WO2016173530A1 - 一种光引导部件及光源装置 - Google Patents

一种光引导部件及光源装置 Download PDF

Info

Publication number
WO2016173530A1
WO2016173530A1 PCT/CN2016/080654 CN2016080654W WO2016173530A1 WO 2016173530 A1 WO2016173530 A1 WO 2016173530A1 CN 2016080654 W CN2016080654 W CN 2016080654W WO 2016173530 A1 WO2016173530 A1 WO 2016173530A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting plate
excitation
reflecting
guiding member
Prior art date
Application number
PCT/CN2016/080654
Other languages
English (en)
French (fr)
Inventor
胡飞
侯海雄
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to JP2017556202A priority Critical patent/JP6474918B2/ja
Priority to US15/570,669 priority patent/US10830416B2/en
Priority to RU2017141434A priority patent/RU2682186C1/ru
Publication of WO2016173530A1 publication Critical patent/WO2016173530A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis

Definitions

  • the utility model relates to the field of light sources, in particular to a light guiding component and a light source device.
  • the coated film is used as a light guiding member in the light source device, and there is also a problem that the laser is wasted.
  • the prior art diaphragm 100 is obliquely placed in the light source device, the intermediate light passing hole is used for the excitation light 201 generated by the excitation light source, and the blue excitation light is taken as an example, and the excitation light 201 passes through the light collecting member 140. It is then concentrated at the wavelength conversion material 153 of the wavelength conversion device.
  • the light collecting member 140 is composed of three curved lenses.
  • wavelength conversion material 153 The excitation light is used to generate a white laser or a laser having a mixed color.
  • the white light 204 is affected by the diaphragm 100 due to the reflection of the diaphragm.
  • the reflection is in turn emitted by the light source device, and the blue light 202 which is not utilized by the wavelength converting material 153 and the light 203 other than the blue light in the white light are emitted from the light passing holes of the diaphragm 100, thereby being wasted.
  • a light guiding member comprising: a reflecting plate having a light passing hole for reflecting light, a light passing hole for passing light, a transflecting film, and a transflecting film Transmits light in the first band And the reflection band is different from the light of the first band, and the transflective film is combined with the reflection plate and at least partially blocks the light-passing hole, that is, the transflective film is connected with the reflection plate and at least partially blocks the light-passing hole.
  • the transflective film is attached to the reflective plate to cover the light-passing hole, or the transflective film is embedded in the light-passing hole.
  • the reflector comprises at least two splice plates having a function of reflecting light, and the edge of the splice plate is provided with a groove extending through the opposite surfaces, and the side of the at least two splice plates is spliced to form a light-passing hole.
  • the reflector includes at least two splice plates having a function of reflecting light, and at least two of the splice plates are enclosed to form a light-passing hole.
  • the optical expansion of the light-passing aperture is small or equal to 1/4 of the optical expansion of the reflector.
  • a light source apparatus comprising: an excitation light source for generating excitation light (ie, the light of the first wavelength band)
  • the light guiding member, the light guiding member is located on the optical path of the excitation light
  • the color light generating device is located on the optical path of the excitation light passing through the translucent film for receiving the excitation light and generating the incident light by using the excitation light.
  • the laser of the reflector of the guiding member is received.
  • the light guiding member is placed such that the angle between its plane and the plane perpendicular to the ground where the optical path of the excitation light is located is greater than zero and less than 90 degrees. .
  • the color light generating device is also for reflecting the unused excitation light to the light guiding member.
  • the optical expansion of the light-passing aperture is small or equal to 1/4 of the optical expansion of the color light generating device.
  • the reflecting plate has a semi-ellipsoidal shape or a hemispherical shape, and its inward facing surface is for reflecting light;
  • the color light generating means includes a light collecting member for converting the excitation light into a laser light-converting material for collecting the excitation light.
  • the reflecting plate is semi-ellipsoidal
  • the light-incident opening of the light collecting member is disposed substantially at a focus of the reflecting plate; the placement of the color light generating device is such that the light receiving point of the light wavelength converting material is substantially at the other focus of the reflecting plate At the office.
  • the light entrance of the light collecting member is disposed at a position adjacent to the center of the reflecting plate; the placement of the color light generating device is such that the light receiving point of the light wavelength converting material is substantially at the center of the reflecting plate and The light entrance of the light collecting member is opposed to the light centering material, or the light receiving point of the light wavelength converting material is adjacent to the center of the reflecting plate and the light receiving port of the light collecting member is substantially symmetrical about the center of the ball.
  • the light guiding component of the present invention can reduce the waste of laser light, as shown in FIG.
  • the light guiding member shown includes a reflecting plate 131 and a transflective film 132, and the light passing holes in the middle of the reflecting plate 131 are covered by the transflective film 132.
  • the reflector 131 And the transflective film 132 constitutes a light guiding member which is obliquely placed in the light source device, the intermediate light passing hole passes through the excitation light 201 generated by the excitation light source, and the blue excitation light is taken as an example, and the translucent film 132 is transposed.
  • the white laser light or the laser light having the mixed color light is generated by the excitation light. Taking white light as an example, most of the white light 204 is reflected by the reflection plate 131 due to the reflection of the reflection plate 131. The reflection is further emitted by the light source device, and the laser light 203 different in color from the blue light is reflected by the transflective film 132 to be utilized, and only the blue light 202 which is not utilized by the wavelength conversion material 153 is used.
  • the laser 203 which is different in color from the blue light is saved.
  • a very small portion of the light in the blue excitation light 201 enters the light collecting member 140 due to the light collecting member 140
  • the reflection and refraction causes the portion of the excitation light to be unutilized by the wavelength converting material 153, thereby ejecting from the light collecting member 140, which is the blue light 202 in FIG. It is the excitation light that is reflected back to the translucent film 132 by the light collecting member 140, instead of being generated by the wavelength converting material 153.
  • the wavelength converting material 153 After the blue excitation light 201 is used, a small amount of blue light may also be generated. When such light reaches the transflective film 132, it is transmitted from the translucent film 132 like the blue light 202.
  • the transmissive film surface 102 is used to transmit laser light, so the reflective film surface 101 and the transmissive film surface 102 need to be plated with different film systems, resulting in a reflective film surface 101 and a transmissive film surface 102.
  • the edges 103 which are in contact with each other are liable to form gaps, which tend to cause mutual coverage of different film systems, and tend to become uneven, which causes problems in reflection or light transmission efficiency and reliability.
  • the reflecting plate is composed of a first splice plate 001, a second splice plate 002, a third splice plate 003, and a fourth splice plate 004. Spliced together, they have the same film system, and the transflective film 132 adopts another film system, and is connected with the reflecting plate in a structural splicing manner, so that the edge of the reflecting plate contacting the transflective film 132 is 005 It can be straight, without gaps and different film systems covering each other.
  • the utility model has the beneficial effects that: the portion of the diaphragm lost by the prior art is different from the color of the excitation light, and the contact portion of the different film systems on the light guiding member can be straight without gaps. And the phenomenon that different membrane systems cover each other.
