WO2023017923A1 - 회절 소자를 이용한 증강 현실용 광학 장치 - Google Patents

회절 소자를 이용한 증강 현실용 광학 장치 Download PDF

Info

Publication number
WO2023017923A1
WO2023017923A1 PCT/KR2021/019468 KR2021019468W WO2023017923A1 WO 2023017923 A1 WO2023017923 A1 WO 2023017923A1 KR 2021019468 W KR2021019468 W KR 2021019468W WO 2023017923 A1 WO2023017923 A1 WO 2023017923A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive element
image light
optical device
pupil
augmented reality
Prior art date
Application number
PCT/KR2021/019468
Other languages
English (en)
French (fr)
Inventor
하정훈
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Publication of WO2023017923A1 publication Critical patent/WO2023017923A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings

Definitions

  • the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality capable of reducing a form factor by transmitting a virtual image to a user's pupil using a diffractive element.
  • Augmented Reality means overlapping a virtual image provided by a computer or the like with a real image of the real world. That is, it refers to a technology that simultaneously provides virtual image information augmented from visual information of the real world to a user.
  • an optical system capable of overlapping a virtual image generated by a device such as a computer with an image of the real world.
  • a device using a conventional optical system has a problem in that the structure is complicated and the weight and volume are considerable, so it is inconvenient for the user to wear it, and the manufacturing process is also complicated, so the manufacturing cost is high.
  • the present applicant has developed a technique of projecting a virtual image onto the retina through the pupil using a reflector in the form of a pin mirror having a size smaller than that of the human pupil ( see prior art document 1).
  • FIG. 1 shows a side view of an optical device 100 for augmented reality as described in Prior Art Document 1.
  • the optical device 100 for augmented reality of FIG. 1 includes an optical unit 10 , a reflection unit 20 and an image output unit 30 .
  • the optical means 10 transmits real object image light, which is image light emitted from objects in the real world, and transmits virtual image image light reflected by the reflector 20 to the pupil 40.
  • the optical means 10 may be formed of a transparent material such as a spectacle lens, and may be fixed by a frame (not shown) such as a spectacle frame.
  • the image emitter 30 is means for emitting virtual image light, for example, a micro display device that displays a virtual image on a screen and emits virtual image image light corresponding to the displayed virtual image, and image light emitted from the micro display device. may be provided with a collimator for collimating the
  • the reflector 20 is a means for reflecting the virtual video image light emitted from the image emitter 30 and transmitting it toward the pupil 40 of the user.
  • the reflector 20 of FIG. 1 is formed to have a smaller size than a human pupil. Since it is known that the size of a typical human pupil is about 4 to 8 mm, it is preferable to form the reflector 20 to be 8 mm or less. By forming the reflector 20 to a thickness of 8 mm or less, the depth of field for light entering the pupil 40 through the reflector 20 can be made almost infinite, that is, very deep.
  • the depth of field refers to a range recognized as being in focus.
  • the focal length of the virtual image correspondingly increases. Therefore, even if the user changes the focal length of the real world while gazing at the real world, it is recognized that the focus of the virtual image is always correct regardless of this. This can be regarded as a kind of pinhole effect.
  • the reflector 20 by forming the reflector 20 smaller than the pupil, the user can always observe a clear virtual image even if the user changes the focal length of the real object.
  • the present applicant has developed an optical device 200 for augmented reality using a plurality of reflectors based on the basic principle of the optical device 100 for augmented reality as shown in FIG. 1 (see Prior Art Document 2).
  • FIG. 2 shows a side view of an optical device 200 for augmented reality disclosed in Prior Art Document 2.
  • the optical device 200 for augmented reality of FIG. 2 also includes an optical means 10, a reflector 20 and an image emitter 30, and has the same basic configuration as the optical device 100 for augmented reality of FIG. 1 do.
  • the reflector 20 is composed of a plurality of reflection modules 21 to 29 and transmits virtual video image light to the pupil 40. The difference is that they are arranged to form a gentle curve.
  • the optical device 200 for augmented reality of FIG. 2 has the advantage of providing a wide viewing angle and improving light efficiency
  • the plurality of reflection modules 21 to 29 are precisely disposed inside the optical means 10. Therefore, there is a problem that the manufacturing process is complicated.
  • the plurality of reflection modules 21 to 29 must be disposed inside the optical means 10, the plurality of reflection modules 21 to 29, as shown in FIG. will occupy Therefore, there is also a problem that the form factor is limited due to this.
  • An object of the present invention is to provide an optical device for augmented reality capable of reducing a form factor by transmitting a virtual image to a user's pupil using a diffractive element.
  • another object of the present invention is to provide an optical device for augmented reality capable of increasing efficiency in the manufacturing process while reducing manufacturing cost by simplifying the manufacturing process.
  • Another object of the present invention is to provide an optical device for augmented reality capable of providing a clear virtual image by improving light uniformity of the virtual image.
  • the present invention is an optical device for augmented reality using a diffractive element, and provides a virtual image to the user by transferring virtual image image light emitted from an image output unit toward the pupil of the user's eye.
  • a diffractive element for transmitting real object image light emitted from objects in the real world to the pupil of the user's eye; and an optical unit in which the diffractive element is disposed and transmits real object image light emitted from a real object toward a pupil of a user's eye, wherein the optical unit includes a virtual image image transmitted through the diffractive element.
  • a first surface through which light and real object image light are emitted toward the user's pupil, and a second surface opposite to the first surface into which real object image light is incident; It provides an optical device for augmented reality using a diffractive element, characterized in that it is buried and disposed inside between the surface and the second surface.
  • the diffraction element may be a reflection type diffraction element or a transmission type diffraction element.
  • a holographic optical element may be used instead of the diffractive element.
  • the diffractive element may be formed in a single plane.
  • the virtual video image light emitted from the image output unit may be totally reflected on the first surface or the second surface of the optical unit and then transferred to the diffractive element.
  • the diffractive element may be disposed inside the first or second surface of the optical means.
  • an inner space may be formed inside the optical means, and the inner space may have a first surface on which the diffractive element is disposed, and a second surface opposite to the first surface.
  • the inner space may be in a vacuum state.
  • the inner space may be filled with a medium having a refractive index different from that of the optical means.
  • the diffractive element may be formed in a curved surface.
  • the diffraction element may be composed of a plurality of diffraction modules spaced apart from each other.
  • the diffraction modules may be arranged so as not to be located on one single straight line when viewed from the side.
  • the diffraction modules may be arranged so as not to have a gap from each other when viewed from the front.
  • the diffractive element may be inclined so as not to be parallel to the first and second surfaces of the optical means when viewed from the side.
  • an optical device for augmented reality using a diffractive element provides a virtual image to a user by transmitting virtual image light emitted from an image output unit toward a pupil of a user's eye, a diffraction element that transmits real object image light emitted from an object to a pupil of a user's eye; and an optical unit in which the diffractive element is disposed and transmits real object image light emitted from a real object toward a pupil of a user's eye, wherein the optical unit includes a virtual image image transmitted through the diffractive element.
  • a first surface through which light and real object image light are emitted toward the user's pupil, and a second surface opposite to the first surface into which real object image light is incident; It provides an optical device for augmented reality using a diffractive element, characterized in that it is disposed outside the surface or the second surface.
  • a surface cover formed outside the first surface or the second surface of the optical unit may further include a surface cover spaced apart from the diffractive element to cover the diffractive element.
  • an internal space may be formed between the surface cover and the diffractive element, and the internal space may be filled with a medium having a refractive index different from that of the optical means.
  • the surface of the surface cover may be formed as a curved surface.
  • the diffraction element may be a reflection type diffraction element or a transmission type diffraction element.
  • a holographic optical element may be used instead of the diffractive element.
  • the diffractive element may be formed in a single plane.
  • an optical device for augmented reality using a diffractive element provides a virtual image to a user by transmitting virtual image light emitted from an image output unit toward a pupil of a user's eye, a plurality of diffraction elements that transmit real object image light emitted from the object to the pupil of the user's eye; and a plurality of optical means each having the plurality of diffraction elements disposed therethrough and transmitting real object image light emitted from a real object toward a pupil of a user's eye, wherein each of the plurality of optical means includes the plurality of optical means.
  • each of the plurality of diffractive elements is disposed outside the second surface of the plurality of optical means, wherein the first surface of each optical means is directed toward the pupil and the second surface of each optical means is a real object.
  • diffraction elements characterized in that the plurality of diffraction elements transmit virtual video image light corresponding to different wavelength bands to the pupil. optics are provided.
  • an optical device for augmented reality using a diffractive element provides a virtual image to a user by transmitting virtual image light emitted from an image output unit toward a pupil of a user's eye, a plurality of diffraction elements that transmit real object image light emitted from the object to the pupil of the user's eye; and an optical unit in which the plurality of diffractive elements are disposed and transmits real object image light emitted from a real object to a pupil of a user's eye, wherein the optical unit transmits light through the plurality of diffractive elements.
  • an optical device for augmented reality using a device is provided.
  • a holographic optical element may be used instead of the diffractive element.
  • an optical device for augmented reality capable of reducing a form factor by transmitting a virtual image to a user's pupil using a diffractive element.
  • the present invention can provide an optical device for augmented reality that can reduce manufacturing cost and increase efficiency in the manufacturing process by simplifying the manufacturing process.
  • the present invention can provide an optical device for augmented reality capable of providing a clear virtual image by improving light uniformity of the virtual image.
  • the diffractive element operates as a refracting or reflecting element only for light that matches the design wavelength band of the nanostructure due to the wavelength-dependent characteristics of the diffraction phenomenon, and is a window that simply passes light in other wavelength bands.
