WO2014115828A1 - 有機エレクトロルミネッセンス素子及びその製造方法 - Google Patents

有機エレクトロルミネッセンス素子及びその製造方法 Download PDF

Info

Publication number
WO2014115828A1
WO2014115828A1 PCT/JP2014/051469 JP2014051469W WO2014115828A1 WO 2014115828 A1 WO2014115828 A1 WO 2014115828A1 JP 2014051469 W JP2014051469 W JP 2014051469W WO 2014115828 A1 WO2014115828 A1 WO 2014115828A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
conductive polymer
hole injection
polymer layer
Prior art date
Application number
PCT/JP2014/051469
Other languages
English (en)
French (fr)
Inventor
健治 町田
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2014115828A1 publication Critical patent/WO2014115828A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter referred to as “organic EL element”) that can obtain stable light-emitting performance.
  • Organic EL elements also called organic light emitting diodes (OLEDs)
  • OLEDs organic light emitting diodes
  • the organic EL element having the simplest structure has a structure in which a light emitting layer having a hole transporting ability and an electron transporting ability is sandwiched between an anode and a cathode. When charges are applied to the anode and cathode of the element having this structure, holes are injected from the anode and electrons are injected from the cathode into the light emitting layer.
  • the energy barrier for hole injection is generally large, and efficient hole injection is difficult.
  • the hole injection layer 4 having a HOMO level between the HOMO level of the light emitting layer 5 and the work function of the anode 3 is introduced, the energy barrier for hole injection is lowered, and the hole injection is performed. Efficiency can be improved, and by extension, the light emission performance of the organic EL element 1 can be improved.
  • the hole injection layer 4 also has a great influence on the modification of the interface state between the anode 3 and the light emitting layer 5.
  • the thin light-emitting layer 5 may be damaged by the stress exerted on the light-emitting layer 5 by the convex portions, and the leakage current may increase and the light-emitting efficiency of the element 1 may decrease.
  • the unevenness of the surface of the anode 3 may cause electric field concentration, and the element 1 may be destroyed.
  • the light emitting layer 5 is hydrophobic, tin-doped indium oxide (ITO) used as the anode 3 in many studies is hydrophilic, and this difference in surface energy is between the light emitting layer 5 and the anode 3. Adhesiveness may be reduced, and the element 1 may have a short life.
  • the hole injection layer 4 is provided between the anode 3 and the light emitting layer 5. Therefore, the hole injection layer 4 is required to have excellent adhesion to the anode 3 and the light emitting layer 5 and to have a flat surface 4 s facing the light emitting layer 5.
  • the hole injection layer 4 is also excellent in moisture resistance and heat resistance. It is desirable to have a property that promises stable light emission.
  • Patent Document 1 Japanese Patent Publication No. 2000-514590 describes that a conductive polymer composed of polythiophenes, polypyrroles, polyanilines, and the like is used for a hole injection layer.
  • a conductive polymer layer obtained by applying a poly (3,4-ethylenedioxythiophene) polystyrene sulfonate dispersion obtained by chemical polymerization onto an ITO substrate and drying it.
  • EDOT 3,4-ethylenedioxythiophene
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT polystyrene sulfonic acid
  • PEDOT: PSS Polystyrene sulfonate of poly (3,4-ethylenedioxythiophene)
  • organic EL device having a hole injection layer made of a conductive polymer layer formed on an ITO substrate by electrolytic polymerization using a solution obtained by dissolving tetramethylammonium tetrafluoroborate and EDOT in acetonitrile as a polymerization solution. Specifically shown.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-90181 describes that the hole injection layer is obtained from a dispersion containing a conductive polymer having a particle size of 1 ⁇ m or less. It is described that the short circuit between the anode and the cathode of the organic EL element can be prevented and the life of the element can be extended.
  • a conductive polymer layer obtained by applying an aqueous dispersion of PEDOT: PSS filtered through a filter having a pore size of 0.45 ⁇ m or 0.22 ⁇ m on an ITO substrate and drying is used as a hole.
  • An organic EL element as an injection layer is specifically shown.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-342603
  • the total charge amount per unit area of the electrode is 1.0 mC / cm 2 to 1.2 mC / cm 2
  • the applied current density is 0.4 mA / cm 2.
  • a method for manufacturing an organic EL element is described in which a hole injection layer is formed by electrolytic polymerization with a current flow time of 0.8 sec to 3.0 sec at a current flow rate of cm 2 to 1.5 mA / cm 2 .
  • the thin film can be uniformly formed on the electrode surface by controlling the total amount of charge applied to the electrode during the electropolymerization, the current density, and the time during which the current flows in the above range,
  • a solution in which EDOT and tetrabutylammonium perchlorate are dissolved in acetonitrile is used as a polymerization solution, and the current density and the time for flowing the current are adjusted so that the total charge amount is 1.2 mC / cm 2.
  • a PEDOT hole injection layer having an average surface roughness (Ra) of about 4 to about 5 nm is formed.
  • the PEDOT: PSS aqueous dispersion shown in Patent Document 1 and Patent Document 2 can be uniformly applied on a hydrophilic anode, it gives a hole injection layer having a flat surface.
  • a hole injection layer that is difficult to dissolve in an organic solvent after drying is obtained, when a light emitting layer is laminated on the hole injection layer using a solution in which a light emitting material is dissolved in an organic solvent, PEDOT : There is an advantage that the PSS layer does not dissolve in an organic solvent.
  • the PEDOT: PSS layer exhibits high water absorption, there is a concern about deterioration of the device due to moisture in the atmosphere.
  • PSS since PSS is a substance that easily diffuses, it may diffuse and adversely affect device characteristics. Further, since the sulfonic acid group of PSS reacts with ITO to liberate indium, there is a concern about deterioration of the device due to indium diffusion.
  • Patent Document 3 describes a hole injection layer having an average surface roughness (Ra) of about 4 to about 5 nm, referring to FIGS. 10 and 11 of this document, the hole injection layer is sharp. It turns out that it has many convex parts with a length of 100 nm order which has a front-end
  • Ra average surface roughness
  • Patent Document 4 (WO2012 / 118161A1) and Patent Document 5 (WO2012 / 133858A1), substituents are obtained at positions 3 and 4 obtained by electrolytic polymerization using a polymerization solution containing a solvent mainly composed of water.
  • a dense conductive polymer layer containing an anion generated from at least one compound which is a non-sulfonic acid organic compound and the molecular weight of the anion of the compound is 200 or more is significantly superior to PEDOT: PSS.
  • the “non-sulfonic acid organic compound” means an organic compound having no sulfonic acid group and / or sulfonic acid group.
  • An object of the present invention is to provide an organic electroluminescence device exhibiting stable light emission performance based on the above-described knowledge.
  • the present invention is first provided with an anode provided on the surface of the substrate, a cathode, a light emitting layer provided between the anode and the cathode, and between the anode and the light emitting layer,
  • An organic EL device comprising a hole injection layer in contact with an anode, wherein the hole injection layer is made of at least one monomer selected from the group consisting of thiophene having substituents at the 3rd and 4th positions.
  • a conductive polymer layer comprising: a constituted polymer; and an anion generated from at least one compound which is a non-sulfonic acid organic compound having a molecular weight of 200 or more as a dopant for the polymer.
  • the conductive polymer layer has a thickness of 10 nm or more, and the root mean square roughness (RMS) of the surface of the conductive polymer layer facing the light emitting layer is 2 to 10 nm.
  • RMS root mean square roughness
  • the hole injection layer in the organic EL device of the present invention can be suitably obtained by electrolytic polymerization using a polymerization solution containing a solvent mainly composed of water. Therefore, the present invention also provides the hole injection layer comprising: a solvent comprising 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent; the monomer; and the non-sulfonic acid organic compound. Including a step of introducing a substrate having an anode on the surface thereof into the polymerization solution, and performing electrolytic polymerization under a condition of an electric charge of 1.5 mC / cm 2 or more and less than 18 mC / cm 2.
  • the present invention relates to a method for manufacturing an organic EL element.
  • non-sulfonic acid-based organic compound in a specific range acts as a supporting electrolyte in the polymerization solution, and thus is also referred to as “non-sulfonic acid-based organic supporting electrolyte”.
  • a solvent comprising 100 to 80% by mass of water and 0 to 20% by mass of an organic solvent is hereinafter referred to as “water-rich solvent”. In the water-rich solvent, the total amount of water and the organic solvent is 100% by mass.
  • a thin layer of the conductive polymer can be formed on the surface of the anode with good adhesion.
  • the RMS of the surface of the conductive polymer layer can be efficiently adjusted to a range of 2 to 10 nm and 30% or less of the film thickness of the conductive polymer layer.
  • this convex portion has a slab shape and does not have a sharp tip ( (See FIG. 2). Therefore, compared with the hole injection layer obtained from the polymerization liquid containing the organic solvent described in Patent Document 1 or Patent Document 3, damage to the thin light-emitting layer due to the convex portion can be suppressed.
  • the conductive polymer layer obtained by electrolytic polymerization using the polymerization solution has excellent hole transport ability with high electrochemical activity, is stable to moisture in the air, and has excellent heat resistance. . Therefore, this conductive polymer layer can be a layer serving as both a hole injection layer and a hole transport layer.
  • the content of the organic solvent in the water-rich solvent is increased, it becomes difficult to form a conductive polymer layer having a flat surface in which polymer particles are densely packed on the anode by electrolytic polymerization, and the content of the organic solvent is reduced to the whole solvent. When it exceeds 20 mass%, the heat resistance of the obtained conductive polymer layer is significantly reduced (see Patent Document 4 and Patent Document 5). Therefore, the solvent is preferably composed only of water.
  • the RMS of the surface of the conductive polymer layer increases as the thickness of the conductive polymer layer increases, but the RMS is in the range of 2 to 10 nm and the conductive polymer layer
  • the film thickness is 30% or less
  • an organic EL element exhibiting stable light-emitting performance with little variation can be obtained.
  • the film thickness of the conductive polymer layer is less than 10 nm, a conductive polymer layer having a flat surface cannot be obtained with good reproducibility.
  • the conductive polymer layer is thin and the value of 30% of the film thickness is 10 nm or less, the RMS does not exceed 30% of the film thickness of this layer, and the conductive polymer layer is thick.
  • the RMS root mean square roughness
  • RMS is a measure that is more susceptible to the convex portions on the surface of the conductive polymer layer than the average surface roughness (Ra) employed in Patent Document 3, and is a conductive polymer layer (hole injection layer). This is a more suitable measure for evaluating the stress exerted on the light-emitting layer by the convex portion of.
  • the film thickness of the conductive polymer layer is 10 nm or more, preferably 100 nm or less, and more preferably 70 nm or less. This is because when the film thickness of the conductive polymer layer is increased, the internal resistance of the organic EL element is increased, and the voltage applied to the element is increased or the light emission efficiency is decreased. As described above, the film of the conductive polymer layer is also formed. This is because the RMS on the surface of the polymer layer increases as the thickness increases, so that it becomes difficult to obtain a flat surface as the thickness of the conductive polymer layer increases.
  • the conductive polymer layer contains, as a dopant, an anion generated from a non-sulfonic acid organic compound having a molecular weight of 200 or more.
  • borodisalicylic acid and / or borodisalicylate is particularly preferable because it provides a conductive polymer layer having a smooth surface.
  • the supporting electrolyte is added to the solution and then subjected to electrolytic polymerization before formation of the precipitate, Used in combination with a stabilizer selected from the group consisting of nitrobenzene and nitrobenzene derivatives, which have the action of inhibiting the hydrolysis of salicylate ions.
  • the monomer for constituting the conductive polymer layer is not particularly limited as long as it is a compound selected from the group consisting of substituted thiophenes, that is, thiophenes having substituents at the 3- and 4-positions.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • the monomer is EDOT because a conductive polymer layer excellent in environmental stability and light transmittance (transparency) can be obtained.
  • the hole injection layer included in the organic EL device of the present invention was generated from a polymer composed of at least one monomer selected from substituted thiophenes and a specific range of non-sulfonic acid organic compounds as dopants for the polymer.
  • the organic EL device of the present invention has an extremely flat surface because it is composed of a conductive polymer layer that is rich in electrochemical activity, excellent in hole transport ability, excellent in water resistance and heat resistance, and contains an anion. Stable light emission performance with little variation.
  • the organic EL device of the present invention has at least a hole injection layer and a light emitting layer between the anode and the cathode.
  • the organic EL element having the simplest structure has a structure in which an anode 3 / hole injection layer 4 / light emitting layer 5 / cathode 6 are laminated in this order on the surface of a substrate 2 schematically shown in FIG. It is the organic EL element 1 which has.
  • An organic EL element in which a light emitting layer is composed of a multi-functional polymer material often has this simple structure.
  • the organic EL device of the present invention is included in known organic EL devices such as a hole transport layer, an electron transport layer, and an electron injection layer in addition to the hole injection layer and the light emitting layer between the anode and the cathode. It may include a layer that is formed.
  • a hole transport layer such as a hole transport layer, an electron transport layer, and an electron injection layer in addition to the hole injection layer and the light emitting layer between the anode and the cathode. It may include a layer that is formed.