  • FIG. 1 is a schematic diagram showing the principle of a prior art diaphragm passing excitation light
  • FIG. 2 is a schematic diagram showing the principle of the prior art diaphragm reflection receiving laser
  • FIG. 3 is a schematic structural view of a light guiding member according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic view showing the principle of the light guiding member passing the excitation light according to the first embodiment of the present invention
  • FIG. 5 is a schematic view showing the principle of reflecting a laser beam by a light guiding member according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a prior art diaphragm plated with two film systems
  • FIG. 7 is a schematic structural view of a light guiding member according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a light guiding member according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic view showing the splicing principle of the light guiding member according to the third embodiment of the present invention.
  • Figure 10 is a schematic structural view of a light source device according to a fourth embodiment of the present invention.
  • Figure 11 is a schematic structural view of a light source device according to Embodiment 5 of the present invention.
  • FIG. 12 is a schematic structural view of a light guiding member according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic diagram showing the principle of generating a spot by a light guiding member of the prior art
  • FIG. 14 is a schematic diagram showing the principle of generating a spot by the light guiding member according to Embodiment 6 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the light guiding member of this embodiment includes a reflecting plate 131 and a transflective film 132, and a reflecting plate 131.
  • the light-passing hole in the middle portion is covered by the transflective film 132.
  • the material of the reflecting plate 131 is metal. Since the metal plate can be processed into any shape, in the present embodiment, the reflecting plate 131 The processing of the light-passing holes in the middle portion is relatively easy to implement in the process.
  • the plane of the light guiding member and the optical path of the excitation light are formed.
  • the angle of the middle, the light passing hole in the middle passes through the blue excitation light 201 (i.e., blue laser light) generated by the excitation light source, and the transflective film 132 can transmit blue light and reflect light different in color from the blue light, and the blue excitation light 201
  • the wavelength converting material 153 A white laser light or a laser light having a mixed color light (for example, a red, green, and blue light sequence) is generated by blue excitation light.
  • white light Taking white light as an example, most of the white light 204 is reflected by the reflection plate 131 due to the reflection of the reflection plate 131.
  • the reflection is further emitted by the light source device, and the laser light 203 different in color from the blue light is also reflected by the transflective film 132 to be utilized, and only a small portion of the blue light 202 passes through the transflective film 132. Not used.
  • the laser light may be monochromatic light, such as yellow light, and the transflective film is a blue anti-yellow film; the excitation light may also be mixed light, for example, the excitation light is red light and blue light, When the laser is green, the transflective film is a red, blue and anti-green film.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the light guiding member of the embodiment is composed of a first splicing plate 001, a second splicing plate 002, and a third splicing plate.
  • 003 and the fourth splice plate 004 are spliced together, they have the same film system, and the transflective film 132 adopts another film system, which is disposed on the other side of the reflecting plate, and the light passing hole of the reflecting plate is transflected. 132 Cover.
  • the reason why four splicing plates are used to form the reflecting plate is that it is difficult to process the light-passing holes directly in the middle of the reflecting plate for the reflector of some materials, so it can be manufactured by splicing with multiple plates. Reflective plate.
  • the light guiding member of the present embodiment is used in the light source device in the same manner as in the first embodiment, and therefore will not be described again.
  • Those skilled in the art can use two, three or other numbers of splice plates to form the reflector, which is also a simple derived embodiment of the present invention.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the light guiding member of the present embodiment is composed of a fifth splice plate 1311 and a sixth splice plate 1312.
  • the splicing is formed, and the portions in contact between the two plates are connected in a stacking manner, and the transflective film 132 is sandwiched between the portions where the two plates are connected, such that the transflective film 132 It covers the light-passing holes between the two splice plates.
  • the transflective film 132 is used in this embodiment. The area is smaller, but it can achieve the same effect.
  • the light guiding member of the present embodiment is used in the light source device in the same manner as in the first embodiment, and therefore will not be described again.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment provides a light source device as shown in FIG. 10, including an excitation light source 110 and a fly-eye lens array 120. a light guiding member, a lens group 140, a wavelength converting device, and a filter 180, wherein the light guiding member is composed of a reflecting plate 131 and a transflective film 132, and the wavelength converting device is composed of a substrate 151.
  • the heat sink 152 and the wavelength converting material 153 are formed, and the lens group 140 corresponds to the light collecting member of the embodiment.
  • the wavelength conversion device and the lens group 140 together constitute a color light generating device.
  • the area of the transflective film 132 may be smaller than or equal to the area of the reflecting plate 131, or may be greater than or equal to the reflecting plate 131.
  • the optical expansion of the light transmission hole 133 should be small or equal to 1/4 of the optical expansion of the reflection plate 131.
  • the etendue is used to describe the area and angle of light distribution in space.
  • Optical wavelength conversion material 153 The optical expansion can be expanded.
  • the blue excitation light 201 from the excitation light source 110 is directed through the light transmission aperture 133 to the optical wavelength conversion material 153.
  • the white laser light 204 emitted from the light wavelength conversion material 153 has an approximately Lambertian distribution, and the amount of optical expansion becomes much larger.
  • White laser light that is emitted toward the lens group 140 204 The blue excitation light absorbed by the light wavelength conversion material 153 is collected by the collimator lens group 140 in the form of near-parallel light toward the reflection plate 131, and most of the reflection plates which are received by the laser 204 are perforated.
  • the output is effectively utilized, and a small portion of the blue light is lost by the laser leakage from the light-passing hole 133, and is irradiated to the transflective film 132.
  • the light other than the laser light other than the blue light is also reflected and utilized. Since the amount of optical expansion of the excitation light 201 emitted from the excitation light source 110 is small, the size of the light-passing aperture 133 can be controlled to occupy the entire reflection plate 131.
  • the small amount of the laser light 204 collected by the collimating lens group 140 is large, so that the ratio of light leakage from the light passing hole 133 can be controlled within an acceptable range.
  • the wavelength conversion device includes a substrate 151 having a reflective surface (e.g., a heat sink), and a light wavelength converting material 153 Provided on the reflective surface, the heat sink 152 adhering to the substrate 151 contributes to heat dissipation of the light wavelength conversion material 153 and thereby maintains light conversion efficiency.
  • a reflective surface e.g., a heat sink
  • a light wavelength converting material 153 Provided on the reflective surface, the heat sink 152 adhering to the substrate 151 contributes to heat dissipation of the light wavelength conversion material 153 and thereby maintains light conversion efficiency.
  • the fly-eye lens array 120 is interposed between the excitation light sources 110 A light homogenizing device for homogenizing and shaping the excitation light with the light guiding member, for example, having an aspect ratio of 4:3 Rectangular compound eye lens array.
  • the homogenizing device can also use other lens arrays, or use hollow or solid light guides, or even astigmatism.