  • FIG. 1 shows a side view of an optical device 100 for augmented reality as described in Prior Art Document 1.
  • FIG. 2 shows a side view of an optical device 200 for augmented reality disclosed in Prior Art Document 2.
  • FIG. 3 to 5 are views for explaining an optical device 300 for augmented reality using a diffractive element according to an embodiment of the present invention, wherein FIG. 3 is a perspective view, FIG. 4 is a front view, and FIG. 5 is a side view, respectively. it is shown
  • FIG. 6 shows a side view of an optical device 400 according to another embodiment of the present invention.
  • FIG. 7 shows a side view of an optical device 500 according to another embodiment of the present invention.
  • FIG. 8 is a perspective view of an optical device 600 according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line A-A' of FIG. 8 .
  • FIG 10 and 11 are perspective and side views of an optical device 700 according to another embodiment of the present invention.
  • FIGS. 12 to 14 show a perspective view, a front view, and a side view of an optical device 800 according to another embodiment of the present invention.
  • FIG. 15 shows a side view of an optical device 900 according to another embodiment of the present invention.
  • 16 is a side view of an optical device 1000 according to another embodiment of the present invention.
  • FIG. 17 shows a side view of an optical device 1100 according to another embodiment of the present invention.
  • FIG. 18 to 20 show an optical device 1200 according to another embodiment of the present invention, wherein FIG. 18 is a perspective view, FIG. 19 is a front view, and FIG. 20 is a cross-sectional view taken along line A-A' of FIG. 18. .
  • FIG. 21 shows a side view of an optical device 1300 according to another embodiment of the present invention.
  • FIG. 22 shows a side view of an optical device 1400 according to another embodiment of the present invention.
  • FIG. 3 to 5 are views for explaining an optical device 300 for augmented reality using a diffractive element according to an embodiment of the present invention, wherein FIG. 3 is a perspective view, FIG. 4 is a front view, and FIG. 5 is a side view, respectively. it is shown
  • an optical device 300 for augmented reality (hereinafter simply referred to as "optical device 300") of this embodiment includes an optical means 10 and a diffractive element 20 .
  • the optical means 10 is a means in which the diffractive element 20 is disposed and transmits real object image light emitted from objects in the real world to the pupils 40 of the user's eyes.
  • the optical means 10 includes a first surface 11 through which virtual video image light and real object image light transmitted through the diffractive element 20 are emitted toward the user's pupil 40, and the first surface 11 and a second surface 12 opposite to and on which real object image light is incident.
  • the optical means 10 may include a third surface 13 that is a bottom surface of the optical means 10 and a fourth surface 14 that is an upper surface of the optical means 10 .
  • the fourth surface 14 is defined as a surface on which the virtual video image light emitted from the image output unit 30 is incident.
  • the diffractive element 20 is disposed spaced apart from the first surface 11 to the fourth surface 14 of the optical means 10 and buried inside the optical means 10.
  • the diffractive element 20 is a means for providing a virtual image to the user by transmitting the virtual video image light emitted from the image emitting unit 30 toward the pupil 40 of the user's eye.
  • the diffractive element 20 transmits real object image light emitted from objects in the real world to the pupil 40 of the user's eye.
  • the image emitting unit 30 is a means for displaying a virtual image and emitting virtual image light corresponding to the virtual image, such as a small LCD, OLED, or LCoS. It includes a conventionally known micro display device and a collimator that collimates incident image light and emits it as parallel light. Accordingly, the virtual video image light emitted from the image emitting unit 30 is collimated parallel light or image light for which a focal length is intended.
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected on the inner surface of the optical means 10 and transmitted to the diffractive element 20, but this is exemplary, and the virtual video image light emitted from the image emitting unit 30 may be directly transmitted to the diffraction element 20 without total reflection on the inner surface of the optical means 10 .
  • the total reflection may be transmitted to the diffraction element 20 at least twice or more on the inner surface of the optical means 10 .
  • the image output unit 30 may further include an optical element composed of a combination of at least one or more of a reflection unit, a refraction unit, and a diffraction unit.
  • the optical element reflects, refracts, or diffracts the virtual video image light emitted from the micro display device and transmits it to the diffraction element 20 .
  • the image output unit 30 is shown as disposed above the upper surface of the optical means 10, but this is exemplary and may be disposed in other positions, of course.
  • the diffractive element 20 is disposed buried inside the optical means 10 . That is, the diffractive element 20 is spaced apart from the first surface 11, the second surface 12, the third surface 13, and the fourth surface 14 of the optical means 10, respectively, It is disposed in the inner space of the image emitting unit 30 and transmits the virtual image image light transmitted toward the pupil 40 of the user's eye.
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected on the first surface 11 of the optical means 10, and then the diffractive element is passed to (20).
  • a diffractive element means an optical element that refracts or reflects incident virtual video image light through a diffraction phenomenon. That is, the diffractive element may be referred to as an optical element that provides various optical functions by using a diffraction phenomenon of light.
  • the diffractive element has advantages in that a point-to-point image without aberration and a planar structure are possible, and aberration control such as an aspherical surface is possible.
  • the diffractive element has a very thin thickness of several ⁇ m, it is advantageous to reduce the volume and weight of the optical system because it plays a similar role to a general lens, prism, or mirror having a thickness of several mm.
  • the diffractive element operates as a refracting or reflecting element only for light that matches the design wavelength band of the nanostructure due to the wavelength-dependent characteristics of the diffraction phenomenon, and is a window that simply passes light in other wavelength bands. play a role Therefore, by using such a diffractive element instead of the conventional reflective module as described in the background art, transparency is increased to secure more brightness of the perspective image, and since the optical synthesizer structure is not observed from the outside, the appearance of the product is similar to that of ordinary glasses. There is an advantage in that an optical device for augmented reality with better similar aesthetics can be provided.
  • the diffraction element 20 may be classified into a reflection type diffraction element and a transmission type diffraction element.
  • the embodiments of FIGS. 3 to 5 are cases in which a reflective diffraction element is used.
  • a reflective diffraction element refers to a diffraction element using a property of reflecting light incident from a specific direction and position
  • a transmission type diffraction element refers to a diffraction element using a property of transmitting light incident from a specific direction and position. means small.
  • the diffraction element 20 is preferably formed in a rectangular planar shape when viewed from the front, but this is exemplary and may be formed in other shapes such as circular, elliptical, etc. is of course
  • the diffraction element 20 may be formed in a curved surface as will be described later.
  • the diffractive element 20 is formed in a single plane. Therefore, compared to the optical device 200 using a plurality of reflection modules 21 to 29 as shown in FIG. 2 , the luminance distribution of the virtual image can be made uniform. In addition, as described in the background art, unlike the optical device 200 using a plurality of reflection modules 21 to 29, since it takes up little space in the left and right directions of the optical means 10 when viewed from the side, the optical means ( 10) and the form factor of the optical device 300 can be significantly reduced.
  • the size of the diffractive element 20 is one of a size corresponding to the exit pupil area required by various conditions such as the size of the virtual image transmitted to the pupil 40 by the diffractive element 20 and the viewing angle. It can be formed as a single flat or curved surface. Considering this point, the diffraction element 20 may be formed to have a larger size than the pupil 40 when viewed from the front.
  • the diffractive element 20 transmits real object image light emitted from objects in the real world to the pupil 40 of the user's eye, a single element having a size larger than the pupil 40 Even if formed as a flat surface, real object image light may pass through the diffraction element 20 and be transmitted to the pupil 20 . Therefore, it can be seen that the specific configuration of the optical path of the virtual image and the real object image light in the optical device 300 of FIGS. 3 to 5 and the resulting effect are completely different from those of the optical device 200 of FIG. 2 . This point is also the same in the embodiment described later.
  • the virtual video image light is totally reflected on the first surface 11 of the optical means 10 and then transmitted to the diffraction element 20, but the diffraction element If 20 is a transmissive diffractive element, it is of course possible that the total reflection from the second surface 12 of the optical means 10 may be transmitted to the diffractive element 20 . This can also be applied to all embodiments described later.
  • a holographic optical element may be used instead of the diffractive element 20 . This can also be applied to all embodiments described later.
  • FIG. 6 shows a side view of an optical device 400 according to another embodiment of the present invention.
  • the optical device 400 of FIG. 6 is identical to the optical device 300 of the embodiment of FIGS. 3 to 5 except that the diffractive element 20 is disposed inside the second face 12 of the optical means 10. There is a difference in points.
  • the virtual video image light emitted from the image emitting unit 30 is directly transmitted to the diffraction element 20 without total reflection on the inner surface of the optical means 10, and the diffraction element 20 transfers the incident virtual video image light to the pupil 40.
  • the diffractive element 20 may be disposed inside the first surface 11 of the optical means 10 .
  • FIG. 7 shows a side view of an optical device 500 according to another embodiment of the present invention.
  • the optical device 500 of FIG. 7 is basically the same as the optical device 300 of the embodiment of FIGS. 3 to 5 , but is different in that the diffraction element 20 is a transmissive diffraction element.
  • virtual video image light emitted from the image emitting unit 30 is totally reflected on the second surface 12 of the optical means 10 and transmitted to the diffraction element 20, and then the diffraction element 20 ) and is transmitted to the pupil 40.
  • FIG. 8 and 9 show an optical device 600 according to another embodiment of the present invention.
  • FIG. 8 is a perspective view of the optical device 600
  • FIG. 9 is a cross-sectional view taken along line A-A′ of FIG.
  • the optical device 600 of FIGS. 8 and 9 is the same as the optical device 300 of the embodiment of FIGS. There is a difference in points.
  • the inner space 50 is formed inside the optical means 10, and includes a first surface 51 on which the diffractive element 20 is disposed, and a second surface 52 that is a surface opposite to the first surface 51.
  • the first surface 51 and the second surface 52 are spaced apart from each other to provide an internal space 50 inside the optical means 10 .