  • transparent and insulating glass substrates such as optical glass, quartz glass, and alkali-free glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, poly
  • transparent and insulating plastic substrates such as acrylate and polyimide, opaque and insulating ceramic substrates such as alumina, substrates coated with an insulating film such as silicon oxide on the surface of a metal substrate such as stainless steel, opaque and insulating A plastic substrate is used.
  • the above-described transparent and insulating glass substrate or a transparent and insulating plastic substrate is preferably used as the substrate.
  • an anode that plays the role of hole injection into the light emitting layer.
  • a conductive layer having a large work function preferably 4.0 eV or more is used, and these are known methods such as a vapor deposition method, a sputtering method, and a coating method, depending on the properties of the material.
  • anodes include indium oxide, tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, and aluminum-doped zinc oxide.
  • ITO indium oxide
  • IZO zinc-doped indium oxide
  • ATO antimony-doped tin oxide
  • FTO fluorine-doped tin oxide
  • zinc oxide and aluminum-doped zinc oxide.
  • the conductive layer constituting the anode may be a single layer or a plurality of layers having different work functions.
  • the above-described transparent oxide conductive layer or a semitransparent conductive layer of metal such as gold, silver, or platinum is preferably used as the anode.
  • the film thickness of the anode is not strictly limited, and is generally 5 nm to 20 ⁇ m, preferably 10 to 500 nm, although it depends on the type of material and the required transparency. If the film thickness is 5 nm or less, the strength and conductivity of the anode may be insufficient.
  • the hole injection layer in the organic EL device of the present invention comprises a substituted thiophene, that is, a polymer composed of at least one monomer selected from the group consisting of thiophenes having substituents at the 3rd and 4th positions, and the polymer. It comprises a conductive polymer layer containing, as a dopant, an anion generated from at least one compound which is a non-sulfonic acid organic compound and the molecular weight of the anion of the compound is 200 or more.
  • the conductive polymer layer has a thickness of 10 nm or more, has a surface RMS in the range of 2 to 10 nm, and a value of 30% or less of the thickness of the conductive polymer layer.
  • the film thickness of the conductive polymer layer is generally in the range of 10 to 100 nm, preferably 10 to 70 nm. This is because when the film thickness of the conductive polymer layer increases, the internal resistance of the organic EL element increases, the voltage applied to the element increases or the light emission efficiency decreases, and the film thickness of the conductive polymer layer increases. This is because the RMS of the surface of the polymer layer also increases, so that it becomes difficult to obtain a flat surface as the thickness of the conductive polymer layer increases.
  • RMS can be obtained by observing the surface of the conductive polymer layer with an atomic force microscope, and the film thickness of the conductive polymer layer can be measured with an atomic force microscope or the like.
  • constant current electrolytic polymerization at a predetermined current density is performed twice or more at different times, and after measuring the film thickness of the conductive polymer layer obtained by each electrolytic polymerization, the obtained film thickness and electrolytic polymerization are measured. It is also possible to derive a calculation formula showing the relationship with the amount of energized charge in and to calculate the film thickness of the conductive polymer layer from the amount of energized charge using the calculated formula.
  • the conductive polymer layer includes a preparation step for obtaining a polymerization solution for electropolymerization containing a substituted thiophene as a monomer and the above-mentioned non-sulfonic acid organic compound in a specific range as a supporting electrolyte, and the obtained polymerization solution. It can be manufactured by a method including a polymerization step of forming a conductive polymer layer obtained by polymerization of the monomer on the anode by introducing a substrate having an anode on the surface and performing electrolytic polymerization.
  • each step will be described in detail.
  • the polymerization solution for electrolytic polymerization prepared in this step contains a water-rich solvent, a substituted thiophene as a monomer, and a non-sulfonic acid organic compound in a specific range as a supporting electrolyte as essential components. .
  • this polymerization solution may contain an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • an organic solvent such as methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, acetone, tetrahydrofuran, and methyl acetate.
  • Water is preferably 90% by mass or more of the whole solvent, more preferably 95% by mass or more of the whole solvent, and particularly preferably the solvent consists of water alone.
  • the conductive polymer layer in which the polymer particles are densely packed becomes difficult to be formed on the anode by electrolytic polymerization, and the content of the organic solvent is reduced to 20% by mass of the whole solvent. When it exceeds, the heat resistance of the obtained conductive polymer layer will fall remarkably.
  • a substituted thiophene that is, a monomer selected from thiophene having substituents at the 3-position and 4-position is used.
  • the substituents at the 3-position and 4-position of the thiophene ring may form a ring together with the carbons at the 3-position and 4-position.
  • monomers that can be used include 3,4-dialkylthiophenes such as 3,4-dimethylthiophene and 3,4-diethylthiophene, 3,4 such as 3,4-dimethoxythiophene and 3,4-diethoxythiophene.
  • a non-sulfonic acid organic compound having an anion molecular weight of 200 or more is used as the supporting electrolyte in the polymerization solution.
  • These anions of the supporting electrolyte are contained in the conductive polymer layer as a dopant in the process of electrolytic polymerization shown below.
  • borodisalicylic acid, borodisalicylate, formula (I) or formula (II) (In the formula, m means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2, and n means an integer of 1 to 8, preferably an integer of 1 to 4, particularly preferably 2. And o means 2 or 3) and salts thereof can be preferably used.
  • the salt examples include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkyl ammonium salts such as ammonium salt, ethyl ammonium salt and butyl ammonium salt, dialkyl ammonium salts such as diethyl ammonium salt and dibutyl ammonium salt, and triethyl ammonium salt. And trialkylammonium salts such as tributylammonium salt, and tetraalkylammonium salts such as tetraethylammonium salt and tetrabutylammonium salt.
  • These supporting electrolytes provide a conductive polymer layer that is particularly excellent in heat resistance.
  • salts of bis (pentafluoroethanesulfonyl) imidic acid, such as potassium salt, sodium salt, and ammonium salt give a conductive polymer layer having extremely high heat resistance.
  • borodisalicylic acid and / or borodisalicylate is preferred because it is inexpensive and economically advantageous, and particularly provides a conductive polymer layer having a smooth surface.
  • borodisalicylate ions contained in borodisalicylic acid and borodisalicylate hydrolyze into salicylic acid and boric acid, which have very low water solubility in water. For this reason, when borodisalicylic acid and / or borodisalicylate is used as a supporting electrolyte, precipitation gradually occurs in the polymerization solution, making it unusable.
  • the supporting electrolyte is added to the solution and then subjected to electrolytic polymerization before formation of the precipitate, Used in combination with a stabilizer selected from the group consisting of nitrobenzene and nitrobenzene derivatives, which have the action of inhibiting the hydrolysis of salicylate ions.
  • the stabilizer may be a single compound or two or more compounds.
  • nitrobenzene derivatives include nitrophenol, nitrobenzyl alcohol, nitrobenzoic acid, dinitrobenzoic acid, dinitrobenzene, nitroanisole, and nitroacetophenone, and include o-nitrophenol, m-nitrophenol, p-nitrophenol, And mixtures thereof are preferred.
  • a single compound may be used, or two or more compounds may be used, and the amount is sufficient to obtain a sufficient current for electrolytic polymerization at a concentration equal to or lower than the saturated dissolution amount in the polymerization solution. Used, preferably at a concentration of 10 mM or more, particularly preferably at a concentration of 30 mM or more.
  • the polymerization solution is prepared by the following method depending on the monomer content.
  • a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and are manually or mechanically
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent using a proper stirring means.
  • the monomer exceeds the saturated dissolution amount, that is, a water-rich solvent, a substituted thiophene as a monomer, and the above-mentioned specific range of supporting electrolyte are introduced into a container for producing a polymerization solution, and stirred and homogenized.
  • the polymerization solution can be prepared by irradiating the solution with ultrasonic waves and dispersing the phase-separated monomer as oil droplets in the polymerization solution.
  • the polymerization liquid of the present invention is obtained by irradiating a liquid obtained by adding a monomer exceeding the amount of saturated dissolution in a water-rich solvent with ultrasonic irradiation to disperse the monomer as oil droplets, and then adding a supporting electrolyte to the obtained liquid. You can also get If each component in the polymerization solution is stable, there is no limitation on the temperature during preparation.
  • “ultrasound” means a sound wave having a frequency of 10 kHz or more.
  • an ultrasonic oscillator conventionally known for ultrasonic cleaners, cell grinders and the like can be used without particular limitation.
  • the phase-separated monomer must be oil droplets having a diameter of several ⁇ m or less.
  • the output of the ultrasonic wave is preferably 4 W / cm 2 or more.
  • the ultrasonic irradiation time is not strictly limited but is preferably in the range of 2 to 10 minutes.
  • the longer the irradiation time the more the aggregation of monomer oil droplets is inhibited, and the time until demulsification tends to be longer.
  • the ultrasonic irradiation time is 10 minutes or more, the aggregation effect of oil droplets tends to be saturated. Is recognized. It is also possible to perform multiple irradiations using ultrasonic waves having different frequencies and / or outputs.
  • the monomer content exceeding the saturated dissolution amount may be an amount that can obtain a dispersion in which demulsification is suppressed by ultrasonic irradiation.
  • ultrasonic irradiation conditions It also changes depending on.
  • the polymerization liquid of the present invention contains a water-rich solvent, a monomer selected from substituted thiophenes, and other additives within a range that does not adversely affect the present invention in addition to the above-mentioned specific range of supporting electrolyte. Also good. Suitable additives include water-soluble nonionic surfactants. Since the monomer is concentrated in the micelles of the nonionic surfactant, electrolytic polymerization proceeds rapidly, and a polymer exhibiting high conductivity is obtained. In addition, the nonionic surfactant itself does not ionize, and does not inhibit doping of the polymer in the specific range with the anion of the supporting electrolyte.
  • nonionic surfactant a known water-soluble nonionic surfactant can be used without any particular limitation.
  • examples include polyalkylene glycol, polyvinyl alcohol, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene styryl phenyl ether, polyoxyalkylene benzyl phenyl ether, polyoxyalkylene-added alkylphenol formaldehyde condensate, polyoxyalkylene Addition styrylphenol formaldehyde condensate, polyoxyalkylene addition benzylphenol formaldehyde condensate, alkyne diol, polyoxyalkylene addition alkyne diol, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil , Polyglycerin alkyl agent Le, such as polyglyce
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • alkyne diol having high dispersion effect such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and other nonionic surfactants, preferably polyoxyethylene (9) nonyl
  • a combination with a polyoxyethylene alkylphenyl ether such as a phenyl ether branched type in the polymerization liquid is preferable because the monomer content in the polymerization liquid can be greatly increased.
  • a water-rich solvent, a monomer, the above-mentioned specific range of supporting electrolyte, and a nonionic surfactant are introduced into a container for producing a polymerization solution, and are manually or mechanically stirred.
  • a polymerization solution is prepared by dissolving each component in a water-rich solvent by using or irradiating ultrasonic waves.
  • a water-rich solvent, a monomer, and a nonionic surfactant are introduced into a container for producing a polymerization solution to prepare a solution in which each component is dissolved in a water-rich solvent.
  • the supporting electrolyte in the specific range may be added and dissolved.
  • any method for producing a polymerization liquid when borodisalicylic acid and / or borodisalicylate as a supporting electrolyte and nitrobenzene and / or a nitrobenzene derivative as a stabilizer are used in combination, the polymerization liquid is produced. Both are introduced into the container almost simultaneously, or the stabilizer is introduced first. This is because the stabilizer is used to suppress hydrolysis of borodisalicylate ions.
  • a counter electrode for electrolytic polymerization a plate of platinum, nickel, or the like can be used.
  • the electrolytic polymerization is performed by any one of a constant potential method, a constant current method, and a potential sweep method using the polymerization solution obtained in the preparation step.
  • the amount of electric charge is 1.5 mC / cm 2 or more and 18 mC / It is adjusted to a range of less than cm 2.
  • Constant current electropolymerization is preferred. In this case, the current density is 0.001 to 1 mA / cm 2 , preferably 0.01 to 0.1 mA / cm 2 , and the electropolymerization time is 1.5 to 18000 seconds, preferably 30 to 150 seconds.
  • the RMS of the surface of the conductive polymer layer increases as the thickness of the conductive polymer layer increases. Therefore, the RMS is adjusted through adjustment of the film thickness of the conductive polymer layer. Can be adjusted.
  • a conductive polymer layer having a value of 30% or less of the thickness of the conductive polymer layer is formed on the anode as a hole injection layer.
  • the resulting conductive polymer layer has a density in the range of 1.15 to 1.80 g / cm 3 .
  • the density of the conductive polymer layer having excellent heat resistance is preferably in the range of 1.20 to 1.80 g / cm 3 , particularly preferably in the range of 1.60 to 1.80 g / cm 3 .
  • the density of the conductive polymer layer is 1.75 g. / Cm 3 or less is preferable, and 1.70 g / cm 3 or less is particularly preferable.