  • the filter 180 placed at the light exit can be used to adjust the spectrum of the light emitted by the light source device: when the filter is selected 180 When the characteristics of the reflected excitation light and the transmitted laser light are reflected, the light source can provide a pure color laser output, and the unexcited excitation light is reflected back to the wavelength conversion material through the reflection plate 131. Two or more cycles of recycling are beneficial to increase the color purity of the light.
  • the film 170 disposed on the filter 180 may be a brightness enhancement film or a diffractive optical film; or the brightness enhancement sheet or the polarizing reflection sheet may be directly used to replace the film. 170 and filter 180, thereby increasing the brightness of the light emitted by the light source or producing a polarized light. These films/sheets can also be placed on the surface of a wavelength converting device, especially a wavelength converting material.
  • the placement of the light guiding member in Figure 10 allows the incident and outgoing light to be 90
  • the radiation angle may also be other angles at which the angles of the incident light and the emitted light do not intersect at 90 degrees.
  • the placement of the light directing member in Figure 10 is such that the angle of its plane to the optical path of the excitation light is greater than zero and less than 90 degrees.
  • a gap on the light guiding member for example, a gap at which the transflective film contacts the reflecting plate in FIG. 7 and a gap between the respective splice plates of the reflecting plate
  • the light guiding member is disposed such that it The light path of the excitation light is vertical, and then the excitation light passes through the slit to form a spot with the same shape as the slit. This spot is not effectively utilized and is not desirable.
  • the light guiding member When the light guiding member is placed such that the angle between the plane and the optical path of the excitation light is greater than zero and less than 90 degrees, since the slit is inclined, the spot formed by the excitation light passing through the slit becomes narrower. Thus its effects can be ignored.
  • the plane of the light guiding member is at an angle of 45 degrees with the optical path of the excitation light. Since the projection of the splicing slit on the reflecting plate on a plane perpendicular to the optical axis is a straight line, the placement method can reduce the influence of the slit on the light, That is to say, the projection of the slit in the horizontal plane is parallel to the light.
  • the shape of the reflecting plate 131 may be circular, elliptical or rectangular, or even irregular. Further, the reflecting plate 131 It can also be replaced by a curved mirror or an amorphous body with a reflective surface, which can be spherical, ellipsoidal, parabolic or free-form.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the light source device of this embodiment is similar to the fourth embodiment, and includes an excitation light source 110 and a fly-eye lens array 120, as shown in FIG. a light guiding member, a lens group 140, a wavelength conversion device, a filter 180, and a film 170 of the filter 180, wherein the light guiding member is composed of a reflecting plate 131 and a transflective film 132
  • the wavelength conversion device is composed of a substrate 151, a heat sink 152, and a wavelength converting material 153. The functions of these constituent units are the same as those of the fourth embodiment, and therefore will not be described again.
  • Condenser lens 134 A light-passing aperture for concentrating the excitation light into the light guiding member.
  • the reflecting plate 131 is semi-ellipsoidal, and the light entrance of the tapered square bar 160 is disposed substantially as a reflecting plate 131.
  • One focus is centered; the placement of the wavelength conversion device is such that the light receiving point of the wavelength converting material 153 is substantially at the other focus of the reflecting plate 131.
  • the wavelength converting material 153 The laser light generated by absorbing the excitation light is irradiated onto the inner wall surface of the reflecting plate 131, and is reflected and concentrated to the light entrance port of the tapered square bar 160 (i.e., the position of the filter 180 in the drawing).
  • the reflector 131 It may be a hemispherical shape, and the light entrance of the square rod is disposed adjacent to the center of the reflector; the placement of the light wavelength conversion device is such that the light receiving point of the light wavelength conversion material is substantially at the center of the sphere and the light entrance is separated by the light wavelength conversion material.
  • those skilled in the art can also design reflectors of other shapes and make necessary adjustments to the pattern of the optical path, but do not exceed the protection scope of the present invention.
  • the light guiding member used in the light source device of the embodiment is formed by splicing a plurality of splicing plates, specifically a light guiding member as shown in FIG. 12, similar to the light guiding member shown in FIG.
  • the reflector is formed by splicing four splice plates, which have the same film system.
  • the transflective film 132 adopts another film system and is disposed on the other side of the reflector, and the light-passing hole of the reflector is transflected. 132 Cover.
  • Those skilled in the art can also adopt a design that combines the splice plates into a light guiding device in other manners, for example, using the splicing method of FIG. 7 to manufacture the light guiding member.
  • the light guiding member is in the form of a sheet, so the plane in which the light guiding member is defined is ABCD.
  • a slit 300 at the place where the two splice plates are in contact with each other on the light guiding member.
  • a small gap may be inevitable, and this embodiment is directed to a light source device having a slit on the reflection plate of the light guiding member.
  • the present embodiment is different from the fourth embodiment in that the light guiding member is placed such that the angle between the plane in which it is located and the plane perpendicular to the ground where the optical path of the excitation light is located is greater than zero and less than 90 degrees.
  • the excitation may be excited from the perspective of the human eye.
  • Light is understood as a straight line, but the excitation light itself has a certain width. Therefore, part of the excitation light 2012 may be irradiated onto the reflection plate, and the excitation light 2011 directly passing through the light transmission hole will be normally utilized, and therefore will not be discussed. Since the reflection plate has the slit 300, the excitation light 2012 irradiated onto the slit 300 of the reflection plate will be on the face A of the lens group.
  • a spot is formed on 'B' C ' D ', and the width of the spot is d1 and the height is h1.
  • Figure 13 is only for convenience of explanation, the face A ' B ' C ' D ' where the lens group is located It can be a spherical surface, a curved surface, and the surface A ' B ' C ' D ' is not in the same plane as the plane abcd.
  • the assumption made in Fig. 13 is only for comparison with the placement of the light guiding member of the present embodiment.
  • the light guiding member of the present embodiment is placed such that the plane ABCD where the light guiding member is located and the plane abcd perpendicular to the ground where the optical path of the excitation light is located is greater than zero degrees and less than 90 degrees, as shown in FIG.
  • the excitation light of the hole 2011 is not discussed, and the excitation light 2012 irradiated onto the slit 300 of the reflection plate is on the face A of the lens group.
  • the spot width formed on the surface is d2, the height is h2, and d2 is smaller than d1, and h2 is smaller than h1.
  • the excitation light (i.e., the spot) passing through the slit may have an undesirable effect on the lens group, such as the laser light processed by the lens group or the wavelength converting material being uneven as a whole and the laser light subsequently received by the reflecting plate. Uneven issues. The larger the spot (or the more excitation light that passes through the gap), the more significant the adverse effect. Therefore, by the arrangement of the present invention, the angle formed by the plane ABCD where the light guiding member is located and the plane abcd of the excitation light perpendicular to the ground is controlled to a certain angle value greater than zero degrees and less than 90 degrees, which can make the spot more narrow. Small, even eliminated, weakening the effects of excitation light passing through the gap. Other technical features of the embodiment are the same as those of the fourth embodiment, and therefore will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Planar Illumination Modules (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光引导部件及光源装置。光引导部件包括具有通光孔的反射板(131)和透反膜片(132)。反射板(131)用于反射光线,通光孔用于通过光线;透反膜片(132)与反射板(131)连接并覆盖通光孔,用于透射激发光并反射与激发光颜色不同的光线。光源装置包括:激发光源(110),用于产生激发光;光引导部件,其通光孔及透反膜片(132)用于透射激发光源(110)产生的激发光;颜色光产生装置,用于接收透过透反膜片(132)的激发光并利用该激发光产生受激光;光收集部件,用于收集颜色光产生装置产生的受激光。该光引导部件能够减少受激光的浪费。