  • the inner space 50 is a space formed when the optical means 10 is manufactured, the first surface 51 and the second surface 52 have the same material as that of the optical means 10 .
  • the first surface 51 has a shape and size corresponding to the shape and size of the diffractive element 20 .
  • the optical device 600 of FIGS. 8 and 9 uses a reflective diffraction element, the virtual video image light emitted from the image emitting unit 30 is totally reflected by the first surface 11 of the optical means 10. It is transmitted to the diffractive element 20 through the first surface 51 of the inner space 50 . Therefore, the first surface 51 of the inner space 50 acts as a surface on which the virtual video image light is incident.
  • the inner space 50 may be in a vacuum state.
  • the inner space 50 may be filled with a medium having a refractive index different from that of the optical means 10 .
  • the optical means 10 when the optical means 10 is made of glass or plastic, its refractive index is around 1.5, so the inner space 50 may be filled with a medium having a different refractive index.
  • the inner space 50 may be filled with air having a refractive index of about 1.0003 or a gas other than air having a value close to 1.
  • a liquid may be used as the medium.
  • the inner space 50 may be filled with water.
  • other liquids having a refractive index different from that of the optical means 10 may be used as a medium.
  • a solid having a refractive index different from that of the optical means 10 may be used as a medium.
  • various other materials having a refractive index different from the refractive index of the optical means 10 may be used as a medium.
  • the inner space 50 may be filled with a phase change material whose refractive index changes according to at least one of conditions such as voltage difference, temperature, and pressure.
  • a phase-change material used in a hologram memory or an optical storage device has a characteristic in that a refractive index is changed depending on conditions such as temperature or pressure during crystallization after energy is applied.
  • Representative materials used in optical storage devices include Sb2Se3, Ge2Sb2Te5, and TeOx (0 ⁇ x ⁇ 2) represented by GeSbTe (GST). These materials are heated to a high temperature using a laser and then rapidly cooled to form an amorphous state. When it is slowly cooled, it changes to a crystalline phase, and at this time, a difference in refractive index between the crystalline phase and the amorphous phase occurs.
  • Representative materials used in hologram memories and the like include acrylate-based copolymers, and the refractive index is changed by exposure through a laser.
  • meta-materials whose refractive index can be changed by electrical or chemical methods may be used as a medium.
  • the medium filling the inner space 50 is preferably formed of a transparent material or a translucent material.
  • the inner space 50 is filled with a medium having a refractive index different from that of the optical unit 10, a vision correction function for real object image light can be provided by appropriately using the property of the medium.
  • the inner space 50 is filled with a medium having a refractive index different from the refractive index of the optical means 10 and the second surface 52 of the inner space 50 has a curvature, the inner space 50 becomes a kind of vision. It acts like a corrective lens.
  • the interior space 50 may act as a kind of sunglasses when the external light is bright.
  • a reflective diffraction element has been described as an example, but a transmissive diffraction element may be used as a matter of course.
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected by the second surface 12 of the optical means 10 to form a second surface 52 of the inner space 50. It is incident through and transmitted to the diffraction element 20 .
  • FIGS. 10 and 11 show a perspective view and a side view of an optical device 700 according to another embodiment of the present invention.
  • the optical device 700 of FIGS. 10 and 11 is basically the same as the optical device 300 of the embodiment of FIGS. There is a difference in that is formed as a curved surface.
  • the diffractive element 20 is formed to appear as a gentle "C" shaped curved surface when viewed from the side.
  • FIGS. 12 to 14 show a perspective view, a front view, and a side view of an optical device 800 according to another embodiment of the present invention.
  • the optical device 800 of FIGS. 12 to 14 is similar to the optical device 300 of FIGS. 3 to 5, but a transmissive diffraction element is used as the diffraction element 20, and the diffraction element 20 is not a single plane. There is a difference in that it is formed of a plurality of diffraction modules 21, 22, and 23.
  • the diffraction element 20 is composed of three diffraction modules 21, 22, and 23, and the diffraction modules 21, 22, and 23 are spaced apart from each other when viewed from the side as shown in FIG. 14. It can be seen that it has been
  • each of the diffraction modules 21, 22, and 23 may be formed as a single flat surface or a curved surface.
  • each of the diffraction modules 21, 22, and 23 is arranged so as not to be located on one single straight line when viewed from the side.
  • the diffraction modules 21, 22, and 23 are arranged at a slight distance from each other inside the optical means 10 as shown in FIG. 13 when viewed from the front, but the diffraction modules 21, 22, and 23 ) may transmit real object image light to the pupil 40, so they may be arranged so that they do not appear to be spaced apart from each other when viewed from the front.
  • each of the diffraction modules 21, 22, and 23 are arranged so as not to be located on a single straight line when viewed from the side.
  • FIG. 15 shows a side view of an optical device 900 according to another embodiment of the present invention.
  • the optical device 900 of FIG. 15 is basically the same as the optical device 300 of FIGS. 3 to 5, but a transmissive diffraction element is used as the diffraction element 20, and as shown, when viewed from the side, the diffraction element The difference is that 20 is disposed inclined so as not to be parallel to the first face 11 and the second face 12 of the optical means 10 .
  • 16 is a side view of an optical device 1000 according to another embodiment of the present invention.
  • the optical device 1000 of FIG. 16 is a combination of the diffraction elements 20 of the optical devices 700 to 900 of FIGS. 10 to 15 . That is, the diffraction element 20 is composed of a plurality of diffraction modules 21, 22, and 23, and at least some of the diffraction modules 21, 22, and 23 are formed in a curved surface, while the diffraction modules 21, 22, 23) is characterized in that they are inclined so as not to be parallel to the first face 11 and the second face 12 of the optical means 10 when viewed from the side.
  • FIG. 17 shows a side view of an optical device 1100 according to another embodiment of the present invention.
  • the optical device 1100 of FIG. 17 is similar to the optical device 400 of FIG. 6, except that the diffractive element 20 is attached and disposed outside the second face 12 of the optical means 10. there is.
  • the optical device 1100 of FIG. 17 shows a case in which a reflection type diffraction element is used, but in the case of using a transmission type diffraction element as the diffraction element 20, the diffraction element 20 is the first surface of the optical means 10 ( 11) may be attached and disposed outside.
  • FIG. 18 to 20 show an optical device 1200 according to another embodiment of the present invention, wherein FIG. 18 is a perspective view, FIG. 19 is a front view, and FIG. 20 is a cross-sectional view taken along line A-A' of FIG. 18. .
  • the optical device 1200 of FIGS. 18 to 20 is the same as the optical device 1100 of FIG. 17 , but is different in that it further includes a surface cover 60 .
  • the surface cover 60 is formed on the second surface 12 of the optical means 10 in the form of covering the diffraction element 20 while being spaced apart from the diffraction element 20 .
  • the surface cover 60 is preferably formed of the same material as the optical means 10 because it must transmit real object image light from objects in the real world.
  • the internal space formed between the surface cover 60 and the diffractive element 20 may be filled with a medium having a refractive index different from that of the optical means 10 as described above.
  • the space between the surface cover 60 and the diffractive element 20 can act like a lens, and thus a vision correction function for real object image light can be provided.
  • a vision correction function for real object image light can be provided.
  • FIG. 21 shows a side view of an optical device 1300 according to another embodiment of the present invention.
  • the optical device 1300 of FIG. 21 is similar to the optical device 300 of FIGS. 3 to 5, but includes a plurality of diffractive elements 20A, 20B, and 20C and a plurality of optical means 10A, 10B, and 10C. There is a difference in what you do.
  • each of the plurality of optical units 10A, 10B, and 10C transmits virtual video image light and real object image light having different wavelengths transmitted through the plurality of diffraction elements 20A, 20B, and 20C to the pupil of the user.
  • First surfaces 11A, 11B, 11C radiating toward (40), and second surfaces 12A, 12B, 12C opposite to the first surfaces 11A, 11B, 11C and into which real object image light is incident.
  • each optical means 10A, 10B, and 10C are directed toward the pupil 40, and each optical means 10A, 10B , 10C) are stacked and disposed in the front direction from the user's pupil 40 so that the second surfaces 12A, 12B, and 12C face toward the actual object.
  • the plurality of optical means 10A, 10B, and 10C are stacked and spaced apart from each other in the front direction in the pupil 40 with the diffraction elements 20A, 20B, and 20C interposed therebetween.
  • each of the plurality of diffraction elements 20A, 20B, and 20C is disposed outside the second surfaces 12A, 12B, and 12C of the plurality of optical means 10A, 10B, and 10C, respectively, so that each diffraction element 20A , 20B, 20C) transfer virtual video image light corresponding to different wavelength bands to the pupil 40 .
  • the diffraction element 20A emits virtual video image light corresponding to the red (R) series wavelength band
  • the diffraction element 20B emits virtual video image light corresponding to the green (G) series wavelength band
  • (20C) may transmit virtual video image light corresponding to the wavelength band of the blue (B) series to the pupils 40, respectively.
  • FIG. 22 shows a side view of an optical device 1400 according to another embodiment of the present invention.
  • the optical device 1400 of FIG. 22 is similar to the optical device 1300 of FIG. 21 , but uses a single optical means 10, and a plurality of diffractive elements 20A, 20B, and 20C are used in the optical means 10. There is a difference in that they are sequentially stacked and disposed on the second surface 12 .
  • the plurality of diffractive elements 20A, 20B, and 20C are stacked and disposed outside the second surface 12 of the optical means 10 in the frontal direction from the pupil 40 of the user. .
  • the plurality of diffractive elements 20A, 20B, and 20C are spaced apart from each other in the front direction in the pupil 40 and stacked on the outside of the second surface 12 of the optical means 10.
  • the diffraction element 20 may be formed as a reflection type diffraction element or a transmission type diffraction element, and this can be applied to all the above-described embodiments as long as the position of the diffraction element 20 is appropriately selected.
  • a holographic optical element may be used instead of the diffraction element 20, and this may also be applied to all of the above-described embodiments.
  • the virtual video image light entering the pupil 40 is parallel to the front direction from the pupil 40, and the virtual video image light emitted from the image output unit 30 is also shown to be parallel.
  • the virtual image image light emitted from the actual image emitter 30 may have various angles and directions, and the virtual image image light transmitted to the pupil 40 through the diffractive element 20 may also have various other angles and directions. It should be noted that all FOV angles can be covered according to the direction and angle of the virtual video image light emitted from the image output unit 30 by appropriately disposing the diffraction element 20 .

