WO2014114138A1 - 一种等压分离制取氧氮的空分装置 - Google Patents

一种等压分离制取氧氮的空分装置 Download PDF

Info

Publication number
WO2014114138A1
WO2014114138A1 PCT/CN2013/088195 CN2013088195W WO2014114138A1 WO 2014114138 A1 WO2014114138 A1 WO 2014114138A1 CN 2013088195 W CN2013088195 W CN 2013088195W WO 2014114138 A1 WO2014114138 A1 WO 2014114138A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
liquid
oxygen
liquid nitrogen
air
Prior art date
Application number
PCT/CN2013/088195
Other languages
English (en)
French (fr)
Inventor
王海波
Original Assignee
南京瑞柯徕姆环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京瑞柯徕姆环保科技有限公司 filed Critical 南京瑞柯徕姆环保科技有限公司
Publication of WO2014114138A1 publication Critical patent/WO2014114138A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen

Definitions

  • Air separation device for preparing oxygen and nitrogen by isostatic separation
  • the invention relates to an air separation device for preparing oxygen and nitrogen by isostatic separation, which belongs to the technical field of deep freezing.
  • air separation device refers to the use of deep freezing principle to liquefy the air, and then according to the boiling point of each component, in the fine tower to fine, and finally obtain oxygen, nitrogen, or A device that simultaneously extracts one or several rare gases.
  • the Soviet scientist Kapitcha invented a high-efficiency (>80%) radial flow reaction type turboexpander, which created conditions for the birth of a full-pressure oxygen generator.
  • the Kapicha turboexpander is the basis for the development of turboexpanders in the world.
  • the Kapicha low-pressure liquefaction cycle is the basis of modern large-scale oxygen generators.
  • the invention and realization of the "Claude Cycle” was the second milestone, "Kapicha Cycle” and the full low pressure system.
  • the advent of the oxygen machine was called the third milestone.
  • the oxygen generator has been developed in the direction of large-scale and large-scale, and the domestic super-large oxygen generator has reached 90,000 m 3 / h grade, new technologies and new processes for oxygen generation are also emerging, and the domestic low-temperature process oxygen production process has reached the level of the sixth generation of new processes.
  • the oxygen consumption unit has been reduced from the original value of more than 3kw ⁇ h / m 3 0 2 to 0.
  • the oxygen generator product is no longer a single gas oxygen, there are gas products There are also liquid products, and produce pure oxygen, pure nitrogen, pure argon, and rare gas extraction.
  • the development of oxygen technology and oxygen generators has always been centered around safety, intelligence, energy conservation, streamlining processes and reducing investment.
  • Figure 1 is a schematic view of the flow of a 3200 m 3 /h oxygen generator, Figure 1: 1-cooler, 2-automatic valve box, 3-turboexpander, 4-expansion filter, 5-liquefier, 6 - Lower column, 7-condensation evaporator, 8-upper column, 9-liquid oxygen adsorber, 10-liquid air adsorber, 11-liquid nitrogen subcooler, 13-liquid oxygen pump, 14-carbon dioxide adsorber.
  • This type of oxygen generator uses a high-efficiency turboexpander to cool the full low-pressure process, that is, based on the Kapitza cycle, using a stone-filled regenerator embedded with a coil to freeze and remove moisture and carbon dioxide, and to use the central pumping to ensure its non-freezing property.
  • the carbon dioxide in the pumping gas is removed by a medium carbon dioxide adsorber 4.
  • the oxygen-rich liquid is filtered by the liquid-air adsorption filter to filter carbon dioxide dry ice, and the acetylene in the adsorption liquid is provided with a liquid oxygen pump 13, and the liquid oxygen is circulated through the liquid oxygen adsorber to remove the acetylene in the liquid oxygen to ensure the safe operation of the oxygen generator. .
  • a long tube condensing evaporator is used in the unit to improve heat transfer efficiency.
  • the inside of the tube is boiled by liquid oxygen, and the gas nitrogen between the tubes is condensed.
  • the working fluid of the expander is air.
  • the middle pumping gas is removed from the lower tower by the carbon dioxide adsorber
  • the incoming bypass gas merges into the expander, and the expanded gas enters the upper tower, the Rahman gas.
  • FIG. 2 is a schematic flow chart of the self-cleaning 10000 m 3 /h oxygen generator of the reversible heat exchanger.
  • Figure 2 1_reversible heat exchanger, 2-automatic valve box, 3-liquefier (sludge), 4-liquefier (pure nitrogen), 5-liquefier (oxygen), 6-turboexpander , 7-lower tower, 8-condensing evaporator, 9-upper tower, 10-liquid air subcooler, 11-liquid oxygen subcooler, 12-liquid nitrogen subcooler, 13-liquid oxygen adsorber, 14- Liquid air adsorber, 15-liquid oxygen pump.