Description

一种光引导部件及光源装置 技术领域
本实用新型涉及光源领域,具体涉及一种光引导部件及光源装置。
背景技术
现有的激光光源普遍使用光学扩展量进行分光和合光,这样就会采用一种区域镀膜的膜片,通常一个膜面分有多个区域镀有多种不同膜系。受限于膜片的制作工艺,在同一面上分区域镀不同类型的膜系难以实现。因为膜片中间的通光区域不需要镀膜,然而现有的镀膜工艺又会使膜系覆盖膜片中间的区域,导致该区域膜系的浪费以及除去过程的麻烦。
技术问题
现有技术中镀膜的膜片作为光源装置中的光引导部件,还存在浪费受激光的问题。如图 1 所示,现有技术膜片 100 在光源装置中倾斜放置,中间的通光孔用于通过激发光源产生的激发光 201 ,以蓝色激发光为例,激发光 201 经过光收集部件 140 后被汇聚到波长转换装置的波长转换材料 153 处。图 1 中,光收集部件 140 由三块曲面透镜共同构成。如图 2 所示,波长转换材料 153 利用激发光产生白色受激光或者具有混合颜色的受激光,以白光为例,由于膜片的反射作用,大部分的白光 204 被膜片 100 反射进而由光源装置发射出去,而未被波长转换材料 153 利用的蓝光 202 以及白光中除蓝光以外的光 203 则从膜片 100 的通光孔中出射,从而被浪费掉。
技术解决方案
根据本实用新型的第一方面,提供一种光引导部件,包括:具有通光孔的反射板,反射板用于反射光线,通光孔用于通过光线;透反膜片,透反膜片可透射 第一波段的光 并反射波段不同于 第一波段的光 ,透反膜片与反射板 结合 并至少部分遮挡通光孔,即透反膜片与反射板 连接 并至少部分遮挡通光孔。
透反膜片与反射板贴合并遮盖通光孔,或透反膜片镶嵌进通光孔。
反射板包括至少两块具有反射光线功能的拼接板,拼接板边缘开有贯通两相对表面的槽,至少两块拼接板开槽的一侧拼接形成通光孔。或者,反射板包括至少两块具有反射光线功能的拼接板,至少两块拼接板围合形成通光孔。
通光孔的光学扩展量小或等于反射板的光学扩展量的 1/4 。
根据本实用新型的第二方面,提供一种光源装置,包括:激发光源,用于产生激发光(即上述 第一波段的光 );上述光引导部件,光引导部件位于激发光的光路上;颜色光产生装置,其位于通过透反膜片的激发光的光路上,用于接收激发光并利用该激发光产生射向光引导部件的反射板的受激光。
光引导部件的放置使得其平面与激发光的光路所在的垂直于地面的平面所成的角度大于零且小于90度。 。
颜色光产生装置还用于将未被利用的激发光反射到光引导部件。
通光孔的光学扩展量小或等于颜色光产生装置的光学扩展量的 1/4 。
反射板呈半椭球状或半球状,其朝内的面用于反射光线;颜色光产生装置包括用于将激发光转换成受激光的光波长转换材料、用于收集激发光的光收集部件。
当反射板呈半椭球状时,光收集部件的入光口设置为大致以反射板的一个焦点为中心;颜色光产生装置的放置使得光波长转换材料的受光点大致处于反射板的另一个焦点处。
当反射板呈半球状时,光收集部件的入光口设置在临近反射板的球心的位置;颜色光产生装置的放置使得光波长转换材料的受光点大致处于反射板的球心处并与光收集部件的入光口隔着光波长转换材料相对,或者使得光波长转换材料的受光点临近反射板的球心处与光收集部件的入光口大致关于该球心对称。
利用本实用新型的光引导部件,一方面,本实用新型的光引导部件可以减少受激光的浪费,如图 3 所示的光引导部件,包括反射板 131 和透反膜片 132 ,反射板 131 中部的通光孔被透反膜片 132 覆盖。在使用过程中,如图 4 所示,反射板 131 和透反膜片 132 构成光引导部件,其在光源装置中倾斜放置,中间的通光孔通过激发光源产生的激发光 201 ,以蓝色激发光为例,透反膜片 132 能透射蓝光并反射与蓝光颜色不同的光,蓝色激发光 201 经过光收集部件 140 后被汇聚到波长转换装置的波长转换材料 153 处;如图 5 所示,波长转换材料 153 利用激发光产生白色受激光或者具有混合色光的受激光,以白光为例,由于反射板 131 的反射作用,大部分的白光 204 被反射板 131 反射进而由光源装置发射出去,与蓝色光颜色不同的受激光 203 则被透反膜片 132 反射从而得到利用,只有未被波长转换材料 153 利用的蓝光 202 被浪费掉,与现有技术相比,与蓝色光颜色不同的受激光 203 得到了节省。蓝色激发光 201 中极少部分光线在进入光收集部件 140 后,由于光收集部件 140 的反射及折射作用,导致这部分激发光没有被波长转换材料 153 利用,从而又从光收集部件 140 中出射,这部分光即图 5 中的蓝光 202 (即蓝光 202 是通过光收集部件 140 被反射回透反膜片 132 的激发光,而不是由波长转换材料 153 产生的)。本领域技术人员应当理解,波长转换材料 153 利用蓝色激发光 201 后,也可能产生少量的蓝色光,这样的光到达透反膜片 132 时,也会和蓝光 202 一样从透反膜 132 中透射。
另一方面,如图 6 所示,如果对现有技术的膜片 100 进行镀膜,由于反射膜面 101 用于发射受激光,透射膜面 102 用于透射受激光,因此反射膜面 101 和透射膜面 102 需要镀不同的膜系,从而导致反射膜面 101 和透射膜面 102 相接触的边缘 103 处容易形成缝隙、容易引起不同膜系的相互覆盖、容易变得不平直,这些缺陷会产生反光或透光效率上的损失以及可靠性的问题。如图 7 所示为本实用新型的光引导部件的一个例子,反射板由第一拼接板 001 、第二拼接板 002 、第三拼接板 003 和第四拼接板 004 拼接而成,它们具有相同的膜系,透反膜片 132 采用另一种膜系,以结构拼接的方式和反射板连接在一起,从而使得反射板与透反膜片 132 相接触的边缘 005 能够平直,不会产生缝隙以及不同膜系相互覆盖的现象。
有益效果
即,本实用新型的有益效果是:节省了现有技术的膜片所浪费掉的那部分与激发光颜色不同的光,光引导部件上不同膜系的接触部分能够平直,不会产生缝隙以及不同膜系相互覆盖的现象。