Abstract

본 발명은 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 회절 소자; 및 상기 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단을 포함하고, 상기 광학 수단은, 상기 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 회절 소자는 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 매립 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치를 제공한다.

Description

회절 소자를 이용한 증강 현실용 광학 장치
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 회절 소자를 이용하여 가상 영상을 사용자의 동공에 전달함으로써 폼 팩터를 줄일 수 있는 증강 현실용 광학 장치에 관한 것이다.
증강 현실(AR, Augmented Reality)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 제공되는 가상 영상을 겹쳐서 제공하는 것을 의미한다. 즉, 현실 세계의 시각 정보에서 확장된(augmented) 가상 영상 정보를 사용자에게 동시에 제공하는 기술을 의미한다.
이러한 증강 현실을 구현하기 위해서는, 컴퓨터와 같은 디바이스에 의해 생성되는 가상 영상을 현실 세계의 영상에 겹쳐서 제공할 수 있는 광학계가 필요하다. 그러나, 종래의 광학계를 이용한 장치는 구성이 복잡하여 무게와 부피가 상당하므로 사용자가 착용하기에 불편함이 있고 제조 공정 또한 복잡하므로 제조 비용이 높다는 문제가 있다.
또한, 종래의 장치들은, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하게 되면 가상 영상의 초점이 맞지 않게 된다는 문제가 있다. 이를 해결하기 위하여 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘을 이용한 기술 또는 초점 거리의 변경에 따라 가변형 초점 렌즈를 전기적으로 제어하는 등의 기술이 제안되어 있다. 그러나, 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하고 초점 거리의 제어를 위한 별도의 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
이와 같은 종래 기술의 문제점을 해결하기 위하여, 본 출원인은 사람의 동공보다 작은 크기의 핀미러(pin mirror) 형태의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영하는 기술을 개발한 바 있다(선행 기술 문헌 1 참조).
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 1의 증강 현실용 광학 장치(100)는 광학 수단(10), 반사부(20) 및 화상 출사부(30)를 포함한다.
광학 수단(10)은 실제 세계의 사물로부터 출사된 화상광인 실제 사물 화상광을 투과시키는 한편 반사부(20)에서 반사된 가상 영상 화상광을 동공(40)으로 출사하는 기능을 수행하는 수단이다.
광학 수단(10)의 내부에는 반사부(20)가 매립 배치되어 있다. 이러한 광학 수단(10)은 예컨대 안경 렌즈와 같은 투명 재질로 형성될 수 있으며, 안경테와 같은 프레임(미도시)에 의해 고정될 수 있다.
화상 출사부(30)는 가상 영상 화상광을 출사하는 수단으로서, 예컨대 가상 영상을 화면에 표시하고 표시된 가상 영상에 상응하는 가상 영상 화상광을 출사하는 마이크로 디스플레이 장치와 마이크로 디스플레이 장치로부터 출사하는 화상광을 평행광으로 시준하기 위한 콜리메이터(collimator)를 구비할 수 있다
반사부(20)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 반사시켜 사용자의 동공(40)을 향해 전달하는 수단이다.
도 1의 반사부(20)는 사람의 동공보다 작은 크기로 형성된다. 사람의 일반적인 동공의 크기는 4~8mm 정도인 것으로 알려져 있으므로, 반사부(20)는 8mm 이하로 형성하는 것이 바람직하다. 반사부(20)를 8mm 이하로 형성함으로써, 반사부(20)를 통해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 매우 깊게 할 수 있다.
여기서, 심도(Depth of Field)라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지면 그에 상응하여 가상 영상에 대한 초점 거리도 길어진다. 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점이 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pinhole effect)라고 볼 수 있다.
따라서, 반사부(20)를 동공보다 작은 크기로 형성함으로써, 사용자가 실제 사물에 대한 초점 거리를 변경하더라도 사용자는 항상 선명한 가상 영상을 관찰할 수 있다.
한편, 본 출원인은 도 1과 같은 증강 현실용 광학 장치(100)의 기본 원리에 기초하여 복수개의 반사부를 이용한 증강 현실용 광학 장치(200)를 개발한 바 있다(선행 기술 문헌 2 참조).
도 2는 선행 기술 문헌 2에 개시된 증강 현실용 광학 장치(200)의 측면도를 나타낸 것이다.
도 2의 증강 현실용 광학 장치(200) 또한 광학 수단(10), 반사부(20) 및 화상 출사부(30)를 포함하며, 기본적인 구성은 도 1의 증강 현실용 광학 장치(100)와 동일하다. 다만, 도 2의 증강 현실용 광학 장치(200)는 반사부(20)가 복수개의 반사 모듈(21~29)로 구성되며, 가상 영상 화상광을 동공(40)으로 전달할 수 있도록 측면에서 보았을 때 완만한 곡선 형태를 이루도록 배치된다는 점에서 차이가 있다.
이러한 도 2의 증강 현실용 광학 장치(200)는 넓은 시야각을 제공할 수 있으며 광효율을 개선할 수 있다는 장점이 있으나, 복수개의 반사 모듈(21~29)을 광학 수단(10) 내부에 정밀하게 배치해야 하므로, 제조 공정이 까다롭다는 문제점이 있다. 또한, 복수개의 반사 모듈(21~29)이 광학 수단(10) 내부에 배치되어야 하므로 도 2에 나타낸 바와 같이 복수개의 반사 모듈(21~29)들은 광학 수단(10) 내부에서 좌우 방향으로 공간을 점유하게 된다. 따라서, 이로 인한 폼 팩터가 제한적이라는 문제도 있다.
더욱이, 복수개의 반사 모듈(21~29)이 광학 수단(10) 내부에 이격되어 배치되기 때문에 가상 영상의 휘도 분포를 균일하게 하기 위해서 반사 모듈(21~29)들의 위치 및 형상 그리고 화상 출사부(30)에서 나오는 가상 영상의 보정 과정이 추가적으로 필요하다는 문제점이 있다.
[선행기술문헌 1] 대한민국 등록특허공보 제10-1660519호(2016.09.29 공고)
[선행기술문헌 2] 대한민국 등록특허공보 제10-2192942호(2020.12.14 공고)
본 발명은 회절 소자를 이용하여 가상 영상을 사용자의 동공에 전달함으로써 폼 팩터를 줄일 수 있는 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 제조 공정을 단순화시킴으로써 제조 비용을 줄이는 동시에 제조 과정에서의 효율성을 높일 수 있는 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
또한, 본 발명은 가상 영상의 광균일도를 향상시켜 가상 영상을 선명하게 제공할 수 있는 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 회절 소자를 이용한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 회절 소자; 및 상기 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단을 포함하고, 상기 광학 수단은, 상기 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 회절 소자는 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 매립 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 회절 소자는 반사형 회절 소자 또는 투과형 회절 소자일 수 있다.
또한, 상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용할 수도 있다.
또한, 상기 회절 소자는 단일 평면으로 형성될 수 있다.
또한, 상기 화상 출사부에서 출사된 가상 영상 화상광은 상기 광학 수단의 제1 면 또는 제2 면에서 전반사된 후 회절 소자로 전달될 수 있다.
또한, 상기 회절 소자는, 상기 광학 수단의 제1 면 또는 제2 면의 안쪽에 배치될 수 있다.
또한, 상기 광학 수단의 내부에는 내부 공간이 형성되고, 상기 내부 공간은 회절 소자가 배치되는 제1 면과, 상기 제1 면에 대향하는 면인 제2 면을 가질 수도 있다.
또한, 상기 내부 공간은 진공 상태일 수 있다.
또한, 상기 내부 공간은 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
또한, 상기 회절 소자는, 곡면으로 형성될 수 있다.
또한, 상기 회절 소자는 서로 이격된 복수개의 회절 모듈로 구성될 수 있다.
또한, 상기 회절 모듈들은 측면에서 보았을 때 하나의 단일 직선상에 위치하지 않도록 배치될 수 있다.
또한, 상기 회절 모듈들은 정면에서 보았을 때 서로 간격을 가지지 않는 것으로 보이도록 배치될 수 있다.
또한, 상기 회절 소자는, 측면에서 보았을 때 광학 수단의 제1 면 및 제2 면과 평행하지 않도록 경사지게 배치될 수 있다.
본 발명의 다른 측면에 의하면, 회절 소자를 이용한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 회절 소자; 및 상기 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단을 포함하고, 상기 광학 수단은, 상기 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 회절 소자는 상기 광학 수단의 제1 면 또는 제2 면의 외부에 배치되는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 회절 소자와 이격되어 회절 소자를 덮도록 광학 수단의 제1 면 또는 제2 면의 외부에 형성되는 표면 커버를 더 포함할 수 있다.