  • the conductive polymer layer after electrolytic polymerization is washed with water, ethanol or the like and dried to obtain a conductive polymer layer (hole injection layer) excellent in heat resistance formed on the anode with good adhesion. it can. Since the conductive polymer layer is stable to moisture in the air and exhibits a pH near neutral, there is no possibility that other components are corroded during the process of manufacturing or using the organic EL element.
  • a hole transport layer may be provided on the hole injection layer as necessary.
  • the hole transport layer plays a role in improving the transport efficiency of holes injected from the anode to the light-emitting layer, and has a high hole mobility and is made of an organic material that does not easily flow electrons injected from the cathode side. Is done.
  • a known hole transporting material can be used for the hole transporting layer without any particular limitation.
  • Examples include triarylamine derivatives, phenylenediamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, oxazole derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, polycarbazole And derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polythiophene and derivatives thereof, polyaniline and derivatives thereof, polypyrrole and derivatives thereof, poly (paraphenylene vinylene ) And derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof.
  • a material having a high LUMO energy level (low electron affinity) and a high excited triplet level can be used as an electron block layer in contact with the light emitting layer.
  • the electron blocking layer transports holes moving from the anode side to the light emitting layer and prevents electrons moving from the light emitting layer from reaching the anode side, thereby increasing the recombination probability of holes and electrons. It raises and serves to confine the generated excitons in the light emitting layer.
  • Examples of the material constituting the electron blocking layer include dioctylfluorene-triphenylamine copolymer.
  • the hole transport layer and the electron blocking layer can be provided by a known method such as a vapor deposition method or a coating method depending on the properties of the material, and may include a single transport material, or two or more kinds of transports. It may contain material.
  • coating methods such as spin coating, casting, and screen printing, a solution in which a high molecular material is dissolved in an organic solvent or a solution in which a low molecular material is dissolved in an organic solvent together with a binder is used.
  • the solvent and the binder those that do not adversely affect the characteristics of the organic EL element can be used without limitation.
  • organic solvents include chloroform, methylene chloride, dichloroethane and other carbon chlorides, tetrahydrofuran and other ethers, toluene and xylene and other aromatic hydrocarbons, acetone and methyl ethyl ketone and other ketones, ethyl acetate, butyl acetate and ethyl cellosolve acetate.
  • the binder include polyvinyl carbazole, polycarbonate, polyester, polyarylate, and polystyrene.
  • the film thickness of the hole transport layer and the electron block layer is generally in the range of 5 to 1000 nm, preferably 10 to 200 nm. If the film thickness is 5 nm or less, there is a concern about the occurrence of pinholes. If the film thickness is 1000 nm or more, the internal resistance of the element may increase and the light emission efficiency may decrease.
  • a light emitting layer is provided on the above-described hole injection layer or, if present, on the hole transport layer or the electron blocking layer.
  • light emitting layer known low molecular weight light emitting materials and high molecular weight light emitting materials can be used without any particular limitation.
  • a light emitting layer in which 0.1 to several mol% of a light emitting material is dispersed in a host material may be used.
  • low molecular weight light-emitting material examples include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl, 5-methyl-2- [2- [4- (5-methyl-2 Oxadiazole compounds such as -benzoxazolyl) phenyl] vinyl] benzoxazole, and triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5-t-butylphenyl-1,2,4-triazole
  • styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, quinacrine derivatives, coumarin derivatives, rubrene derivatives Etc.
  • azomethine zinc complex tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, bis (benzoquinolinolato) beryllium, tris (2-phenylpyridine) iridium, (1,10-phenanthroline)
  • metal complexes such as tris [4,4,4-trifluoro-1- (2-thienyl) -1,3-butanedionato] europium and platinum octaethylporphyrin.
  • polymer light-emitting material examples include poly (1,4-phenylene), poly (2-decyloxy-1,4-phenylene), poly [2,5-bis- [2- (N, N, N— Triethylammonium) ethoxy] -1,4-phenyl-alt-1,4-phenylene] dibromide, poly (1,4-phenylenevinylene), poly [2- (2′-ethylhexyloxy) -5-methoxy-1 , 4-phenylene vinylene], poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylene vinylene], poly [2,5-bis- (hexyloxy) -1,4-phenylene- (1-cyanovinylene)], poly (9,9-dioctylfluorene), polyspiro, poly (3-hexylthiophene), poly (diphenylacetylene), poly (N-ethyl-2) And vinyl carb
  • Examples of the host material include tris (8-quinolinolato) aluminum, 4,4′-N, N′-dicarbazolbiphenyl, and 4,4′-bis (2,2′-biphenylvinyl) biphenyl.
  • the light emitting layer is formed by a known method such as a vapor deposition method or a coating method according to the properties of the material, and may include a single light emitting material or two or more light emitting materials. Two or more light emitting layers may be provided.
  • coating methods such as spin coating, casting, and screen printing, a solution in which a polymer material is dissolved in an organic solvent or a solution in which a low molecular material is dissolved in an organic solvent together with a binder is used. Organic solvents and binders exemplified in the description of the transport layer can be used.
  • the thickness of the light emitting layer depends on the material, it is generally in the range of 5 to 1000 nm, preferably 10 to 200 nm. If the film thickness is 5 nm or less, there is a concern about the occurrence of pinholes. If the film thickness is 1000 nm or more, the internal resistance of the element may increase and the light emission efficiency may decrease.
  • an electron transport layer may be provided on the light emitting layer as necessary.
  • the electron transport layer serves to improve the transport efficiency of electrons injected from the cathode to the light-emitting layer, and an organic material that has high electron mobility and hardly flows electrons injected from the anode side is used.
  • a known electron transporting material can be used without particular limitation for the electron transporting layer.
  • Examples include oxadiazole derivatives, oxazole derivatives, thiazole derivatives, thiadiazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, perylene derivatives, quinoline derivatives, quinoxaline derivatives, fluorenone derivatives, anthrone derivatives, phenanthroline derivatives, tris (8 -Quinolinato) organometallic complexes such as aluminum, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives.
  • a material having a low HOMO energy level (high ionization potential) and a high excited triplet level can be used as a hole blocking layer in contact with the light emitting layer.
  • the hole blocking layer transports electrons moving from the cathode side to the light emitting layer and prevents holes moving from the light emitting layer from reaching the cathode side, thereby recombination probability of holes and electrons. And the generated excitons are confined in the light emitting layer.
  • Materials constituting the hole blocking layer include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8).
  • the electron transport layer and the hole blocking layer can be provided by a known method such as a vapor deposition method or a coating method depending on the properties of the material, and may include a single transport material, or two or more kinds of transports. It may contain material.
  • coating methods such as spin coating, casting, and screen printing, a solution in which a polymer material is dissolved in an organic solvent or a solution in which a low molecular material is dissolved in an organic solvent together with a binder is used.
  • Organic solvents and binders exemplified in the description of the transport layer can be used.
  • the thicknesses of the electron transport layer and the hole blocking layer are generally in the range of 5 to 1000 nm, preferably 10 to 200 nm, depending on the material. If the film thickness is 5 nm or less, there is a concern about the occurrence of pinholes. If the film thickness is 1000 nm or more, the internal resistance of the element may increase and the light emission efficiency may decrease.
  • a cathode for injecting electrons into the light emitting layer is provided on the light emitting layer or, if present, on the electron transport layer or hole blocking layer.
  • a conductive layer having a small work function, preferably a work function of 3.8 eV or less is used in order to efficiently inject electrons into the light emitting layer.
  • a metal layer or alloy layer of lithium, cesium, aluminum, aluminum-lithium alloy, aluminum-calcium alloy, calcium, magnesium, magnesium-silver alloy, magnesium-indium alloy, barium, indium, or the like can be used as the cathode.
  • the metal layer or alloy layer may be a single layer or a plurality of layers having different work functions.
  • cathodes can be formed by a known method such as a vapor deposition method, a sputtering method, or a coating method depending on the properties of the material.
  • the thickness of the cathode is not strictly limited, but is generally in the range of 5 to 20 ⁇ m, preferably 10 to 500 nm. When the film thickness is 5 nm or less, the strength and conductivity of the cathode may be insufficient.
  • an electron injection layer may be provided between the light emitting layer or, if present, the electron transport layer or hole blocking layer and the cathode.
  • the electron injection layer plays a role of improving electron injection efficiency.
  • the material for the electron injection layer include metals belonging to Groups 1 and 2 of the periodic table and oxides, halides, and carbonates thereof.
  • fluorides of metals in groups 1 and 2 of the periodic table, such as LiF and CsF, formed by vapor deposition and having a thickness of 0.5 to 1.0 nm are preferably used.
  • An ITO electrode having an ITO layer having an area of 1 cm 2 as a working electrode and a film thickness of 150 nm, a Pt mesh having an area of 4 cm 2 as a counter electrode, and silver as a reference electrode -A silver chloride electrode was introduced, and constant current electropolymerization was performed for 240 seconds (current conduction amount 6 mC / cm 2 ) under a current density of 0.025 mA / cm 2 .
  • the working electrode after electrolytic polymerization was washed with distilled water and methanol and dried at 160 ° C. for 30 minutes to form a hole injection layer A containing PEDOT and borodisalicylate ion as a dopant.
  • Hole injection layer B Instead of a constant current electropolymerization of 240 seconds at a current density of 0.025mA / cm 2, 480 seconds at a current density of 0.025 mA / cm 2 (current charge amount 12mC / cm 2), the constant current electropolymerization The same procedure as the manufacturing procedure of the hole injection layer A is repeated except that the hole injection layer B including PEDOT and borodisalicylate ion as the dopant is formed on the ITO layer as the anode. did.
  • Hole injection layer C Instead of a constant current electropolymerization of 240 seconds at a current density of 0.025mA / cm 2, 180 seconds at a current density of 0.1 mA / cm 2 (current charge amount 18mC / cm 2), the constant current electropolymerization
  • the hole injection layer C containing PEDOT and borodisalicylate ion as the dopant is formed on the ITO layer as the anode by repeating the same procedure as that for the hole injection layer A except for the above. did.
  • Hole injection layer D On an ITO electrode having an area of 1 cm 2 , 200 ⁇ L of a commercially available PEDOT: PSS aqueous dispersion (trade name Vitron P: manufactured by Starck Co., Ltd.) was cast and spin-coated at a rotation speed of 4000 rpm for 30 seconds. Subsequently, it dried at 160 degreeC for 30 minute (s), and the positive hole injection layer D which consists of PEDOT: PSS was formed on the ITO layer as an anode.
  • PEDOT: PSS aqueous dispersion trade name Vitron P: manufactured by Starck Co., Ltd.
  • FIG. 2 shows the measurement results of the hole injection layers A to D using an atomic force microscope.
  • Table 1 shows the work function, film thickness, and RMS values measured by the Kelvin method for the hole injection layers A to D. The RMS value was calculated by observing the central portion (area: 10 ⁇ 10 ⁇ m 2 ) of the surface of the conductive polymer layer with an atomic force microscope. The film thickness of the conductive polymer layer was calculated by the following method.
  • the RMS increased as the film thickness increased, and the hole injection layer C exhibited an RMS value exceeding 10 nm.
  • FIG. 2 it can be seen that as the thickness of the film increases, a lot of convex-shaped convex portions are formed on the surface of the hole injection layer.
  • the RMS value of the hole injection layer D made of PEDOT: PSS was small and a flat surface was formed as a whole, but there was a convex part that seemed to be a PEDOT: PSS lump. .
  • the hole injection layers A to C have a slightly smaller work function than the hole injection layer D, and the influence of the thickness of the PEDOT layer was not recognized.
  • a light emitting layer having a lower HOMO level greater ionization potential
  • Example 1 0.04 g of poly [2-methoxy-5- (3-ethylhexyloxy) -1,4-phenylenevinylene] (MEH-PPV) was dissolved in 10 mL of chloroform. 200 ⁇ L of the obtained solution was cast on the hole injection layer A and spin-coated at a rotation speed of 2000 rpm for 20 seconds. When vacuum dried at 60 ° C. for 1 h, a MEH-PPV layer having a thickness of about 80 nm was obtained.
  • MEH-PPV poly [2-methoxy-5- (3-ethylhexyloxy) -1,4-phenylenevinylene]
  • Example 2 The procedure of Example 1 was repeated using the hole injection layer B instead of the hole injection layer A.
  • Comparative Example 1 The procedure of Example 1 was repeated using the hole injection layer C instead of the hole injection layer A.
  • Table 2 shows the number of light-emitting elements of the organic EL elements of Example 1, Example 2, and Comparative Example 1. Moreover, in FIG. 3, the electroluminescence spectrum about the organic EL element of Example 1 measured using the spectrophotometer is shown.
  • the electroluminescence spectrum of the organic EL device of Example 1 shown in FIG. 3 was consistent with the electroluminescence spectrum of the MEH-PPV layer shown in the literature so far. No change in emission spectrum due to absorption peculiar to the hole injection layer was observed, indicating that a transparent hole injection layer was formed.
  • the organic EL device of the present invention exhibits stable light emission performance, it can be suitably applied to flat panel displays and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 安定した発光性能が得られる有機エレクトロルミネッセンス素子を提供する。 陽極3と正孔注入層4と発光層5と陰極6を備えた有機エレクトロルミネッセンス素子1において、正孔注入層4は、3位と4位に置換基を有するチオフェンから選択されたモノマーから構成されたポリマーと、ドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である化合物から発生したアニオンと、を含む導電性ポリマー層から成る。この導電性ポリマー層は、10nm以上の膜厚を有し、発光層5に対向する表面4sの自乗平均面粗さは2~10nmの範囲であり且つ厚み4tの30%以下の値である。この正孔注入層4は、水を主体とした溶媒を含む重合液に陽極3を表面に有する基板2を導入し、電解重合を1.5mC/cm以上18mC/cm未満の通電電荷量の条件下で行うことにより好適に形成される。