附图说明
图 1 为现有技术的膜片通过激发光的原理示意图;
图 2 为现有技术的膜片反射受激光的原理示意图;
图 3 为本实用新型实施例一的光引导部件的结构示意图;
图 4 为本实用新型实施例一的光引导部件通过激发光的原理示意图;
图 5 为本实用新型实施例一的光引导部件反射受激光的原理示意图;
图 6 为为现有技术的膜片镀两种膜系后的结构示意图;
图 7 为本实用新型一种实施方式的光引导部件的结构示意图;
图 8 为本实用新型实施例二的光引导部件的结构示意图;
图 9 为本实用新型实施例三的光引导部件的拼接原理示意图;
图 10 为本实用新型实施例四的光源装置结构示意图;
图 11 为本实用新型实施例五的光源装置结构示意图;
图 12 为本实用新型实施例六的光引导部件的结构示意图;
图 13 为现有技术的光引导部件产生光斑的原理示意图;
图 14 为本实用新型实施例六的光引导部件产生光斑的原理示意图。
本发明的最佳实施方式
下面通过具体实施方式结合附图对本实用新型作进一步详细说明。
实施例一:
本实施例的光引导部件如图 3 所示,包括反射板 131 和透反膜片 132 ,反射板 131 中部的通光孔被透反膜片 132 覆盖,反射板 131 的材料为金属,由于金属板可以加工成任意形状,故本实施例中,在反射板 131 的中部加工出通光孔在工艺上比较容易实现。在使用过程中,如图 4 所示,在光源装置中,光引导部件的平面与激发光的光路成 45 度角,中间的通光孔通过激发光源产生的蓝色激发光 201 (即蓝色激光),透反膜片 132 能透射蓝光并反射与蓝光颜色不同的光,蓝色激发光 201 经过光收集部件 140 后被汇聚到波长转换装置的波长转换材料 153 处;如图 5 所示,波长转换材料 153 利用蓝色激发光产生白色受激光或者具有混合色光的受激光(例如红绿蓝色光序列),以白光为例,由于反射板 131 的反射作用,大部分的白光 204 被反射板 131 反射进而由光源装置发射出去,与蓝色光颜色不同的受激光 203 也被透反膜片 132 反射从而得到利用,只有少部分的蓝光 202 透过透反膜片 132 而没被利用。
在其他的实施例中,受激光可以是单色光,例如黄光,则透反膜片为透蓝反黄膜片;激发光也可以是混合光,例如激发光为红光和蓝光,受激光为绿光,则透反膜片为透红蓝反绿膜片。
实施例二:
如图 8 所示为本实施例的光引导部件,反射板由第一拼接板 001 、第二拼接板 002 、第三拼接板 003 和第四拼接板 004 拼接而成,它们具有相同的膜系,透反膜片 132 采用另一种膜系,设置在反射板的另一面,且反射板的通光孔被透反膜片 132 遮盖。之所以采用四块拼接板来组成反射板,是考虑到对于某些材料的反射板,直接在反射板中部加工通光孔在工艺上不好实现,故可以用多块板以拼接的方式制造反射板。本实施例的光引导部件在光源装置中的使用方式与实施例一相同,故不再赘述。本领域的技术人员可以用两块、三块或者其他数量的拼接板来组成反射板,也属于本发明简单派生的实施例。
实施例三:
如图 9 所示为本实施例的光引导部件,反射板由第五拼接板 1311 和第六拼接板 1312 拼接而成,两块板相接触的部分以叠放的方式相连接,透反膜片 132 被夹持在两块板相连接的部分之间,这样透反膜片 132 则覆盖了两块拼接板之间的通光孔。与实施例一和实施例二相比,本实施例所用到透反膜片 132 面积更小,但能达到同样的使用效果。本实施例的光引导部件在光源装置中的使用方式与实施例一相同,故不再赘述。
实施例四:
本实施例提供如图 10 所示的光源装置,包括激发光源 110 、复眼透镜阵列 120 、光引导部件、透镜组 140 、波长转换装置、滤光片 180 ,其中,光引导部件由反射板 131 和透反膜片 132 构成,波长转换装置由衬底 151 、散热装置 152 和波长转换材料 153 构成,透镜组 140 相当于实施例一种的光收集部件。波长转换装置和透镜组 140 共同组成颜色光产生装置。
透反膜片 132 的面积可以小于等于反射板 131 的面积,或者可以大于等于反射板 131 中部的通光孔 133 的面积,为了区分受激光和激发光的光路,通光孔 133 的光学扩展量应小或等于反射板 131 的光学扩展量的 1/4 。
在光学中,光学扩展量 (Etendue) 被用来描述光在空间中的分布面积和角度。光波长转换材料 153 能够将光学扩展量扩大。
来自激发光源 110 的蓝色激发光 201 经通光孔 133 直射到光波长转换材料 153 上后,从该光波长转换材料 153 发出的白色受激光 204 呈近似朗伯分布,光学扩展量变大很多。向透镜组 140 出射的白色受激光 204 和未被光波长转换材料 153 所吸收利用的蓝色激发光经准直透镜组 140 的收集以近平行光的形式射往反射板 131 ,进而大部分受激光 204 被带孔的反射板 131 反射后输出得到有效利用,小部分蓝色受激光从通光孔 133 中漏出被损耗掉,照到透反膜片 132 上的除蓝色受激光以外的光也被反射从而得到利用。由于激发光源 110 发出的激发光 201 的光学扩展量较小,可以控制通光孔 133 的大小占整个反射板 131 的很小比例;而经准直透镜组 140 收集的受激光 204 的光学扩展量较大,故可以控制光从通光孔 133 漏损的比例在一可接受范围内。
波长转换装置包括具有反光面的衬底 151( 例如热沉 ) ,光波长转换材料 153 设置在该反光面上,紧贴在衬底 151 上的散热装置 152 有助于光波长转换材料 153 的散热进而使光转换效率得以保持。
复眼透镜阵列 120 为介于激发光源 110 和光引导部件之间对激发光进行匀光和整形的匀光装置,例如可以是长宽比为 4 ∶ 3 的矩形的复眼透镜阵列。根据投影仪、舞台灯、电视或探照灯的不同使用需求,匀光装置还可以采用其它的透镜阵列,或采用空心或实心的导光棒,甚至采用散光片。