또한, 상기 표면 커버와 회절 소자 사이에는 내부 공간이 형성되고, 상기 내부 공간은 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
또한, 상기 표면 커버의 표면은 곡면으로 형성될 수 있다.
또한, 상기 회절 소자는 반사형 회절 소자 또는 투과형 회절 소자일 수 있다.
또한, 상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용할 수 있다.
또한, 상기 회절 소자는 단일 평면으로 형성될 수 있다.
본 발명의 또 다른 측면에 의하면, 회절 소자를 이용한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 복수개의 회절 소자; 및 상기 복수개의 회절 소자가 각각 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 복수개의 광학 수단을 포함하고, 상기 복수개의 광학 수단 각각은, 상기 복수개의 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 복수개의 회절 소자 각각은 복수개의 광학 수단의 제2 면의 외부에 각각 배치되고, 상기 복수개의 광학 수단은, 각 광학 수단의 제1 면이 동공쪽으로 향하고 각 광학 수단의 제2 면이 실제 사물쪽을 향하도록 사용자의 동공에서 정면 방향으로 적층 배치되고, 상기 복수개의 회절 소자 각각은, 서로 다른 파장 대역에 상응하는 가상 영상 화상광을 동공으로 전달하는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치를 제공한다.
본 발명의 또 다른 측면에 의하면, 회절 소자를 이용한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 복수개의 회절 소자; 및 상기 복수개의 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단을 포함하고, 상기 광학 수단은, 상기 복수개의 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 복수개의 회절 소자들은 사용자의 동공에서 정면 방향으로 상기 광학 수단의 제2 면의 외부에 적층 배치되고, 상기 복수개의 회절 소자 각각은, 서로 다른 파장 대역에 상응하는 가상 영상 화상광을 동공으로 전달하는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용할 수도 있다.
본 발명에 의하면, 회절 소자를 이용하여 가상 영상을 사용자의 동공에 전달함으로써 폼 팩터를 줄일 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
또한, 본 발명은 제조 공정을 단순화시킴으로써 제조 비용을 줄이는 동시에 제조 과정에서의 효율성을 높일 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
또한, 본 발명은 가상 영상의 광균일도를 향상시켜 가상 영상을 선명하게 제공할 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
특히, 회절 소자는 회절 현상의 파장 의존적인 특성으로 인하여, 나노 구조물의 설계 파장 대역과 일치하는 빛에 대해서만 굴절 또는 반사 소자로 작동하며, 그 이외의 파장 대역에서는 빛을 단순 통과시키는 창(window) 역할을 할 수 있기 때문에, 복수개의 반사 모듈 대신 이러한 회절 소자를 사용함으로써 투명도를 높여 투시 영상의 밝기를 보다 더 확보하고, 광학 합성기 구조가 외부에서 관찰되지 않기 때문에 제품의 외관이 일반 안경과 유사한 심미성이 더 좋은 증강 현실용 광학 장치를 제공할 수 있는 효과가 있다.
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)의 측면도를 나타낸 것이다.
도 2는 선행 기술 문헌 2에 개시된 증강 현실용 광학 장치(200)의 측면도를 나타낸 것이다.
도 3 내지 도 5는 본 발명의 일실시예에 의한 회절 소자를 이용한 증강 현실용 광학 장치(300)를 설명하기 위한 도면으로서, 도 3은 사시도, 도 4는 정면도, 도 5는 측면도를 각각 나타낸 것이다.
도 6은 본 발명의 다른 실시예에 의한 광학 장치(400)의 측면도를 나타낸 것이다.
도 7은 본 발명의 또 다른 실시예에 의한 광학 장치(500)의 측면도를 나타낸 것이다.
도 8은 본 발명의 또 다른 실시예에 의한 광학 장치(600)의 사시도이다.
도 9는 도 8의 A-A′선을 따른 단면도이다.
도 10 및 도 11은 본 발명의 또 다른 실시예에 의한 광학 장치(700)의 사시도 및 측면도이다.
도 12 내지 도 14는 본 발명의 또 다른 실시예에 의한 광학 장치(800)의 사시도, 정면도 및 측면도를 나타낸 것이다.
도 15는 본 발명의 또 다른 실시예에 의한 광학 장치(900)의 측면도를 나타낸 것이다.
도 16은 본 발명의 또 다른 실시예에 의한 광학 장치(1000)의 측면도를 나타낸 것이다.
도 17은 본 발명의 또 다른 실시예에 의한 광학 장치(1100)의 측면도를 나타낸 것이다.
도 18 내지 도 20은 본 발명의 또 다른 실시예에 의한 광학 장치(1200)를 나타낸 것으로서, 도 18은 사시도, 도 19는 정면도 및 도 20은 도 18의 A-A′선을 따른 단면도를 나타낸 것이다.
도 21은 본 발명의 또 다른 실시예에 의한 광학 장치(1300)의 측면도를 나타낸 것이다.
도 22는 본 발명의 또 다른 실시예에 의한 광학 장치(1400)의 측면도를 나타낸 것이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예를 상세하게 설명하기로 한다.
도 3 내지 도 5는 본 발명의 일실시예에 의한 회절 소자를 이용한 증강 현실용 광학 장치(300)를 설명하기 위한 도면으로서, 도 3은 사시도, 도 4는 정면도, 도 5는 측면도를 각각 나타낸 것이다.
도 3 내지 도 5를 참조하면, 본 실시예의 증강 현실용 광학 장치(300, 이하 간단히 "광학 장치(300)"라 한다)는, 광학 수단(10) 및 회절 소자(20)를 포함한다.
광학 수단(10)은 회절 소자(20)가 배치되며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공(40)으로 전달하는 수단이다.
광학 수단(10)은 회절 소자(20)를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공(40)을 향해 출사되는 제1 면(11)과, 상기 제1 면(11)에 대향하며 실제 사물 화상광이 입사하는 제2 면(12)을 구비한다.
또한, 광학 수단(10)은 광학 수단(10)의 저면인 제3 면(13)과 광학 수단(10)의 상면인 제4 면(14)을 포함할 수 있다. 여기에서, 제4 면(14)은 화상 출사부(30)로부터 출사된 가상 영상 화상광이 입사하는 면인 것으로 정의한다.
회절 소자(20)는 후술하는 바와 같이 광학 수단(10)의 제1 면(11) 내지 제4 면(14)과 각각 이격되어 광학 수단(10)의 내부에 매립 배치된다
회절 소자(20)는, 화상 출사부(30)로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공(40)을 향해 전달함으로써 사용자에게 가상 영상을 제공하는 수단이다.
또한, 회절 소자(20)는 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공(40)으로 전달한다.
여기에서, 화상 출사부(30)는, 가상 영상(virtual image)을 표시하고 가상 영상에 상응하는 화상광인 가상 영상 화상광(virtual image light)을 출사하는 수단으로서, 예컨대 소형의 LCD, OLED, LCoS 등과 같이 종래 알려져 있는 마이크로 디스플레이 장치와 입사하는 화상광을 시준하여 평행광으로 출사하는 콜리메이터(collimator)를 포함한다. 따라서, 화상 출사부(30)에서 출사되는 가상 영상 화상광은 시준된 평행광 또는 초점 거리가 의도된 화상광이다.
도 3 내지 도 5의 광학 장치(300)에서는, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내면에서 전반사되어 회절 소자(20)로 전달되는 것으로 나타내었으나, 이는 예시적인 것이며, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내면에서의 전반사 없이 회절 소자(20)로 직접 전달될 수 있다. 또한, 광학 수단(10)의 내면에서 적어도 2회 이상 전반사되어 회절 소자(20)로 전달될 수도 있음은 물론이다.
한편, 화상 출사부(30)는, 반사 수단, 굴절 수단 및 회절 수단 중 적어도 어느 하나 이상의 조합으로 구성되는 광학 소자를 더 포함할 수 있다. 이 경우, 광학 소자는 마이크로 디스플레이 장치에서 출사된 가상 영상 화상광을 반사, 굴절 또는 회절시켜서 회절 소자(20)로 전달한다.
도 3 내지 도 5에서, 화상 출사부(30)는 광학 수단(10)의 상면 위쪽에 배치된 것으로 나타내었으나, 이는 예시적인 것이며 기타 다른 위치에 배치될 수도 있음은 물론이다.
회절 소자(20)는 전술한 바와 같이 광학 수단(10)의 내부에 매립 배치된다. 즉, 회절 소자(20)는 광학 수단(10)의 제1 면(11), 제2 면(12), 제3 면(13) 및 제4 면(14)과 각각 이격되어 광학 수단(10)의 내부 공간에 배치되어, 화상 출사부(30)로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공(40)을 향해 전달한다.
도 3 내지 도 5의 광학 장치(300)에서는, 전술한 바와 같이, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 제1 면(11)에서 전반사된 후 회절 소자(20)로 전달된다.
한편, 본 발명에서, 회절 소자(20, Diffractive element)란, 입사하는 가상 영상 화상광을 회절 현상을 통해 굴절 또는 반사시키는 광학 소자를 의미한다. 즉, 회절 소자는 빛의 회절 현상을 이용하여 여러 가지 광학적 기능을 제공하는 광학 소자라 할 수 있다.