Description

有機エレクトロルミネッセンス素子及びその製造方法
 本発明は、安定した発光性能が得られる有機エレクトロルミネッセンス素子(以下、「有機EL素子」という。)に関する。
 有機発光ダイオード(Organic Light Emitting Diode;OLED)とも言われる有機EL素子は、低電圧駆動が可能であり、応答速度が速く、薄型化、軽量化、全固体化が可能である等の特徴を有しており、フラットパネルディスプレイや照明への応用が頻繁に検討されているデバイスである。最も単純な構造の有機EL素子は、正孔輸送能と電子輸送能とを有する発光層が陽極と陰極に挟持された構造を有している。この構造を有する素子の陽極と陰極とに電荷を印加すると、陽極からは正孔が、陰極からは電子が、それぞれ発光層中に注入される。そして、注入された正孔と電子が有機発光層を移動し、クーロン力によって再結合すると、励起子が生成する。この励起子が光(蛍光、燐光)を発して輻射失活し、発生した光が取り出されて利用される。
 発光層が陽極と陰極に挟持された単純構造の有機EL素子の発光性能は、一般に満足のいくものではない。この問題を解決するために、図1に模式的に示す、基板2の表面に陽極3/正孔注入層4/発光層5/陰極6がこの順番で積層された構造を有する有機EL素子1が提案されている。陽極3から発光層5に正孔を注入する場合には、陽極3の仕事関数と発光層5の最高占有軌道(HOMO)準位をできるだけマッチングさせたほうが、正孔注入のエネルギー障壁が小さくなるため、正孔注入効率を向上させることができる。しかしながら、正孔注入のエネルギー障壁は一般に大きく、効率的な正孔注入が困難である。このような場合に、発光層5のHOMO準位と陽極3の仕事関数との間のHOMO準位を有する正孔注入層4を導入すると、正孔注入のエネルギー障壁が低下し、正孔注入効率を向上させることができ、ひいては有機EL素子1の発光性能を向上させることができる。
 正孔注入層4はさらに、陽極3と発光層5と間の界面状態の改質にも大きな影響を与える。陽極3の表面の凸凹が激しいと、発光層5にピンホールが生じやすくなり、或いは陽極3と発光層5との密着性が不均一になって発光ムラが生じやすくなり、さらには陽極3の凸部が発光層5に及ぼす応力により薄い発光層5がダメージを受け、漏れ電流が増加して素子1の発光効率が低下することがある。また、陽極3の表面の凹凸が電界集中の原因となって、素子1の破壊が引き起こされることがある。さらに、発光層5は疎水性であるが、多くの検討において陽極3として使用されるスズドープ酸化インジウム(ITO)は親水性であり、この表面エネルギーの差が発光層5と陽極3との間の密着性を低下させ、素子1が短寿命化することがある。これらの問題を解決するためにも、陽極3と発光層5との間に正孔注入層4が設けられる。したがって、正孔注入層4には、陽極3及び発光層5との密着性に優れる上に、発光層5に対向する表面4sが平坦であることが要請される。さらに、有機EL素子をフラットパネルディスプレイのために用いる場合には一万時間を超える長寿命が要求されるため、正孔注入層4もまた、耐湿性や耐熱性に優れ、有機EL素子1の安定な発光を約束する性質を有することが望ましい。
 ところで、有機EL素子における正孔注入層をP型半導性の導電性ポリマーにより構成する方法がこれまでに提案されてきた。例えば、特許文献1(特表2000-514590号公報)には、ポリチオフェン類、ポリピロール類、ポリアニリン類等からなる導電性ポリマーを正孔注入層のために利用することが記載されており、この文献の実施例には、化学重合により得られたポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸塩を含む分散液をITO基体上に塗布して乾燥することにより得た導電性ポリマー層を正孔注入層とした有機EL素子(以下、3,4-エチレンジオキシチオフェンを「EDOT」と表し、ポリ(3,4-エチレンジオキシチオフェン)を「PEDOT」と表し、ポリスチレンスルホン酸を「PSS」と表し、ポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸塩を「PEDOT:PSS」と表す。)、及び、四フッ化ホウ酸テトラメチルアンモニウムとEDOTをアセトニトリルに溶解した液を重合液とした電解重合によりITO基体上に形成した導電性ポリマー層を正孔注入層とした有機EL素子が具体的に示されている。また、特許文献2(特開2000-90181号公報)には、正孔注入層を粒径が1μm以下の導電性ポリマーを含む分散液から得ることが記載されており、上記分散液の使用により、有機EL素子の陽極と陰極との間の短絡が防止され、素子の寿命を長期化させることができると説明されている。この文献の実施例には、孔径が0.45μm或いは0.22μmのフィルターでろ過したPEDOT:PSSの水性分散液をITO基体上に塗布して乾燥することにより得た導電性ポリマー層を正孔注入層とした有機EL素子が具体的に示されている。
 特許文献3(特開2004-342603号公報)には、電極における単位面積当たりの総電荷量を1.0mC/cm~1.2mC/cmとし、印加される電流密度を0.4mA/cm~1.5mA/cmとし、且つ電流を流す時間を0.8sec~3.0secとした電解重合により正孔注入層を形成する有機EL素子の作製方法が記載されている。電解重合の際に電極に印加される総電荷量、電流密度及び電流を流す時間を上述の範囲で制御することにより、薄膜を電極表面に均一に成膜することができると説明されており、実施例では、EDOTと過塩素酸テトラブチルアンモニウムをアセトニトリルに溶解させた液を重合液とし、総電荷量が1.2mC/cmとなるように電流密度と電流を流す時間を調整して電解重合を行うことにより、約4~約5nmの平均面粗さ(Ra)を有するPEDOTの正孔注入層を形成している。
特表2000-514590号公報 特開2000-90181号公報 特開2004-342603号公報 WO2012/118161A1 WO2012/133858A1
 特許文献1及び特許文献2に示されているPEDOT:PSS水性分散液は、親水性の陽極上に均一に塗布することができるため、平坦な表面を有する正孔注入層を与える。その上、乾燥後には有機溶媒に溶解しにくい正孔注入層が得られるため、この正孔注入層上に有機溶媒に発光材料を溶解させた溶液を用いて発光層を積層する場合に、PEDOT:PSS層が有機溶媒に溶解しないという利点がある。しかし、PEDOT:PSS層が高い吸水性を示すため、大気中の水分による素子の劣化が懸念される。また、PSSは拡散しやすい物質であるため、拡散して素子の特性に悪影響を与えるおそれがある。さらに、PSSのスルホン酸基がITOと反応してインジウムを遊離させるため、インジウムの拡散による素子の劣化も懸念される。
 また、特許文献1及び特許文献3に示されているような有機溶媒を含む重合液を用いた電解重合により得られる正孔注入層の表面は、一般に凹凸が激しく平滑性に乏しい。特許文献3には約4~約5nmの平均面粗さ(Ra)を有する正孔注入層が記載されているものの、この文献の図10及び図11を参照すると、正孔注入層が尖鋭な先端を有する100nmオーダーの長さの凸部を多く有していることがわかる。この尖鋭な先端を有する凸部により、正孔注入層と発光層との密着性が不均一になって発光性能のバラツキが増大し、或いは、薄い発光層がダメージを受け、漏れ電流が増加して素子の発光効率が低下することが懸念される。
 したがって、発光層に対向する表面が平坦であり、その上、耐湿性や耐熱性に優れ、有機EL素子の安定な発光性能を約束する正孔注入層が望まれる。
 出願人は、水を主体とした溶媒を含む重合液を用いた電解重合についてこれまで検討してきた。そして、特許文献4(WO2012/118161A1)及び特許文献5(WO2012/133858A1)において、水を主体とした溶媒を含む重合液を用いた電解重合により得られた、3位と4位に置換基を有するチオフェン(以下、3位と4位に置換基を有するチオフェンを、「置換チオフェン」と表わす。)から成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含む緻密な導電性ポリマー層が、PEDOT:PSSに比較して著しく優れた電気化学的活性を示し正孔輸送能に優れる上に、空気中の水分に安定であり、優れた耐熱性を示すことを報告した。ここで、「非スルホン酸系有機化合物」とは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物を意味する。
 本発明の目的は、上述した知見を基礎として、安定な発光性能を示す有機エレクトロルミネッセンス素子を提供することである。
 発明者らは、鋭意検討した結果、特許文献4及び特許文献5で報告した導電性ポリマー層の表面の粗さを所定の範囲に調整することにより、安定な発光性能を示す有機EL素子が得られ、上述の目的が達成されることを発見した。
 したがって、本発明はまず、基板の表面に設けられた陽極と、陰極と、上記陽極と上記陰極との間に設けられた発光層と、上記陽極と上記発光層との間に設けられ、上記陽極と接している正孔注入層と、を含む有機EL素子であって、上記正孔注入層が、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含む導電性ポリマー層から成り、該導電性ポリマー層が10nm以上の膜厚を有し、上記導電性ポリマー層の上記発光層に対向する表面の自乗平均面粗さ(RMS)が2~10nmの範囲であり且つ上記導電性ポリマー層の膜厚の30%以下の値であることを特徴とする有機EL素子を提供する。
 本発明の有機EL素子における正孔注入層は、水を主体とした溶媒を含む重合液を用いた電解重合により好適に得ることができる。したがって、本発明はまた、上記正孔注入層を、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、上記モノマーと、上記非スルホン酸系有機化合物と、を含む重合液に、陽極を表面に有する基板を導入し、電解重合を1.5mC/cm以上18mC/cm未満の通電電荷量の条件下で行うことによって形成する工程を含むことを特徴とする有機EL素子の製造方法に関する。上述した特定範囲の非スルホン酸系有機化合物は、重合液において支持電解質として作用するため、「非スルホン酸系有機支持電解質」とも表わされる。また、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒を、以下「水リッチ溶媒」と表わす。水リッチ溶媒において、水と有機溶媒との合計量は100質量%である。
 電解重合を1.5mC/cm以上18mC/cm未満の通電電荷量の条件下で行うことにより、陽極の表面に導電性ポリマーの薄層を密着性良く形成することができ、また、導電性ポリマー層表面のRMSを2~10nmの範囲であり且つ導電性ポリマー層の膜厚の30%以下の範囲に効率良く調整することができる。上記重合液を用いた電解重合により得られた導電性ポリマー層の表面には凸部が存在するものの、この凸部は伏皿状の形状を有しており尖鋭な先端を有していない(図2参照)。したがって、特許文献1又は特許文献3に記載されている有機溶媒を含む重合液から得られた正孔注入層に比較して、凸部による薄い発光層へのダメージを抑制することができる。
 また、上記重合液を用いた電解重合により得られる上記導電性ポリマー層は、電気化学的活性に富み優れた正孔輸送能を有する上に、空気中の水分に安定であり、耐熱性に優れる。したがって、この導電性ポリマー層は、正孔注入層と正孔輸送層とを兼ねた層とすることができる。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された平坦な表面を有する導電性ポリマー層が電解重合により陽極上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する(特許文献4、特許文献5参照)。したがって、溶媒は水のみから成るのが好ましい。
 上記重合液を用いた電解重合では、導電性ポリマー層の膜厚が増加するに連れて、導電性ポリマー層表面のRMSも増加するが、RMSが2~10nmの範囲であり且つ導電性ポリマー層の膜厚の30%以下の値であると、バラツキの少ない安定な発光性能を示す有機EL素子が得られる。また、導電性ポリマー層の膜厚が10nm未満になると、平坦な表面を有する導電性ポリマー層が再現性良く得られなくなる。本発明では、導電性ポリマー層が薄く膜厚の30%の値が10nm以下である場合にはRMSがこの層の膜厚の30%を超えることがなく、導電性ポリマー層が厚く膜厚の30%の値が10nmを超える場合にはRMSが10nmを超えることがない。RMSが上述の範囲より大きくなると、発光の安定性が低下し、全く発光しないか或いは著しく弱い発光しか示さない有機EL素子が出現する傾向が認められる。また、導電性ポリマー層の膜厚が薄い場合には、ピンホールが生じやすく、また発光ムラが発生しやすくなる。なお、本発明では、導電性ポリマー層の表面粗さの尺度として、自乗平均面粗さ(RMS)を採用している。RMSは、特許文献3において採用されている平均面粗さ(Ra)と比較して、導電性ポリマー層表面の凸部の影響を受けやすい尺度であり、導電性ポリマー層(正孔注入層)の凸部が発光層に及ぼす応力を評価するためにより適した尺度である。