放在出光口处的滤光片 180 可以用来调整光源装置出射光的光谱:当选择该滤光片 180 具有反射激发光及透射受激光的特性时,光源则可以提供纯色的受激光输出,同时未被吸收利用的激发光经反射板 131 反射回波长转换材料 153 进行二次或多次循环利用,有利于提高光的色纯度。设置在滤光片 180 上的膜 170 可以是增亮膜或衍射光学膜;或者还可以直接使用亮度增强片或偏振反射片来替换膜 170 和滤光片 180 ,从而提高光源出射光的亮度或产生偏振出射光。这些膜 / 片也可以放置在波长转换装置尤其是波长转换材料的表面。
图 10 中光引导部件的放置角度可以使得入射光和出射光成 90 度,放射角度还可以是使入射光和发射光的角度不成 90 度相交的其他角度。
图10中光引导部件的放置使得其平面与激发光的光路所成的角度大于零且小于90度。当光引导部件上存在缝隙时(例如图7中透反膜片与反射板相接触处的缝隙、反射板的各个拼接板之间相接触处的缝隙),如果光引导部件的设置使得其与激发光的光路垂直,那么激发光透过缝隙后就会形成与缝隙形状相同的一道光斑,这道光斑没被有效利用,是不希望存在的。光引导部件的放置使得其平面与激发光的光路所成的角度大于零且小于90度时,由于缝隙被倾斜了,因此激发光透过缝隙后就会形成的光斑就会变得更加狭窄,从而其影响可以被忽略。
例如,可以设置 光引导部件的平面与激发光的光路成45度角,由于反射板上的拼接缝隙在垂直于光轴的面上的投影是一条直线,这种摆放方式可以减小缝隙对光线影响,也就是说缝隙的走向在水平面上的投影与光线平行。
反射板 131 的形状可以是圆形、椭圆形或矩形,甚至是不规则形状。此外,反射板 131 还可以被曲面反射光镜或带有反光面的无定形形体替换,曲面的形状可以是球面、椭球面、抛物面或自由曲面等。
实施例五:
本实施例的光源装置如图 11 所示,与实施例四类似,也包括激发光源 110 、复眼透镜阵列 120 、光引导部件、透镜组 140 、波长转换装置、滤光片 180 、滤光片 180 的膜 170 ,其中,光引导部件由反射板 131 和透反膜片 132 构成,波长转换装置由衬底 151 、散热装置 152 和波长转换材料 153 构成。这些组成单元的功能与实施例四相同,故不再赘述。聚光透镜 134 用来将激发光会聚进光引导部件的通光孔。
与实施例不同的是,反射板 131 为半椭球状,锥形方棒 160 的入光口设置为大致以反射板 131 的一个焦点为中心;波长转换装置的放置使得波长转换材料 153 的受光点大致处于反射板 131 的另一个焦点所在处。这样,波长转换材料 153 吸收激发光后产生的受激光照射到反射板 131 的内壁面上后,将被反射并汇聚到锥形方棒 160 的入光口(即图中滤光片 180 的位置)。
在本实用新型其他的实施例中,反射板 131 可以为半球状,方棒的入光口设置成临近反射板的球心;光波长转换装置的放置使得光波长转换材料的受光点大致处于球心处与入光口隔着光波长转换材料相对。当然,本领域技术人员还可以设计其他形状的反射板,并对光路的格局做必要的调整,但都不超出本实用新型的保护范围。
实施例六:
本实施例的光源装置采用的光引导部件是由多块拼接板拼接而成的,具体为如图12所示的光引导部件,与图8所示的光引导部件类似, 反射板由四块拼接板拼接而成,它们具有相同的膜系,透反膜片 132 采用另一种膜系,设置在反射板的另一面,且反射板的通光孔被透反膜片 132 遮盖。本领域的技术人员还可以采用以其他方式将拼接板组合成光引导装置的设计方案,例如采用图 7 的拼接方式制造光引导部件 。光引导部件为片状,故定义光引导部件所在的平面为ABCD。
光引导部件上两块拼接板相接触的地方有一条缝隙300。虽然实践中技术人员并不希望出现缝隙,但细小的缝隙可能在所难免,本实施例是针对光引导部件的反射板上有缝隙的光源装置来论述的。
本实施例不同于实施例四的特点在于,光引导部件的放置使得其所在平面与激发光的光路所在的垂直于地面的平面所成的角度大于零且小于90度。以下分析阐述了本发明这一技术特征的创新性。
如图13所示,假如光引导部件的放置使得光引导部件所在的平面ABCD与激发光的光路所在的垂直于地面的平面abcd所成的角度等于90,激发虽然从人眼的角度可以将激发光理解为一条直线,但激发光本身是存在一定宽度的,因此可能存在部分激发光2012照射到反射板上,而直接通过通光孔的激发光2011会被正常利用,故不作讨论。由于反射板存在缝隙300,故照射到反射板的缝隙300上的激发光2012会在透镜组的面A ' B ' C ' D ' 上形成光斑,光斑的宽为d1,高为h1。图13只是为说明之方便,透镜组所在的面A ' B ' C ' D ' 可以为球面、弧面,且面A ' B ' C ' D ' 与平面abcd并不处于同一平面上。
图13所作之假设只是为了与本实施例的光引导部件的放置方式做对比。本实施的光引导部件的放置使得光引导部件所在的平面ABCD与激发光的光路所在的垂直于地面的平面abcd所成的角度大于零度且小于90度,如图14所示,直接通过通光孔的激发光2011不作讨论,而照射到反射板的缝隙300上的激发光2012在透镜组的面A ' B ' C ' D ' 上形成的光斑宽度为d2、高度为h2,且d2小于d1,h2小于h1。穿过缝隙的激发光(即光斑)在透镜组上会产生用户不希望造成的影响,例如使得透镜组或波长转换材料所处理的激发光在整体上不均匀以及后续被反射板接收的受激光不均匀等问题。光斑越大(或者说穿过缝隙的激发光越多),不良影响就越显著。因此,通过本发明的设置,将光引导部件所在的平面ABCD与激发光在垂直于地面的平面abcd所成的角度控制在大于零度且小于90度的某一合适角度值,能够使得光斑更加狭窄、细小甚至被消除,减弱穿过缝隙的激发光所造成的影响。本实施例的其它技术特征与实施例四相同,故不再赘述。
以上内容是结合具体的实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