회절 소자는 수차(aberration)가 없는 점대점(point-to-point) 이미지 및 평판형 구조가 가능하며 비구면과 같은 수차 조절이 가능하다는 장점을 갖는다. 또한, 회절소자는 수㎛의 매우 얇은 두께를 갖지만, 수mm의 두께를 갖는 일반적인 렌즈나 프리즘, 거울과 유사한 역할을 하기 때문에 광학계의 부피와 무게를 줄이는 데 유리하다.
특히, 회절 소자는 회절 현상의 파장 의존적인 특성으로 인하여, 나노 구조물의 설계 파장 대역과 일치하는 빛에 대해서만 굴절 또는 반사 소자로 작동하며, 그 이외의 파장 대역에서는 빛을 단순 통과시키는 창(window) 역할을 한다. 따라서, 앞서 배경 기술에서 설명한 바와 같은 종래의 반사 모듈 대신 이러한 회절 소자를 사용함으로써 투명도를 높여 투시 영상의 밝기를 보다 더 확보하고, 광학 합성기 구조가 외부에서 관찰되지 않기 때문에 제품의 외관이 일반 안경과 유사한 심미성이 더 좋은 증강 현실용 광학 장치를 제공할 수 있다는 장점이 있다.
이러한 회절 소자(20)는 반사형 회절 소자와 투과형 회절 소자로 구분될 수 있다. 도 3 내지 도 5의 실시예는 반사형 회절 소자를 이용한 경우이다.
반사형 회절 소자라 함은, 특정 방향과 위치에서 입사하는 광을 반사시키는 성질을 이용한 회절 소자를 의미하며, 투과형 회절 소자라 함은, 특정 방향과 위치에서 입사하는 광을 투과시키는 성질을 이용한 회절 소자를 의미한다.
이러한 회절 소자, 반사형 회절 소자 및 투과형 회절 소자의 기본적인 구성이나 특성 자체는 종래 기술에 의해 알려져 있으므로 여기서는 상세 설명은 생략한다.
한편, 회절 소자(20)는 도 3 내지 도 5에 나타낸 바와 같이, 정면에서 보았을 때 직사각형의 평면 형상으로 형성되는 것이 바람직하지만, 이는 예시적인 것이며, 원형, 타원형 등 기타 다른 형태로 형성될 수도 있음은 물론이다.
또한, 회절 소자(20)는 후술하는 바와 같이 곡면으로 형성될 수도 있다.
또한, 회절 소자(20)는 단일 평면으로 형성된다. 따라서, 도 2에서 나타낸 바와 같은 복수개의 반사 모듈(21~29)을 사용한 광학 장치(200)에 비해 가상 영상의 휘도 분포를 균일하게 할 수 있다는 장점을 갖는다. 또한, 배경 기술에서 설명한 바와 같이, 복수개의 반사 모듈(21~29)을 사용한 광학 장치(200)와는 달리 측면에서 보았을 때 광학 수단(10)의 좌우 방향으로 거의 공간을 차지하지 않기 때문에 광학 수단(10) 및 광학 장치(300)의 폼 팩터를 현저하게 줄일 수 있다.
회절 소자(20)의 크기는 회절 소자(20)에 의해 동공(40)으로 전달되는 가상 영상의 크기 및 시야각 등의 여러가지 조건에 의해 요구되는 출사 동공(exit pupil) 영역에 상응하는 크기의 하나의 단일 평면 또는 곡면으로 형성할 수 있다. 이러한 점을 고려하되, 회절 소자(20)는 정면에서 보았을 때 동공(40)보다 큰 크기를 가지도록 형성할 수 있다.
또한, 전술한 바와 같이, 회절 소자(20)는 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공(40)으로 전달하기 때문에, 동공(40)보다 큰 크기를 갖는 단일 평면으로 형성하더라도 실제 사물 화상광은 회절 소자(20)를 통과하여 동공(20)으로 전달될 수 있다. 따라서, 도 3 내지 도 5의 광학 장치(300)에서의 가상 영상 및 실제 사물 화상광의 광 경로 등의 구체적인 구성과 이로 인한 효과는 도 2의 광학 장치(200)와는 전혀 상이하다는 것을 알 수 있다. 이러한 점은 후술하는 실시예에서도 마찬가지이다.
한편, 도 3 내지 도 5의 광학 장치(300)에서는, 가상 영상 화상광은 광학 수단(10)의 제1 면(11)에서 전반사된 후 회절 소자(20)로 전달되는 것으로 나타내었으나, 회절 소자(20)가 투과형 회절 소자인 경우 광학 수단(10)의 제2 면(12)에서 전반사된 후 회절 소자(20)로 전달되도록 할 수도 있음은 물론이다. 이 또한 후술하는 실시예에 모두 적용될 수 있다.
한편, 도 3 내지 도 5의 광학 장치(300)에서, 회절 소자(20) 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용할 수도 있다. 이 또한 후술하는 실시예에 모두 적용될 수 있다.
도 6은 본 발명의 다른 실시예에 의한 광학 장치(400)의 측면도를 나타낸 것이다.
도 6의 광학 장치(400)는, 도 3 내지 도 5의 실시예의 광학 장치(300)와 동일하되, 회절 소자(20)가 광학 수단(10)의 제2 면(12)의 안쪽에 배치되었다는 점에서 차이가 있다.
도 6의 광학 장치(400)에서는, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내면에서의 전반사없이 회절 소자(20)로 직접 전달되고, 회절 소자(20)는 입사하는 가상 영상 화상광을 동공(40)으로 전달한다.
한편, 투과형 회절 소자를 사용하는 경우, 회절 소자(20)는 광학 수단(10)의 제1 면(11)의 안쪽에 배치될 수 있다.
한편, 도 6에서는 가상 영상 화상광은 화상 출사부(30)에서 출사되지만 화상 출사부(30)는 생략하였음을 유의해야 한다. 이는 이하의 실시예에서도 마찬가지이다.
도 7은 본 발명의 또 다른 실시예에 의한 광학 장치(500)의 측면도를 나타낸 것이다.
도 7의 광학 장치(500)는, 도 3 내지 도 5의 실시예의 광학 장치(300)와 기본적으로 동일하되, 회절 소자(20)가 투과형 회절 소자라는 점에서 차이가 있다.
도 7의 실시예에서는, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 제2 면(12)에서 전반사되어 회절 소자(20)로 전달되고, 이후 회절 소자(20)를 투과하여 동공(40)으로 전달된다.
도 8 및 도 9는 본 발명의 또 다른 실시예에 의한 광학 장치(600)를 나타낸 것으로서, 도 8은 광학 장치(600)의 사시도이고, 도 9는 도 8의 A-A′선을 따른 단면도이다.
도 8 및 도 9의 광학 장치(600)는, 도 3 내지 도 5의 실시예의 광학 장치(300)와 동일하지만, 회절 소자(20)가 광학 수단(10)의 내부 공간(50)에 배치된다는 점에서 차이가 있다.
내부 공간(50)은 광학 수단(10) 내부에 형성되며, 회절 소자(20)가 배치되는 제1 면(51)과, 상기 제1 면(51)에 대향하는 면인 제2 면(52)을 갖는다.
도시된 바와 같이, 상기 제1 면(51)과 제2 면(52)은 서로 이격되어 형성됨으로써 광학 수단(10) 내부에서 내부 공간(50)을 제공한다.
내부 공간(50)은 광학 수단(10) 제조시에 형성되는 공간이므로, 제1 면(51)과 제2 면(52)은 광학 수단(10)의 재질과 동일한 재질을 갖는다.
또한, 제1 면(51)에는 회절 소자(20)가 배치되기 때문에, 제1 면(51)은 회절 소자(20)의 형태 및 크기에 상응하는 형태 및 크기를 갖는다.
도 8 및 도 9의 광학 장치(600)에서는, 반사형 회절 소자를 사용하였으므로, 화상 출사부(30)로부터 출사된 가상 영상 화상광은 광학 수단(10)의 제1 면(11)에서 전반사되어 내부 공간(50)의 제1 면(51)을 통해 회절 소자(20)로 전달된다. 따라서, 내부 공간(50)의 제1 면(51)은 가상 영상 화상광이 입사하는 면으로 작용한다.
한편, 상기 내부 공간(50)은 진공 상태일 수 있다.
또한, 내부 공간(50)은 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
예컨대, 광학 수단(10)이 유리나 플라스틱 재질로 형성된 경우, 그 굴절률은 1.5 내외이므로, 내부 공간(50)에는 이와 다른 값의 굴절률을 갖는 매질이 충전될 수 있다.
예컨대, 굴절률이 1.0003 정도인 공기 또는 1에 가까운 값을 갖는 공기 이외의 기타 기체로 내부 공간(50)을 채울 수 있다.
한편, 매질로서는 액체를 사용할 수도 있다. 예컨대, 물은 1.33 정도의 굴절률을 가지므로, 내부 공간(50)을 물로 채울 수도 있다. 이외에도, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 기타 액체를 매질로 사용할 수도 있다.
또한, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 고체를 매질로 사용할 수도 있다.
이외에도, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 기타 다양한 물질을 매질로 사용할 수 있다.
한편, 내부 공간(50)에는 전압 차이, 온도 및 압력 등의 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질이 충전될 수도 있다.
예컨대, 홀로그램 메모리, 광 저장 장치등에 사용되는 상변화 물질은 에너지를 가한 이후 결정화시키는 과정에서 온도나 압력 등과 같은 조건에 따라 굴절률이 달라지는 특성을 갖는다.
광 저장 장치에 사용되는 대표적인 물질로 GeSbTe(GST)로 대표되는 Sb2Se3, Ge2Sb2Te5 와 TeOx(0<x<2)등이 있고, 이러한 물질들은 레이저를 이용하여 고온으로 가열한 이후, 급격히 냉각시키면 비결정상으로 변화하고, 서서히 냉각시키면 결정상으로 변화하는데, 이 때 결정상과 비결정상의 굴절률의 차이가 발생한다.
홀로그램 메모리 등에 사용되는 대표적인 물질로는 아크릴레이트계 공중합체 등이 있고, 레이저를 통한 노광에 의해 굴절률이 변화하게 된다.
이러한 상변화 물질을 내부 공간(50)에 채우고, 상변화 물질의 조건에 따른 굴절률 변화를 이용하여 메타 물질과 광학 수단(10)의 굴절률 차이에 의해 내부 공간(50)에서의 굴절 조건을 조절할 수 있다.
또한, 전기적 또는 화학적 방법에 의해 굴절률이 변경될 수 있는 기타 메타 물질을 매질로 사용할 수도 있다.
한편, 내부 공간(50)에 충전되는 매질은 투명재 또는 반투명재로 형성하는 것이 바람직하다.
이와 같이, 내부 공간(50)에는 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질이 충전되므로, 이러한 매질의 성질을 적절히 이용하면 실제 사물 화상광에 대한 시력 보정 기능을 제공할 수 있다. 예컨대, 내부 공간(50)에 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질을 충전하고 내부 공간(50)의 제2 면(52)에 곡률을 가지도록 하면 내부 공간(50)이 일종의 시력 보정 렌즈처럼 작용하게 된다.
또한, 매질을 적절히 선택하면 외부 광이 밝은 경우 내부 공간(50)이 일종의 썬글라스처럼 작용할 수도 있다.
