  • the second mirror 60 of the second optical path module M2 can only be a half mirror of a general meaning including a semi-reflective film.
  • the reflective film of the first mirror 30 and/or the second mirror 60 may be disposed on either side of the mirror substrate, but is preferably disposed on the other side opposite to the incident side of the virtual image light VL, Therefore, the light is transmitted through the mirror substrate before or after being reflected by the reflective film of the mirror, thereby achieving the purpose of improving the design freedom of the optical system under other conditions.
  • the projection source module M1 is configured to transmit a virtual image light VL carrying virtual image information.
  • the virtual image light ray VL emitted from the projection source module M1 sequentially propagates through the first optical path module M2 and the second optical path module M3, and then enters the human eye E.
  • the real light AL carrying the scene information of the real scene enters the human eye E only through the second optical path module M3.
  • the virtual image light ray VL emitted from the projection source 12 of the projection source module M1 is sequentially transmitted through the first beam splitter 20 along its traveling path, and is reflected on the first mirror 30. Reflection occurs on the first beam splitter 20 (away from the first optical path module M2, entering the second optical path module M3), reflection occurs on the second beam splitter 50, and reflection occurs on the second mirror 60, in the second Transmission occurs on the beam splitter 50 and finally enters the human eye E.
  • the virtual image light ray VL emitted from the projection source 12 of the projection source module M1 is sequentially transmitted through the first beam splitter 20 along its traveling path, and is reflected on the first mirror 30.
  • a mirror 20 is reflected (away from the first optical path module M2 and entering the second optical path module M3), transmitted through the second beam splitter 50, reflected on the second mirror 60, and then reflected in the second beam splitter 50.
  • a reflection occurs on the upper part and finally enters the human eye E.
  • the virtual image light ray VL emitted from the projection source 12 of the projection source module M1 is sequentially reflected on the first beam splitter 20 along its traveling path, and is reflected on the first mirror 30. Transmitted through the first beam splitter 20 (away from the first optical path module M2, into the second optical path module M3), reflected on the second beam splitter 50, reflected on the second mirror 60, and then transmitted through the second The beam splitter 50 finally enters the human eye E.
  • the first optical path module M2 of the third form of FIG. 4 is used in combination with the second optical path module M3 of the second form of FIG.
  • the virtual image light VL emitted from the projection source 12 of the projection source module M1 is sequentially reflected on the first beam splitter 20 along its traveling path, reflected on the first mirror 30, and transmitted through the first beam splitter. 20 (away from the first optical path module M2, entering the second optical path module M3), transmitted through the second dichroic mirror 50, reflected on the second reflecting mirror 60, reflected on the second dichroic mirror 50, and finally entered Human eye E.
  • each optical path module includes a beam splitter and a mirror, and the virtual image light VL passes through the first optical path mode.
  • Both the group M2 and the second optical path module M3 undergo at least two reflections and one transmission.
  • the AR display device of the present application adds a large number of optical devices capable of affecting the traveling and propagation of the virtual image light VL, and provides a plurality of design parameters, optical parameters and can be adjusted or changed by the designer. / or installation parameters, thus improving the design freedom of the entire optical system, but also has the effect of expanding the field of view, which is conducive to optimizing the final imaging seen by the human eye.
  • the first mirror 30 and the second mirror 60 of the first and second optical path modules M2 and M3 have first and second optical axes Z1 and Z2, respectively, first and second.
  • the optical axes Z1 and Z2 intersect the split spectroscopic planes 20a and 50a of the first and second dichroic mirrors 20 and 50, respectively, at points P1 and P2, and the principal axis Z passes through points P1 and P2.
  • the first beam splitter 20 of the first optical path module M2 is configured such that its splitting surface 20a forms a first and a second angle with the first optical axis Z1 of the first mirror 30 and the main axis Z, respectively. And ⁇ . In the first and second angles In the case where ⁇ is equal to ⁇ , the spatial relative positional relationship between the first beam splitter 20 and the first mirror 30 of the first optical path module M2 can be changed.
  • the second beam splitter 50 of the second optical path module M3 is configured such that its spectroscopic surface 50a and the second optical axis Z2 of the second mirror 60 and the main axis Z form third and fourth included angles ⁇ and ⁇ , respectively.
  • the value of ⁇ ranges from ⁇ -10° to ⁇ +10°, wherein the value of ⁇ is between 11° and 79°, preferably between 20° and 70°, more preferably 30 Between 60 and 60, more preferably between 40 and 55, most preferably between 40 and 50, at which time the utilization of light energy is most efficient. In the present application, the term "between" encompasses an endpoint.
  • the present application provides a method including two optical path modules different from the prior art including only one optical path module having one beam splitter and one mirror.
  • Optical structure but the application is not limited to a structure including only two optical path modules, and optical structures including more optical path modules are also within the scope of the present application.
  • the order and number of times the virtual image light ray VL passes through the beam splitter and the mirror in each optical path module is not limited to the three basic embodiments given in the drawings, and various modifications are also considered to be within the scope of the present application. Belong to the same inventive concept.
  • each of the first and second mirrors 30 and 60 may have a basic structure as described above, for example, including a mirror substrate and integrated therewith The reflective film that comes together.
  • integrated means that the objects are formed into a single piece by any method known in the art such as coating, laminating, bonding, photo-adhesive or by structural fixing.
  • Each of the mirrors 30 and 60 can be configured such that the virtual image ray VL incident thereon first reaches the semi-reflective film, and then only the refracting portion of the ray can continue to reach the mirror substrate.
  • Each of the mirrors 30 and 60 can also be configured such that the incident virtual image ray VL is first transmitted through the mirror substrate before reaching the semi-reflective film of the mirror, which is more advantageous because the virtual image ray VL is The transmission provided by the mirror substrate twice before being reflected from the mirror 30 or 60 back to the corresponding beam splitter 20 or 50 further enhances the design freedom of the optical system.
  • the AR display device according to the present application illustrated in Figures 2-4 has a first alternative embodiment, i.e., replacing the first mirror 30 and/or the second mirror with a mirror 40 as shown in FIG. 60.
  • FIG. 5 only shows the structure of the mirror, and the structure of other parts and the principle of light propagation are the same as those illustrated in FIGS. 2-4, and details are not described herein again.
  • the mirror 40 includes an antireflection film 42 integrated as a whole, a mirror substrate 44 and a semi-reflective film 46 (when used for the first mirror 30, it may also be a total reflection film), at this time, the antireflection film 42 and The semi-reflective films 46 are located on opposite sides of the mirror substrate 44, respectively.
  • the function of the antireflection coating is to increase the energy of light entering the substrate and thereby improve the overall efficiency of light energy utilization.
  • the virtual image light ray VL incident on the mirror 40 first passes through the anti-reflection film 42, passes through the mirror substrate 44, and then reaches the semi-reflective film 46, through which the light VL is reflected. It is again transmitted through the mirror substrate 44 and the anti-reflection film 42.
  • the virtual image light VL undergoes two transmissions during the propagation process, which further improves the design freedom, and lays a foundation for improving the optical performance of the AR display device.
  • the mirror substrate 44 of the mirror 40 is replaced with a refractive correction substrate, and the mirror thus formed has refraction Correction function, also known as refractive lens mirror.
  • the virtual image light VL incident on the mirror first reaches the substrate and then reaches the semi-reflective film or reaches the semi-reflective film and then reaches the substrate, which can realize the refraction that may exist when the human eye E sees the image of the real light AL. Not a problem.
  • the field curvature of the optical system can be corrected to some extent, so that the image seen by the human eye is clearer.
  • this structure overcomes the drawbacks of the prior art that the corrective lens is disposed between the beam splitter and the human eye, resulting in complicated structure, increased weight, more stray light, and loss of brightness. .
  • the first and second beam splitters 20 and 50 of the first and second optical path modules M2 and M3 may be ordinary beam splitters having no polarization function.
  • the first and second beamsplitters 20 and 50 of the first and second optical path modules M2 and M3 are each configured as a polarizing beam splitter having a polarization function .
  • the first beam splitter 20 and the second beam splitter 50 are respectively shown as having a planar structure including a beam splitter substrate 82 and a polarization beam splitting film 84 integrated thereon to make a polarization state.
  • the polarized light that is the first direction can pass while the polarized light whose polarization state is the second direction perpendicular to the first direction is reflected on the spectroscopic surface of the beam splitter.
  • the polarization beam splitting film defines a beam splitting surface of the beam splitter, and the beam splitter substrate is optional.
  • the first direction polarized light and the second direction polarized light are perpendicular to the propagation direction of the light, respectively, and P-polarized light and S-polarized light will be exemplified herein.
  • the first direction polarized light and the second direction polarized light are not limited thereto, and they may be polarized light of any two directions having mutually perpendicular relationship, for example, P polarized light may be respectively represented.
  • S-polarized light is rotated by a certain angle of polarized light around the direction of light propagation.
  • the first optical path module M2 includes a first wave plate assembly 23 disposed between the first beam splitter 20 and the first mirror 30, and the second optical path module M3 includes a second optical path module M3.
  • Each of the first wave plate assembly 23 and the second wave plate assembly 56 may employ a quarter wave plate.
  • the term “wave plate” may be a quarter wave plate for converting incident first direction polarized light into circularly polarized light or converting circularly polarized light into a second direction perpendicular to the first direction.
  • Polarized light the term “wave plate” may also be other wave plates or films or other optical devices that are capable of creating additional optical path differences between two polarized lights that are perpendicular to each other.
  • beam splitter wave plate and “mirror wave plate” refer to a wave plate that can be integrated into a beam splitter or mirror, respectively.
  • the wave plate or quarter wave plate in the present application may be a planar structure or a curved structure, and specifically may be a cylindrical structure, a spherical surface or other aspherical structure.
  • the wave plate assemblies 23 and 56 may be disposed between the respective beam splitters and mirrors as shown, or may be integrated with the corresponding mirrors. Since P (in this case, the first direction) polarized light and S (herein the second direction) polarized light can be rotated in the direction of light propagation from 0 to 360° while satisfying the mutual vertical, at this time, the first The polarization splitting film and the wave plate assembly of the second beam splitters 20 and 50 also change angles.
  • the virtual image light VL emitted from the projection source 12 of the projection source module M1 and carrying the virtual image information is incident on the first beam splitter 20 including the polarization beam splitting film, and the P-polarized light is transmitted through.
  • the first beam splitter 20 reaches the first wave plate assembly 23, it becomes circularly polarized light (S-polarized light is reflected), and the circularly polarized light is reflected on the first mirror 30, and the reflected light passes through the first wave again.
  • the sheet assembly 23 is converted into S-polarized light, and the S-polarized light is again incident on the first beam splitter 20, and the S-polarized light is reflected to the second beam splitter 50 by the reflection of the polarization splitting film, on the second beam splitter 50.
  • the reflection occurs again, reaching the second wave plate assembly 56 to be changed to the circularly polarized light incident on the second mirror 60, and the circularly polarized light reflected by the second mirror 60 is again incident on the second wave plate assembly 56, being
  • the P-polarized light is incident on the second dichroic mirror 50, and the second dichroic mirror 50 allows the P-polarized light to pass through, thereby reaching the human eye E.
  • the real light ray AL carrying the real scene scene information is incident from the outside of the second mirror 60 (the side opposite to the incident side of the virtual image ray VL) to the second optical path module M3, first transmitted through the second mirror 60, The two-wave plate assembly 56, after which the P-polarized light is transmitted through the second dichroic mirror 50, eventually enters the human eye E.
  • the human eye E can simultaneously see images of virtual images and real-life scenes.
  • the virtual image light ray VL is reflected by the first mirror 30 in the first optical module M2.
  • the first wave plate assembly 23 is converted into S-polarized light, and is substantially totally reflected by the first beam splitter 20 into the second beam splitter 50 in the form of S-polarized light, and the light in the first optical module M2 in the non-polarized form. Compared to the loss of nearly half of the first beam splitter, the utilization of light energy is approximately doubled.
  • the virtual image light ray VL passes through the second optical module M3 after being reflected by the second mirror 60.
  • the second wave plate assembly 56 is converted into P-polarized light, and enters the human eye E substantially through the second beam splitter 50 in the form of P-polarized light, and the second beam splitter in the second optical module M3.
  • the utilization rate of light energy has roughly increased by three times.
  • the AR display device therein is mutated by the AR display device of FIG. 2, specifically by: first and second beam splitters 20 of its first and second optical path modules M2 and M3. And 50 are each configured as a polarization beam splitter having a polarization function and by providing first and second wave plate assemblies between the first and second beam splitters 20 and 50 and the first and second mirrors 30 and 60. It is conceivable that similarly, the AR display device of Figures 3 and 4 can also perform similar variations, the variation comprising: configuring both the first and second beamsplitters of the first and second optical path modules to have A polarization-functional polarization beam splitter and by providing first and second waveplate assemblies between the first and second beamsplitters and the first and second mirrors.
  • the first and second beamsplitters are each arranged to allow polarized light in the first (e.g., P) direction to pass and to polarize in the second (e.g., S) direction.
  • a polarizer that reflects light the same first and second waveplate assemblies are disposed between the first and second beamsplitters and the first and second mirrors.
  • one of the first and second directional polarized lights can be directly changed into the other one of the first and second polarized lights.
  • a half-wave plate for example, converts P-polarized light into S-polarized light.
  • the half wave plate is configured such that the polarized light incident on the wave plate is rotated by 90° after passing through the wave plate, so that the virtual image light from the first optical path module can be transmitted through the second beam splitter (for example, in the variation of the AR display device of FIG. 3) or by the second spectroscope (for example, in the variation of the AR display device of FIG. 4).
  • the first beam splitter is arranged to allow polarized light in the first (eg, P) direction to pass and to reflect polarized light in the second (eg, S) direction.
  • a polarizer and the second beam splitter is configured to allow polarized light in the second (eg, S) direction to pass through and polarize the first (eg, P) direction polarized light, ie, the two beamsplitters are configured to allow polarization to pass The direction of the light that is perpendicular to the light direction and allows reflection is also perpendicular to each other.