1. 一种光引导部件,其特征在于,包括:
具有通光孔的反射板,反射板用于反射光线,通光孔用于通过光线;
透反膜片,透反膜片可透射第一波段的光并反射波段不同于第一波段的光,透反膜片与所述反射板结合并至少部分遮挡所述通光孔。
2. 如权利要求1所述的部件,其特征在于,透反膜片与所述反射板贴合并遮盖所述通光孔,或透反膜片镶嵌进所述通光孔。
3. 如权利要求1所述的部件,其特征在于,所述反射板包括至少两块具有反射光线功能的拼接板,拼接板边缘开有贯通两相对表面的槽,所述至少两块拼接板开槽的一侧拼接形成通光孔。
4. 如权利要求1所述的部件,其特征在于,所述反射板包括至少两块具有反射光线功能的拼接板,所述至少两块拼接板围合形成通光孔。
5. 如权利要求1-4任一项所述的部件,其特征在于,所述通光孔的光学扩展量小或等于所述反射板的光学扩展量的1/4。
6. 一种光源装置,其特征在于,包括:
激发光6. 一种光源装置,其特征在于,包括: 源,用于产生激发光;
如权利要求1-5任一项所述的光引导部件,所述光引导部件位于激发光的光路上;
颜色光产生装置,其位于通过所述透反膜片的激发光的光路上,用于接收激发光并利用该激发光产生射向光引导部件的反射板的受激光。
7. 如权利要求6所述的装置,其特征在于,所述光引导部件的放置使得其平面与激发光的光路所在的垂直于地面的平面所成的角度大于零且小于90度 。
8. 如权利要求6所述的装置,其特征在于,所述颜色光产生装置还用于将未被利用的激发光反射到所述光引导部件。
9. 如权利要求6所述的装置,其特征在于,所述第一波段的光为激发光。
10. 如权利要求6-9任一项所述的装置,其特征在于,所述反射板呈半椭球状或半球状,其内表面用于反射光线;
所述颜色光产生装置包括用于将激发光转换成受激光的光波长转换材料、用于收集激发光的光收集部件;
当所述反射板呈半椭球状时,光收集部件的入光口设置为大致以所述反射板的一个焦点为中心;颜色光产生装置的放置使得光波长转换材料的受光点大致处于所述反射板的另一个焦点处;
当所述反射板呈半球状时,光收集部件的入光口设置在临近所述反射板的球心的位置;颜色光产生装置的放置使得光波长转换材料的受光点大致处于所述反射板的球心处并与所述光收集部件的入光口隔着光波长转换材料相对,或者使得光波长转换材料的受光点临近所述反射板的球心处与所述光收集部件的入光口大致关于该球心对称。
PCT/CN2016/080654 2015-04-29 2016-04-29 一种光引导部件及光源装置 WO2016173530A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017556202A JP6474918B2 (ja) 2015-04-29 2016-04-29 光案内手段及び光源装置
US15/570,669 US10830416B2 (en) 2015-04-29 2016-04-29 Light guide component and light source device
RU2017141434A RU2682186C1 (ru) 2015-04-29 2016-04-29 Световодный элемент и устройство источника света