한편, 도 8 및 도 9의 광학 장치(600)에서는, 반사형 회절 소자를 예로 들어 설명하였으나, 투과형 회절 소자를 사용할 수도 있음은 물론이다. 투과형 회절 소자를 사용하는 경우, 화상 출사부(30)로부터 출사된 가상 영상 화상광은 광학 수단(10)의 제2 면(12)에서 전반사되어 내부 공간(50)의 제2 면(52)을 통해 입사하여 회절 소자(20)로 전달된다.
도 10 및 도 11은 본 발명의 또 다른 실시예에 의한 광학 장치(700)의 사시도 및 측면도를 나타낸 것이다.
도 10 및 도 11의 광학 장치(700)는, 도 3 내지 도 5의 실시예의 광학 장치(300)와 기본적으로 동일하지만, 회절 소자(20)로서 투과형 회절 소자를 사용하였으며, 회절 소자(20)가 곡면으로 형성되어 있다는 점에서 차이가 있다.
도 10 및 도 11에 나타낸 바와 같이, 회절 소자(20)는 측면에서 보았을 때 완만한 "C"자 형태의 곡면으로 보이도록 형성되어 있음을 알 수 있다.
도 12 내지 도 14는 본 발명의 또 다른 실시예에 의한 광학 장치(800)의 사시도, 정면도 및 측면도를 나타낸 것이다.
도 12 내지 도 14의 광학 장치(800)는 도 3 내지 도 5의 광학 장치(300)와 유사하지만, 회절 소자(20)로서 투과형 회절 소자를 사용하였으며, 회절 소자(20)가 단일 평면이 아닌 복수개의 회절 모듈(21,22,23)로 형성되어 있다는 점에서 차이가 있다.
도시된 바와 같이, 회절 소자(20)는 3개의 회절 모듈(21,22,23)로 구성되고, 회절 모듈(21,22,23)들은 도 14에 나타낸 바와 같이 측면에서 보았을 때 서로 이격되어 배치되어 있음을 알 수 있다.
상기 회절 모듈(21,22,23)들 각각은 앞서 설명한 바와 같이 단일 평면 또는 곡면으로 형성될 수 있다.
또한, 각각의 회절 모듈(21,22,23)들은 측면에서 보았을 때 하나의 단일 직선상에 위치하지 않도록 배치된다.
또한, 상기 회절 모듈(21,22,23)들은 정면에서 바라보았을 때 도 13에 나타낸 바와 같이 광학 수단(10)의 내부에서 서로 약간의 간격을 두고 배치되어 있으나, 회절 모듈(21,22,23)들은 실제 사물 화상광을 투과시켜 동공(40)으로 전달하기 때문에 정면에서 보았을 때 서로 간격을 가지지 않는 것으로 보이도록 배치될 수도 있다. 물론, 이 경우에도 각각의 회절 모듈(21,22,23)들은 측면에서 보았을 때 하나의 단일 직선상에 위치하지 않도록 배치된다.
도 15는 본 발명의 또 다른 실시예에 의한 광학 장치(900)의 측면도를 나타낸 것이다.
도 15의 광학 장치(900)는, 도 3 내지 도 5의 광학 장치(300)와 기본적으로 동일하되, 회절 소자(20)로서 투과형 회절 소자를 사용하였으며, 도시된 바와 같이 측면에서 보았을 때 회절 소자(20)가 광학 수단(10)의 제1 면(11) 및 제2 면(12)과 평행하지 않도록 경사지게 배치되어 있다는 점에서 차이가 있다.
도 16은 본 발명의 또 다른 실시예에 의한 광학 장치(1000)의 측면도를 나타낸 것이다.
도 16의 광학 장치(1000)는, 도 10 내지 도 15의 광학 장치(700~900)의 회절 소자(20)를 결합한 형태이다. 즉, 회절 소자(20)는 복수개의 회절 모듈(21,22,23)로 구성되고, 회절 모듈(21,22,23)들 중 적어도 일부는 곡면으로 형성되는 한편, 회절 모듈(21,22,23)들 중 적어도 일부는 측면에서 보았을 때 광학 수단(10)의 제1 면(11) 및 제2 면(12)과 평행하지 않도록 경사지게 배치되어 있다는 점을 특징으로 한다.
한편, 도 10 내지 도 16의 광학 장치(700~1000)에서는, 회절 소자(20)로서 투과형 회절 소자를 사용한 경우를 예로 들어 설명하였으나, 반사형 회절 소자를 사용할 수도 있음은 물론이다.
도 17은 본 발명의 또 다른 실시예에 의한 광학 장치(1100)의 측면도를 나타낸 것이다.
도 17의 광학 장치(1100)는 도 6의 광학 장치(400)와 유사하지만, 회절 소자(20)가 광학 수단(10)의 제2 면(12)의 외부에 부착되어 배치된다는 점에서 차이가 있다.
도 17의 광학 장치(1100)는 반사형 회절 소자를 사용한 경우를 나타낸 것이지만, 회절 소자(20)로서 투과형 회절 소자를 사용하는 경우, 회절 소자(20)는 광학 수단(10)의 제1 면(11)의 외부에 부착되어 배치될 수 있다.
도 18 내지 도 20은 본 발명의 또 다른 실시예에 의한 광학 장치(1200)를 나타낸 것으로서, 도 18은 사시도, 도 19는 정면도 및 도 20은 도 18의 A-A′선을 따른 단면도를 나타낸 것이다.
도 18 내지 도 20의 광학 장치(1200)는 도 17의 광학 장치(1100)와 동일하되, 표면 커버(60)를 더 포함한다는 점에서 차이가 있다.
표면 커버(60)는, 도시된 바와 같이, 회절 소자(20)와 이격되어 회절 소자(20)를 덮는 형태로 광학 수단(10)의 제2 면(12)에 형성된다.
표면 커버(60)는 실제 세계의 사물로부터의 실제 사물 화상광을 투과시켜야 하므로 광학 수단(10)과 동일한 재질로 형성되는 것이 바람직하다.
여기에서, 표면 커버(60)와 회절 소자(20) 사이에 형성되는 내부 공간에는 앞서 설명한 바와 같이 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질을 충전할 수도 있다.
이와 같은 표면 커버(60)를 배치함으로써, 회절 소자(20)의 오염이나 손상을 방지할 수 있는 장점이 있다.
또한, 표면 커버(60)를 평면이 아닌 곡면으로 형성하면 표면 커버(60)와 회절 소자(20) 사이의 공간이 렌즈처럼 작용할 수 있으므로 실제 사물 화상광에 대한 시력 보정 기능을 제공할 수 있다. 또한, 표면 커버(60)와 회절 소자(20) 사이의 공간에 적절한 매질을 채움으로써 외부 광이 밝은 곳으로 나가면 색이 변하는 썬글라스와 같은 기능을 수행할 수도 있다.
도 21은 본 발명의 또 다른 실시예에 의한 광학 장치(1300)의 측면도를 나타낸 것이다.
도 21의 광학 장치(1300)는, 도 3 내지 도 5의 광학 장치(300)와 유사하지만, 복수개의 회절 소자(20A,20B,20C) 및 복수개의 광학 수단(10A,10B,10C)을 포함한다는 점에서 차이가 있다.
여기에서, 복수개의 광학 수단(10A,10B,10C) 각각은, 복수개의 회절 소자(20A,20B,20C)를 통해 전달되는 파장이 다른 각각의 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공(40)을 향해 출사되는 제1 면(11A,11B,11C)과, 상기 제1 면(11A,11B,11C)에 대향하며 실제 사물 화상광이 입사하는 제2 면(12A,12B,12C)을 구비한다.
또한, 복수개의 광학 수단(10A,10B,10C)은, 각 광학 수단(10A,10B,10C)의 제1 면(11A,11B,11C)이 동공(40)쪽으로 향하고 각 광학 수단(10A,10B,10C)의 제2 면(12A,12B,12C)이 실제 사물쪽을 향하도록 사용자의 동공(40)에서 정면 방향으로 적층 배치된다.
즉, 복수개의 광학 수단(10A,10B,10C)들은 회절 소자(20A,20B,20C)를 사이에 두고 동공(40)에서 정면 방향으로 서로 이격되어 적층 배치된다.
또한, 복수개의 회절 소자(20A,20B,20C) 각각은 복수개의 광학 수단(10A,10B,10C)의 제2 면(12A,12B,12C)의 외부에 각각 배치되머, 각각의 회절 소자(20A,20B,20C)들은 서로 다른 파장 대역에 상응하는 가상 영상 화상광을 동공(40)으로 전달한다.
예컨대, 회절 소자(20A)는 적색(R) 계열의 파장 대역에 상응하는 가상 영상 화상광을, 회절 소자(20B)는 녹색(G) 계열의 파장 대역에 상응하는 가상 영상 화상광을, 회절 소자(20C)는 청색(B) 계열의 파장 대역에 상응하는 가상 영상 화상광을 각각 동공(40)으로 전달할 수 있다.
이와 같은 구성에 의하면, 다양한 파장 대역의 가상 영상 화상광에 각각 대응하는 복수개의 회절 소자 및 광학 수단을 사용할 수 있는 장점이 있다.
도 22는 본 발명의 또 다른 실시예에 의한 광학 장치(1400)의 측면도를 나타낸 것이다.
도 22의 광학 장치(1400)는, 도 21의 광학 장치(1300)와 유사하지만, 단일 광학 수단(10)을 사용하였으며, 복수개의 회절 소자(20A,20B,20C)들은 광학 수단(10)의 제2 면(12)에 순차적으로 적층되어 배치된다는 점에서 차이가 있다.
도 22의 광학 장치(1400)에서, 복수개의 회절 소자(20A,20B,20C)들은 사용자의 동공(40)에서 정면 방향으로 광학 수단(10)의 제2 면(12)의 외부에 적층 배치된다.
또한, 복수개의 회절 소자(20A,20B,20C)는 동공(40)에서 정면 방향으로 서로 이격되어 광학 수단(10)의 제2 면(12)의 외부에 적층되어 배치된다.
이와 같은 구성에 의하면, 다양한 파장 대역의 가상 영상 화상광에 대응하는 복수개의 회절 소자를 하나의 광학 수단을 사용하여 동공(40)으로 전달할 수 있는 장점이 있다.
이상에서, 본 발명에 의한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되는 것이 아니며, 첨부한 청구범위에 의해 파악되는 본 발명의 범위 내에서 다양한 수정 및 변형 실시가 가능하다는 점을 유의해야 한다.
앞서 설명한 바와 같이, 회절 소자(20)는 반사형 회절 소자 또는 투과형 회절 소자로 형성될 수 있으며, 이는 회절 소자(20)의 위치를 적절히 선택하기만 하면 전술한 모든 실시예에 적용할 수 있다.
또한, 회절 소자(20) 대신 홀로그래픽 광학 소자(HOE)를 사용할 수 있으며, 이 또한 전술한 모든 실시예에 적용할 수 있다.
또한, 상기 실시예들에서, 동공(40)으로 입사하는 가상 영상 화상광은 동공(40)에서 정면 방향에 평행하고 화상 출사부(30)에서 출사한 가상 영상 화상광 또한 모두 평행한 것으로 나타내었으나, 이는 설명의 편의를 위해 예시적으로 나타낸 것임을 유의해야 한다. 실제 화상 출사부(30)에서 출사되는 가상 영상 화상광은 다양한 각도 및 방향을 가질 수 있으며, 회절 소자(20)를 통해 동공(40)으로 전달되는 가상 영상 화상광 또한 다양한 다른 각도 및 방향을 가질 수 있으며, 회절 소자(20)를 적절히 배치함으로써 화상 출사부(30)에서 출사하는 가상 영상 화상광의 방향 및 각도에 따라 모든 시야(FOV) 각도를 커버할 수 있다는 점을 유의해야 한다.