  • the refrigeration system is a full low pressure cycle based on the Kapicha cycle.
  • the high-efficiency turbo expander is used, and the expansion working medium is air, and the partial expansion work is recovered by the motor brake.
  • the purification system uses a plate-fin reversible heat exchanger to self-clear moisture and carbon dioxide.
  • a liquid-air adsorber is provided to remove acetylene in the oxygen-rich gas.
  • the liquid oxygen pump is used to circulate part of the liquid oxygen in the condensing evaporator to remove acetylene and other hydrocarbons in the liquid oxygen using the liquid oxygen adsorber. All of the heat exchangers in the plant use high-efficiency plate-fin heat exchangers, so they can also be called full-plate Wanli oxygen generators.
  • the Jingyu Tower is a two-stage precision tower with auxiliary towers. After the expansion, the gas enters the upper tower. This Rahman gas organically links the oxygen system's refrigeration system to the fine system.
  • Figure 3 is a schematic flow chart of a 30000 m 3 /h external compression oxygen generator.
  • Figure 3 AC-air cooling tower, AF-air filter, AP-liquid argon pump, TC-air centrifugal compressor, BT1-supercharger (expander), C1-lower tower, C2-upper tower, C701 -crude argon column I, C702-crude argon column II, C703-refined argon column, E1-main heat exchanger, E2-liquid-liquid liquid nitrogen subcooler, EH-electric heater, ET1-turboexpander, K1 - main condensing evaporator, K701-crude argon condenser, K702-crude argon liquefier, K704-fine argon evaporator, MS1, MS2-molecular sieve purifier; PV701-liquid nitrogen balancer, WC-water cooling tower, WP1 WP2-water pump.
  • the oxygen generator is the sixth generation air separation process.
  • the air is compressed by a centrifugal compressor and the water, carbon dioxide, acetylene and other hydrocarbons in the process air are removed by a molecular sieve purifier.
  • the air then enters the plate-fin main heat exchanger and is cooled to saturation temperature into the lower column.
  • the liquefaction cycle uses a Kapitza cycle, which is cooled by a turbocharged expander, and the expanded air enters the upper tower.
  • the upper tower is a structured packed tower, and the lower tower is a sieve tray tower.
  • a crude argon column and a refined argon column are arranged in the cold storage tank, and the crude argon column and the refined argon column are both structured packing towers, and argon-free argon is realized.
  • the gas oxygen outlet pressure was 21 kPa
  • the gas nitrogen depressurization pressure was 8 kPa
  • the product was compressed by a centrifugal oxygen compressor and a nitrogen pressure machine. It is a typical external compression process, also known as a "metallurgical" oxygen generator.
  • the double-layer molecular sieve purification technology high-efficiency evaporation and cooling of the double-layer main cooling and nitrogen-water pre-cooling systems (cancellation of the freezer) are used to further reduce the energy separation device of such a process. Consumption.
  • Figure 4 is a schematic diagram of the chemical type 52000m 3 /h oxygen generator, Figure 4: AC-air cooling tower, AF-air filter, ATC1-air centrifugal compressor, ATC2-air circulation booster, AP-liquid Argon pump, C1-lower tower, C2-upper tower, C701-crude argon column I, C702-crude argon column II, C703-fine argon column, E1-main heat exchanger, E3-supercooler, ET-expander , BC-supercharger (expander), EC-water cooling tower, SH-steam heater, K1-main condensing evaporator, K701-crude argon condenser, K702-crude argon liquefier, K703-refined argon condenser, K704-fine argon evaporator, MS1, MS2-molecule Screen purifier; NP-liquid nitrogen pump, OP-liquid oxygen pump.
  • the oxygen generator is a typical internal compression process.
  • the characteristics of this process and the supporting machine are as follows: (1)
  • the raw air compressor and the air booster are both centrifugal compressors, which are dragged by a steam turbine.
  • Bunk bed molecular sieve purifier and adopts non-impact switching technology in the switching system; (3) Refrigeration with medium pressure pressurized turboexpander, the refrigerant is air, and the expanded air enters the air.
  • the main heat exchanger is a high-efficiency plate-fin heat exchanger, which is divided into two sets of high and low pressure heat exchangers;
  • the air separation unit is provided with 6 product pumps, two liquid oxygen pumps, and two sets. Liquid nitrogen pump and two liquid argon pumps.