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520269101.9 2015-04-29
CN201520269101.9U CN204593250U (zh) 2015-04-29 2015-04-29 一种光引导部件及光源装置

Publications (1)

Publication Number Publication Date
WO2016173530A1 true WO2016173530A1 (zh) 2016-11-03

Family

ID=53929400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080654 WO2016173530A1 (zh) 2015-04-29 2016-04-29 一种光引导部件及光源装置

Country Status (5)

Country Link
US (1) US10830416B2 (zh)
JP (1) JP6474918B2 (zh)
CN (1) CN204593250U (zh)
RU (1) RU2682186C1 (zh)
WO (1) WO2016173530A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
CN107561836B (zh) * 2016-07-01 2019-10-25 深圳光峰科技股份有限公司 一种光源和投影系统
CN106526874B (zh) * 2016-12-09 2023-07-07 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
CN108663879B (zh) 2017-03-31 2021-04-06 中强光电股份有限公司 投影机及其照明系统
CN108732852B (zh) 2017-04-14 2021-01-05 中强光电股份有限公司 投影机及其照明系统
CN108732851B (zh) 2017-04-14 2021-03-19 中强光电股份有限公司 投影机及其照明系统
CN107507438B (zh) * 2017-08-23 2020-06-09 南京溧水高新创业投资管理有限公司 自适应投影式交通灯
CN109839793B (zh) 2017-11-28 2021-01-29 中强光电股份有限公司 投影机及其照明系统
CN109932858B (zh) 2017-12-18 2021-04-23 中强光电股份有限公司 照明系统与投影装置
CN109976075B (zh) 2017-12-27 2021-05-07 中强光电股份有限公司 波长转换装置
CN110095930A (zh) 2018-01-31 2019-08-06 中强光电股份有限公司 照明系统及投影装置
CN110361914A (zh) 2018-04-11 2019-10-22 中强光电股份有限公司 照明系统、控制单元及投影装置
CN110412816B (zh) 2018-04-28 2021-08-17 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法及投影装置
CN110632814A (zh) 2018-06-25 2019-12-31 中强光电股份有限公司 照明系统以及投影装置
CN110703552B (zh) 2018-07-10 2021-10-15 中强光电股份有限公司 照明系统以及投影装置
CN111059488B (zh) * 2018-10-15 2022-03-15 深圳市绎立锐光科技开发有限公司 照明装置及照明系统
CN111190322A (zh) 2018-11-15 2020-05-22 中强光电股份有限公司 照明系统与投影装置
CN112859353A (zh) * 2019-11-12 2021-05-28 深圳市绎立锐光科技开发有限公司 一种光源装置
CN112162356B (zh) * 2020-09-29 2023-06-27 武汉中科医疗科技工业技术研究院有限公司 光耦合装置、光源系统及其光通量的控制方法
CN115183202B (zh) * 2022-07-20 2024-07-19 厦门大学 一种漫反射式激光照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563410A (zh) * 2011-12-04 2012-07-11 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
CN103256567A (zh) * 2011-12-07 2013-08-21 深圳市绎立锐光科技开发有限公司 光源
CN104062836A (zh) * 2013-03-22 2014-09-24 索尼公司 光源装置和显示装置
CN104062837A (zh) * 2013-03-22 2014-09-24 索尼公司 光源装置和显示装置
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622556B2 (ja) * 1999-02-23 2005-02-23 セイコーエプソン株式会社 照明光学系および投写型表示装置
US7023620B1 (en) * 2003-07-03 2006-04-04 Research Electro-Optics, Inc. Beam array pitch controller
JP2007225392A (ja) * 2006-02-22 2007-09-06 Spectratech Inc 光干渉装置
JP4379482B2 (ja) * 2007-04-03 2009-12-09 セイコーエプソン株式会社 光源装置及びプロジェクタ
JP5321406B2 (ja) * 2009-10-21 2013-10-23 セイコーエプソン株式会社 画像表示装置
US9039187B2 (en) * 2010-05-21 2015-05-26 Nec Display Solutions, Ltd. Illumination optical system and a projector using the same
CN102418907B (zh) * 2010-12-08 2014-04-16 深圳市绎立锐光科技开发有限公司 光源
CN104267506B (zh) * 2011-08-29 2017-02-15 深圳市绎立锐光科技开发有限公司 光源、合光装置及带该光源的投影装置
JP5335945B2 (ja) * 2011-12-09 2013-11-06 株式会社エンプラス 光束制御部材および照明装置
JP5982915B2 (ja) * 2012-03-21 2016-08-31 カシオ計算機株式会社 光源装置及びプロジェクタ
CN104020633B (zh) 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
JP2015163947A (ja) * 2014-02-03 2015-09-10 キヤノン株式会社 光源光学系およびこれを用いた光源装置、画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563410A (zh) * 2011-12-04 2012-07-11 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
CN103256567A (zh) * 2011-12-07 2013-08-21 深圳市绎立锐光科技开发有限公司 光源
CN104062836A (zh) * 2013-03-22 2014-09-24 索尼公司 光源装置和显示装置
CN104062837A (zh) * 2013-03-22 2014-09-24 索尼公司 光源装置和显示装置
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置

Also Published As

Publication number Publication date
US10830416B2 (en) 2020-11-10
RU2682186C1 (ru) 2019-03-15
JP2018514916A (ja) 2018-06-07
JP6474918B2 (ja) 2019-02-27
CN204593250U (zh) 2015-08-26
US20180292070A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2016173530A1 (zh) 一种光引导部件及光源装置
CN102193294A (zh) 照明系统
JP2007219442A5 (zh)
WO2018214333A1 (zh) 波长转换装置与光源系统
WO2018023999A1 (zh) 一种光源装置以及投影设备
US9664988B2 (en) Light source system with light coupling module and display apparatus comprising the same
JP5249775B2 (ja) 光セパレータ
WO2016070705A1 (zh) 一种投影仪及其光源系统
TWI489855B (zh) 立體投影光源系統
WO2018082311A1 (zh) 一种光源系统及其调节方法
WO2017118300A1 (zh) 一种光源装置及照明装置
WO2018086349A1 (zh) 一种3d投影镜头及投影设备
CN115343904B (zh) 投影光源及投影设备
WO2018201627A1 (zh) 激发光源系统及投影设备
CN218350698U (zh) 投影光源及投影设备
JP2006269415A (ja) 照明システム
US20220146920A1 (en) Homogenizing element and projection device
CN211786559U (zh) 一种激光光源模块及激光显示装置
WO2017097248A1 (zh) 光源模组和投影设备
JP2004280047A (ja) 映像光生成装置及び投写型映像表示装置
CN220154786U (zh) 投影光机
CN114518685B (zh) 照明系统以及投影装置
CN215729123U (zh) 一种投影系统
CN219392458U (zh) 一种光源装置及投影系统
CN114721159B (zh) 投影光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556202

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017141434

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16785958

Country of ref document: EP

Kind code of ref document: A1