Claims (24)

  1. 회절 소자를 이용한 증강 현실용 광학 장치로서,
    화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 회절 소자; 및
    상기 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단
    을 포함하고,
    상기 광학 수단은, 상기 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 회절 소자는 상기 광학 수단의 제1 면과 제2 면 사이의 내부에 매립 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  2. 청구항 1에 있어서,
    상기 회절 소자는 반사형 회절 소자 또는 투과형 회절 소자인 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  3. 청구항 1에 있어서,
    상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용한 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  4. 청구항 1에 있어서,
    상기 회절 소자는 단일 평면으로 형성된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  5. 청구항 1에 있어서,
    상기 화상 출사부에서 출사된 가상 영상 화상광은 상기 광학 수단의 제1 면 또는 제2 면에서 전반사된 후 회절 소자로 전달되는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  6. 청구항 1에 있어서,
    상기 회절 소자는, 상기 광학 수단의 제1 면 또는 제2 면의 안쪽에 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  7. 청구항 1에 있어서,
    상기 광학 수단의 내부에는 내부 공간이 형성되고,
    상기 내부 공간은 회절 소자가 배치되는 제1 면과, 상기 제1 면에 대향하는 면인 제2 면을 갖는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  8. 청구항 7에 있어서,
    상기 내부 공간은 진공 상태인 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  9. 청구항 7에 있어서,
    상기 내부 공간은 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  10. 청구항 1에 있어서,
    상기 회절 소자는, 곡면으로 형성된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  11. 청구항 1에 있어서,
    상기 회절 소자는 서로 이격된 복수개의 회절 모듈로 구성된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  12. 청구항 11에 있어서,
    상기 회절 모듈들은 측면에서 보았을 때 하나의 단일 직선상에 위치하지 않도록 배치되는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  13. 청구항 12에 있어서,
    상기 회절 모듈들은 정면에서 보았을 때 서로 간격을 가지지 않는 것으로 보이도록 배치되는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  14. 청구항 1에 있어서,
    상기 회절 소자는, 측면에서 보았을 때 광학 수단의 제1 면 및 제2 면과 평행하지 않도록 경사지게 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  15. 회절 소자를 이용한 증강 현실용 광학 장치로서,
    화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 회절 소자; 및
    상기 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단
    을 포함하고,
    상기 광학 수단은, 상기 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 회절 소자는 상기 광학 수단의 제1 면 또는 제2 면의 외부에 배치된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  16. 청구항 15에 있어서,
    상기 회절 소자와 이격되어 회절 소자를 덮도록 광학 수단의 제1 면 또는 제2 면의 외부에 형성되는 표면 커버를 더 포함하는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  17. 청구항 16에 있어서,
    상기 표면 커버와 회절 소자 사이에는 내부 공간이 형성되고,
    상기 내부 공간은 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  18. 청구항 16에 있어서,
    상기 표면 커버의 표면은 곡면으로 형성된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  19. 청구항 15에 있어서,
    상기 회절 소자는 반사형 회절 소자 또는 투과형 회절 소자인 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  20. 청구항 15에 있어서,
    상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용한 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  21. 청구항 15에 있어서,
    상기 회절 소자는 단일 평면으로 형성된 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  22. 회절 소자를 이용한 증강 현실용 광학 장치로서,
    화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 복수개의 회절 소자; 및
    상기 복수개의 회절 소자가 각각 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 복수개의 광학 수단
    을 포함하고,
    상기 복수개의 광학 수단 각각은, 상기 복수개의 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 복수개의 회절 소자 각각은 복수개의 광학 수단의 제2 면의 외부에 각각 배치되고,
    상기 복수개의 광학 수단은, 각 광학 수단의 제1 면이 동공쪽으로 향하고 각 광학 수단의 제2 면이 실제 사물쪽을 향하도록 사용자의 동공에서 정면 방향으로 적층 배치되고,
    상기 복수개의 회절 소자 각각은, 서로 다른 파장 대역에 상응하는 가상 영상 화상광을 동공으로 전달하는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  23. 회절 소자를 이용한 증강 현실용 광학 장치로서,
    화상 출사부로부터 출사된 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달함으로써 사용자에게 가상 영상을 제공하며, 실제 세계의 사물로부터 출사한 실제 사물 화상광을 투과시켜 사용자의 눈의 동공으로 전달하는 복수개의 회절 소자; 및
    상기 복수개의 회절 소자가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광을 투과시켜 사용자의 눈의 동공을 향해 전달하는 광학 수단
    을 포함하고,
    상기 광학 수단은, 상기 복수개의 회절 소자를 통해 전달되는 가상 영상 화상광과 실제 사물 화상광이 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,
    상기 복수개의 회절 소자들은 사용자의 동공에서 정면 방향으로 상기 광학 수단의 제2 면의 외부에 적층 배치되고,
    상기 복수개의 회절 소자 각각은, 서로 다른 파장 대역에 상응하는 가상 영상 화상광을 동공으로 전달하는 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
  24. 청구항 22 또는 23에 있어서,
    상기 회절 소자 대신 홀로그래픽 광학 소자(Holographic Optical Element, HOE)를 사용한 것을 특징으로 하는 회절 소자를 이용한 증강 현실용 광학 장치.
PCT/KR2021/019468 2021-08-11 2021-12-21 회절 소자를 이용한 증강 현실용 광학 장치 WO2023017923A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0106173 2021-08-11
KR1020210106173A KR102627824B1 (ko) 2021-08-11 2021-08-11 회절 소자를 이용한 증강 현실용 광학 장치

Publications (1)

Publication Number Publication Date
WO2023017923A1 true WO2023017923A1 (ko) 2023-02-16

Family

ID=77489573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019468 WO2023017923A1 (ko) 2021-08-11 2021-12-21 회절 소자를 이용한 증강 현실용 광학 장치

Country Status (2)

Country Link
KR (1) KR102627824B1 (ko)
WO (1) WO2023017923A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210130669A (ko) * 2021-10-12 2021-11-01 주식회사 레티널 회절 소자를 이용한 콜리메이터를 구비하는 컴팩트형 증강 현실용 광학 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009130A (ko) * 2016-07-18 2018-01-26 주식회사 루멘스 디스플레이 장치
KR20200006583A (ko) * 2017-05-16 2020-01-20 매직 립, 인코포레이티드 혼합 현실을 위한 시스템들 및 방법들
KR20200105669A (ko) * 2017-12-22 2020-09-08 디스페릭스 오와이 다중 동공 도파관 디스플레이 소자 및 디스플레이 기구
KR102192942B1 (ko) * 2019-09-18 2020-12-18 주식회사 레티널 광 효율을 개선한 증강 현실용 광학 장치
KR20210031240A (ko) * 2019-09-11 2021-03-19 엘지전자 주식회사 전자 디바이스

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518193B2 (ja) * 2008-06-10 2010-08-04 ソニー株式会社 光学装置および虚像表示装置
KR101660519B1 (ko) 2015-03-09 2016-09-29 하정훈 증강 현실 구현 장치
KR102503576B1 (ko) * 2020-01-08 2023-02-24 주식회사 레티널 전반사를 이용한 증강 현실용 광학 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009130A (ko) * 2016-07-18 2018-01-26 주식회사 루멘스 디스플레이 장치
KR20200006583A (ko) * 2017-05-16 2020-01-20 매직 립, 인코포레이티드 혼합 현실을 위한 시스템들 및 방법들
KR20200105669A (ko) * 2017-12-22 2020-09-08 디스페릭스 오와이 다중 동공 도파관 디스플레이 소자 및 디스플레이 기구
KR20210031240A (ko) * 2019-09-11 2021-03-19 엘지전자 주식회사 전자 디바이스
KR102192942B1 (ko) * 2019-09-18 2020-12-18 주식회사 레티널 광 효율을 개선한 증강 현실용 광학 장치

Also Published As

Publication number Publication date
KR102627824B1 (ko) 2024-01-23
KR20210106927A (ko) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022255579A1 (ko) 굴절 공간을 구비하는 증강 현실용 광학 장치
US8035872B2 (en) Image combiner and image display device
WO2023128168A1 (ko) 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
US6563648B2 (en) Compact wide field of view imaging system
US6005720A (en) Reflective micro-display system
WO2023128167A1 (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
US20090322653A1 (en) Compact virtual display
CN110537136B (zh) 光学装置、图像显示装置及显示装置
WO2016011367A2 (en) Near-eye display with self-emitting microdisplay engine
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2020004850A1 (ko) 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템
WO2023146157A1 (ko) 편광 광학 소자를 이용한 증강 현실용 광학 장치
TWI778571B (zh) 顯示裝置及其操作方法
WO2023017923A1 (ko) 회절 소자를 이용한 증강 현실용 광학 장치
WO2020096188A1 (ko) 증강 현실용 광학 장치
WO2022050519A1 (ko) 헤드 마운트 디스플레이의 광학 시스템 및 이를 구비하는 헤드 마운트 디스플레이
WO2021262759A1 (en) Systems and methods for real-time color correction of waveguide based displays
WO2023033263A1 (ko) 회절 소자를 이용한 컴팩트형 증강 현실용 광학 장치
TW202240221A (zh) 光學系統及其近眼顯示裝置
WO2021034096A1 (ko) 시력 보정 기능을 구비하는 증강 현실용 광학 장치
WO2023063555A1 (ko) 회절 소자를 이용한 콜리메이터를 구비하는 컴팩트형 증강 현실용 광학 장치
US6040928A (en) Holographic desktop monitor
WO2018074623A1 (ko) 굴절식 광학 스크린 및 이를 이용한 플로팅 홀로그램 시스템
US20230152591A1 (en) Augmented reality display device
WO2020166785A1 (ko) 근접 거리의 증강 현실용 화상을 제공할 수 있는 증강 현실용 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE