RU2326419C1 - Виртуальный шлем и устройство для его реализации - Google Patents

Виртуальный шлем и устройство для его реализации Download PDF

Info

Publication number
RU2326419C1
RU2326419C1 RU2006132001/28A RU2006132001A RU2326419C1 RU 2326419 C1 RU2326419 C1 RU 2326419C1 RU 2006132001/28 A RU2006132001/28 A RU 2006132001/28A RU 2006132001 A RU2006132001 A RU 2006132001A RU 2326419 C1 RU2326419 C1 RU 2326419C1
Authority
RU
Russia
Prior art keywords
helmet
beam splitter
virtual
liquid crystal
distance
Prior art date
Application number
RU2006132001/28A
Other languages
English (en)
Inventor
Олег Леонидович Головков (RU)
Олег Леонидович Головков
Константин Васильевич Иванищев (RU)
Константин Васильевич Иванищев
Original Assignee
Олег Леонидович Головков
Константин Васильевич Иванищев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Леонидович Головков, Константин Васильевич Иванищев filed Critical Олег Леонидович Головков
Priority to RU2006132001/28A priority Critical patent/RU2326419C1/ru
Application granted granted Critical
Publication of RU2326419C1 publication Critical patent/RU2326419C1/ru

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

Изобретение относится к области специального оптического приборостроения, в частности к системам визуализации, тренажеров на основе нашлемного индикатора, систем виртуальной реальности и т.п. Шлем состоит из двух одинаковых каналов. Каждый канал состоит из последовательно расположенных светоделительной пластины и сферического зеркала, а также положительной линзы, второй светоделительной пластины, параболического зеркала и жидкокристаллического монитора. Используются видеокамера, блок коррекции видеоизображения, блок формирования виртуального изображения. Сферическое зеркало расположено на расстоянии радиуса кривизны от хрусталика глаза. На таком же расстоянии от сферического зеркала располагается положительная линза. Параболическое зеркало расположено после второй светоделительной пластины на расстоянии своего фокального расстояния от положительной линзы. Жидкокристаллический монитор располагается на фокальном расстоянии от параболического зеркала. Видеокамера расположена на оптической оси после второй светоделительной пластины и связана с блоком коррекции видеоизображения. Технический результат - создание оптико-электронной нашлемной системы, позволяющей автоматически и точно совмещать виртуальное и реальное пространства, независимо от взаимного расположения головы оператора и шлема, а так-»же возможности введения компенсации взаимного ухода оптических компонент шлема. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области специального оптического приборостроения и, в частности, к системам визуализации, тренажеров на основе нашлемного индикатора, систем виртуальной реальности и т.п.
Известно устройство, описанное в заявке РФ №2005109729 и взятое в качестве прототипа, которое состоит из двух одинаковых каналов, каждый из которых представлен на фиг.1 и состоит из светоделительной пластины 2, расположенной перед глазами оператора (летчика) 1 и делящую наблюдаемое пространство на два канала - реальный и виртуальный, далее в виртуальном канале располагается сферическое зеркало 3, таким образом, чтобы центр кривизны зеркала совпадал с хрусталиком глаза 1, при этом светоделительная пластина создает 2 в пространстве два центра кривизны сферического зеркала, далее располагается параболическое зеркало 5, фокус которого совпадает с центром кривизны сферического зеркала 3, при этом вторая светоделительная пластина 4 создает в пространстве два фокуса параболического зеркала, в одном из которых устанавливается жидкокристаллический индикатор 6.
Недостатком известного устройства-прототипа является:
- невозможность позиционирования шлема относительно головы оператора (летчика), что актуально при больших перегрузках и вибрации;
- невозможно введения коррекции взаимного ухода оптических компонент виртуального шлема, что актуально при больших перегрузках и вибрации;
- необходима индивидуальная и предполетная настройка виртуального шлема.
Задача заявляемого технического решения: создание оптико-электронной нашлемной системы, позволяющей автоматически и точно совмещать виртуальное и реальное пространства, независимо от взаимного расположения головы оператора (летчика) и шлема, а также возможности введения компенсации взаимного ухода оптических компонент шлема.