  • the same first and second wave plate assemblies are disposed between the first and second beamsplitters and the first and second mirrors.
  • Such an arrangement enables the same function as described above to be achieved without providing a half-wave plate as described above between the first and second optical path modules, such that the first optical path module is provided.
  • the virtual image light can be transmitted through the second beam splitter (eg, in the variation of the AR display device of FIG. 3) or reflected by the second beam splitter (eg, in the variation of the AR display device of FIG. 4).
  • the light energy utilization rate is approximately eight times that of the three basic embodiments in FIGS. 2-4, which greatly improves the image. Light brightness, while saving power and reducing system heat.
  • FIG. 6 shows that the beamsplitters 20 and 50 in the first optical path module M2 and the second optical path module M3 are both polarized.
  • the beam splitter is disposed between the beam splitter and the mirror, but the first beam splitter 20 of the first optical path module M2 may be a normal beam splitter having no polarization function and correspondingly the first beam splitter 20 and the first
  • the first wave plate assembly 23 may not be disposed between a mirror 30.
  • the second wave plate assembly 56 of the second optical path module M3 may be disposed between the second beam splitter 50 and the second mirror 60 as shown in FIG. 6, or may be integrated with the second mirror 60.
  • the mirror 60 may include an anti-reflection film, a wave plate and an optional mirror substrate, and a semi-reflective film, which are sequentially arranged along the incident direction on which the virtual image light ray VL is incident. It can eliminate stray light to some extent.
  • the mirror 60 may not include the mirror substrate, but rather the wave plate functions as a substrate.
  • FIG. 7 shows a schematic view of another mirror 70 that can be used as the second mirror 60 of the second optical path module M3.
  • the mirror 70 is used instead of the second mirror 50 of FIG. 6 to form a third alternative embodiment.
  • the mirror 70 sequentially includes, or the virtual image light VL passes sequentially, an anti-reflection film 72 (optional), and a mirror substrate 74 (optional)
  • the semi-reflective film 76, the wave plate 78 and the polarizing film 79 As described with respect to FIG.
  • the virtual image light VL from the second beam splitter 50 passes through the second waveplate assembly 56 and is then circularly polarized, and the circularly polarized light reaches the mirror 70, first transmitted through the AR coating 72 and reflected.
  • the mirror substrate 74 reaches the semi-reflective film 76, and the light reflected back from the semi-reflective film 76 will be sequentially transmitted through the second wave plate assembly 56 and the second beam splitter 50 into the human eye E.
  • Part of the circularly polarized light that is not reflected back by the semi-reflective film 76 continues to reach the wave plate 78, which is converted into P-polarized light, and the polarizing film 79 is configured to absorb the P-polarized light.
  • the wave plate is arranged to convert circularly polarized light reaching the wave plate 78 into S-polarized light and the polarizing film 79 may be configured to absorb S-polarized light. Therefore, the virtual image light VL carrying the virtual image information does not propagate through the mirror 70 to the AR display device, that is, the person who does not wear the AR display device does not see the virtual image, and the privacy is improved. Without the interference of the outgoing light, others can more easily see the wearer's eyes and improve the social attributes. Moreover, since no virtual image light VL is emitted, when the AR display device includes the external protective lens, the virtual image light VL is not reflected from the protective lens back to the optical path module, thereby eliminating the interference associated therewith. Those skilled in the art will appreciate that the AR coating and mirror substrates are not necessary.
  • the wave plate 78 and the polarizing film 79 used for this mirror may be spaced apart or may be closely attached to each other.
  • the wave plate 78 is curved in a lateral direction relative to the wearer's head of the AR display device and/or a vertical (longitudinal) direction perpendicular to the lateral direction, It is preferably curved to substantially follow the shape of the mirror, in particular the mirror substrate.
  • This structure can alleviate the interference phenomenon of "ghost image" caused by a part of the light of the virtual image light ray VL being transmitted through the reflection film 76 of the second mirror and reflected on the wave plate 78.
  • the wave plate 78 can be curved to have a curved shape that is consistent with the reflective film 76 of the mirror.
  • the laminated piece of the curved wave plate 78 and the polarizing film 79 which are bent to conform to the curved shape of the reflective film 76 is attached to the reflective film 76 without a gap to eliminate as much as possible The "ghost image" caused by the cause interferes.
  • the second beam splitter 50 of the second optical path module M3 can be configured as a polarization beam splitter further including a polarizing film, thus forming a fourth alternative embodiment of the AR display device, the polarizing film A polarized light for passing the polarized light of the first direction through the polarization state and absorbing the polarization state to the second direction.
  • FIG. 8 illustrates a spectroscope structure that can be substituted for the second dichroic mirror 50 of FIG. 6, designated by reference numeral 80.
  • the dichroic mirror 80 includes the same spectroscopic lens substrate 82 as that of the spectroscopic lens substrate 82 shown in FIG. 6, a polarizing film 86, and the same polarization splitting film 84 as the polarizing beam splitting film 84 shown in FIG. 6, and is configured.
  • the virtual image light VL from the first optical path module M2 first reaches the polarization beam splitting film 84 before reaching the polarizing film 86.
  • the S-polarized light of the virtual image light ray VL reflected from the first beam splitter 20 of the first optical path module M2 first reaches the polarization beam splitting film 84. Since the polarization splitting film 84 allows only P-polarized light to pass through, substantially all of the incident S-polarized light is reflected toward the second wave plate assembly 56. Therefore, the spectroscope 80 with the polarizing film 86 added has no substantial influence on the virtual image light VL carrying the virtual image information, and also has no significant influence on the real light AL.
  • the present spectroscopic structure can provide all the technical advantages discussed above.
  • the polarizing film 86 When it is incident on the second dichroic mirror 80 from the outside of the second dichroic mirror 80 (the side opposite to the incident side of the virtual image light VL), the polarizing film 86 will first arrive due to the polarized light.
  • the film is capable of absorbing S-polarized light and transmitting P-polarized light, so the P-polarized light in the interfering light IL passes through the polarizing film 86 and the polarizing beam splitting film 84 in succession, and the S-polarized light is substantially absorbed by the polarizing film 86 first encountered. It does not reflect toward the human eye E.
  • the polarizing film 86 is disposed between the beam splitter substrate 82 and the polarization beam splitting film 84.
  • the multilayer film polarizing beam splitter may not include the beam splitter substrate, or the relative positional relationship between the three may be changed as long as the virtual image light VL from the first optical module M1 is ensured.
  • the polarizing beam splitting film is first reached before reaching the polarizing film, and the interfering light IL first reaches the polarizing film before reaching the polarizing beam splitting film.
  • the fifth alternative embodiment of Fig. 8a differs from the fourth alternative embodiment of Fig. 7 in that the polarization beam splitter 80 of Fig. 8 includes the same beam splitter substrate 82, polarizing film 86 and polarization beam splitting film 84 as in Fig. 7.
  • a wave plate 88 for changing the polarization direction of the polarized light is included, which is a quarter-wave plate as is conventional in the art as described above, and the four are integrated, for example, sequentially bonded into a single body.
  • the polarization beam splitter 80 is used to replace the second beam splitter 50 of the second optical path module M3 of the AR display device in FIG.
  • the beam splitter 80 is configured such that the virtual image light VL (S-polarized light) from the first optical path module M2 sequentially reaches the polarization beam splitting film 84, the polarizing film 86, the wave plate 88, and the beam splitter substrate 82.
  • the relative positions of the polarization beam splitting film 84, the polarizing film 86, and the wave plate 88 are as described above, but the position of the beam splitter substrate 82 is not limited and may be changed.
  • the S-polarized light is incident on the polarization beam splitting film 84 as described above, and is transmitted to the second wave plate assembly 56.
  • the P-polarized light (if present) is sequentially transmitted through the polarization beam splitting film 84, the polarizing film 86, and is transformed at the wave plate 88. It is circularly polarized light that passes through the beam splitter substrate 82 to the outside.
  • the P-polarized light converted by the second wave plate assembly 56 after being reflected by the second mirror 60 of the second optical module M3 is again incident on the second beam splitter 50, and transmitted through the polarization beam splitting film 84 and the polarizing film 86.
  • the wave plate 88 is converted into circularly polarized light and enters the human eye E through the mirror substrate 82.
  • the circularly polarized light passes through the beam splitter 80, specifically the interface between the beam splitter substrate 82 and the air, a small portion of the circularly polarized light is caused by the difference in the medium parameters of the substrate material and the air.
  • this structure is advantageous for solving the "ghost image interference" problem caused by manufacturing an optical device including a polarizing film and a polarization beam splitting film (including a substrate, a polarizing film, and a polarization beam splitting film but not including a wave plate).
  • the process of the beam splitter is not perfect, and the P-polarized light is transmitted through the polarization beam splitting film 84, the polarizing film 86 and the beam splitter substrate 82, as reflected above, at the interface of the beam splitter substrate 82 and the air, and the reflected P-polarized light It is again transmitted through the polarizing film 86 and the polarization beam splitting film 84, passes through the second wave plate assembly 56 (becomes circularly polarized light), is reflected by the second mirror 60, and then becomes S-polarized light through the second wave plate assembly 56. A portion of the S-polarized light enters the human eye to form a "ghost image."
  • the real light AL enters the second optical path module M3 from the outside of the second mirror 60, and is sequentially transmitted through the second mirror 60, the second wave plate assembly 56 and the second.
  • the beam splitter 80 finally enters the human eye E.
  • the P-polarized light is transmitted through the polarizing film 86 and the polarizing beam splitting film 84. Leaving the beam splitter 80, the S-polarized light is absorbed by the polarizing film 86.
  • the projection source module M1 that can be used in various embodiments of the present application can include only the projection source 12 as previously described with reference to the drawings. Further, the projection source module M1 may further include a beam shaper.
  • a "beam shaper" is used to perform shaping, integration, etc. operations on it, which may be configured as a lens or group of lenses.
  • Each of the lenses or groups of lenses forming the beam shaper may be a convex lens, a concave lens, or any combination of a convex lens and a concave lens, or the like.
  • the lens or lens group can be spherical, aspherical or free-form curved.
  • a beam shaper 14 formed by two different configurations of lenses is shown in Figures 9a and 9b. It should also be understood that the description of "beam shaper" herein applies to the beam shaper mentioned in any of the embodiments of the present application.
  • Figures 9a and 9b show two versions of the first alternative embodiment of the projection source module M1 described above.
  • the projection source module M1 comprises a planar projection source 12 and a beam shaper 14, both of which are integrated directly (Fig. 9a) or indirectly via the intermediate matching component 16 (Fig. 9b). The whole piece.
  • the projection source and the beam shaper are integrated together, the optical structure is more compact, easier to adjust, and more systemic.
  • the lens form of beam shaping 14 At the interface of the projection source 12 or the intermediate matching component 16 and the beam shaper 14, the refractive index difference of the medium is smaller than the refractive index difference between the lens medium forming the beam shaper 14 and the air in Fig. 1, so that more light is present. It is refracted to increase the light transmission rate and increase the light efficiency of the projection source module. Correspondingly, the reflected light at the interface is reduced, which suppresses or reduces the generation of stray light and ghost images.
  • Fig. 9a the projection source 12 of the projection source module M1 and the beam shaper 14 are directly bonded or otherwise bonded together, and the structure is more compact than in Fig. 9b.
  • the intermediate matching member 16 of the projection source 12 and the beam shaper 14 of the projection source module M1 shown in Fig. 9b is made of a matching medium different from air and having a refractive index greater than one.
  • the matching medium has a refractive index of from 1 to 2.7.
  • the larger the refractive index of the matching medium the smaller the generated diffraction spot and the higher the imaging resolution.
  • the image square refractive index is improved, a larger numerical aperture can be realized with a relatively small aperture angle, the deflection angle of the edge light is reduced, and the design difficulty is lowered.
  • the matching medium of the intermediate matching member may be one or more selected from the group consisting of a liquid medium, a liquid crystal medium, a semi-solid medium, and a solid medium.
  • the liquid medium can be, for example, a transparent medium such as water or alcohol.
  • the solid medium can be a transparent solid medium such as glass.
  • the matching medium may also include a liquid resin and/or a semi-solid resin and/or a solid resin.
  • the intermediate matching component 16 illustrated in Figure 9b is formed from a liquid and/or liquid crystal medium.
  • the projection source module 10 includes a sealing structure for sealing a liquid or liquid crystal medium between the projection source 12 and the beam shaper 14.
  • the sealing structure can be any suitable sealing structure in the art.
  • the sealing frame 15 shown in Fig. 9b is an example.
  • the seal between the sealing frame 15 and the projection source 12 is achieved by bonding, and the seal between the sealing frame 15 and the lens forming the beam shaper 14 is achieved by insert bonding.
  • the sealing frame 15 is also bonded to the lens forming the beam shaper 14.
  • the projection source module M1 including a curved projection source 12
  • a curved display instead of a planar projection source.
  • the surface-type projection source can be matched with the natural field curvature of the optical system to largely correct the curvature of field defects.
  • the virtual image light emitted from the curved-type projection source is concentrated compared with the light emitted by the planar projection source. Get a better collection.
  • the lens in the optical path module can also be of a smaller size, so that the entire optical system, that is, the entire AR display device can be relatively compact.
  • the projection source module M1 includes only a curved projection source 12; in Fig. 10b, the projection source module M1 includes a curved projection source 12 and a beam shaper 14 that are integrated into a single piece; The projection source module M1 includes a curved type projection source 12 and a beam shaper 14 which are integrated into a unitary piece by the intermediate matching member 16.
  • the technical advantages of adding beam shaper 14 to projection source 12, as well as the technical advantages of integrating the two directly or indirectly, have been described in detail above and will not be described again.
  • Figures 11a-11c illustrate three alternative forms of a third alternative embodiment of a projection source module that can be used with the optical path module of any of the embodiments of the present application.
  • the projection source module M1 includes a planar projection source 12 and a fiber optic panel 18 that are integrated or bonded together without gaps.