 上記導電性ポリマー層の膜厚は、10nm以上であるが、100nm以下であるのが好ましく、70nm以下であるのがより好ましい。導電性ポリマー層の膜厚が厚くなると有機EL素子の内部抵抗が増加して、素子に対する印加電圧が増加し或いは発光効率が低下するからであり、また、上述したように導電性ポリマー層の膜厚が増加するに連れてポリマー層表面のRMSも増加するため、導電性ポリマー層の膜厚が厚くなると平坦な表面が得られにくくなるからである。
 上記導電性ポリマー層には、ドーパントとして、非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物から発生したアニオンが含まれる。無機化合物から発生したアニオン、或いは、有機化合物であってもスルホン酸基及び/又はスルホン酸塩基を有する化合物から発生したアニオン、或いは、スルホン酸基及び/又はスルホン酸塩基を有していない有機化合物であってもアニオンの分子量が200未満である化合物から発生したアニオンは、耐熱性に優れた導電性ポリマー層を与えない(特許文献4、特許文献5参照)。非スルホン酸系有機化合物であってそのアニオンの分子量が200以上である化合物のなかでも、ボロジサリチル酸及び/又はボロジサリチル酸塩は、特に平滑な表面を有する導電性ポリマー層を与えるため好ましい。
 ただし、ボロジサリチル酸及びボロジサリチル酸塩に含まれるボロジサリチル酸イオンが水中で水への溶解度が極めて小さいサリチル酸とホウ酸とに加水分解することがわかっている。そのため、水リッチ溶媒を含む重合液においてボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用すると、徐々に重合液中に沈殿が生じて使用に耐えなくなる。このことを回避するため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用する場合には、この支持電解質を液に添加した後沈殿生成前に電解重合を行うか、或いは、ボロジサリチル酸イオンの加水分解を抑制する作用を有するニトロベンゼン及びニトロベンゼン誘導体から成る群から選択された安定化剤と併用する。
 上記導電性ポリマー層を構成するためのモノマーには、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから成る群から選択された化合物であれば、特に限定が無い。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。特にモノマーがEDOTであると、環境安定性と光透過性(透明性)に優れる導電性ポリマー層が得られるため好ましい。
 本発明の有機EL素子に含まれる正孔注入層は、置換チオフェンから選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての特定範囲の非スルホン酸系有機化合物から発生したアニオンとを含む、電気化学的活性に富み正孔輸送能に優れ、耐水性及び耐熱性に優れる導電性ポリマー層から成り、極めて平坦な表面を有しているため、本発明の有機EL素子はバラツキの少ない安定した発光性能を示す。
有機EL素子の構成を模式的に示す図である。 原子間力顕微鏡により正孔注入層表面の平滑性を測定した結果を示す図である。 有機EL素子のエレクトロルミネッセンススペクトルを示す図である。
 本発明の有機EL素子は、陽極と陰極との間に正孔注入層と発光層とを少なくとも有する。最も簡単な構造の有機EL素子は、図1に模式的に示されている、基板2の表面に陽極3/正孔注入層4/発光層5/陰極6がこの順番で積層された構造を有する有機EL素子1である。多機能を有する高分子材料で発光層が構成されている有機EL素子は、この単純な構造を有することが多い。しかしながら、本発明の有機EL素子は、陽極と陰極との間に、正孔注入層と発光層に加えて、正孔輸送層、電子輸送層、電子注入層等の公知の有機EL素子に含まれている層を含んでいても良い。以下、各構成要素について説明する。
 有機EL素子の支持体の役割を果たす基板のためには、光学ガラス、石英ガラス、無アルカリガラスなどの透明で絶縁性のガラス基板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルサルホン、ポリアクリレート、ポリイミドなどの透明で絶縁性のプラスチック基板の他、アルミナ等の不透明で絶縁性のセラミック基板、ステンレス等の金属基板の表面を酸化ケイ素等の絶縁膜で被覆した基板、不透明で絶縁性のプラスチック基板が使用される。有機EL素子においては、陽極側から光を取り出すことが多いため、基板として、上述した透明で絶縁性のガラス基板又は透明で絶縁性のプラスチック基板が好適に使用される。
 基板の表面には、発光層に対する正孔注入の役割を果たす陽極が設けられる。陽極のためには、大きい仕事関数、好ましくは4.0eV以上の仕事関数を有する導電層が使用され、これらは、材料の性質に応じて、蒸着法、スパッタリング法、塗布法等の公知の方法により設けられる。陽極の例としては、酸化インジウム、スズドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、酸化スズ、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)の透明な酸化物の導電層、金、銀、白金、鉄、ニッケル、銅などの金属の導電層が挙げられる。
 陽極を構成する導電層は、単層であっても良く、異なる仕事関数を有する複数の層であっても良い。有機EL素子においては、陽極側から光を取り出すことが多いため、陽極として、上述の透明な酸化物の導電層又は金、銀、白金等の金属の半透明の導電層が好適に使用される。陽極の膜厚には厳密な制限がなく、材料の種類や要求される透明度にもよるが、一般に5nm~20μm、好ましくは10~500nmの範囲の膜厚である。膜厚が5nm以下であると、陽極の強度及び導電性が不十分な場合がある。
 本発明の有機EL素子では、陽極の直上に、特定の正孔注入層が設けられる。正孔注入層は、陽極から注入された正孔を発光層側にスムーズに移送し、正孔注入効率を向上させる役割を果たす。本発明の有機EL素子における正孔注入層は、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、を含む導電性ポリマー層から成る。
 上記導電性ポリマー層は、10nm以上の膜厚を有し、表面のRMSが2~10nmの範囲であり且つ導電性ポリマー層の膜厚の30%以下の値である。導電性ポリマー層の膜厚は、一般的には10~100nm、好ましくは10~70nmの範囲である。導電性ポリマー層の膜厚が増加すると有機EL素子の内部抵抗が増加して、素子に対する印加電圧が増加し或いは発光効率が低下するからであり、また、導電性ポリマー層の膜厚が増加するに連れてポリマー層表面のRMSも増加するため、導電性ポリマー層の膜厚が増加すると平坦な表面が得られにくくなるからである。なお、RMSは原子間力顕微鏡にて導電性ポリマー層表面を観察することにより求めることができ、導電性ポリマー層の膜厚は、原子間力顕微鏡等により測定することができる。また、所定の電流密度での定電流電解重合を時間を変えて2回以上行い、各回の電解重合により得られた導電性ポリマー層の膜厚を計測した後、得られた膜厚と電解重合における通電電荷量との関係を示す計算式を導出し、導出した計算式を用いて通電電荷量から導電性ポリマー層の膜厚を算出しても良い。
 上記導電性ポリマー層は、モノマーとしての置換チオフェンと支持電解質としての上述した特定範囲の非スルホン酸系有機化合物とを含む電解重合用の重合液を得る調製工程、及び、得られた重合液に陽極を表面に備えた基板を導入し、電解重合を行うことにより、上記モノマーの重合により得られた導電性ポリマー層を陽極上に形成する重合工程、を含む方法により製造することができる。以下、各工程について詳細に説明する。
 (1)調製工程
 この工程で調製する電解重合用の重合液は、水リッチ溶媒と、モノマーとしての置換チオフェンと、支持電解質としての特定範囲の非スルホン酸系有機化合物と、を必須成分として含む。
 重合液の調製には、環境負荷が小さく、経済的にも優れる水を主溶媒として使用する。この重合液には、水に加えて、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、アセトン、テトラヒドロフラン、酢酸メチルなどの有機溶媒が含まれていてもよいが、溶媒全体の80質量%以上は水である。水は溶媒全体の90質量%以上であるのが好ましく、溶媒全体の95質量%以上であるのがより好ましく、溶媒が水のみから成るのが特に好ましい。水リッチ溶媒における有機溶媒の含有量が増加すると、ポリマー粒子が緻密に充填された導電性ポリマー層が電解重合により陽極上に形成されにくくなり、有機溶媒の含有量が溶媒全体の20質量%を超えると、得られた導電性ポリマー層の耐熱性が顕著に低下する。
 モノマーとしては、置換チオフェン、すなわち、3位と4位に置換基を有するチオフェンから選択されたモノマーが用いられる。チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。使用可能なモノマーの例としては、3,4-ジメチルチオフェン、3,4-ジエチルチオフェンなどの3,4-ジアルキルチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェンなどの3,4-ジアルコキシチオフェン、3,4-メチレンジオキシチオフェン、EDOT、3,4-(1,2-プロピレンジオキシ)チオフェンなどの3,4-アルキレンジオキシチオフェン、3,4-メチレンオキシチアチオフェン、3,4-エチレンオキシチアチオフェン、3,4-(1,2-プロピレンオキシチア)チオフェンなどの3,4-アルキレンオキシチアチオフェン、3,4-メチレンジチアチオフェン、3,4-エチレンジチアチオフェン、3,4-(1,2-プロピレンジチア)チオフェンなどの3,4-アルキレンジチアチオフェン、チエノ[3,4-b]チオフェン、イソプロピルチエノ[3,4-b]チオフェン、t-ブチル-チエノ[3,4-b]チオフェンなどのアルキルチエノ[3,4-b]チオフェンが挙げられる。モノマーとして、単独の化合物を使用しても良く、2種以上の化合物を混合して使用しても良い。特に、EDOTを使用すると、環境安定性と光透過性(透明性)に優れる導電性ポリマー層が得られるため好ましい。
 重合液中の支持電解質としては、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である化合物が用いられる。これらの支持電解質のアニオンが、以下に示す電解重合の過程でドーパントとして導電性ポリマー層中に含まれる。特に、ボロジサリチル酸、ボロジサリチル酸塩、式(I)又は式(II)
Figure JPOXMLDOC01-appb-C000001
(式中、mが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、nが1~8の整数、好ましくは1~4の整数、特に好ましくは2を意味し、oが2又は3を意味する)で表わされるスルホニルイミド酸及びこれらの塩を好ましく使用することができる。塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩などのアルキルアンモニウム塩、ジエチルアンモニウム塩、ジブチルアンモニウム塩などのジアルキルアンモニウム塩、トリエチルアンモニウム塩、トリブチルアンモニウム塩などのトリアルキルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩などのテトラアルキルアンモニウム塩を例示することができる。これらの支持電解質は、特に耐熱性に優れた導電性ポリマー層を与える。中でも、ビス(ペンタフルオロエタンスルホニル)イミド酸の塩、例えばカリウム塩、ナトリウム塩、アンモニウム塩は、極めて高い耐熱性を有する導電性ポリマー層を与える。