Сущность предлагаемого технического решения заключается в использовании в каждом канале виртуального шлема дополнительной положительной линзы, расположенной в фокусе параболического зеркала, в использовании видеокамеры, следящей одновременно за положением изображения глаза и положением изображения жидкокристаллического монитора, в использовании видео репера на экране жидкокристаллического монитора и блока коррекции видеоизображения.
Проведенный анализ уровня техники, включающий поиск по патентам и научно-техническим источникам информации, содержащим сведения об аналогах заявляемого изобретения, позволяет установить, что заявителем не обнаружены технические решения, характеризующиеся признаками, идентичными всем существующим признакам заявляемого изобретения. Отличие из перечня выявленных аналогов прототипа позволило выявить совокупность существенных (по отношению к усматриваемому заявителем техническому результату) отличительных признаков в заявляемом объекте, изложенных в формуле изобретения.
Следовательно, заявляемое изобретение соответствует требованию «новизна» по действующему законодательству.
Сведения об известности отличительных признаков в совокупностях признаков известных технических решений с достижением такого же, как у заявляемого устройства положительного эффекта не имеется. На основании этого сделан вывод, что, предлагаемое техническое решение соответствует критерию «изобретательский уровень».
Сущность предлагаемого устройства поясняется фигурами 1-4.
Фиг.1 - оптическая схема виртуального шлема.
Фиг.2 - оптическая схема шлема летчика с компенсацией смещений.
Фиг.3 - стандартная оптическая схема виртуального шлема.
Фиг.4 - оптическая схема шлема летчика с компенсацией смещений и реперной точкой.
Если в приведенном устройстве-прототипе в точке совпадения кривизны сферического зеркала 3 с фокусом параболического зеркала 5 установить дополнительную неподвижную положительную линзу 7, смотри фиг.2, с фокальным расстоянием, равным половине радиуса кривизны сферического зеркала 3, то легко определить, что это позволяет полностью компенсировать как угловые, так и линейные уходы шлема относительно глаз летчика (оператора).
Подобная компенсация всегда автоматически выполняется в стандартной оптической схеме виртуального шлема с линзой и жидкокристаллическим монитором в каждом канале, смотри фиг.3. Для летчика подобная оптическая схема преобразуется в нашлемную систему, в которой светоделительная пластина 2 и параболическое зеркало 5 могут легко устанавливаться легким движением рук, но при этом невозможно точно и абсолютно жестко установить оптические компоненты друг относительно друга и относительно глаз летчика, что особенно ярко проявляется в условиях повышенной вибрации и при перегрузках. При использовании устройства, приведенного на фиг.3, довольно сложно ввести компенсацию подобных взаимных угловых и линейных уходов оптических компонентов виртуального шлема.
При использовании виртуального шлема летчика, приведенного на фиг.2, довольно легко вводить систему контроля ухода оптических компонентов друг относительно друга с помощью видеокамеры 8, установленной на оптической оси устройства сразу после светоделительной пластины 4. Такое расположение видеокамеры позволяет точно диагностировать разворот и уход в пространстве светоделительной пластины 2 и сферического зеркала 3, так как это приведет к изменению положения изображения всего глаза летчика в видеокамере. Одновременно с помощью камеры происходит определение положения в пространстве виртуального изображения, создаваемого жидкокристаллическим монитором 6, затем исходя из полученной информации блок коррекции видеоизображения 9 выдает координаты и величину рассогласования изображения глаза относительно виртуального изображения в блок формирования виртуального изображения 10, который учитывает данную информацию для построения изображения на жидкокристаллическом мониторе с учетом уходов изображения глаза оператора. Подобный процесс непрерывный и сходящийся, т.е. происходит до тех пор, пока величина рассогласования не будет равна нулю. При этом важно определять положение не зрачков глаз летчика, а положение изображения всего глаза летчика (оператора), при этом учет положения зрачка вреден и может привести к серьезным ошибкам управления. При этом целесообразно на жидкокристаллическом мониторе 6 можно индицировать реперную точку, соответствующую центру глаза летчика, при этом блок коррекции видеоизображения 9 и блок формирования виртуального изображения 10 должны совместить центр глаза с данной реперной точкой.
Виртуальный шлем, представленный на фиг.2, состоит из двух каналов в каждый из которых состоит из светоделительной пластины 2, сферического зеркала 3, положительной линзы 7, светоделительной пластины 4, параболического зеркала 5 жидкокристаллического монитора 6, видеокамеры 8, блока коррекции видеоизображения 9 и блока формирования виртуального изображения 10. При этом сферическое зеркало 3 располагается на расстоянии своей кривизны от хрусталика глаза летчика, и на таком же расстоянии от сферического зеркала располагается положительная линза 7, которая имеет фокус, равный половине кривизны сферического зеркала 3, при этом параболическое зеркало располагается после светоделительной пластины на расстоянии своего фокуса от положительной линзы 7, жидкокристаллический монитор 6 располагается на фокальном расстоянии от параболического зеркала, видеокамера 8 располагается произвольно на оптической оси после светоделительной пластины 4 и связанна с блока коррекции видеоизображения 9, который в свою очередь связан с блоком формирования виртуального изображения 10, который в свою очередь формирует изображение на жидкокристаллическом мониторе 6.
Виртуальный шлем, представленный на фиг.2, состоит из двух каналов в каждый из которых состоит из светоделительной пластины 2, сферического зеркала 3, положительной линзы 7, светоделительной пластины 4, параболического зеркала 5 жидкокристаллического монитора 6, видеокамеры 8, блока коррекции видеоизображения 9 и блока формирования виртуального изображения 10. При этом сферическое зеркало 3 располагается на расстоянии своей кривизны от хрусталика глаза летчика, и на таком же расстоянии от сферического зеркала располагается положительная линза 7, которая имеет фокус, равный половине кривизны сферического зеркала 3, при этом параболическое зеркало располагается после светоделительной пластины на расстоянии своего фокуса от положительной линзы 7, жидкокристаллический монитор 6 располагается на фокальном расстоянии от параболического зеркала, видеокамера 8 располагается произвольно на оптической оси после светоделительной пластины 4 и связана с блоком коррекции видеоизображения 9, который в свою очередь связан с блоком формирования виртуального изображения 10, который в свою очередь формирует изображение на жидкокристаллическом мониторе 6.
Для удобства автоматического сведения изображения центра глаза 1 с центром изображения монитора 6, целесообразно использовать дихроичную светоделительную пластину 11, смотри фиг.4, которая полностью отражает световое излучение на определенной длине волны, например 560±50 нм, и делит излучение пополам на другой длине волны, например 630±50 нм, при этом на жидкокристаллическом индикаторе происходит формирование изображение виртуального пространства на одной длине волны (630±50 нм), а на другой длине волны (560±50 нм) осуществляется формирование изображения реперной точки, относительно которой и происходит автоматическая юстировка шлема. При этом можно использовать специально изготовленные монохроматические жидкокристаллические видеомониторы 6, где на центральный пиксель нанесен светофильтр с другим спектральным диапазоном пропускания света. Можно использовать устройство формирования репера 12, которое формирует реперный пиксель извне, например, с помощью полупроводникового лазера, точечного светодиода и т.п.
Виртуальный шлем, представленный на фиг.4, состоит из двух каналов, каждый из которых состоит из светоделительной пластины 2, сферического зеркала 3, положительной линзы 7, светоделительной дихроичной пластины 11, параболического зеркала 5 жидкокристаллического монитора 6, видеокамеры 8, блока коррекции видеоизображения 9, блока формирования виртуального изображения 10 и блока формирования реперной точки 12.

Claims (2)

1. Виртуальный шлем, состоящий из двух одинаковых каналов, каждый из которых состоит из последовательно расположенных светоделительной пластины и сферического зеркала, а также положительной линзы, второй светоделительной пластины, параболического зеркала и жидкокристаллического монитора, отличающийся тем, что дополнительно используются видеокамера, блок коррекции видеоизображения, блок формирования виртуального изображения, причем сферическое зеркало расположено на расстоянии радиуса кривизны от хрусталика глаза, на таком же расстоянии от сферического зеркала располагается положительная линза, имеющая фокальное расстояние, равное половине радиуса кривизны сферического зеркала, параболическое зеркало расположено после второй светоделительной пластины на расстоянии своего фокального расстояния от положительной линзы, жидкокристаллический монитор располагается на фокальном расстоянии от параболического зеркала, видеокамера, следящая за положением изображения глаза и положением изображения жидкокристаллического монитора, расположена на оптической оси после второй светоделительной пластины и связана с блоком коррекции видеоизображения, который связан с блоком формирования виртуального изображения, формирующим изображение на жидкокристаллическом мониторе.
2. Шлем по п.1, отличающийся тем, что вторая светоделительная пластина выполнена дихроичной и дополнительно используется блок формирования реперной точки на жидкокристаллическом мониторе.
RU2006132001/28A 2006-09-05 2006-09-05 Виртуальный шлем и устройство для его реализации RU2326419C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006132001/28A RU2326419C1 (ru) 2006-09-05 2006-09-05 Виртуальный шлем и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006132001/28A RU2326419C1 (ru) 2006-09-05 2006-09-05 Виртуальный шлем и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2326419C1 true RU2326419C1 (ru) 2008-06-10

Family

ID=39581489

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006132001/28A RU2326419C1 (ru) 2006-09-05 2006-09-05 Виртуальный шлем и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2326419C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664397C2 (ru) * 2012-10-26 2018-08-17 Зе Боинг Компани Система отображения виртуальной реальности
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN110161684A (zh) * 2018-02-12 2019-08-23 杭州太若科技有限公司 Ar成像装置和穿戴式ar设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664397C2 (ru) * 2012-10-26 2018-08-17 Зе Боинг Компани Система отображения виртуальной реальности
CN108681068A (zh) * 2018-02-12 2018-10-19 杭州太若科技有限公司 Ar显示装置和穿戴式ar设备
CN110161684A (zh) * 2018-02-12 2019-08-23 杭州太若科技有限公司 Ar成像装置和穿戴式ar设备

Similar Documents

Publication Publication Date Title
KR0184001B1 (ko) 안경형 망막직접표시장치
US7177083B2 (en) Display device with electrooptical focussing
US20110080536A1 (en) Stereoscopic image display apparatus
CN107305293A (zh) 具备视力矫正功能的头戴式显示装置
CN108803020B (zh) 一种近眼显示系统及头戴显示设备
US11287663B2 (en) Optical transmitting module and head mounted display device
JPH04242715A (ja) 無限に視準調整された光データの表示用光学装置
US20160007015A1 (en) Open Head Mount Display Device and Display method Thereof
US20130188127A1 (en) Eyesight Testing Device
CN106872141B (zh) 空间天文望远镜导星稳像精度测试方法及装置
RU2326419C1 (ru) Виртуальный шлем и устройство для его реализации
CN104359424A (zh) 一种椭球镜面形检测装置及方法
CN101865763A (zh) 航空机载平视显示器视差测量装置
US2388858A (en) Stereo trainer
US6540356B1 (en) Instrument and a method for measuring aberration of human eyes
CN204154990U (zh) 座舱平视显示系统
JP2023518772A (ja) 電子時計師拡大鏡、電子時計師拡大鏡アセンブリ、及び時計修理製造製品、特に、時計機構のチェックを実行するための方法
AU2013249513B2 (en) Stereoscopic beam splitter
CN201716174U (zh) 一种航空机载平视显示器视差测量装置
RU2433435C1 (ru) Способ получения стереоскопического изображения с использованием одного приемника излучения и устройство для его осуществления
CN202255359U (zh) 一种激光测距望远镜的投影显示装置
RU2540135C1 (ru) Система формирования изображения
CN216013812U (zh) 一种双目镜调校装置
CN111759271B (zh) 一种同视机
Delabrida et al. A low cost optical see-through hmd-do-it-yourself