  • the optical fibers included in the fiber optic panel 18 may have a wire diameter on the order of a few or a few hundred microns, and sometimes also on the order of submicron or millimeters or sub-millimeters, for example, the wire diameter may be much smaller than the pixels of the projection source 12.
  • the size is such that each pixel of the projection source 12 corresponds to a plurality of optical fibers, so that the human eye E can not distinguish the boundary of the pixel when viewed through the optical system, weaken the screen window effect, and can see a clearer image.
  • the shape of the light exit surface of the fiber optic panel 18 can be selected or designed according to the distribution of the virtual image light ray VL that is expected to be emitted from the projection source module M1 (eg, concave surface 18a in FIG. 11a, or convex or flat). And the distribution of the fibers in the fiber optic panel 18. This makes it easier to control the virtual image light VL, reducing the design difficulty of the projection source module M1. At the same time, since the fiber optic panel 18 and the projection source M1 are integrated together, the system integration is also improved.
  • the projection source module M1 is similar to the aforementioned curved-type projection source, and can provide the technical advantages of the curved-type projection source, that is, the field matching the light VL and the optical system. Improve the image quality.
  • the projection source module M1 integrates the beam shaper 14 directly (11b) or indirectly (11c) via the intermediate matching component 16 in addition to the planar projection source 12 and the fiber optic panel 18. .
  • the projection source module M1 may further include a polarization component 13, for example, which may be configured to absorb polarized light in one of the virtual image rays VL from the projection source 12 while allowing perpendicular to a polarizing film or sheet through which polarized light in the other direction passes; or configured to convert polarized light in the certain direction in the virtual image light ray VL into the polarized light in the other direction perpendicular to the direction
  • the polarization converter such as a polarization conversion sheet or film, projected from the projection source module M1 together with the original polarized light in the other direction may also be a specific type of wave plate.
  • the virtual image light VL entering the optical path module from the projection source module M1 is basically a polarized light that is expected to enter the polarization direction of the human eye via the first and second optical path modules, thereby greatly reducing the possibility of The dichroic mirror is illuminated by the outside world, thus reducing stray light. In this way, substantially all of the light energy can be utilized, improving the utilization of light energy, and the virtual image seen by the human eye E is clearer.
  • polarization component 13 herein applies to the polarization component of projection source module M1 of any of the embodiments of the present application.
  • the polarization component 13 can be disposed between the projection source 12 and the beam shaper 14, as shown in FIG. 12a, or between the beam shaper 14 and the first beam splitter 20 of the first optical path module M2, as shown in FIG. 12b. Shown.
  • the polarizing element 13 may be provided as a separate component as illustrated, or may be attached to the surface of the projection source 12, or the surface of the beam shaper 14, without gaps, or the surface of the intermediate matching component 16 optionally disposed as described above. .
  • the projection source 12 of the projection source module M1 of the AR display device may be a projection source in which the light source and the image source are integrated, such examples may include, but are not limited to, OLED (Organic Light Emitting Diode) and LCD (Liquid Crystal) display screen).
  • the projection source 12 according to the present application may further include a light source and an image source separated from each other, examples of such image sources include, but are not limited to, LCOS (Liquid Crystal on Silicon), MEMS (Micro Electro Mechanical Display), and DMD (Digital Micromirror Components) ), an additional light source is required for use.
  • Figure 13 shows an example of a projection source of projection source module M1 including an image source 122 and an additional separate light source 124.
  • the brightness of the image source is determined by the light source, and the brightness of the light source can be increased to increase the brightness of the display, which makes it easier to increase the brightness and lower the cost.
  • the image source 122 and the additional light source 124 are arranged separately, but this is not required, and the two may be arranged together or even closely attached together.
  • the first optical path module M2 and the second optical path module M3 in this embodiment are the same as those shown in FIG. 6, and are not described herein again.
  • the projection source module M1 further includes a polarization component 13 as described above with reference to FIGS. 12a and 12b, the polarization component 13 being disposed between the light source 124 and the beam shaper 14.
  • the polarization component 13 is a polarization conversion sheet, the utilization of light energy can be increased by about 1 time; when the polarization component 13 is a polarizing plate, stray light and ghost effect can be reduced.
  • polarization component 13 and beam shaper 14 are not required and may be omitted.
  • the beam splitter of the present application may be a planar beam splitter as previously described with reference to the drawings; it may also be a cube-type beam splitter.
  • the first beam splitting mirror 20 of the first optical path module M2 is a cubic polarizing beam splitter that is formed by a polarizing beam splitting film to form a spectroscopic surface and a second optical path module M3.
  • the second beam splitter 50 of the second optical path module M3 can also be replaced with a cubic polarizing beam splitter.
  • a cubic polarizing beam splitter is formed by laminating a polarizing beam splitting film.
  • the projection source 12 and the cubic polarization beam splitter 20 may be spaced apart, and the projection source 12 and the cubic polarization beam splitter 20 may be more preferably attached as shown in FIG. In this way, the light emitted from the projection source 12 can directly enter the polarization beam splitter, reducing the refractive index difference at the interface, improving the light transmittance of the cubic polarization beam splitter, increasing the light efficiency, and suppressing to some extent.
  • the production of stray light and ghost images are examples of the light emitted from the projection source 12 can directly enter the polarization beam splitter, reducing the refractive index difference at the interface, improving the light transmittance of the cubic polarization beam splitter, increasing the light efficiency, and suppressing to some extent. The production of stray light and ghost images.
  • the refractive index of the cubic polarizing beamsplitter is generally between 1.3 and 2.0, so that the optical path (refractive index x distance) is the same, the physical distance between the optical devices can be reduced, and at the same time, the cubic polarization is used.
  • the beam splitter also balances the aberrations of a portion of the optical system.
  • this structure can improve the image side refraction.
  • the rate, thus the diffraction spot, is reduced, increasing the imaging resolution.
  • This structure as described above with respect to the intermediate matching member, enables a larger numerical aperture to be achieved with a relatively small aperture angle, which reduces the deflection angle of the edge rays and reduces the design difficulty.
  • FIG. 1 Yet another embodiment of an AR display device is shown in FIG. 1
  • the projection source module M1 of the AR display device of the present embodiment uses the image source 122 and the light source 124 separated from each other.
  • the light source 124 may be a red, green, and blue light source.
  • the projection source module M1 further includes a first beam shaper 142 in the form of a lens disposed between the image source 122 and the first beam splitter 20 of the first optical path module M2, and is disposed on the light source 124 and the first optical path module M2.
  • the polarization component 13 between the first beam splitters 20 and the second beam shaper 144 in the form of a lens.
  • the lens shapes of the first beam shaper 142 and the second beam shaper 144 are different, however, this is merely an example, and any form of lens may be used as needed, such as a Fresnel lens.
  • the first optical path module M2 (specifically, its first beam splitter 20) and the second optical path module M3 (specifically its second splitting light)
  • An intermediate lens 45 is disposed between the mirrors 50) to cause the light to undergo transmission more frequently during the process of entering the second optical path module M3 from the first optical path module M2, so as to improve the degree of design freedom to some extent.
  • the intermediate lens 45 can be any form of lens or lens group, can be any form of convex lens, concave lens, or any combination thereof, and can have a concave surface, a convex surface or an arbitrary curved surface, etc., for example, may be Fresnel Lens lens.
  • Image source 122 may be Lcos, which may modulate S-polarized light to form a virtual image ray VL that is P-polarized light as an effective image ray.
  • the virtual image light ray VE from the image source 122 carrying the virtual image information is incident on the first beam splitter 20 after being shaped or integrated via the first beam shaper 142.
  • the P-polarized light is transmitted through the first beam splitter 20, becomes circularly polarized light through the first wave plate assembly 23, is then reflected by the first mirror 30, and then transmitted through the first wave plate assembly 23 to be converted into S-polarized light.
  • the reflection is again incident on the first beam splitter 20, and most (if not all) of the S-polarized light is reflected to the intermediate lens 45 and transmitted through the intermediate lens 45 into the second optical path module M3.
  • the second optical path module M3 After entering the second optical path module M3, it is first incident on the second beam splitter 50 to be reflected, and then transmitted through the second wave plate assembly 56 to become circularly polarized light and directed to the second mirror 60, which is reflected by the second mirror 60.
  • the circularly polarized light again passes through the second waveplate assembly 56 to become P-polarized light, thereby being transmissive through the second dichroic mirror 60 and entering the human eye E.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本申请提供了一种增强现实显示设备,包括:包括投射源模组;包括第一分光镜和第一反射镜的第一光路模组;和包括第二分光镜和第二反射镜的第二光路模组,其中,第一反射镜和第二反射镜分别包括半反射膜,其中,从投射源模组投射出的承载着虚拟图像信息的虚拟图像光线首先经过所述第一光路模组、借助于其第一分光镜和第一反射镜进行至少两次反射和至少一次透射,来自第一光路模组的虚拟图像光线再进入所述第二光路模组、借助于其二分光镜和第二反射镜进行至少一次透射和至少两次反射进入人眼;来自现实场景的现实光线经过所述第二光路模组进入人眼。本申请还提供了包括该增强现实显示设备的穿戴式增强现实系统以及用于该增强现实显示设备的投射源模组。

Description

穿戴式AR系统和AR显示设备 技术领域
本申请涉及增强现实(Augmented Reality,简称为AR)技术领域。具体而言,本申请涉及穿戴式AR系统及其AR显示设备。
背景技术
增强现实(AR)技术是一种实时地将虚拟图像和现实场景结合展现的技术。增强现实技术的基础光学原理是向人眼同时入射真实场景景物信息和虚拟图像信息的光线,使在这两个光学路径上传输的图像信息在人眼处融合,以使人眼同时获得真实场景景物信息和虚拟图像的混合图像,达到增强现实的效果。
透射式显示设备是增强现实系统中的关键设备。按照真实场景的不同,透射式显示设备分为视频透视式显示设备和光学透视式显示设备。常见的增强现实眼镜或头盔(也称为AR眼镜或AR头盔)是光学透视式AR显示设备的例子。
图1是一种现有AR显示设备的光学示意图,该AR显示设备主要包括投射源1,作为光束整形器的透镜2,分光镜3,和曲面反射镜4。
自投射源1发出的承载着虚拟图像信息的虚拟图像光线VL入射到透镜2,经过透镜2实现光线的整形,整形后的虚拟图像光线VL入射到分光镜3上,一部分光线在分光镜3的分光面处发生反射而入射到反射镜4(一部分光线透射经过分光镜3而消失在外部环境中),在反射镜4上反射后再次入射到分光镜3,之后,虚拟图像光线VL透射经过分光镜3进入人眼E。承载着现实场景景物的现实光线AL自反射镜4的外面透射经过反射镜4和分光镜3而进入人眼E。如此,人眼E能够同时观察到虚拟图像和现实场景景物的图像。同时干扰光线IL入射到反光镜3上,经过反射进入人眼E,对人眼E观察图像造成干扰。
为了使视力不佳的用户也可以使用AR眼镜,一些AR显示设备还在分光镜3和人眼E之间设置了屈光矫正镜片,这使AR显示设备的结构更复杂、重量增加,需要更大的出瞳距离才能佩戴,对系统性能要求高。
总结来说,现有的AR显示设备存在以下主要缺陷中的一个或多个:由各种光学器件构成的光学系统结构不紧凑;光学结构过于简单,能够提供 设计自由度的设计参数过少,导致成像质量低,光学性能低下,视场小,出瞳直径小,出瞳距离小,部分器件制造或组装困难,不利于量产;除了图像信息以及现实信息能够进入人眼以外,还有干扰光线进入人眼,此干扰光会对成像质量以及人眼的观察造成影响;少部分光线在光路中多次反射、折射,形成“鬼像”或杂散光,影响人眼观看图像。
希望能够解决上述技术问题。
发明内容
本申请通过设置两个分别包括分光镜和反射镜的光路模组而在很大程度上提高了光学系统的设计自由度。在此基础上,申请人对光学系统中的多个光学器件或模组进行了更进一步的改进,解决了上述技术问题中的一个或多个。
为此,根据一个方面,提供了一种增强现实显示设备,包括:包括投射源的投射源模组;包括第一分光镜和第一反射镜的第一光路模组;和包括第二分光镜和第二反射镜的第二光路模组,其中,所述第一分光镜和所述第二分光镜分别包括分光镜基片,所述第一反射镜和第二反射镜分别包括反射膜,其中,从所述投射源模组投射出的承载着虚拟图像信息的虚拟图像光线首先经过所述第一光路模组、借助于其第一分光镜和第一反射镜进行至少两次反射和至少一次透射,来自第一光路模组的虚拟图像光线再进入所述第二光路模组、借助于其二分光镜和第二反射镜进行至少一次透射和至少两次反射进入人眼;来自现实场景的现实光线经过所述第二光路模组进入人眼。
在一个实施例中,来自所述投射源模组的虚拟图像光线沿其传播路径:
首先进入第一光学模组中依次:透射经过第一分光镜后在第一反射镜上反射,再被第一分光镜反射而离开第一光学模组,然后进入第二光学模组中依次:在第二分光镜上发生反射,之后达到第二反射镜上发生反射,再透射经过第二分光镜而离开第二光学模组,最终进入人眼;或者
首先进入第一光学模组中依次:透射经过第一分光镜后在第一反射镜上反射,再被第一分光镜反射而离开第一光学模组,然后进入第二光学模组中依次:透射经过第二分光镜后在第二反射镜上发生反射,再被第二分光镜反射而离开第二光学模组,最终进入人眼;或者
首先进入第一光学模组中依次:首先被第一分光镜反射到第一反射镜上,被第一反射镜反射后透射经过第一分光镜而离开第一光学模组,然后进入第二光学模组中依次:在第二分光镜上发生反射,之后达到第二反射镜上发生反射,再透射经过第二分光镜而离开第二光学模组,最终进入人眼;或者
首先进入第一光学模组中依次:首先被第一分光镜反射到第一反射镜上,被第一反射镜反射后透射经过第一分光镜而离开第一光学模组,然后进入第二光学模组中依次:透射经过第二分光镜后在第二反射镜上发生反射,再被第二分光镜反射而离开第二光学模组,最终进入人眼。
在一个实施例中,所述投射源是平面型投射源或者曲面型投射源。
在一个实施例中,所述投射源模组还包括用于整形来自投射源的虚拟图像光线的光束整形器,其中所述光束整形器与所述投射源分离开设置;或者所述光束整形器与所述投射源直接以无间隙贴合的方式集成为一整体件。
在一个实施例中,所述投射源模组还包括用于整形来自投射源的虚拟图像光线的光束整形器,所述光束整形器经由中间匹配部件间接地与所述投射源集成为一整体件,
优选地,所述中间匹配部件的折射率为1~2.7;或者优选地,所述中间匹配部件通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种形成;或者优选地,所述中间匹配部件由液态介质和/或液晶介质形成,所述投射源模组还包括将形成所述中间匹配部件的介质密封于投射源和光束整形器之间的密封结构。
在一个实施例中,所述投射源是平面型投射源,所述投射源上集成有接收来自所述投射源的虚拟图像光线的光纤面板。
在一个实施例中,所述投射源模组还包括用于整形来自光纤面板的虚拟图像光线的光束整形器,其中所述光束整形器与所述光纤面板分离开设置;或者所述光束整形器与所述光纤面板直接以无间隙贴合的方式集成为一整体件。
在一个实施例中,所述投射源模组还包括用于整形来自光纤面板的虚拟图像光线的光束整形器,所述光束整形器经由中间匹配部件间接地与所述光纤面板集成为一整体件,
优选地,所述中间匹配部件的折射率为1~2.7;或者优选地,所述中间匹配部件通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种形成;或者优选地,所述中间匹配部件由液态介质和/或液晶介质形成,所述投射源模组还包括将形成所述中间匹配部件的介质密封于光束整形器和光纤面板之间的密封结构。
在一个实施例中,所述投射源是集成式投射源,例如OLED或LCD。
在一个实施例中,所述投射源包括彼此分离的光源和像源,其中
优选地,所述像源是LCOS、MEMS或DMD像源;
优选地,所述投射源模组还包括位于所述像源和所述第一光路模组之间、用于对来自像源的虚拟图像光线进行整合的光束整形器,和/或所述投射源模组还包括位于所述光源和所述第一光路模组之间、用于对来自光源的光线进行整合的光束整形器。
在一个实施例中,所述第一分光镜和第二分光镜是包括偏振分光膜的偏振分光镜,所述第一光路模组的第一分光镜和第一反射镜之间以及所述第二光路模组的第二分光镜和第二反射镜之间分别设置第一波片组件和第二波片组件,优选地所述第一波片组件和第二波片组件是四分之一波片。
在一个实施例中,第一分光镜和第二分光镜均配置成允许第一方向的偏振光通过同时反射第二方向的偏振光,所述第一方向垂直于所述第二方向。
在一个实施例中,所述第一光路模组和第二光路模组之间设置有二分之一波片。
在一个实施例中,第一分光镜配置成允许第一方向的偏振光通过同时反射第二方向的偏振光,第二分光镜配置成允许第二方向的偏振光通过同时反射第一方向的偏振光,所述第一方向垂直于所述第二方向。
在一个实施例中,所述第二分光镜还包括偏光膜,所述偏光膜配置成允许第一方向的偏振光通过同时吸收第二方向的偏振光,来自第一光学模组的虚拟图像光线在到达所述偏光膜之前先到达所述偏振分光膜。
在一个实施例中,所述第二分光镜还包括分光镜波片,其中入射到所述第二分光镜上的虚拟图像光线依次到达偏振分光膜,偏光膜和所述分光镜波片,可选地,所述分光镜波片用作所述分光镜基片。
在一个实施例中,所述第一分光镜和/或所述第二分光镜是平面型分光 镜或立方体型分光镜。
在一个实施例中,所述投射源模组还包括投射源偏振组件,来自所述投射源的虚拟图像光线入射到所述偏振组件上再从所述投射源模组透射出去。
在一个实施例中,所述投射源偏振组件设置于投射源与第一光路模组的第一分光镜之间;或者
所述投射源模组包括用于整形来自投射源的虚拟图像光线的光束整形器,所述投射源偏振组件设置于投射源与光束整形器之间或者设置于所述光束整形器与第一光路模组的第一分光镜之间;或者
所述投射源包括彼此分离的光源和像源,所述投射源偏振组件设置于所述光源和所述第一光路模组的第一分光镜之间。
在一个实施例中,所述投射源偏振组件是偏光膜和/或偏振分光膜和/或投射源波片。
在一个实施例中,所述第一波片组件和第二波片组件中的每一个被提供为单独的部件;或者所述第一波片组件和第二波片组件分别被集成到第一反射镜和第二反射镜。
在一个实施例中,所述第一波片组件和第二波片组件分别被集成到第一反射镜和第二反射镜,并且所述第一波片组件和第二波片组件分别用作第一反射镜和第二反射镜的反射镜基片。
在一个实施例中,所述第一反射镜和第二反射镜中任一者或两者还包括反射镜基片,所述反射膜设置于所述反射镜基片的任一侧,优选地,所述反射膜设置于所述反射镜基片的与虚拟图像光线的入射侧相反的另一侧。
在一个实施例中,所述第一反射镜的反射面是全反射膜或半反射膜,所述第二反射镜的反射面是半反射膜。
在一个实施例中,所述第二反射镜的反射镜基片为屈光矫正基片,其中入射到反射镜上的虚拟图像光线在达到半反射膜之前先到达屈光矫正基片或者先到达半反射膜。
在一个实施例中,所述第一反射镜和第二反射镜中任一者或两者还包括增透膜,来自所述第二分光镜和第二波片组件的虚拟图像光线入射到相应反射镜上时首先透过反射镜的增透膜,再进入反射镜基片和半反射膜。
在一个实施例中,所述第二反射镜还包括反射镜波片和反射镜偏光膜, 来自所述第二分光镜和第二波片组件的虚拟图像光线入射到第二反射镜上,透过了第二反射镜的反射膜的那部分光线先透过第二反射镜的反射镜波片变成能够被所述反射镜偏光膜吸收的偏振光,被所述反射镜偏光膜吸收,优选地,所述反射镜波片是四分之一波片。
在一个实施例中,所述反射镜波片和所述反射镜偏光膜被分离开设置,或者所述反射镜波片和所述反射镜偏光膜被无间隙地贴合到一起形成一整体。
在一个实施例中,所述反射镜波片和所述反射镜偏光膜被整体沿着所述增强现实显示设备的佩戴者的头部的横向方向和/或垂直于所述横向方向的纵向方向弯曲至大体遵循第二反射镜的形状,更优选地,进行了如上弯曲的所述整体被无间隙地贴合到所述半反射膜。
在一个实施例中,所述第二反射镜还包括沿着虚拟图像光线从第二分光镜入射到第二反射镜上的入射方向位于最外侧的保护镜片,所述保护镜片是光能衰减片或电致变色镜片或光致变色镜片。
本申请还提供了一种穿戴式增强现实系统,包括根据上述的增强现实显示设备,优选地,所述穿戴式增强现实系统是增强现实眼镜或增强现实头盔或增强现实面罩。
附图说明
为了更清楚、更详细地说明和示意本申请的上述和其他特征和优势,下面将结合附图中示出的若干实施例详细描述本申请的原理。本领域内技术人员应理解,附图中示出的实施例仅仅是为说明和阐述本申请的原理而给出的一部分实施例,并不是本申请的所有实施例。为了突出本申请的原理,附图没有按比例绘制,仅仅示意了本申请的光学原理。图中:
图1示出了一种现有技术的AR显示设备的实施例;
图2-4示出了根据本申请的AR显示设备的第一、第二和第三三个实施例;
图5示出了能够用于根据本申请的AR显示设备中的反射镜的替代实施例;
图6示出了图2中的AR显示设备的替代实施例;
图7示出了能够用于图6的AR显示设备中的反射镜的替代实施例;
图8和8a示出了能够用于图6的AR显示设备中的分光镜的两个替代实施例;
图9a-9b示出了本申请的AR显示设备中的投射源模组的两个替代实施例;
图10a-10c示出了本申请的AR显示设备中的投射源模组的另外三个替代实施例;
图11a-11c示出了本申请的AR显示设备中的投射源模组的又三个替代实施例;
图12a-12b示出了本申请的AR显示设备中的投射源模组的又两个替代实施例;
图13示出了本申请的AR显示设备中的另一个实施例;
图14示出了本申请的AR显示设备中的又一个实施例;
图15示出了本申请的AR显示设备中的再一个实施例。
具体实施方式
根据本申请的穿戴式AR系统可以是AR眼镜或AR头盔或AR面罩,其包括根据本申请的AR显示设备。本申请的AR显示设备总体上包括投射源模组和光路模组。投射源模组用于提供承载着虚拟图像信息的光线(下文中也称为虚拟图像光线VL),光路模组被配置为用于使来自投射源模组的虚拟图像光线和来自现实场景景物图像的现实光线(在附图中以及在下文的描述中用现实光线AL表示)通过透射、反射或者它们的任意组合的方式传播进入人眼中,并且被配置成按照一定位置关系排列的一系列光学器件的组合。
为了解决或一定程度上解决背景技术中提及的问题中的至少一个问题,为了提高AR显示设备的设计自由度,根据本申请的AR显示设备包括两个光路模组,每个光路模组分别包括一个反射镜和第一个分光镜。
在参考附图详细描述本申请之前,申请人先说明如下:1)为方便起见,贯穿各附图,功能或结构相同或类似的部分或部件用相同的附图标记表示;2)在本说明书以及权利要求中,术语“第一”,“第二”和“第三”等仅用于区别具有相同术语名称的对象或部分或部件,并不旨在对其对象或部分或部件施加数字限制;3)术语“包括”和“包含”是开放式的,即,除了包括 在该术语之后列出的元素之外,本发明的系统、设备、装置或方法步骤可能还包括其他的元素、部分或部件,这些都视为落在权利要求的范围内;4)在本说明书和权利要求中,没有数量词修饰的对象可以包括一个、两个或多个该对象,即、不限制该元件的数量。
在本申请中,术语“分光镜”(或称“普通分光镜”)是指能够将入射到该分光镜的分光面上的光线分成至少两个光线部分(通常为反射光线和折射或透射光线)的任何光学器件或光学器件组合。通常,分光镜可以是立方体型的或者平面型的。分光镜具有分光面。在分光镜是立方体型的情况下,其通常由两个45度直角三棱镜组成,这两个三棱镜的斜面相互贴合在一起,构成该分光镜的分光面;在分光镜是平面型的情况下,分光镜的分光面平行于光线入射于其上的分光镜的平面。入射到分光镜的分光面上的光线一部分发生反射一部分发生折射从而将光线分成反射光线部分和折射光线部分。分光镜的分光膜或偏振分光膜限定出所述分光面,所述分光膜或偏振分光膜的有效部分可以是一层或多层结构,具有从几十个纳米到几百个微米的厚度。如果是贴附的偏振分光膜,除了有效部分外,还可能包括厚度在几十微米到几百微米的基膜,基膜起支撑和保护作用。在本说明书中,虽然以分光镜的分光面为例进行了说明,但是反射不一定仅仅发生在分光镜的分光面上,而是可能发生在分光镜的分光膜或偏振分光膜的整个有效厚度内。
在本申请中,术语“偏振分光镜”是指包括偏振分光膜的、具有偏振功能的分光镜,优选地偏振分光膜被涂敷或贴合或以任何其他方式与分光镜基片集成为一整体。偏振分光膜的作用是使偏振态为第一方向的偏振光通过、同时反射偏振态为第二方向的偏振光,其中所述第一方向与所述第二方向彼此垂直。在本申请中,不具有偏振功能的普通分光镜是指分光镜基片。
在本申请中,术语“膜”或“片”泛指一种薄层结构,其可以是附着在另一“膜”或“片”上的薄层结构,也可以是单独存在的薄层结构。
在本申请中,术语“反射镜”如无特别说明在本文中是指“半反射镜”,通常由反射镜基片和半反射膜(或称为“半反半透膜”)构成,用于使在第一方向上传播并且入射于其上的光线部分地能够被所述反射镜、具体被半反射膜反射回来,部分地能够透过该反射镜传播。此外,在与第一方向 上相反的第二方向上传播并且入射于其上的光线至少部分地能够透射经过该反射镜。在本申请中术语“反射膜”可以是上述半反射膜,也可以是不允许上述第二方向上传播的光线透过的全反射膜。
在本申请中,虽然在附图中反射镜都被示出为曲面反射镜,但是本领域内的技术人员应理解,除非具有特别说明,否则本申请各实施例中的反射镜都可以是平面反射镜。
在本申请的附图中,为清楚起见,承载着虚拟图像信息的光线被称为虚拟图像光线,用附图标记VL和较大的实心箭头表示;承载着现实场景景物信息的光线被称为现实光线,用附图标记AL和虚心箭头表示;干扰光线用附图标记IL和较小的双实心箭头表示。
下面开始参考图2-4描述本申请的包括两个光路模组的AR显示设备的三个基本实施例。
图2-4中示出的AR显示设备都包括投射源模组M1,第一光路模组M2和第二光路模组M3。在这三个基本实施例中,投射源模组M1只包括投射源12;第一光路模组M1包括第一分光镜20和第一反射镜30;第二光路模组M2包括第二分光镜50和第二反射镜60。需要说明的是,本申请的实施例中的反射镜都是以半反射镜为例进行说明的,但是:第一光路模组M1的第一反射镜30也可以是包括全反射膜的反射镜,而第二光路模组M2的第二反射镜60只可以是包括半反射膜的通常意义的半反射镜。根据本申请,第一反射镜30和/或第二反射镜60的反射膜可以设置于反射镜基片的任一侧,但优选设置于与虚拟图像光线VL的入射侧相反的另一侧,从而光线在被反射镜的反射膜反射之前或之后都要透射经过反射镜基片,实现在其他条件相同的情况下提高光学系统的设计自由度的目的。
投射源模组M1用于发射承载着虚拟图像信息的虚拟图像光线VL。从投射源模组M1射出的虚拟图像光线VL依次传播经过第一光路模组M2和第二光路模组M3,之后进入人眼E。承载着现实场景景物信息的现实光线AL则只经过第二光路模组M3即进入人眼E。
在图2的第一基本实施例中,从投射源模组M1的投射源12射出的虚拟图像光线VL沿其行进路线依次透射经过第一分光镜20,在第一反射镜30上发生反射,在第一分光镜20上发生反射(离开第一光路模组M2,进入第二光路模组M3),在第二分光镜50上发生反射,在第二反射镜60上 发生反射,在第二分光镜50上发生透射,最后进入人眼E。
在图3的第二形式中,从投射源模组M1的投射源12射出的虚拟图像光线VL沿其行进路线依次透射经过第一分光镜20,在第一反射镜30上发生反射,在第一分光镜20上发生反射(离开第一光路模组M2,进入第二光路模组M3),透射经过第二分光镜50,在第二反射镜60上发生反射,再在第二分光镜50上发生反射,最后进入人眼E。
在图4的第三形式中,从投射源模组M1的投射源12射出的虚拟图像光线VL沿其行进路线依次在第一分光镜20上发生反射,在第一反射镜30上发生反射,透射经过第一分光镜20(离开第一光路模组M2,进入第二光路模组M3),在第二分光镜50上发生反射,在第二反射镜60上发生反射,再透射经过第二分光镜50,最后进入人眼E。
在附图中未示出的一个实施例中,图4的第三形式的第一光路模组M2和图3的第二形式的第二光路模组M3相结合使用。具体地,从投射源模组M1的投射源12射出的虚拟图像光线VL沿其行进路线依次在第一分光镜20上发生反射,在第一反射镜30上发生反射,透射经过第一分光镜20(离开第一光路模组M2,进入第二光路模组M3),透射经过第二分光镜50,在第二反射镜60上发生反射,再在第二分光镜50上发生反射,最后进入人眼E。
由上述可知,根据本申请的基本实施例的AR显示设备,通过设置两个光路模组M2和M3,每个光路模组都包括分光镜和反射镜,虚拟图像光线VL在经过第一光路模组M2和第二光路模组M3时都至少经过两次反射和一次透射。与现有技术的AR显示设备相比,本申请的AR显示设备增加了很多能够影响虚拟图像光线VL行进和传播的光学器件,提供了众多可供设计者调节或改变的设计参数、光学参数和/或安装参数,因此提高了整个光学系统的设计自由度,还具有扩大了视场的效果,有利于优化人眼看到的最终成像。
如图2-4中所示,第一和第二光路模组M2和M3的第一反射镜30和第二反射镜60分别具有第一和第二光轴Z1和Z2,第一和第二光轴Z1和Z2分别与第一和第二分光镜20和50的分光分光面20a和50a相交于点P1和P2,主轴Z经过点P1和P2。
第一光路模组M2的第一分光镜20被配置成使得其分光面20a与第一 反射镜30的第一光轴Z1和与主轴Z分别形成第一和第二夹角
Figure PCTCN2019074871-appb-000001
和θ。在第一和第二夹角
Figure PCTCN2019074871-appb-000002
和θ相等的情况下,第一光路模组M2的第一分光镜20和第一反射镜30之间的空间相对位置关系可以改变。
第二光路模组M3的第二分光镜50被配置成使得其分光面50a与第二反射镜60的第二光轴Z2和与主轴Z分别形成第三和第四夹角α和β。α的取值范围为β-10°至β+10°之间,其中β的值是在11°与79°之间、优选地是在20°与70°之间、更加优选地是在30°与60°之间、更加优选地是在40°与55°之间,最优选地是在40°与50°之间,此时,光线能量的利用效率最高。在本申请中,术语“之间”包含端点。
根据本申请的上述原理,本领域内的技术人员应理解,本申请提供了不同于现有技术中只包括具有一个分光镜和一个反射镜的一个光路模组的、包括两个光路模组的光学结构,但本申请不局限于只包括两个光路模组的结构,包括更多个光路模组的光学结构也在本申请的保护范围内。此外,虚拟图像光线VL经过各光路模组中的分光镜和反射镜的顺序和次数也不局限于图中给出的三个基本实施例,各种修改也被认为在本申请的范围内,属于同一个发明构思。
在2-4中示出的AR显示设备的基本实施例中,第一和第二反射镜30和60中每一个可以具有如前面所述的基本结构,例如,包括反射镜基片和与其集成到一起的反射膜。在本说明书中,术语“集成”表示通过诸如涂敷、贴合、粘合、光胶或通过结构固定等任何本领域内已知的方法将各对象形成为一个整体件。
反射镜30和60中每一者可以配置成使入射于其上的虚拟图像光线VL首先到达半反射膜,然后只有光线中的折射部分才能继续到达反射镜基片。反射镜30和60中每一者还可以配置成使入射的虚拟图像光线VL在到达反射镜的半反射膜之前首先透射经过反射镜基片,这种情况下更有利,因为虚拟图像光线VL在从反射镜30或60反射回到相应的分光镜20或50之前多经历两次由反射镜基片提供的透射,更加提高了光学系统的设计自由度。
更有利地,图2-4中示出的根据本申请的AR显示设备具有第一替代实施例,即用如图5所示的反射镜40代替第一反射镜30和/或第二反射镜60。为突出重点,图5仅示出了反射镜的结构,其他部分的结构和光线传播原理都与图2-4中示意的相同,这里不再赘述。
反射镜40包括被集成为一个整体的增透膜42,反射镜基片44和半反射膜46(用于第一反射镜30时,也可以是全反射膜),此时增透膜42和半反射膜46分别位于反射镜基片44的相反两侧。增透膜的作用是提高光线进入基片的能量从而提高整体的光能量利用效率。利用此结构,入射到反射镜40上的虚拟图像光线VL首先透过增透膜42,再透过反射镜基片44,然后到达半反射膜46,经该半反射膜46反射光线VL使其再次透射经过反射镜基片44和增透膜42。
如此,与前述结构相比,通过设置增透膜42,虚拟图像光线VL在传播过程中又多经历两次透射,进一步提高了设计自由度,为改进AR显示设备的光学性能奠定了基础。
在如图5中示出的第一替代实施例的变异(图中未示出)中,将反射镜40的反射镜基片44用屈光矫正基片代替,如此形成的反射镜具有屈光矫正功能,也称为屈光镜片反射镜。入射到反射镜上的虚拟图像光线VL先到达基片再到达半反射膜或者先到达半反射膜再到达基片,都能实现人眼E在看到现实光线AL的图像时可能存在的屈光不正问题。进一步地,在虚拟图像光线VL先到达基片再到达半反射膜的情况下,还能一定程度上校正光学系统的场曲,使人眼看到的图像更清晰。除提供上面描述的技术优势之外,这种结构还克服了现有技术中将矫正镜片设置于分光镜和人眼之间而引起的结构复杂、重量增加、杂散光较多和亮度损失的缺陷。
在上面描述的AR显示设备中,第一和第二光路模组M2和M3的第一和第二分光镜20和50可以是不具有偏振功能的普通分光镜。
在图6中示出的AR显示设备的第二替代实施例中,第一和第二光路模组M2和M3的第一和第二分光镜20和50均配置为具有偏振功能的偏振分光镜。在图6的示意图中,第一分光镜20和第二分光镜50分别被示出为具有平面型结构,分别包括分光镜基片82和集成于其上的偏振分光膜84,以使偏振态为第一方向的偏振光能够通过、同时使偏振态为垂直于第一方向的第二方向的偏振光在分光镜的分光面上发生反射。偏振分光膜限定出所述分光镜的分光面,并且分光镜基片是可选的。在本申请的说明书中,第一方向偏振光和第二方向偏振光分别垂直于光的传播方向,并且在本文中将以P偏振光和S偏振光为例进行说明。但本领域内的技术人员应理解,第一方向偏振光和第二方向偏振光并不局限于此,它们可以是具有相互垂 直关系的任何两个方向的偏振光,例如可以分别表示P偏振光和S偏振光绕光线传播方向旋转了一定角度的偏振光。
在本第二替代实施例中,第一光路模组M2包括设置于第一分光镜20和第一反射镜30之间的第一波片组件23,第二光路模组M3包括设置于第二分光镜50和第二反射镜60之间的第二波片组件56。
第一波片组件23和第二波片组件56中每一个均可以采用1/4波片。在本申请中,术语“波片”可以是四分之一波片,用于将入射的第一方向偏振光转变为圆偏振光或者将圆偏振光转变为与第一方向垂直的第二方向偏振光,术语“波片”也可以是能够使互相垂直的两种偏振光间产生附加光程差的其它波片或波膜或其它光学器件。术语“分光镜波片”和“反射镜波片”分别指可以集成到分光镜或反射镜中的波片。本申请中的波片或四分之一波片可以是平面结构或曲面结构,具体地可以是柱面结构,球面或其它非球面结构。波片组件23和56可以如图所示设置于相应的分光镜和反射镜之间,也可以贴合于相应反射镜上与其集成为一体。由于P(在本文中为第一方向)偏振光和S(在本文中为第二方向)偏振光可以在满足相互垂直的前提下绕光线传播的方向0~360°旋转,此时,第一和第二分光镜20和50的偏振分光膜和波片组件也要改变角度。
利用本实施例的AR显示设备,从投射源模组M1的投射源12发出的、承载着虚拟图像信息的虚拟图像光线VL入射到包括偏振分光膜的第一分光镜20上,P偏振光透过该第一分光镜20之后到达第一波片组件23变为圆偏振光(S偏振光被反射),圆偏振光照射在第一反射镜30上发生反射,反射的光线再次经过第一波片组件23转为S偏振光,S偏振光再次入射到第一分光镜20上,利用其偏振分光膜的反射作用,S偏振光被反射到第二分光镜50,在第二分光镜50上再次发生反射,到达第二波片组件56从而被改变为圆偏振光入射到第二反射镜60上,经过第二反射镜60反射的圆偏振光再次入射到第二波片组件56上,被转变为P偏振光,入射到第二分光镜50上,第二分光镜50允许P偏振光透过,因而到达人眼E。
承载着现实场景景物信息的现实光线AL从第二反射镜60外侧(与虚拟图像光线VL的入射侧相反的一侧)入射到第二光路模组M3,首先透射经过第二反射镜60、第二波片组件56,之后其中的P偏振光透射经过第二分光镜50,最终进入人眼E。如此人眼E能够同时看到虚拟图像和现实场 景的图像。
通过将AR显示设备的第一光路模组M2的分光镜20配置为偏振分光镜并且相应地配置波片23,虚拟图像光线VL在第一光学模组M2中在被第一反射镜30反射之后经过第一波片组件23转变为S偏振光,并且以S偏振光的形式基本上全部被第一分光镜20反射到第二分光镜50,与非偏振形式的第一光学模组M2中光能在第一分光镜处损失近乎一半相比,光能利用率提高了近似一倍。同理,通过将第二光路模组M3的分光镜50配置为偏振分光镜并且相应地配置波片56,虚拟图像光线VL在第二光学模组M3中在被第二反射镜60反射之后经过第二波片组件56转变为P偏振光,并且以P偏振光的形式基本上全部透过第二分光镜50而进入人眼E,与第二光学模组M3中光能在第二分光镜处损失大致四分之一相比,光能利用率又大致提高了三倍。
从图6可以看出,其中的AR显示设备是由图2的AR显示设备变异而来,具体地通过:将其第一和第二光路模组M2和M3的第一和第二分光镜20和50均配置为具有偏振功能的偏振分光镜并且通过在第一和第二分光镜20和50和第一和第二反射镜30和60之间设置第一和第二波片组件。可以设想,与此类似,图3和图4的AR显示设备也可以进行类似的变异,该变异将包括:将其第一和第二光路模组的第一和第二分光镜均配置为具有偏振功能的偏振分光镜且通过在第一和第二分光镜与第一和第二反射镜之间设置第一和第二波片组件。
在未图示的该变异的第一种形式中,与图6相同,第一和第二分光镜均设置成允许第一(例如P)方向偏振光通过并且对第二(例如S)方向偏振光进行反射的偏振镜,在第一和第二分光镜与第一和第二反射镜之间设置相同的第一和第二波片组件。在这种情况下,可以在第一光学模组M2和第二光学模组M3之间设置能够直接将第一和第二方向偏振光之一变成第一和第二偏振光中另一者的二分之一波片,例如将P偏振光变成S偏振光。该二分之一波片配置成使入射到该波片上的偏振光在经过该波片后偏振方向转动了90°,从而来自第一光路模组的虚拟图像光线能够透射经过第二分光镜(例如在图3的AR显示设备的变异中)或者被第二分光镜反射(例如在图4的AR显示设备的变异中)。
在未图示的该变异的第二种形式中,与图6不同,第一分光镜设置成 允许第一(例如P)方向偏振光通过并且对第二(例如S)方向偏振光进行反射的偏振镜,而第二分光镜设置成允许第二(例如S)方向偏振光通过并且对第一(例如P)方向偏振光进行反射的偏振镜,即两个分光镜被配置成允许通过的偏振光方向垂直并且允许反射的偏振光方向也相互垂直。与图6相同,在第一和第二分光镜与第一和第二反射镜之间设置相同的第一和第二波片组件。这种设置使得,在第一和第二光路模组之间不设置如上所述二分之一波片的情况下,也能够实现如上述相同的功能,即:使得来自第一光路模组的虚拟图像光线能够透射经过第二分光镜(例如在图3的AR显示设备的变异中)或者被第二分光镜反射(例如在图4的AR显示设备的变异中)。
因此,利用图6中示出的偏振光路模组,除能够提供前面的所有技术优势之外,光能利用率是图2-4中的三种基本实施例的大致8倍,大大提高了图像光线亮度,同时节省了功耗并且降低了系统发热量。
在图中未示出的一种形式中,本领域内的技术人员应理解,虽然图6示出了第一光路模组M2和第二光路模组M3中的分光镜20和50都是偏振分光镜并且分光镜和反射镜之间都设置有波片组件,但是第一光路模组M2的第一分光镜20可以是不具有偏振功能的普通分光镜并且相应地第一分光镜20和第一反射镜30之间可以不设置第一波片组件23。
如上述,第二光路模组M3的第二波片组件56可以如图6所示设置于第二分光镜50和第二反射镜60之间,也可以与第二反射镜60集成到一起,形成一个整体件。在这种情况下,反射镜60可以包括沿着虚拟图像光线VL入射于其上的入射方向依次排列的增透膜,波片以及可选的反射镜基片,以及半反射膜,这种结构能够一定程度上消除杂散光。可选地,在这种情况下,反射镜60可以不包括反射镜基片,而是由波片起到基片的作用。
图7示出了能够用作第二光路模组M3的第二反射镜60的另一种反射镜70的示意图,用此反射镜70代替图6的第二反射镜50构成第三替代实施例。沿着来自第二分光镜50的虚拟图像光线VL的入射方向,反射镜70依次包括,或者说虚拟图像光线VL依次经过,增透膜72(可选的),反射镜基片74(可选的),半反射膜76,波片78和偏光膜79。如关于图6所述的,来自第二分光镜50的虚拟图像光线VL经过第二波片组件56之后是圆偏振光,圆偏振光到达反射镜70上,首先透射经过增透膜72和反射 镜基片74,到达半反射膜76,从半反射膜76反射回去的光将依次透射经过第二波片组件56和第二分光镜50进入人眼E。未被半反射膜76反射回去的部分圆偏振光继续到达波片78,转变为P偏振光,偏光膜79被配置成吸收此P偏振光。可替代地,波片设置成可以将达到波片78的圆偏振光转变为S偏振光并且偏光膜79可以配置成吸收S偏振光。因而,不会有承载着虚拟图像信息的虚拟图像光线VL经由反射镜70传播出AR显示设备,即不佩戴该AR显示设备的人看不到虚拟图像,提高了隐私性。没有了出射光线的干扰,他人能够更容易看到佩戴者的眼神,提高了社交属性。再者,由于没有虚拟图像光线VL射出,在本AR显示设备包括外部保护镜片时不会由虚拟图像光线VL从该保护镜片反射回光路模组,消除了与此相关的干扰。本领域内的技术人员应理解,图示中的增透膜和反射镜基片不是必须的。
在本申请中,用于此反射镜的波片78和偏光膜79可以间隔开设置,也可以彼此紧密贴合到一起。
在图中未示出的优选实施例中,波片78被沿着相对于该AR显示设备的佩戴者的头部的横向方向和/或垂直于该横向方向的竖直(纵向)方向弯曲,优选地弯曲至大致遵循反射镜、具体为反射镜基片的形状。此结构能够减轻由于虚拟图像光线VL的一部分光线透射经过第二反射镜的反射膜76之后入射到该波片78上被反射而造成“鬼像”的干扰现象。
在图中未示出的更加优选的实施例中,波片78可被弯曲成具有与反射镜的反射膜76一致的弯曲形状。最优选地,被弯曲成与反射膜76的弯曲形状一致的弯曲形状的波片78和偏光膜79的贴合一体件被无间隙地贴合到反射膜76上,以尽可能地消除由于此原因造成的“鬼像”干扰。
对于图6中的AR显示设备来说,可以将第二光路模组M3的第二分光镜50配置为进一步包括偏光膜的偏振分光镜,如此形成AR显示设备的第四替代实施例,偏光膜用于通过偏振态为第一方向的偏振光并且吸收偏振态为第二方向的偏振光。图8示意出了能够替代图6中的第二分光镜50的分光镜结构,用附图标记80表示。
分光镜80包括与图6中示出的分光镜基片82相同的分光镜基片82、偏光膜86、以及与图6中示出的偏振分光膜84相同的偏振分光膜84,并且被配置成使得来自第一光路模组M2的虚拟图像光线VL在到达偏光膜 86之前首先到达偏振分光膜84。
利用此结构,从第一光路模组M2的第一分光镜20反射来的虚拟图像光线VL的S偏振光首先到达偏振分光膜84。因为偏振分光膜84只允许P偏振光透过,所以基本上全部入射的S偏振光都被朝向第二波片组件56反射。所以增加了偏光膜86的分光镜80对承载着虚拟图像信息的虚拟图像光线VL没有实质影响,同样对于现实光线AL也不存在显著影响,采用本分光镜结构能够提供前面讨论的所有技术优势。
对于干扰光线IL来说,当其从第二分光镜80的外侧(与虚拟图像光线VL的入射侧相反的一侧)入射到第二分光镜80上时,将首先到达偏光膜86,由于偏光膜能够吸收S偏振光并且透过P偏振光,所以干扰光线IL中的P偏振光先后透过偏光膜86和偏振分光膜84,而S偏振光被首先遇到的偏光膜86基本上全部吸收,不会朝向人眼E反射。这消除了或基本上消除了被反射到人眼E内的干扰光线IL,最大程度地减小了由干扰光线IL带来的干扰,解决或改善了在不设偏光膜的情况下干扰光线IL中的S偏振光会被偏振分光膜84反射进入人眼E造成干扰的技术问题(如图6中的结构即存在此问题)。
在图8的示意图中,偏光膜86设置于分光镜基片82和偏振分光膜84之间。然而这不是必须的,这种多层膜式偏振分光镜可以不包括分光镜基片,或者三者之间的相对位置关系可以改变,只要确保来自第一光学模组M1的虚拟图像光线VL在到达偏光膜之前首先到达偏振分光膜、而干扰光线IL在到达偏振分光膜之前首先到达偏光膜即可。
图8a的第五替代实施例不同于图7的第四替代实施例在于:图8中的偏振分光镜80除包括与图7中相同的分光镜基片82、偏光膜86和偏振分光膜84之外,还包括用于改变偏振光的偏振方向的波片88,此波片为如上述在本领域内常见的1/4波片,四者被集成、例如依次粘接成一整体。偏振分光镜80用于替换图6中的AR显示设备的第二光路模组M3的第二分光镜50。
如图8a所示,分光镜80被配置成使得来自第一光路模组M2的虚拟图像光线VL(S偏振光)依次到达偏振分光膜84,偏光膜86,波片88和分光镜基片82,其中偏振分光膜84,偏光膜86,波片88的相对位置如上述,但分光镜基片82的位置不作限定,可以改变。S偏振光如上述一入射到偏 振分光膜84上即被向第二波片组件56发射,P偏振光(如果存在的话)依次透射经过偏振分光膜84,偏光膜86,在波片88处转变为圆偏振光,透过分光镜基片82到达外界。
被第二光学模组M3的第二反射镜60反射之后经第二波片组件56转变成的P偏振光再次入射到第二分光镜50上,透射经过偏振分光膜84,偏光膜86,在波片88转变为圆偏振光,透过反光镜基片82进入人眼E。此时,圆偏振光在经由分光镜80、具体为分光镜基片82与空气的交界面时,由于基片材料与空气的介质参数的差异,导致该圆偏振光的一小部分会在该交界面处、在分光镜基片82内部发生反射,反射的圆偏振光再遇到波片88又转变成S偏振光,这时此S偏振光会被与波片88相邻的偏光膜86吸收。因此,这种结构对于解决由于下述原因引起的“鬼像干扰”问题很有利:制造包括偏光膜和偏振分光膜的光学器件(包括基片、偏光膜和偏振分光膜但不包括波片的分光镜)的过程不尽完美,P偏振光透射经过偏振分光膜84,偏光膜86和分光镜基片82,如上述在分光镜基片82与空气的交界面发生反射,反射的P偏振光再次透射经过偏光膜86和偏振分光膜84,经过第二波片组件56(变成圆偏振光),被第二反射镜60反射之后再经过第二波片组件56变成S偏振光,此S偏振光的一部分会进入人眼而形成“鬼像”。
利用此分光镜80替换图6的分光镜50时,现实光线AL从第二反射镜60外侧进入第二光路模组M3,依次透射经过第二反射镜60,第二波片组件56和第二分光镜80,最后进入人眼E。
对于从分光镜80外面入射的干扰光线IL来说,其在第二分光镜80处,首先透射经过分光镜基片82和波片88后,P偏振光透射经过偏光膜86和偏振分光膜84离开分光镜80,S偏振光被偏光膜86吸收。
能够在本申请的各实施例中使用的投射源模组M1可以如前面参考附图所描述地只包括投射源12。更进一步地,投射源模组M1还可以包括光束整形器。在本申请中,“光束整形器”用于对其接收的进行成形、整合等操作,其可以配置为透镜或透镜组。形成光束整形器的透镜或透镜组中的每个透镜可以是凸透镜、凹透镜、或凸透镜和凹透镜任意组合等。该透镜或透镜组可以是球面的、非球面的或自由曲面的。图9a和9b中即示出了两种不同结构的透镜形成的光束整形器14。还应理解,此处对“光束整 形器”的描述适用于本申请的任一实施例中提到的光束整形器。
图9a和图9b示出了前面所述的投射源模组M1的第一替代实施例的两种形式。在本第一替代实施例中,投射源模组M1包括平面型的投射源12以及光束整形器14,两者被直接(图9a)或经由中间匹配部件16间接(图9b)地集成为一整体件。投影源与光束整形器被集成到一起,光学结构更加紧凑,更易于装调,系统性更高。
利用此整体式投射源模组M1,从投射源12发出的、承载着虚拟图像的光线或直接进入光束整形器14,或者经由空气之外的介质形成的中间匹配部件16进入透镜形式的光束整形器14。在投射源12或中间匹配部件16和光束整形器14的分界面处,介质的折射率差小于图1中形成光束整形器14的透镜介质与空气之间的折射率差,所以更多的光线被进行折射,提高了光线透过率,增加了投射源模组的光效率。相应地,该分界面处反射光线减少,抑制或减轻了杂散光和鬼像的产生。
图9a中,投射源模组M1的投射源12和光束整形器14直接粘接或以其他方式结合到一起,与图9b相比,结构更紧凑。
图9b中示出的将投射源模组M1的投射源12和光束整形器14结合到一起的中间匹配部件16由不同于空气并且折射率大于1的匹配介质制成。优选地,匹配介质的折射率可以为1~2.7。匹配介质的折射率越大,生成的衍射光斑越小,成像分辨率提高。另外,因为像方折射率被提高了,所以能够用相对小的孔径角实现较大的数值孔径,减少了边缘光线的偏折角,降低了设计难度。
中间匹配部件的匹配介质可以是从由液态介质、液晶介质、半固态介质和固态介质构成的组中的一种或多种。液态介质可以是例如诸如水或酒精等的透明介质。固态介质可以是诸如玻璃等的透明固态介质。匹配介质还可以包括液态树脂和/或半固态树脂和/或固态树脂。
图9b示出的中间匹配部件16由液态和/或液晶介质形成,相应地,投射源模组10包括用于将液态或液晶介质密封于投射源12和光束整形器14之间的密封结构。该密封结构可以是本领域内任何适当的密封结构。图9b中示出的密封框15就是一个例子。密封框15与投射源12之间的密封通过粘接实现,密封框15与形成光束整形器14的透镜之间的密封通过嵌置接合实现。可选地,根据形成中间匹配部件16的介质形态,密封框15与形 成光束整形器14的透镜之间还进行粘接连接。
图10a-10c示出了能够与本申请的任一实施例的光路模组一起使用的投射源模组的第二替代实施例的三种形式,投射源模组M1包括曲面型的投射源12、例如曲面显示屏来代替平面型的投射源。曲面型的投射源可以和光学系统的固有场曲相匹配,从而很大程度上校正场曲缺陷,此外从曲面型的投射源发出的虚拟图像光线较平面型的投射源发出的光线集中,能够得到更好的收集。另外,由于从投射源发射的光线较集中,所以光路模组中的透镜也可以采用较小的尺寸,从而整个光学系统、即整个AR显示设备可以比较紧凑。
图10a中,投射源模组M1仅包括曲面型的投射源12;图10b中,投射源模组M1包括被集成为一整体件的曲面型的投射源12和光束整形器14;图10c中,投射源模组M1包括通过中间匹配部件16集成为一整体件的曲面型的投射源12和光束整形器14。为投射源12增加光束整形器14的技术优势,以及将两者直接或间接被集成到一起的技术优势在上面已经进行了详细描述,这里不再赘述。
图11a-11c示出了能够与本申请的任一实施例的光路模组一起使用的投射源模组的第三替代实施例的三种形式。如图11a中,投射源模组M1包括平面型的投射源12和光纤面板18,二者被集成或者无间隙地贴合到一起。
光纤面板18中包含的光纤可以具有几个或几百个微米的量级、有时也可以是亚微米或毫米或亚毫米量级的丝径,例如该丝径可以远远小于投射源12的像素尺寸,以便投射源12的每个像素都对应多个光纤,使得人眼E通过该光学系统观看时分辨不出像素的边界,减弱纱窗效应,能够看到更清晰的图像。
当虚拟图像光线VL从投射源12进入光纤面板18时,沿各方向行进的光线都被调制为沿着光纤面板18中的光纤传播,然后经由光纤面板18的出光面从投射源模组M1投射出来。以这种方式,可以根据预期从投射源模组M1射出的虚拟图像光线VL的分布,选择或设计光纤面板18的出光面的形状(例如图11a中为凹面18a,也可以是凸面或者平面)、以及光纤面板18中光纤的分布。这使得对虚拟图像光线VL的控制更容易,降低了投射源模组M1的设计难度。同时,由于光纤面板18和投射源M1集成到了 一起,所以系统集成度也得到了提升。
当光纤面板18的出光面为曲面时(例如图11a),投射源模组M1类似于前述的曲面型投射源,能够提供曲面型投射源具有的技术优势,即契合光线VL与光学系统的场曲、提高图像质量。
如图11b和图11c中,投射源模组M1除包括平面型的投射源12和光纤面板18之外,还直接(11b)或经由中间匹配部件16间接(11c)地集成有光束整形器14。
在本申请的一些实施例中,投射源模组M1还可以包括偏振组件13,例如其可以配置为将来自投射源12的虚拟图像光线VL中的某一方向的偏振光吸收、而允许垂直于此方向的另一方向的偏振光通过的偏光膜或片;或者配置为将虚拟图像光线VL中的所述某一方向的偏振光转变为垂直于该方向的所述另一方向偏振光从而与原有的所述另一方向偏振光一起从投射源模组M1投射出来的偏振转换器,例如偏振转换片或膜,还可以是特定类型的波片。这样,从投射源模组M1进入光路模组的虚拟图像光线VL基本上都是预期能够经由第一和第二光路模组而进入人眼的偏振方向的偏振光,大大减少了可能透过第二分光镜而被从外界看到的光线,因而减少了杂散光。以这种方式,基本上所有光能都能被利用,提高了光能的利用率,而且人眼E看到的虚拟图像更清晰。本领域内技术人员应理解,此处对偏振组件13的描述适用于本申请的任一实施例的投射源模组M1的偏振组件。
偏振组件13可以设置于投射源12与光束整形器14之间,如图12a所示,也可以设置于光束整形器14与第一光路模组M2的第一分光镜20之间,如图12b所示。偏振组件13可以如图示作为单独的部件提供,也可以毫无间隙地附贴到投射源12的表面、或者光束整形器14的表面,或者如上述可选地设置的中间匹配部件16的表面。
在本申请中,AR显示设备的投射源模组M1的投射源12可以是光源和像源集成在一起的投射源,这样的例子可以包括、但不仅限于OLED(有机发光二极管)和LCD(液晶显示设备)。根据本申请的投射源12还可以包括彼此分离的光源和像源,这种像源的例子包括、但不限于LCOS(硅基液晶)、MEMS(微机电显示设备)和DMD(数字微镜元件),使用时需要附加光源一起使用。
图13即示出了投射源模组M1的投射源包括像源122和附加的单独的 光源124的例子。使用未集成在一起的分离的光源和像源,像源的亮度由光源决定,可以通过提升光源的亮度来达到提高显示亮度的目的,提升亮度更容易并且降低了成本。在本图示实施例中,像源122和附加光源124分开布置,但这不是必须的,也可以将这两者布置在一起,甚至将两者紧密贴合在一起。本实施例中的第一光路模组M2和第二光路模组M3与图6中示出的相同,这里不再赘述。
特别地,在图13的实施例中,投射源模组M1还包括如上参考图12a和12b所描述的偏振组件13,偏振组件13设置于光源124和光束整形器14之间。当偏振组件13为偏振转换片时,光能的利用率能够提高大约1倍;当偏振组件13为偏振片时可以减少杂散光和鬼像效应。本领域内技术人员应理解,偏振组件13和光束整形器14不是必须的,可以省略。
如前所述,本申请的分光镜可以是平面型的分光镜,如前面参考附图所描述的;也可以是立方体型的分光镜。在图14示出的实施例中,第一光路模组M2的第一分光镜20采用的是贴合偏振分光膜以形成分光面的立方体型偏振分光镜而第二光路模组M3的第二分光镜50采用的平面型的偏振分光镜。显然,第二光路模组M3的第二分光镜50也可以替换成立方体型偏振分光镜。
典型地,立方体型偏振分光镜通过贴合偏振分光膜而形成。投射源12与立方体型偏振分光镜20可以间隔开设置,还可以如图14所示更优选地将投射源12与立方体型偏振分光镜20贴合在一起。这样,从投射源12发出的光线能够直接进入到偏振分光镜中,减少了交界面的折射率差,提高了立方体型偏振分光镜的光透过率,增加光效率,也能一定程度上抑制杂散光和鬼像的产生。
通常,立方体型偏振分光镜的折射率一般在1.3~2.0之间,这样光程(折射率×距离)相同的情况下,各光学器件之间的物理距离可以减小,同时,使用立方体型偏振分光镜还可以平衡一部分光学系统的像差。
根据公式R=(0.61*λ)/(S*Sinθ)(R为衍射斑半径,λ为光波长,S为像面折射率,θ为入射孔径角)可知,此结构能够提高像方的折射率、因而衍射光斑减小,提高成像分辨率。此结构,如在上面关于中间匹配部件所描述地那样,能够用相对小的孔径角实现较大的数值孔径,减少了边缘光线的偏折角,降低了设计难度。
图15中示出了AR显示设备的又一实施例。
本实施例的AR显示设备的投射源模组M1的投射源采用的是彼此分离开的像源122和光源124,具体地,此光源124可以是红绿蓝三色光源。投射源模组M1还包括设置于像源122和第一光路模组M2的第一分光镜20之间的透镜形式的第一光束整形器142,以及设置于光源124和第一光路模组M2的第一分光镜20之间的偏振组件13与透镜形式的第二光束整形器144。在本图示中,第一光束整形器142和第二光束整形器144的透镜形式不同,然而,这仅仅是示例,根据需要,任何形式的透镜都可以使用,例如菲涅尔透镜。
不同于前面描述的任一实施例,在图15所示的实施例中,第一光路模组M2(具体为其第一分光镜20)和第二光路模组M3(具体为其第二分光镜50)之间设置中间透镜45,以使光线在从第一光路模组M2进入第二光路模组M3的过程中多经历一次透射,以期一定程度上提高设计自由度。根据实际需要,此中间透镜45可以是任何形式的透镜或透镜组,可以是任何形式的凸透镜、凹透镜、或它们的任意组合,可以具有凹表面、凸表面或任意曲面等,例如可以是菲涅尔透镜。
光源124发出的光(用空心双箭头表示)经过第二光束整形器144和偏振组件13,其中的P偏振光被吸收或转化为S偏振光。S偏振光入射到第一分光镜20,在第一分光镜20上进行反射之后,透射穿过第一光束整形器142而入射到像源122上,进而照亮像源122。这里,像源122可以是Lcos,其可以调制S偏振光,形成由P偏振光作为有效图像光线的虚拟图像光线VL。
从像源122发出的携带着虚拟图像信息的虚拟图像光线VL在经由第一光束整形器142的成形或整合之后入射到第一分光镜20上。其中的P偏振光透射经过第一分光镜20,经过第一波片组件23变为圆偏振光,之后被第一反射镜30反射后再次透射经过第一波片组件23,转变为S偏振光,再次入射到第一分光镜20上发生反射,此时大部分(即便不是全部)的S偏振光被反射到中间透镜45,透射经过中间透镜45进入第二光路模组M3。进入第二光路模组M3后首先入射到第二分光镜50上发生反射,再透射经过第二波片组件56变为圆偏振光射向第二反射镜60,被第二反射镜60反射 的圆偏振光再次经过第二波片组件56变为P偏振光,从而能够透射经过第二分光镜60,进入人眼E。
上面关于附图示出的实施例以及附图中未示出的一些实施例进行了描述,申请人最后强调参考不同实施例描述的不同模块光学结构可以彼此重新组合,而构成新的实施例,这些新实施例都在附属权利要求限定的保护范围内。

Claims (31)

  1. 一种增强现实显示设备,包括:
    包括投射源的投射源模组;
    包括第一分光镜和第一反射镜的第一光路模组;和
    包括第二分光镜和第二反射镜的第二光路模组,
    其中,所述第一分光镜和所述第二分光镜分别包括分光镜基片,所述第一反射镜和第二反射镜分别包括反射膜,
    其中,从所述投射源模组投射出的承载着虚拟图像信息的虚拟图像光线首先经过所述第一光路模组、借助于其第一分光镜和第一反射镜进行至少两次反射和至少一次透射,来自第一光路模组的虚拟图像光线再进入所述第二光路模组、借助于其二分光镜和第二反射镜进行至少一次透射和至少两次反射进入人眼;
    来自现实场景的现实光线经过所述第二光路模组进入人眼。
  2. 根据权利要求1所述的增强现实显示设备,其中,来自所述投射源模组的虚拟图像光线沿其传播路径:
    首先进入第一光学模组中依次:透射经过第一分光镜后在第一反射镜上反射,再被第一分光镜反射而离开第一光学模组,然后进入第二光学模组中依次:在第二分光镜上发生反射,之后达到第二反射镜上发生反射,再透射经过第二分光镜而离开第二光学模组,最终进入人眼;或者
    首先进入第一光学模组中依次:透射经过第一分光镜后在第一反射镜上反射,再被第一分光镜反射而离开第一光学模组,然后进入第二光学模组中依次:透射经过第二分光镜后在第二反射镜上发生反射,再被第二分光镜反射而离开第二光学模组,最终进入人眼;或者
    首先进入第一光学模组中依次:首先被第一分光镜反射到第一反射镜上,被第一反射镜反射后透射经过第一分光镜而离开第一光学模组,然后进入第二光学模组中依次:在第二分光镜上发生反射,之后达到第二反射镜上发生反射,再透射经过第二分光镜而离开第二光学模组,最终进入人眼;或者
    首先进入第一光学模组中依次:首先被第一分光镜反射到第一反射镜 上,被第一反射镜反射后透射经过第一分光镜而离开第一光学模组,然后进入第二光学模组中依次:透射经过第二分光镜后在第二反射镜上发生反射,再被第二分光镜反射而离开第二光学模组,最终进入人眼。
  3. 根据权利要求1或2所述的增强现实显示设备,其中,所述投射源是平面型投射源或者曲面型投射源。
  4. 根据权利要求3所述的增强现实显示设备,其中,所述投射源模组还包括用于整形来自投射源的虚拟图像光线的光束整形器,其中所述光束整形器与所述投射源分离开设置;或者所述光束整形器与所述投射源直接以无间隙贴合的方式集成为一整体件。
  5. 根据权利要求3所述的增强现实显示设备,其中,所述投射源模组还包括用于整形来自投射源的虚拟图像光线的光束整形器,所述光束整形器经由中间匹配部件间接地与所述投射源集成为一整体件,
    优选地,所述中间匹配部件的折射率为1~2.7;或者优选地,所述中间匹配部件通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种形成;或者优选地,所述中间匹配部件由液态介质和/或液晶介质形成,所述投射源模组还包括将形成所述中间匹配部件的介质密封于投射源和光束整形器之间的密封结构。
  6. 根据权利要求1或2所述的增强现实显示设备,其中,所述投射源是平面型投射源,所述投射源上集成有接收来自所述投射源的虚拟图像光线的光纤面板。
  7. 根据权利要求6所述的增强现实显示设备,其中,所述投射源模组还包括用于整形来自光纤面板的虚拟图像光线的光束整形器,其中所述光束整形器与所述光纤面板分离开设置;或者所述光束整形器与所述光纤面板直接以无间隙贴合的方式集成为一整体件。
  8. 根据权利要求6所述的增强现实显示设备,其中,所述投射源模组 还包括用于整形来自光纤面板的虚拟图像光线的光束整形器,所述光束整形器经由中间匹配部件间接地与所述光纤面板集成为一整体件,
    优选地,所述中间匹配部件的折射率为1~2.7;或者优选地,所述中间匹配部件通过由液态介质、液晶介质、半固态介质和固态介质构成的组中的至少一种形成;或者优选地,所述中间匹配部件由液态介质和/或液晶介质形成,所述投射源模组还包括将形成所述中间匹配部件的介质密封于光束整形器和光纤面板之间的密封结构。
  9. 根据权利要求1-8中任一项所述的增强现实显示设备,其中,所述投射源是集成式投射源,例如OLED或LCD。
  10. 根据权利要求1-8中任一项所述的增强现实显示设备,其中,所述投射源包括彼此分离的光源和像源,其中
    优选地,所述像源是LCOS、MEMS或DMD像源;
    优选地,所述投射源模组还包括位于所述像源和所述第一光路模组之间、用于对来自像源的虚拟图像光线进行整合的光束整形器,和/或所述投射源模组还包括位于所述光源和所述第一光路模组之间、用于对来自光源的光线进行整合的光束整形器。
  11. 根据权利要求1-10中任一项所述的增强现实显示设备,其中,所述第一分光镜和第二分光镜是包括偏振分光膜的偏振分光镜,所述第一光路模组的第一分光镜和第一反射镜之间以及所述第二光路模组的第二分光镜和第二反射镜之间分别设置第一波片组件和第二波片组件,优选地所述第一波片组件和第二波片组件是四分之一波片。
  12. 根据权利要求11所述的增强现实显示设备,其中,第一分光镜和第二分光镜均配置成允许第一方向的偏振光通过同时反射第二方向的偏振光,所述第一方向垂直于所述第二方向。
  13. 根据权利要求12所述的增强现实显示设备,其中,所述第一光路模组和第二光路模组之间设置有二分之一波片。
  14. 根据权利要求11所述的增强现实显示设备,其中,第一分光镜配置成允许第一方向的偏振光通过同时反射第二方向的偏振光,第二分光镜配置成允许第二方向的偏振光通过同时反射第一方向的偏振光,所述第一方向垂直于所述第二方向。
  15. 根据权利要求12所述的增强现实显示设备,其中,所述第二分光镜还包括偏光膜,所述偏光膜配置成允许第一方向的偏振光通过同时吸收第二方向的偏振光,来自第一光学模组的虚拟图像光线在到达所述偏光膜之前先到达所述偏振分光膜。
  16. 根据权利要求15所述的增强现实显示设备,其中,所述第二分光镜还包括分光镜波片,其中入射到所述第二分光镜上的虚拟图像光线依次到达偏振分光膜,偏光膜和所述分光镜波片,可选地,所述分光镜波片用作所述分光镜基片。
  17. 根据权利要求1-16中任一项所述的增强现实显示设备,其中,所述第一分光镜和/或所述第二分光镜是平面型分光镜或立方体型分光镜。
  18. 根据权利要求12-17中任一项所述的增强现实显示设备,其中,所述投射源模组还包括投射源偏振组件,来自所述投射源的虚拟图像光线入射到所述偏振组件上再从所述投射源模组透射出去。
  19. 根据权利要求18所述的增强现实显示设备,其中,
    所述投射源偏振组件设置于投射源与第一光路模组的第一分光镜之间;或者
    所述投射源模组包括用于整形来自投射源的虚拟图像光线的光束整形器,所述投射源偏振组件设置于投射源与光束整形器之间或者设置于所述光束整形器与第一光路模组的第一分光镜之间;或者
    所述投射源包括彼此分离的光源和像源,所述投射源偏振组件设置于所述光源和所述第一光路模组的第一分光镜之间。
  20. 根据权利要求18或19所述的增强现实显示设备,其中,所述投射源偏振组件是偏光膜和/或偏振分光膜和/或投射源波片。
  21. 根据权利要求11-20中任一项所述的增强现实显示设备,其中,所述第一波片组件和第二波片组件中的每一个被提供为单独的部件;或者所述第一波片组件和第二波片组件分别被集成到第一反射镜和第二反射镜。
  22. 根据权利要求11-20中任一项所述的增强现实显示设备,其中,所述第一波片组件和第二波片组件分别被集成到第一反射镜和第二反射镜,并且所述第一波片组件和第二波片组件分别用作第一反射镜和第二反射镜的反射镜基片。
  23. 根据权利要求1-22中任一项所述的增强现实显示设备,其中,所述第一反射镜和第二反射镜中任一者或两者还包括反射镜基片,所述反射膜设置于所述反射镜基片的任一侧,优选地,所述反射膜设置于所述反射镜基片的与虚拟图像光线的入射侧相反的另一侧。
  24. 根据权利要求23所述的增强现实显示设备,其中,所述第一反射镜的反射面是全反射膜或半反射膜,所述第二反射镜的反射面是半反射膜。
  25. 根据权利要求24所述的增强现实显示设备,其中,所述第二反射镜的反射镜基片为屈光矫正基片,其中入射到反射镜上的虚拟图像光线在达到半反射膜之前先到达屈光矫正基片或者先到达半反射膜。
  26. 根据权利要求23或24所述的增强现实显示设备,其中,所述第一反射镜和第二反射镜中任一者或两者还包括增透膜,来自所述第二分光镜和第二波片组件的虚拟图像光线入射到相应反射镜上时首先透过反射镜的增透膜,再进入反射镜基片和半反射膜。
  27. 根据权利要求11-26所述的增强现实显示设备,其中,所述第二反 射镜还包括反射镜波片和反射镜偏光膜,来自所述第二分光镜和第二波片组件的虚拟图像光线入射到第二反射镜上,透过了第二反射镜的反射膜的那部分光线先透过第二反射镜的反射镜波片变成能够被所述反射镜偏光膜吸收的偏振光,被所述反射镜偏光膜吸收,优选地,所述反射镜波片是四分之一波片。
  28. 根据权利要求27所述的增强现实显示设备,其中,所述反射镜波片和所述反射镜偏光膜被分离开设置,或者所述反射镜波片和所述反射镜偏光膜被无间隙地贴合到一起形成一整体。
  29. 根据权利要求27所述的增强现实显示设备,其中,所述反射镜波片和所述反射镜偏光膜被整体沿着所述增强现实显示设备的佩戴者的头部的横向方向和/或垂直于所述横向方向的纵向方向弯曲至大体遵循第二反射镜的形状,更优选地,进行了如上弯曲的所述整体被无间隙地贴合到所述半反射膜。
  30. 根据权利要求11-29所述的增强现实显示设备,其中,所述第二反射镜还包括沿着虚拟图像光线从第二分光镜入射到第二反射镜上的入射方向位于最外侧的保护镜片,所述保护镜片是光能衰减片或电致变色镜片或光致变色镜片。
  31. 一种穿戴式增强现实系统,包括根据权利要求1-30中任一项所述的增强现实显示设备,优选地,所述穿戴式增强现实系统是增强现实眼镜或增强现实头盔或增强现实面罩。
PCT/CN2019/074871 2018-02-12 2019-02-12 穿戴式ar系统和ar显示设备 WO2019154431A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980001718.3A CN110603477A (zh) 2018-02-12 2019-02-12 穿戴式ar系统和ar显示设备
EP19751963.0A EP3754412A4 (en) 2018-02-12 2019-02-12 PORTABLE AUGMENTED REALITY SYSTEM AND AUGMENTED REALITY DISPLAY DEVICE
US16/991,186 US11867906B2 (en) 2018-02-12 2020-08-12 Wearable AR system and AR display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810146739.1 2018-02-12
CN201810146739 2018-02-12
CN201810472324.3A CN108681068B (zh) 2018-02-12 2018-05-17 Ar显示装置和穿戴式ar设备
CN201810472324.3 2018-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/991,186 Continuation-In-Part US11867906B2 (en) 2018-02-12 2020-08-12 Wearable AR system and AR display device

Publications (1)

Publication Number Publication Date
WO2019154431A1 true WO2019154431A1 (zh) 2019-08-15

Family

ID=63805579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074871 WO2019154431A1 (zh) 2018-02-12 2019-02-12 穿戴式ar系统和ar显示设备

Country Status (4)

Country Link
US (1) US11867906B2 (zh)
EP (1) EP3754412A4 (zh)
CN (3) CN108681068B (zh)
WO (1) WO2019154431A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013538B2 (en) 2017-07-03 2024-06-18 Holovisions LLC Augmented reality (AR) eyewear with a section of a fresnel reflector comprising individually-adjustable transmissive-reflective optical elements
CN108681068B (zh) 2018-02-12 2023-03-21 优奈柯恩(北京)科技有限公司 Ar显示装置和穿戴式ar设备
WO2020119320A1 (zh) * 2018-12-13 2020-06-18 舜宇光学(浙江)研究院有限公司 显示光机及其方法和近眼显示设备
CN111610630A (zh) * 2019-02-22 2020-09-01 舜宇光学(浙江)研究院有限公司 一种显示光机及其方法和近眼显示设备
CN112051672A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种消伪影式显示光机及其方法和近眼显示设备
EP3888482B1 (en) * 2018-12-20 2024-02-21 NS West Inc. Head-up display device and helmet
WO2020170515A1 (ja) * 2019-02-19 2020-08-27 株式会社Jvcケンウッド ヘッドマウントディスプレイ
CN111624767B (zh) * 2019-02-28 2022-03-04 京东方科技集团股份有限公司 近眼显示装置
US11435584B2 (en) 2019-03-13 2022-09-06 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Large field of view see through head mounted display having magnified curved intermediate image
CN110088665A (zh) * 2019-03-13 2019-08-02 香港应用科技研究院有限公司 用于大视场光学透视型头戴式显示器的紧凑型光学结构设计
CN109765695B (zh) * 2019-03-29 2021-09-24 京东方科技集团股份有限公司 一种显示系统和显示装置
CN110058415A (zh) * 2019-05-07 2019-07-26 武汉轻工大学 基于变形镜的变焦三维显示光学系统以及头盔显示器
CN110119029A (zh) * 2019-06-11 2019-08-13 浙江水晶光电科技股份有限公司 近眼成像装置及二次成像方法
KR102216587B1 (ko) * 2019-10-24 2021-02-17 주식회사 레티널 고스트 이미지 차단 기능을 갖는 증강 현실용 광학 장치
EP4053615A4 (en) * 2019-11-01 2023-11-29 Letinar Co., Ltd COMPACT AUGMENTED REALITY OPTICAL DEVICE WITH GHOST IMAGE BLOCKING FUNCTION AND WIDE ANGLE VIEWING
CN111025659B (zh) * 2019-12-31 2022-04-19 合肥视涯技术有限公司 一种增强现实光学模组及增强现实设备
JP7435169B2 (ja) * 2020-03-31 2024-02-21 セイコーエプソン株式会社 虚像表示装置
JP7447628B2 (ja) 2020-03-31 2024-03-12 セイコーエプソン株式会社 虚像表示装置及び光学ユニット
CN111474715A (zh) * 2020-04-23 2020-07-31 歌尔股份有限公司 光学系统及增强现实设备
WO2021232677A1 (zh) * 2020-05-20 2021-11-25 宁波鸿蚁光电科技有限公司 复用光源折叠光路的双目光学显示系统及可穿戴设备
CN113721402B (zh) * 2020-05-26 2023-11-03 Oppo广东移动通信有限公司 电子设备、控制方法、控制装置、电子装置和存储介质
CN114384698A (zh) * 2020-10-19 2022-04-22 宏碁股份有限公司 拓展眼盒的智能眼镜
JP2022131033A (ja) * 2021-02-26 2022-09-07 セイコーエプソン株式会社 光学ユニット及び画像表示装置
CN113109942B (zh) * 2021-03-02 2022-07-26 联想(北京)有限公司 显示装置及头戴式显示设备
CN113433597A (zh) * 2021-07-23 2021-09-24 深圳华中科技大学研究院 一种光陷阱结构
CN114371557B (zh) * 2022-01-17 2024-02-09 惠州Tcl移动通信有限公司 一种vr光学系统
CN115236858A (zh) * 2022-06-21 2022-10-25 京东方科技集团股份有限公司 光学系统、显示系统、显示装置和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019591A (zh) * 2016-07-14 2016-10-12 联想(北京)有限公司 一种电子设备
CN205982838U (zh) * 2016-08-30 2017-02-22 北京亮亮视野科技有限公司 一种具有投影及目视功能的光学系统
CN107422484A (zh) * 2017-09-19 2017-12-01 歌尔科技有限公司 棱镜式ar显示装置
CN107678165A (zh) * 2017-11-14 2018-02-09 浙江晶景光电有限公司 增强现实的显示装置及智能眼镜
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1105766A1 (en) * 1999-06-22 2001-06-13 Koninklijke Philips Electronics N.V. Head-mounted display
SE519057C2 (sv) * 2001-05-10 2003-01-07 Totalfoersvarets Forskningsins Presentationsanordning med variabelt fokuseringsdjup
US6522474B2 (en) * 2001-06-11 2003-02-18 Eastman Kodak Company Head-mounted optical apparatus for stereoscopic display
US7031579B2 (en) * 2002-06-26 2006-04-18 L-3 Communications Corporation High resolution display component, system and method
CN100410727C (zh) * 2004-03-29 2008-08-13 索尼株式会社 光学装置以及虚像显示装置
RU2301436C2 (ru) * 2005-04-04 2007-06-20 Олег Леонидович Головков Широкоугольный виртуальный шлем с возможностью совмещения реального и виртуального пространства
US20080013051A1 (en) 2006-07-14 2008-01-17 3M Innovative Properties Company Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
RU2326419C1 (ru) * 2006-09-05 2008-06-10 Олег Леонидович Головков Виртуальный шлем и устройство для его реализации
JP2008299303A (ja) * 2007-05-01 2008-12-11 Namiki Precision Jewel Co Ltd レンズ付き光ファイバとその製造方法
US8089568B1 (en) * 2009-10-02 2012-01-03 Rockwell Collins, Inc. Method of and system for providing a head up display (HUD)
WO2012118575A2 (en) * 2011-02-28 2012-09-07 Osterhout Group, Inc. Alignment control in an augmented reality headpiece
US9013793B2 (en) * 2011-09-21 2015-04-21 Google Inc. Lightweight eyepiece for head mounted display
CN102540465A (zh) * 2011-12-09 2012-07-04 中航华东光电有限公司 一种头盔显示器的光学系统
FR2995089B1 (fr) * 2012-08-30 2015-08-21 Optinvent Dispositif optique et procede de fabrication d'un tel dispositif
CN103869467A (zh) * 2012-12-17 2014-06-18 联想(北京)有限公司 显示装置及穿戴式眼镜设备
US8873149B2 (en) * 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
US20140347736A1 (en) * 2013-05-23 2014-11-27 Omnivision Technologies, Inc. Systems And Methods For Aligning A Near-Eye Display Device
US9494800B2 (en) * 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
RU2579804C1 (ru) * 2014-09-16 2016-04-10 Самсунг Электроникс Ко., Лтд. Оптическое устройство для формирования изображений дополненной реальности
WO2016204433A1 (en) * 2015-06-15 2016-12-22 Samsung Electronics Co., Ltd. Head mounted display apparatus
CN105629472A (zh) * 2016-01-28 2016-06-01 深圳多哚新技术有限责任公司 短距离光学放大模组、放大方法及放大系统
US10459230B2 (en) * 2016-02-02 2019-10-29 Disney Enterprises, Inc. Compact augmented reality / virtual reality display
CN106226901B (zh) * 2016-08-31 2019-05-21 深圳超多维科技有限公司 一种光学器件及头戴式显示装置
CN107589546B (zh) * 2017-10-23 2024-05-24 北京小米移动软件有限公司 光学系统及增强现实眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019591A (zh) * 2016-07-14 2016-10-12 联想(北京)有限公司 一种电子设备
CN205982838U (zh) * 2016-08-30 2017-02-22 北京亮亮视野科技有限公司 一种具有投影及目视功能的光学系统
CN107422484A (zh) * 2017-09-19 2017-12-01 歌尔科技有限公司 棱镜式ar显示装置
CN107678165A (zh) * 2017-11-14 2018-02-09 浙江晶景光电有限公司 增强现实的显示装置及智能眼镜
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备

Also Published As

Publication number Publication date
EP3754412A4 (en) 2021-06-02
US20200371362A1 (en) 2020-11-26
CN110603477A (zh) 2019-12-20
US11867906B2 (en) 2024-01-09
EP3754412A1 (en) 2020-12-23
CN108681068B (zh) 2023-03-21
CN108681068A (zh) 2018-10-19
CN116149062A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2019154431A1 (zh) 穿戴式ar系统和ar显示设备
US11500205B2 (en) Wearable AR system, AR display device and its projection source module
TWI676047B (zh) 一種成像顯示系統
US9740013B2 (en) Collimating optical device and system
US8259239B2 (en) Polarized head-mounted projection display
JP2019520610A (ja) ウェアラブルディスプレイのための照明装置
TW201805692A (zh) 頭戴式成像裝置
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751963

Country of ref document: EP

Effective date: 20200914