 また、ボロジサリチル酸及び/又はボロジサリチル酸塩は、安価で経済的に有利であり、特に平滑な表面を有する導電性ポリマー層を与えるため好ましい。しかしながら、ボロジサリチル酸及びボロジサリチル酸塩に含まれるボロジサリチル酸イオンが水中で水への溶解度が極めて小さいサリチル酸とホウ酸とに加水分解することがわかっている。そのため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用すると、徐々に重合液中に沈殿が生じて使用に耐えなくなる。このことを回避するため、ボロジサリチル酸及び/又はボロジサリチル酸塩を支持電解質として使用する場合には、この支持電解質を液に添加した後沈殿生成前に電解重合を行うか、或いは、ボロジサリチル酸イオンの加水分解を抑制する作用を有するニトロベンゼン及びニトロベンゼン誘導体から成る群から選択された安定化剤と併用する。上記安定化剤は、単独の化合物であっても良く、2種以上の化合物であっても良い。ニトロベンゼン誘導体としては、ニトロフェノール、ニトロベンジルアルコール、ニトロ安息香酸、ジニトロ安息香酸、ジニトロベンゼン、ニトロアニソール、ニトロアセトフェノンを例示することができ、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、及びこれらの混合物が好ましい。
 支持電解質は、単独の化合物を使用しても良く、2種以上の化合物を使用しても良く、重合液に対する飽和溶解量以下の濃度で且つ電解重合のために充分な電流が得られる量で使用され、好ましくは10mM以上の濃度で、特に好ましくは30mM以上の濃度で使用される。
 重合液の調製は、モノマーの含有量に応じて、以下のような方法により行う。モノマーが飽和溶解量以下の量である場合には、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入し、手作業により或いは機械的な攪拌手段を使用して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。モノマーが飽和溶解量を超える量である場合には、すなわち、重合液製造用の容器に、水リッチ溶媒、モノマーとしての置換チオフェン、及び上述した特定範囲の支持電解質を導入して攪拌・均一化した後静置するとモノマーが相分離する場合には、液に超音波照射を施して相分離したモノマーを重合液中に油滴として分散させることにより重合液を調製することができる。水リッチ溶媒に飽和溶解量を超える量のモノマーを添加した液に超音波照射を施してモノマーを油滴として分散させ、次いで得られた液に支持電解質を添加することにより、本発明の重合液を得ることもできる。重合液における各成分が安定であれば、調製時の温度に制限は無い。なお、本明細書において、「超音波」とは10kHz以上の周波数を有する音波を意味する。
 超音波照射のために、超音波洗浄機用、細胞粉砕機用等として従来から知られている超音波発振器を特に限定なく使用することができる。モノマー油滴が水リッチ溶媒に安定に分散している液を超音波照射により得るためには、相分離しているモノマーを数μm以下の直径を有する油滴にする必要があり、そのためには、少なくとも機械的作用が強い数百nm~数μmのキャビテーションを発生させることができる15~200kHzの周波数の超音波を相分離液に照射する必要がある。超音波の出力は、4W/cm以上であるのが好ましい。超音波照射時間には厳密な制限はないが、2~10分の範囲であるのが好ましい。照射時間が長いほど、モノマー油滴の凝集が阻害され、解乳化までの時間が長期化する傾向にあるが、超音波照射時間が10分以上では、油滴の凝集阻害効果が飽和する傾向が認められる。異なる周波数及び/又は出力を有する超音波を用いて複数回の照射を行うことも可能である。飽和溶解量を超えるモノマーの含有量は、超音波照射により解乳化が抑制された分散液が得られる量であれば良く、モノマーの種類ばかりでなく、支持電解質の種類と量、超音波照射条件によっても変化する。
 本発明の重合液には、水リッチ溶媒、置換チオフェンから選択されたモノマー、及び上記特定範囲の支持電解質に加えて、本発明に悪影響を与えない範囲内で他の添加物が含まれていても良い。好適な添加物として、水溶性のノニオン界面活性剤が挙げられる。モノマーがノニオン界面活性剤のミセル中に濃縮されるため、速やかに電解重合が進行し、高電導度を示すポリマーが得られる。その上、ノニオン界面活性剤自体はイオン化せず、上記特定範囲の支持電解質のアニオンによるポリマーへのドーピングを阻害することが無い。
 ノニオン界面活性剤としては、公知の水溶性のノニオン界面活性剤を特に限定無く使用することができる。例としては、ポリアルキレングリコール、ポリビニルアルコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンスチリルフェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレン付加アルキルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加スチリルフェノールホルムアルデヒド縮合物、ポリオキシアルキレン付加ベンジルフェノールホルムアルデヒド縮合物、アルキンジオール、ポリオキシアルキレン付加アルキンジオール、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステルなどが挙げられる。これらは単独で使用しても良く、2種以上を混合して使用しても良い。また、例えば2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのような分散効果が高いアルキンジオールと他のノニオン界面活性剤、好ましくは、ポリオキシエチレン(9)ノニルフェニルエーテル分岐型のようなポリオキシエチレンアルキルフェニルエーテルとの組み合わせを重合液において使用すると、重合液におけるモノマーの含有量を大幅に増加させることができるため好ましい。
 ノニオン界面活性剤を併用する場合には、重合液製造用の容器に、水リッチ溶媒、モノマー、上記特定範囲の支持電解質、及びノニオン界面活性剤を導入し、手作業により或いは機械的な攪拌手段を使用して或いは超音波を照射して各成分を水リッチ溶媒に溶解させることにより、重合液を調製する。また、重合液製造用の容器に、水リッチ溶媒、モノマー、及びノニオン界面活性剤を導入して、各成分を水リッチ溶媒に溶解させた液を調製した後、電解重合直前に、この液に上記特定範囲の支持電解質を添加して溶解させても良い。
 いずれの重合液の製造方法においても、支持電解質としてのボロジサリチル酸及び/又はボロジサリチル酸塩と、安定化剤としてのニトロベンゼン及び/又はニトロベンゼン誘導体と、を併用する場合には、重合液製造用の容器に両者をほぼ同時に導入するか、或いは安定化剤を先に導入する。安定化剤はボロジサリチル酸イオンの加水分解を抑制するために使用されるからである。
 (2)重合工程
 上述の調製工程により得られた重合液に、上述した陽極を表面に有する基板と、対極とを導入し、電解重合を行うことにより、置換チオフェンの重合により得られた導電性ポリマー層を陽極上に形成し、有機EL素子のための正孔注入層を得る。
 電解重合の対極としては、白金、ニッケルなどの板を用いることができる。
 電解重合は、調製工程により得られた重合液を用いて、定電位法、定電流法、電位掃引法のいずれかの方法により行われるが、通電電荷量は1.5mC/cm以上18mC/cm未満の範囲に調整される。定電流電解重合が好ましく、この場合の電流密度は0.001~1mA/cm、好ましくは0.01~0.1mA/cmであり、電解重合時間は1.5~18000秒、好ましくは30~150秒である。上記重合液を用いた電解重合では、導電性ポリマー層の膜厚が増加するに連れて、導電性ポリマー層表面のRMSも増加するため、導電性ポリマー層の膜厚の調整を介してRMSを調整することができる。
 上記電解重合により、上述した特定範囲の非スルホン酸系有機支持電解質のアニオンをドーパントとして含む導電性ポリマー層であって、10nm以上の膜厚を有し、表面のRMSが2~10nmの範囲であり且つ導電性ポリマー層の膜厚の30%以下の値である導電性ポリマー層が、陽極上に正孔注入層として形成される。得られる導電性ポリマー層の密度は、1.15~1.80g/cmの範囲である。導電性ポリマー層の密度が1.15g/cm未満であると、耐熱性が急激に低下し、密度が1.80g/cmを超える導電性ポリマー層の製造は困難である。耐熱性に優れた導電性ポリマー層の密度は、好ましくは1.20~1.80g/cmの範囲、特に好ましくは1.60~1.80g/cmの範囲である。また、柔軟性を有する有機EL素子を得る場合には、導電性ポリマー層の密度が高すぎると導電性ポリマー層が固くなって柔軟性に乏しくなるため、導電性ポリマー層の密度が1.75g/cm以下であるのが好ましく、1.70g/cm以下であるのが特に好ましい。
 電解重合後の導電性ポリマー層を水、エタノール等で洗浄し、乾燥することにより、陽極上に密着性良く形成された耐熱性に優れた導電性ポリマー層(正孔注入層)を得ることができる。この導電性ポリマー層は、空気中の水分に安定であり、また中性付近のpHを示すため、有機EL素子の製造或いは使用の過程で他の構成要素が腐食されるおそれも無い。
 本発明の有機EL素子では、上述した正孔注入層の上に、必要に応じて正孔輸送層が設けられても良い。正孔輸送層は、陽極から注入された正孔の発光層への輸送効率を向上させる役割を果たし、高い正孔移動度を有すると共に、陰極側から注入される電子を流しにくい有機材料により構成される。本発明では、公知の正孔輸送性材料を正孔輸送層のために特に限定なく使用することができる。例としては、トリアリールアミン誘導体、フェニレンジアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、オキサゾール誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、ポリカルバゾール及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリチオフェン及びその誘導体、ポリアニリン及びその誘導体、ポリピロール及びその誘導体、ポリ(パラフェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体が挙げられる。正孔輸送性材料のうち、LUMOのエネルギーレベルが高く(電子親和力が小さく)、励起三重項準位が高い材料を、発光層に接する電子ブロック層とすることができる。電子ブロック層は、陽極側から移動してくる正孔を発光層に輸送するとともに、発光層から移動してくる電子が陽極側に到達するのを阻止して正孔と電子の再結合確率を上昇させ、生成した励起子を発光層に閉じ込める役割を果たす。電子ブロック層を構成する材料の例としては、ジオクチルフルオレン-トリフェニルアミンコポリマーが挙げられる。
 正孔輸送層及び電子ブロック層は、材料の性質に応じて、蒸着法、塗布法等の公知の方法により設けることができ、単一の輸送材料を含んでいても良く、2種以上の輸送材料を含んでいても良い。スピンコート法、キャスティング法、スクリーン印刷法等などの塗布法では、高分子材料を有機溶媒に溶解させた溶液、或いは、低分子材料をバインダーとともに有機溶媒に溶解させた溶液が用いられる。溶媒及びバインダーとしては、有機EL素子の特性に悪影響を及ぼさないものを限定なく使用することができる。有機溶媒の例としては、クロロホルム、塩化メチレン、ジクロロエタンなどの塩化炭素、テトラヒドロフランなどのエーテル、トルエン、キシレンなどの芳香族炭化水素、アセトン、メチルエチルケトンなどのケトン、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステルが挙げられ、バインダーの例としては、ポリビニルカルバゾール、ポリカーボネート、ポリエステル、ポリアリレート、ポリスチレンが挙げられる。
 正孔輸送層及び電子ブロック層の膜厚は、一般には5~1000nm、好ましくは10~200nmの範囲である。膜厚が5nm以下であると、ピンホールの発生が懸念され、膜厚が1000nm以上であると、素子の内部抵抗が大きくなって発光効率が低下する場合がある。
 本発明の有機EL素子では、上述した正孔注入層の上に、又は存在する場合には正孔輸送層或いは電子ブロック層の上に、発光層が設けられる。
 発光層のためには、公知の低分子系発光材料及び高分子系発光材料を特に限定なく使用することができる。0.1~数mol%の発光材料がホスト材料に分散された発光層でも良い。
 低分子系発光材料としては、4,4´-ビス(2,2´-ジフェニルビニル)-ビフェニルなどの芳香族ジメチリデン化合物、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾールなどのオキサジアゾール化合物、3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾールなどのトリアゾール誘導体、1,4-ビス(2-メチルスチリル)ベンゼンなどのスチリルベンゼン化合物の他、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、キナクドリン誘導体、クマリン誘導体、ルブレン誘導体などが例示される。また、アゾメチン亜鉛錯体、トリス(8-キノリノラト)アルミニウム、トリス(4-メチル-8-キノリノラト)アルミニウム、ビス(ベンゾキノリノラト)ベリリウム、トリス(2-フェニルピリジン)イリジウム、(1,10-フェナントロリン)トリス[4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオナト]ユーロピウム、白金オクタエチルポルフィリンなどの金属錯体が例示される。
 高分子系発光材料の例としては、ポリ(1,4-フェニレン)、ポリ(2-デシルオキシ-1,4-フェニレン)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニレン]ジブロマイド、ポリ(1,4-フェニレンビニレン)、ポリ[2-(2´-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン]、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン]、ポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)]、ポリ(9,9-ジオクチルフルオレン),ポリスピロ、ポリ(3-ヘキシルチオフェン)、ポリ(ジフェニルアセチレン)、ポリ(N-エチル-2-ビニルカルバゾールが挙げられる。
 ホスト材料の例としては、トリス(8-キノリノラト)アルミニウム、4,4´-N,N´-ジカルバゾルビフェニル、4,4´-ビス(2,2´-ビフェニルビニル)ビフェニルが挙げられる。
 発光層は、材料の性質に応じて、蒸着法、塗布法等の公知の方法により形成され、単一の発光材料を含んでいても良く、2種以上の発光材料を含んでいても良い。また、2層以上の発光層が設けられても良い。スピンコート法、キャスティング法、スクリーン印刷法等などの塗布法では、高分子材料を有機溶媒に溶解させた溶液、或いは、低分子材料をバインダーとともに有機溶媒に溶解させた溶液が用いられ、正孔輸送層の説明において例示した有機溶媒及びバインダーを使用することができる。発光層の厚みは、材料にもよるが、一般には5~1000nm、好ましくは10~200nmの範囲である。膜厚が5nm以下であると、ピンホールの発生が懸念され、膜厚が1000nm以上であると、素子の内部抵抗が大きくなって発光効率が低下する場合がある。
 本発明の有機EL素子では、発光層の上に、必要に応じて電子輸送層が設けられても良い。電子輸送層は、陰極から注入された電子の発光層への輸送効率を向上させる役割を果たし、高い電子移動度を有すると共に、陽極側から注入される電子を流しにくい有機材料が使用される。本発明では、公知の電子輸送性材料を電子輸送層のために特に限定なく使用することができる。例としては、オキサジアゾール誘導体、オキサゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、ペリレン誘導体、キノリン誘導体、キノキサリン誘導体、フルオレノン誘導体、アントロン誘導体、フェナントロリン誘導体の他、トリス(8-キノリナト)アルミニウムのような有機金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。電子輸送性材料のうち、HOMOのエネルギーレベルが低く(イオン化ポテンシャルが大きく)、励起三重項準位が高い材料を、発光層に接する正孔ブロック層とすることができる。正孔ブロック層は、陰極側から移動してくる電子を発光層に輸送するとともに、発光層から移動してくる正孔が陰極側に到達するのを阻止して正孔と電子の再結合確率を上昇させ、生成した励起子を発光層に閉じ込める役割を果たす。正孔ブロック層を構成する材料としては、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核錯体、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリンが例示される。
 電子輸送層及び正孔ブロック層は、材料の性質に応じて、蒸着法、塗布法等の公知の方法により設けることができ、単一の輸送材料を含んでいても良く、2種以上の輸送材料を含んでいても良い。スピンコート法、キャスティング法、スクリーン印刷法等などの塗布法では、高分子材料を有機溶媒に溶解させた溶液、或いは、低分子材料をバインダーとともに有機溶媒に溶解させた溶液が用いられ、正孔輸送層の説明において例示した有機溶媒及びバインダーを使用することができる。電子輸送層及び正孔ブロック層の厚みは、材料にもよるが、一般には5~1000nm、好ましくは10~200nmの範囲である。膜厚が5nm以下であると、ピンホールの発生が懸念され、膜厚が1000nm以上であると、素子の内部抵抗が大きくなって発光効率が低下する場合がある。
 発光層の上に、又は存在する場合には電子輸送層或いは正孔ブロック層の上に、発光層に電子を注入する陰極が設けられる。陰極としては、電子を発光層に効率良く注入するために、小さい仕事関数、好ましくは3.8eV以下の仕事関数を有する導電層が使用される。例えば、リチウム、セシウム、アルミニウム、アルミニウム-リチウム合金、アルミニウム-カルシウム合金、カルシウム、マグネシウム、マグネシウム-銀合金、マグネシウム-インジウム合金、バリウム、インジウムなどの金属層又は合金層を陰極とすることができる。金属層又は合金層は、単層であっても良く、異なる仕事関数を有する複数の層であっても良い。これらの陰極は、材料の性質に応じて、蒸着法、スパッタリング法、塗布法等の公知の方法により形成することができる。陰極の膜厚には、厳密な制限がないが、一般に5~20μm、好ましくは10~500nmの範囲である。膜厚が5nm以下であると、陰極の強度及び導電性が不十分な場合がある。
 発光層又は存在する場合には電子輸送層或いは正孔ブロック層と、陰極との間に、必要に応じて電子注入層が設けられても良い。電子注入層は、電子注入効率を向上させる役割を果たす。電子注入層用の材料としては、周期律表の1族及び2族に属する金属及びその酸化物、ハロゲン化物、炭酸塩などが挙げられる。特に、蒸着法により形成された0.5~1.0nmの厚みを有するLiF、CsF等の周期律表の1族及び2族の金属のフッ化物が好適に用いられる。
 以下に本発明の実施例を示すが、本発明は以下の実施例に限定されない。
 (A)正孔注入層の製造及び評価
 正孔注入層A
 ガラス容器に蒸留水50mLを導入し、この液にEDOTを0.1g(濃度0.014M)添加し、25℃で60分間攪拌し、EDOTの全量が水に溶解した液を得た。この液に、p-ニトロフェノール0.7g(濃度0.1M)、及び、ボロジサリチル酸アンモニウム1.08g(濃度0.08M)を、この順番で添加し、均一に攪拌し、EDOT、p-ニトロフェノール、及びボロジサリチル酸アンモニウムが水に溶解した重合液を得た。
 得られた重合液に、作用極としての1cmの面積を有し且つ150nmの膜厚を有するITO層を備えたITO電極、対極としての4cmの面積を有するPtメッシュ、参照極としての銀-塩化銀電極を導入し、電流密度0.025mA/cmの条件下で240秒間(通電電荷量6mC/cm)、定電流電解重合を行った。電解重合後の作用極を蒸留水、メタノールで洗浄し、160℃で30分乾燥して、PEDOTとドーパントとしてのボロジサリチル酸イオンとを含む正孔注入層Aを形成した。
 正孔注入層B
 電流密度0.025mA/cmの条件での240秒間の定電流電解重合の代わりに、電流密度0.025mA/cmの条件で480秒間(通電電荷量12mC/cm)、定電流電解重合を行った点を除いて、正孔注入層Aの製造手順と同様の手順を繰り返し、陽極としてのITO層上に、PEDOTとドーパントとしてのボロジサリチル酸イオンとを含む正孔注入層Bを形成した。
 正孔注入層C
 電流密度0.025mA/cmの条件での240秒間の定電流電解重合の代わりに、電流密度0.1mA/cmの条件で180秒間(通電電荷量18mC/cm)、定電流電解重合を行った点を除いて、正孔注入層Aの製造手順と同様の手順を繰り返し、陽極としてのITO層上に、PEDOTとドーパントとしてのボロジサリチル酸イオンとを含む正孔注入層Cを形成した。
 正孔注入層D
 1cmの面積を有するITO電極上に、市販のPEDOT:PSS水性分散液(商品名バイトロンP:スタルク社製)の200μLをキャストし、4000rpmの回転数で30秒間スピンコートを行った。次いで、160℃で30分間乾燥し、陽極としてのITO層上に、PEDOT:PSSから成る正孔注入層Dを形成した。
 図2に、正孔注入層A~Dについての原子間力顕微鏡による測定結果を示す。また、表1に、正孔注入層A~Dについての、ケルビン法にて測定した仕事関数、膜厚及びRMSの値を示す。RMSの値は、原子間力顕微鏡にて導電性ポリマー層表面の中央部(面積:10×10μm)を観察することにより算出した。また、導電性ポリマー層の膜厚は、以下の方法により算出した。まず、ITO上に0.1mA/cmの条件で定電流電解重合を1分間行うことにより導電性ポリマー層を形成し、原子間力顕微鏡によりポリマー層の膜厚を測定する実験と、ITO上に0.1mA/cmの条件で定電流電解重合を28.6分間行うことにより導電性ポリマー層を形成し、段差計によりポリマー層の厚みを測定する実験とを行った。次いで、この2つの実験から通電電荷量と導電性ポリマー層の膜厚との関係式を導出した。そして、導出した関係式を用いて電解重合の通電電荷量から導電性ポリマー層の膜厚を算出した。なお、陽極としてのITO層の仕事関数は、4.8eVであった。
Figure JPOXMLDOC01-appb-T000002
 PEDOTとドーパントとしてのボロジサリチル酸イオンとを含む正孔注入層A~Cでは、膜厚が増加するにつれてRMSが増加し、正孔注入層Cは10nmを超えるRMS値を示した。図2を参照すると、膜厚が増加するにつれて正孔注入層の表面に伏皿状の形状の凸部が多く形成されたことがわかる。これに対し、PEDOT:PSSから成る正孔注入層DのRMS値は小さく全体的に平坦な表面が形成されていたが、PEDOT:PSSの塊と思われる凸部が部分的に存在していた。
 また、正孔注入層A~Cは、正孔注入層Dよりわずかに小さい仕事関数を有しており、PEDOT層の厚みによる影響は認められなかった。これらの正孔注入層をより低いHOMOレベル(より大きなイオン化ポテンシャル)を有する発光層と組み合わせることにより、有機EL素子を作成した。
 (B)有機EL素子の製造及び評価
 実施例1
 0.04gのポリ[2-メトキシ-5-(3-エチルへキシルオキシ)-1,4-フェニレンビニレン](MEH-PPV)を10mLのクロロホルムに溶解した。得られた溶液200μLを正孔注入層A上にキャストし、2000rpmの回転数で20秒間スピンコートを行った。60℃で1h真空乾燥したところ、約80nmの厚さのMEH-PPV層が得られた。この上にGa-In共晶混合物を200μmの厚さで塗布し、さらに100nmの厚さのAlスパッタガラスを貼り付け、有機EL素子を10個作成した。得られた素子に6Vの電圧を印加し、発光が認められた有機EL素子の個数を調べた。
 実施例2
 正孔注入層Aの代わりに正孔注入層Bを用いて、実施例1の手順を繰り返した。
 比較例1
 正孔注入層Aの代わりに正孔注入層Cを用いて、実施例1の手順を繰り返した。
 以下の表2に、実施例1、実施例2及び比較例1の有機EL素子の発光個数を示す。また、図3には、分光光度計を用いて測定した実施例1の有機EL素子についてのエレクトロルミネッセンススペクトルを示す。
Figure JPOXMLDOC01-appb-T000003
 図3に示した実施例1の有機EL素子のエレクトロルミネッセンススペクトルは、これまでの文献に示されているMEH-PPV層のエレクトロルミネッセンススペクトルと一致していた。正孔注入層に特有の吸収による発光スペクトルの変化は認められず、透明な正孔注入層が形成されていることがわかった。
 実施例1の有機EL素子は全数が発光し、実施例2の有機EL素子も10個中8個において良好な発光が認められた。これに対し、RMS値が10nmを超える正孔注入層Cを有する比較例1の有機EL素子では、10個中わずかに1個に発光が認められたに過ぎなかった。この結果は、正孔注入層の表面の凹凸により正孔注入層と発光層との密着性が不均一になったこと、正孔注入層の表面の凹凸により発光層にダメージが与えられたこと、を反映したものであると考えられる。
 本発明の有機EL素子は、安定な発光性能を示すため、フラットパネルディスプレイや照明に好適に応用することができる。
 1  有機EL素子
 2  基板
 3  陽極
 4  正孔注入層
   4s  表面
   4t  膜厚
 5  発光層
 6  陰極

Claims (7)

  1.  基板の表面に設けられた陽極と、陰極と、
     前記陽極と前記陰極との間に設けられた発光層と、
     前記陽極と前記発光層との間に設けられ、前記陽極と接している正孔注入層と、
     を含む有機エレクトロルミネッセンス素子であって、
     前記正孔注入層が、
     3位と4位に置換基を有するチオフェンから成る群から選択された少なくとも一種のモノマーから構成されたポリマーと、
     該ポリマーに対するドーパントとしての、非スルホン酸系有機化合物であって該化合物のアニオンの分子量が200以上である少なくとも一種の化合物から発生したアニオンと、
     を含む導電性ポリマー層から成り、
     該導電性ポリマー層が10nm以上の膜厚を有し、
     前記導電性ポリマー層の前記発光層に対向する表面の自乗平均面粗さが2~10nmの範囲であり且つ前記導電性ポリマー層の膜厚の30%以下の値である
     ことを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記導電性ポリマー層の膜厚が100nm以下である、請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記非スルホン酸系有機化合物がボロジサリチル酸及びボロジサリチル酸塩から成る群から選択された少なくとも一種の化合物である、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記モノマーが3,4-エチレンジオキシチオフェンである、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5.  請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法であって、
     前記正孔注入層を、100~80質量%の水と0~20質量%の有機溶媒とから成る溶媒と、前記モノマーと、前記非スルホン酸系有機化合物と、を含む重合液に、前記陽極を表面に有する前記基板を導入し、電解重合を1.5mC/cm以上18mC/cm未満の通電電荷量の条件下で行うことによって形成する工程
     を含むことを特徴とする、有機エレクトロルミネッセンス素子の製造方法。
  6.  前記重合液における溶媒が水である、請求項5に記載の有機エレクトロルミネッセンス素子の製造方法。
  7.  前記重合液に含まれる非スルホン酸系有機化合物が、ボロジサリチル酸及びボロジサリチル酸塩から成る群から選択された少なくとも一種の化合物であり、前記重合液がニトロベンゼン及びニトロベンゼン誘導体から成る群から選択された少なくとも一種の安定化剤をさらに含む、請求項5又は6に記載の有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2014/051469 2013-01-25 2014-01-24 有機エレクトロルミネッセンス素子及びその製造方法 WO2014115828A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013011679A JP6152648B2 (ja) 2013-01-25 2013-01-25 有機エレクトロルミネッセンス素子及びその製造方法
JP2013-011679 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115828A1 true WO2014115828A1 (ja) 2014-07-31

Family

ID=51227617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051469 WO2014115828A1 (ja) 2013-01-25 2014-01-24 有機エレクトロルミネッセンス素子及びその製造方法

Country Status (2)

Country Link
JP (1) JP6152648B2 (ja)
WO (1) WO2014115828A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516695A (ja) * 2008-04-11 2011-05-26 プレックストロニクス インコーポレーティッド ドープ処理された共役ポリマー、デバイス、およびデバイスを作製する方法
WO2011108254A1 (ja) * 2010-03-01 2011-09-09 国立大学法人東京工業大学 重合液及びその製造方法、この重合液から得られた透明フィルム及び透明電極
WO2011143196A1 (en) * 2010-05-11 2011-11-17 Plextronics, Inc. Doping conjugated polymers and devices
WO2012133858A1 (ja) * 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516695A (ja) * 2008-04-11 2011-05-26 プレックストロニクス インコーポレーティッド ドープ処理された共役ポリマー、デバイス、およびデバイスを作製する方法
WO2011108254A1 (ja) * 2010-03-01 2011-09-09 国立大学法人東京工業大学 重合液及びその製造方法、この重合液から得られた透明フィルム及び透明電極
WO2011143196A1 (en) * 2010-05-11 2011-11-17 Plextronics, Inc. Doping conjugated polymers and devices
WO2012133858A1 (ja) * 2011-03-31 2012-10-04 日本ケミコン株式会社 太陽電池用電極体及びその製造方法、この電極体を備えた太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL L. MACHALA ET AL.: "On- substrate polymerization of solution-processed, transparent PEDOT:DDQ thin film electrodes with a hydrophobic polymer matrix", ORGANIC ELECTRONICS, vol. 12, no. 9, 25 June 2011 (2011-06-25), pages 1518 - 1526 *

Also Published As

Publication number Publication date
JP2014143331A (ja) 2014-08-07
JP6152648B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
US9166169B2 (en) Charge injection and transport layers
US8674047B2 (en) Doping conjugated polymers and devices
US9896587B2 (en) Planarizing agents and devices
KR20160088440A (ko) 전하수송성 재료 및 전하수송성 바니시
KR102408799B1 (ko) 정공 캐리어 물질 및 플루오로중합체를 함유하는 조성물 및 그의 용도
JP2005206839A (ja) 導電性ポリマーを含む分散液及びフィルム、並びにオプトエレクトロニックデバイス
Bejbouj et al. Influence of the nature of polyaniline-based hole-injecting layer on polymer light emitting diode performances
JP5317758B2 (ja) ポリチオフェン又はチオフェン共重合体の溶液又は分散液並びにその製造方法
Higgins et al. Emeraldine Base Polyaniline as an Alternative to Poly (3, 4‐ethylenedioxythiophene) as a Hole‐Transporting Layer
Huang et al. Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance
Yu et al. Electrochemically deposited interlayer between PEDOT: PSS and phosphorescent emitting layer for multilayer solution-processed phosphorescent OLEDs
JP2009021104A (ja) 有機発光素子の製造方法
JP6852172B2 (ja) 有機電界発光素子
EP3262127B1 (en) Phosphorescent ink
KR102399386B1 (ko) 정공 캐리어 물질 및 폴리(아릴 에테르 술폰)을 함유하는 조성물 및 그의 용도
JP2014168014A (ja) 有機電界発光素子
JP6037894B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法、表示装置
WO2015198073A1 (en) Charge-transfer salt comprising an organic semiconducting material
JP6152648B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2015151464A (ja) ポリマー半導体層及びそれを用いた有機電子デバイス
JP5550632B2 (ja) 金属微粒子−高分子化合物複合体を含む有機層を有する有機電界発光素子
JP2012235064A (ja) 有機エレクトロルミネッセンス素子
JP2020068240A (ja) 有機素子
JP2019153632A (ja) 有機電界発光素子
JP2011119307A (ja) 有機エレクトロルミネッセンス素子、該素子の製造方法、およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743315

Country of ref document: EP

Kind code of ref document: A1