  • the above four typical processes all utilize the Rahman principle to blow the expanded and depressurized air into the upper tower, or use the nitrogen extracted from the top of the lower tower or the condensing evaporator, and a part of the circulating heat exchanger is circulated through the circulation. After the heat, it merges into the turboexpander, and the nitrogen gas after expansion and depressurization is taken as the product nitrogen gas, or merged with the sewage nitrogen to recover the cold after the heat recovery by the switching heat exchanger. Since the condensing amount of the condensing evaporator is reduced by introducing nitrogen from the lower tower, the liquid component sent to the upper tower is reduced, and the fineness potential is utilized.
  • the method of air expansion and nitrogen expansion is to reduce the liquid enthalpy of the upper tower, reduce the temperature difference between the gas and the liquid during the fine boring, and utilize the potential of the upper tower to make the full low pressure air separation unit more reasonable. .
  • thermodynamics that is, the Kano reverse cycle of the same temperature difference is used to analyze the air separation refrigeration cycle process, and the economic index of the refrigeration cycle is the refrigeration coefficient, which is the ratio of the obtained gain and the cost.
  • the temperature is ⁇ in the atmospheric environment. With all refrigeration cycles between the temperature and the low temperature heat source (such as cold storage), the cooling coefficient of the reverse Carnot cycle is the highest:
  • the actual cycle efficiency is usually described by the ratio of the actual cycle refrigeration coefficient to the theoretical cycle coefficient, but the theoretical basis is the cyclic analysis of the air separation process by the Carnot inverse cycle.
  • the temperature of the high temperature heat source in formula (2) is 7; and the temperature of the low temperature heat source is ⁇ 2 is higher than the atmospheric temperature ⁇ . And can draw the following important conclusions:
  • the thermal efficiency of the Carnot cycle is determined only by the temperature of the high-temperature heat source and the low-temperature heat source, that is, the temperature at which the working medium absorbs heat and exotherms. Increasing the temperature of 7 and ⁇ 2 can improve the thermal efficiency.
  • the Carnot cycle and its thermal efficiency formula are of great significance in the development of thermodynamics.
  • the study of the Carnot cycle points out the direction for improving the thermal efficiency of various thermodynamic machines. It is possible to increase the endothermic temperature of the working medium and reduce the exothermic temperature of the working medium as much as possible. , the exotherm is carried out near the lowest temperature that can be naturally obtained, that is, the atmospheric temperature.
  • the method of utilizing adiabatic compression to increase the heat absorption temperature of the gas proposed in the Carnot cycle has hitherto been widely used in gas-based thermodynamic machines.
  • the limit of the Carnot cycle is the atmospheric ambient temperature. For the refrigeration process cycle below ambient temperature, the Carnot cycle does not give a definitive answer.
  • thermodynamics cannot make a simple, clear and intuitive explanation of the cycle process of the air separation unit. Einstein once commented on classical thermodynamics: "A theory, the simpler its premise, the more things involved, the wider its range of adaptation, the more impressive it is to people.” The basic theoretical exploration should also inherit and carry forward this advantage.
  • the purpose of the invention is to solve the imperfection of the Carnot's theorem applied to the theory analysis of the air separation unit cycle, and propose a new refrigeration theory corresponding to the thermodynamic theory, namely the cold mechanics theory, and propose a new isostatic separation designed by the principle.
  • An air separation device for producing oxygen and nitrogen The environment below the atmospheric temperature is called the cold source, and the heat source is higher than the ambient temperature; corresponding to the heat energy and heat, the corresponding concept of cold energy and cooling capacity is proposed; the refrigeration device refers to the consumption of mechanical work.
  • the refrigeration device refers to the consumption of mechanical work.
  • refrigerants some substances are required as working substances of the refrigeration device, which are called refrigerants.
  • the second law of cold mechanics is proposed: the essence of the second law of cold mechanics is the same as the essence of the second law of thermodynamics, and also follows the principle of energy decay. That is, different forms of cold energy have a "quality" difference in the ability to convert the amount of success; even if the same form of cold energy has different states of existence, its conversion ability is different.
  • the actual process of all cold energy transmission always proceeds in the direction of decline in energy quality, and all cold energy will always spontaneously shift to the atmospheric environment.
  • the process of improving the energy quality of cold energy cannot be carried out automatically and separately.
  • the process of improving energy quality must be accompanied by the simultaneous decline of another energy quality.
  • the process of energy quality decline is to achieve the process of energy quality increase.
  • the necessary compensation conditions that is, at the cost of energy degradation, as compensation to promote the realization of the energy quality rise process.
  • the process of energy degradation as a cost must be sufficient to compensate for the process of rising energy quality to meet the general rule that the total energy quality must fall. Therefore, under certain compensation conditions with reduced energy quality, the process of energy quality increase must have a maximum theoretical limit. This theoretical limit can only be reached under perfectly reversible ideal conditions. At this time, the energy quality rise value is exactly equal to the compensation value of the energy quality drop, so that the total energy quality remains unchanged.
  • Tc2 ⁇ Tcl ⁇ To To is the ambient temperature, which is the Kelvin temperature scale.
  • the lower the cold source temperature the more work is input from the cold source, and the more cooling capacity is obtained, which indicates the direction for constructing a new air separation plant process.
  • the amount of cooling is spontaneously transmitted from a cold source to an ambient temperature
  • Temperature difference generator that is, a cold power generator
  • the present invention proposes a new process different from the conventional air separation device, realizes a new way of separating oxygen and nitrogen by air isostatic separation, and effectively reduces the energy consumption of the air separation device.
  • the object of the invention is achieved by the following measures:
  • An air separation device for separating oxygen and nitrogen by air isobaric separation, and the process steps for achieving air isobaric separation by the air separation device are as follows:
  • Raw material air 1 is removed by air filter 2 to remove dust and mechanical impurities, and enters the compressor, where it is compressed to the required pressure;
  • the pre-cooled compressed air enters the purifier 4 to remove moisture, carbon dioxide and a small amount of acetylene and hydrocarbons, and then cooled to the liquefaction temperature by the main cold exchanger 6, and enters the lower tower 8 of the fine boring device;
  • the liquid nitrogen produced by the condensing evaporator 9 flows back to the lower column 8 as a reflux liquid; it can also directly extract part of the liquid nitrogen product, and another part of the liquid nitrogen as the lower column reflux liquid; the nitrogen gas 13 drawn from the middle or upper part of the lower tower is directly After being sent to the upper tower or directly recovered by the main cold exchanger 6;
  • the liquid oxygen 14 obtained by the upper tower 10 is removed from the upper tower by the liquid oxygen pump 15 and the liquid oxygen adsorber 16 to remove the acetylene and the hydrocarbon, thereby forming a liquid oxygen circulation loop; or a liquid oxygen pump 15.
  • the liquid oxygen 14 after the liquid oxygen adsorber 16 removes the acetylene is directly sent as the product 17; or after being pressurized by the liquid oxygen booster pump 33, after the cold charge is recovered by the main cold exchanger 6, it is sent as the product high pressure oxygen 34. ;
  • the nitrogen is taken out from the bottom of the auxiliary tower of the upper tower, and after being recovered by the sewage nitrogen line 37 and the main cold exchanger 6, it is sent to the nitrogen water precooler or directly vented; (7) The oxygen 35 which is not depressurized and depressurized is taken out from the upper tower, and then enters the main cold exchanger 6 to recover the cold amount and is output as the product oxygen 36;
  • the main cold exchanger 6 uses the nitrogen gas 23 drawn from the top of the upper tower, the oxygen 35 drawn from the lower part of the upper tower, and the nitrogen as the cold source to provide the cooling capacity, so that the pre-purified air 5 is cooled and then enters the lower tower to enter the fine separation device. Nitrogen and oxygen;
  • the liquid nitrogen 19 from the liquid nitrogen storage tank 18 is pressurized by the liquid nitrogen pump 20, and then enters the upper tower through the regenerator 21 and the liquid nitrogen washing pipeline, and the cold amount required for the fine boring system is added.
  • a part of the low-temperature nitrogen gas 23 coming out from the top of the column is taken out by the main cold exchanger 6 to be superheated nitrogen gas 24, and then returned to the liquid nitrogen storage tank 18 via the expander 25, the regenerator 21, the throttle valve 27, and the like.
  • the liquid nitrogen cooling force circulation circuit of the supplementary cooling system is provided to the liquid nitrogen storage tank 18 via the expander 25, the regenerator 21, the throttle valve 27, and the like.
  • the brake device 26 of the expander 25 is a fan, a motor, a hydraulic pump or a compressor.
  • a nitrogen liquefier 29 is provided: the outlet nitrogen gas 26 of the expander 25 is returned to the liquid nitrogen storage tank 18 via the nitrogen liquefier 29 and the regenerator 21; the nitrogen gas 23 is condensed by the nitrogen liquefier 29 to form the product liquid nitrogen 22, Alternatively, after the liquid nitrogen booster pump 31 and the main cold exchanger 6 recover the cold amount, they are output as high pressure nitrogen gas 32.
  • Nitrogen gas 39 can be used to recover the cooling capacity of the liquefied natural gas, and the nitrogen gas 39, the cold exchanger 41, and the nitrogen liquefier 29 are condensed to form liquid nitrogen 22; the liquefied natural gas 40 is cooled by the cold exchanger 41 to become a gaseous natural gas 42 output. .
  • the equal pressure separation refers to the raw material air entering the air separation fine boring system, and does not need to expand and depressurize the cooling like the conventional air separation process, and the air from the compressor has only the resistance drop loss along the process equipment and the pipeline. It can be considered as an isostatic separation process.
  • the purifier 4 comprises a molecular sieve purifier, a reversible cold exchanger or a stone regenerator to ensure continuous normal operation of the process.
  • the liquid nitrogen storage tank 18 adopts necessary heat insulation and cold preservation measures, such as an insulated thermal insulation material such as an adiabatic vacuum container or a pearl sand.
  • the main cold exchanger 6 and the regenerator 21 adopt a shell-and-tube type, a plate-fin type, a micro-channel or other type of cooler, and the structure and the cold-changing component are replaced with the shell-and-tube type in the conventional air separation process.
  • Heaters, plate-fin heat exchangers, microchannel heat exchangers, etc. are identical, just to replace the exact name for the corresponding refrigeration system.
  • Equipment not described in the present invention and its backup system, piping, instrumentation, valves, cold insulation, bypassing facilities with regulating functions, etc. are matched by well-known techniques in conventional refrigeration cycles.
  • the utility model is provided with safety and control facilities matched with the refrigeration cycle device of the invention, so that the device can operate economically, safely and with high thermal efficiency, thereby achieving the purpose of energy saving, environmental protection and environmental protection.
  • the present invention has the following advantages over the prior art:
  • the product gas is pressurized by the liquid nitrogen pump and the liquid oxygen pump, which can save a lot of power consumption.
  • the liquid oxygen pump and the liquid nitrogen pump of the air separation system that separates the nitrogen and oxygen by isostatic pressure can efficiently and effectively supercharge the gas oxygen and nitrogen, and realize centralized gas supply, similar to the traditional steam central heating technology. Far-reaching social and economic significance.
  • Figure 1 is a schematic diagram of the pipe type 3200m 3 /h oxygen generator:
  • Figure 1 In 1-cooler, 2-automatic valve box, 3-turboexpander, 4-expansion filter, 5-liquefier, 6-lower tower, 7-condensing evaporator, 8-upper tower, 9 - liquid oxygen adsorber, 10-liquid air adsorber, 11-liquid air subcooler, 13- liquid oxygen pump, 14-carbon dioxide adsorber.
  • Figure 2 is a schematic diagram of the process of self-cleaning 10000m 3 /h oxygen generator for reversible heat exchanger:
  • Figure 2 1-reversible heat exchanger, 2-automatic valve box, 3-liquefier (sludge), 4-liquefier (pure nitrogen), 5- liquefier (oxygen), 6-turboexpander , 7-lower tower, 8-condensing evaporator, 9-upper tower, 10-liquid air subcooler, 11- liquid oxygen subcooler, 12-liquid nitrogen subcooler, 13-liquid oxygen adsorber, 14- Liquid air adsorber, 15-liquid oxygen pump.
  • Figure 3 is a schematic diagram of the process of a 30000m 3 /h external compression oxygen generator:
  • Figure 3 AC-air cooling tower, AF-air filter, AP-liquid argon pump, TC-air centrifugal compressor, BT1-supercharger (expander), C1-lower tower, C2-upper tower, C701 -crude argon column I, C702-crude argon column II, C703-refined argon column, E1-main heat exchanger, E2-liquid-liquid liquid nitrogen subcooler, EH-electric heater, ET1-turboexpander, K1 -Main condensing evaporator, K701-crude argon condenser, K702-crude argon hydraulic unit, K704-fine argon evaporator, MS1, MS2-molecular sieve purifier; PV701- liquid nitrogen balancer, WC-water cooling tower, WP1 WP2-water pump.
  • Figure 4 is a schematic diagram of the chemical type 52000m 3 /h oxygen generator:
  • Figure 4 AC-air cooling tower, AF-air filter, ATC1-air centrifugal compressor, ATC2-air circulation booster, AP-liquid argon pump, C1-lower tower, C2-upper tower, C701-rough Argon column I, C702-crude argon column II, C703-fine argon column, E1-main heat exchanger, E3-supercooler, ET-expander, BC-supercharger (expander), EC-water cooling tower, SH-steam heater, K1-main condensing evaporator, K701-crude argon condenser, K702-crude argon liquefier, K703-fine argon condenser, K704-fine argon evaporator, MS1, MS2-molecular sieve purifier; NP - Liquid nitrogen pump, 0P - liquid oxygen pump.
  • Figure 5 is a schematic flow chart of the air separation device for preparing oxygen and nitrogen by air isostatic separation according to the present invention:
  • Figure 5 1-air, 2-air filter, 3-compressor, 4-purifier, 5-pre-purified air, 6-main cold exchanger, 7-inlet down tower air, 8-down tower, 9 - Condensation evaporator, 10-upper tower, 11-oxygen-rich liquid, 12-liquid air adsorber, 13-lower tower nitrogen, 14-liquid oxygen, 15-liquid oxygen pump, 16-liquid oxygen adsorber, 17- Liquid oxygen, 18-liquid nitrogen storage tank, 19- liquid nitrogen, 20-liquid nitrogen pump, 21-recooler, 22-into liquid nitrogen washing line, 23-out tower low temperature nitrogen, 24-superheated nitrogen, 25- Expander, 26-expander outlet nitrogen, 27-throttle, 28-brake, 29-nitrogen liquefier, 30-liquid nitrogen, 31-liquid nitrogen booster pump, 32-high pressure nitrogen, 33-liquid oxygen Booster pump, 34-high pressure oxygen, 35-oxygen, 36-product oxygen, 37-sew nitrogen line, 38-sludge nitrogen, 39-product nitrogen, 40-liquefied
  • an air separation device for separating oxygen and nitrogen by air is embodied as follows:
  • the working fluid of the refrigerant is liquid nitrogen.
  • the specific implementation steps are as follows:
  • Raw material air 1 is removed by air filter 2 to remove dust and mechanical impurities, and enters the compressor, where it is compressed to the required pressure;
  • the pre-cooled compressed air enters the purifier 4 to remove moisture, carbon dioxide and a small amount of acetylene and hydrocarbons, and then cooled to the liquefaction temperature by the main cold exchanger 6, and enters the lower tower 8 of the fine boring device;
  • the liquid nitrogen produced by the condensing evaporator 9 flows back to the lower column 8 as a reflux liquid; it can also directly extract part of the liquid nitrogen product, and another part of the liquid nitrogen as the lower column reflux liquid; the nitrogen gas 13 drawn from the middle or upper part of the lower tower is directly After being sent to the upper tower or directly recovered by the main cold exchanger 6;
  • the liquid oxygen 14 obtained by the upper tower 10 is removed from the upper tower by the liquid oxygen pump 15 and the liquid oxygen adsorber 16 to remove the acetylene and the hydrocarbon, thereby forming a liquid oxygen circulation loop; or a liquid oxygen pump 15.
  • the liquid oxygen 14 after the liquid oxygen adsorber 16 removes the acetylene is directly sent as the product 17; or after being pressurized by the liquid oxygen booster pump 33, passes through the main cold exchanger 6 After recovering the cold amount, it is sent as high pressure oxygen 34 as a product;
  • Oxygen 35 which is not depressurized and depressurized is taken out from the upper tower, and then enters the main cold exchanger 6 to recover the cold amount and output as the product oxygen 36;
  • the main cold exchanger 6 uses the nitrogen gas 23 drawn from the top of the upper tower, the oxygen 35 drawn from the lower part of the upper tower, and the nitrogen as the cold source to provide the cooling capacity, so that the pre-purified air 5 is cooled and then enters the lower tower to enter the fine separation device. Nitrogen and oxygen;
  • the liquid nitrogen 19 from the liquid nitrogen storage tank 18 is pressurized by the liquid nitrogen pump 20, and then enters the upper tower through the regenerator 21 and the liquid nitrogen washing pipeline, and the cold amount required for the fine boring system is added.
  • a part of the low-temperature nitrogen gas 23 coming out from the top of the column is taken out by the main cold exchanger 6 to be superheated nitrogen gas 24, and then returned to the liquid nitrogen storage tank 18 via the expander 25, the regenerator 21, the throttle valve 27, and the like.
  • the liquid nitrogen cooling force circulation circuit of the supplementary cooling system is provided to the liquid nitrogen storage tank 18 via the expander 25, the regenerator 21, the throttle valve 27, and the like.
  • the brake device 26 of the expander 25 uses a compressor to pressurize the product oxygen or nitrogen.
  • a nitrogen liquefier 29 is provided: the outlet nitrogen gas 26 of the expander 25 is returned to the liquid nitrogen storage tank 18 via the nitrogen liquefier 29 and the regenerator 21; the nitrogen gas 23 is condensed by the nitrogen liquefier 29 to form the product liquid nitrogen 22, Alternatively, after the liquid nitrogen booster pump 31 and the main cold exchanger 6 recover the cold amount, they are output as high pressure nitrogen gas 32.
  • the liquid nitrogen storage tank 18 adopts necessary heat insulation and cold preservation measures, such as an insulated thermal insulation material such as an adiabatic vacuum container or a pearl sand.
  • Equipment not described in the present invention and its backup system, piping, instrumentation, valves, cold insulation, bypassing facilities with regulating functions, etc. are matched by well-known techniques in conventional refrigeration cycles.
  • the utility model is provided with safety and regulation facilities matched with the air separation cycle device of the invention, so that the device can operate economically, safely and with high heat efficiency, thereby achieving the purpose of energy saving, environmental protection and environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种等压分离制取氧氮的空分装置,包括空气纯化装置、预冷系统、精馏系统和补冷系统。低温端采用类似热能动力循环装置的朗肯循环系统,采用液氮洗工艺,通过液氮洗补冷系统对空分装置进行补冷,从液氮贮罐(18)出来的液氮(19),经液氮泵(20)、回冷器(21)进入精馏塔上塔(10),从上塔(10)顶部出来的低温氮气(23)的一部分,经主冷交换器(6)过热后抽出,经膨胀机(25)、回冷器(21)返回液氮贮罐(18),从而实现空气的等压分离制取氮氧。在相同制冷量的前提下,较传统先进机组节能30%以上,设备和材料用量少,操作、调节灵活方便,同时能多压力级、多气体供气和低能耗集中供气。

Description

一种等压分离制取氧氮的空分装置 技术领域
本发明涉及一种等压分离制取氧氮的空分装置, 具体属深度冷冻技术领域。
背景技术
国民经济的高速发展, 离不开空气分离装置。 所谓空气分离装置 (简称空分装置, 通称制氧机)是指利用深度冷冻原理将空气液化, 然后根据各组分沸点的不同, 在精熘 塔内进行精熘, 最后获得氧、 氮, 或同时提取一种或几种稀有气体的装置。
1939年, 苏联科学家卡皮查院士发明高效率(>80%)径流向心反动式透平膨胀机, 为全低压制氧机的诞生创造了条件。卡皮查透平膨胀机是近代世界各国透平膨胀机发展 的基础, 卡皮查低压液化循环是现代大型制氧机的基础。 在低温技术领域是继 1852年 英国科学家焦耳和汤姆逊发现焦耳-汤姆逊效益为第一里程碑, "克劳特循环"的发明与 实现为第二里程碑, "卡皮查循环"及全低压制氧机的问世被称为第三里程碑。
随着钢铁冶金、 化工, 尤其是煤化工等行业对氧气、 氮气等空分产品需求的增长, 制氧机已向大型化、超大型化方向发展, 国内超大型制氧机已达到 90000m3 /h等级, 制 氧的新技术新工艺也层出不穷,国内低温法制氧流程已达到第六代新流程全面普及的程 度。 制氧单耗已经从原来的大于 3kw · h/m3 02降至 0. 37 kw · h/m3 02左右, 制氧机的产 品也不再是单一的气氧, 既有气体产品又有液体产品, 而且产纯氧、 纯氮、 纯氩, 以及 稀有气体提取。 制氧技术和制氧机的发展始终围绕着安全、 智能、 节能, 简化流程、 减 少投资的方向进行着。
下面是 4种典型传统流程的简要说明:
附图 1是管式 3200m3 /h制氧机流程示意图, 图 1中: 1-蓄冷器, 2-自动阀箱, 3- 透平膨胀机, 4-膨胀过滤器, 5-液化器, 6-下塔, 7-冷凝蒸发器, 8-上塔, 9-液氧吸附 器, 10-液空吸附器, 11-液氮过冷器, 13-液氧泵, 14-二氧化碳吸附器。 该类型制氧机 采用高效透平膨胀机制冷全低压流程, 即以卡皮查循环为基础, 用嵌有蛇管的石头填料 蓄冷器冻结清除水分和二氧化碳, 用中部抽气保证其不冻结性, 用中抽二氧化碳吸附器 4清除中抽气中的二氧化碳。 富氧液空经液空吸附过滤器过滤二氧化碳干冰, 吸附液空 中的乙炔, 设有液氧泵 13, 将液氧循环经液氧吸附器清除液氧中的乙炔, 以保证制氧 机安全运行。 装置中采用长管式冷凝蒸发器, 以提高传热效率。 管内是液氧沸腾, 管间 气氮冷凝。膨胀机的工质是空气。 中抽气由中抽二氧化碳吸附器清除二氧化碳后与下塔 来的旁路气汇合一起进入膨胀机, 膨胀后气体进入上塔即拉赫曼气。
附图 2是可逆式换热器自清除 10000m3 /h制氧机流程示意图。 图 2中: 1_可逆式换 热器, 2-自动阀箱, 3-液化器 (污氮), 4-液化器 (纯氮), 5-液化器 (氧气), 6-透平 膨胀机, 7-下塔, 8-冷凝蒸发器, 9-上塔, 10-液空过冷器, 11-液氧过冷器, 12-液氮 过冷器, 13-液氧吸附器, 14-液空吸附器, 15-液氧泵。 该制冷系统是以卡皮查循环为 基础的全低压循环。采用高效透平膨胀机, 膨胀工质为空气, 利用电机制动回收部分膨 胀功。净化系统采用板翅式可逆式换热器对水分、 二氧化碳自清除。 设置液空吸附器清 除富氧中的乙炔。用液氧泵使冷凝蒸发器中的部分液氧循环利用液氧吸附器清除液氧中 的乙炔及其他碳氢化合物。装置中的全部换热器都采用高效的板翅式换热器, 因此也可 称全板式万立制氧机。精熘塔为带辅塔的双级精熘塔。膨胀后气体进入上塔, 这股拉赫 曼气使制氧机的制冷系统与精熘系统有机地联系起来。
附图 3是 30000m3 /h外压缩制氧机流程示意图。 图 3中: AC-空气冷却塔, AF-空气 过滤器, AP-液氩泵, TC-空气离心压缩机, BT1-增压机(膨胀机), C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩塔, E1-主换热器, E2-液空液氮过冷器, EH-电加热器, ET1-透平膨胀机, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液化 器, K704-精氩蒸发器, MS1、 MS2-分子筛纯化器; PV701-液氮平衡器, WC-水冷却塔, WP1、 WP2-水泵。 该制氧机即第六代空分流程。 空气经离心式压缩机压缩后经分子筛纯 化器清除加工空气中的水分、 二氧化碳、 乙炔及其他碳氢化合物。 而后空气进入板翅式 主热交换器冷却至饱和温度进入下塔。液化循环采用卡皮查循环, 采用增压透平膨胀机 制冷, 膨胀后空气进入上塔。 上塔为规整填料塔, 下塔采用筛板塔。 保冷箱内设置粗氩 塔和精氩塔,粗氩塔与精氩塔均为规整填料塔, 实现了无氩制氩。气氧出塔压力 21kPa, 气氮出塔压力 8kPa, 采用离心式氧压机和氮压机进行产品压缩。 是典型的外压缩流程, 也可称为 "冶金型"制氧机。 除了采用上述核心技术以外, 还采用双层床分子筛纯化技 术, 双层主冷和氮-水预冷系统的高效蒸发降温 (取消冷冻机) 等技术, 使此类流程的 空分装置进一步节能降耗。
附图 4是化工型 52000m3 /h制氧机流程示意图, 图 4中: AC-空气冷却塔, AF-空气 过滤器, ATC1-空气离心压缩机, ATC2-空气循环增压机, AP-液氩泵, C1-下塔, C2-上 塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩塔, E1-主换热器, E3-过冷器, ET- 膨胀机, BC-增压机(膨胀机), EC-水冷塔, SH-蒸汽加热器, K1-主冷凝蒸发器, K701- 粗氩冷凝器, K702-粗氩液化器, K703-精氩冷凝器, K704-精氩蒸发器, MS1、 MS2-分子 筛纯化器; NP-液氮泵, OP-液氧泵。 该制氧机为典型的内压缩流程, 此流程及配套部机 的特点是: (1 )原料空压机和空气增压机均采用离心式压缩机, 由一台汽轮机拖动, 即 一拖二; (2)双层床分子筛纯化器, 并在切换系统中采用了无冲击切换技术; (3)采用 中压增压透平膨胀机制冷, 制冷工质为空气, 膨胀后的空气进入下塔; (4)主换热器为 高效板翅式换热器, 分为高、 低压两组换热器; (5)该空分装置设置 6台产品泵, 两台 液氧泵、 两台液氮泵和两台液氩泵。 均为一用一备, 即一台运转、 另一台在线冷备用。 必须强调的该技术采用的内压缩的液氧泵、 液氮泵和液氩泵十分值得关注: 利用液氧、 液氮、 液氩接近不可压缩流体的性质, 较传统的采用压气机增压的技术(因气体为可压 缩流体), 显然电机的功耗大幅度下降。
上述 4种典型流程均利用了拉赫曼原理, 将膨胀降压的空气吹入上塔, 或者利用从 下塔或冷凝蒸发器的顶盖抽出的氮气,一部分经切换式换热器环流通过复热后再汇合进 入透平膨胀机, 膨胀降压后的氮气作为产品氮气引出, 或者与污氮汇合经切换式换热器 复热回收冷量后放空。 由于从下塔引氮气, 冷凝蒸发器的冷凝量减少, 因而送入上塔的 液体分量减少, 精熘潜力得到利用, 这种采用氮膨胀的流程国外的大型全低压空分装置 上已被采用。采用空气膨胀、氮气膨胀的方法都是为了减少上塔液体熘分, 使精熘时的 气液间的温差减少, 利用了上塔精熘潜力, 使全低压空分装置具有更大的合理性。
上述传统空分装置分离气体的主要基础是热力学,即采用同温差的卡诺逆循环分析 空分制冷循环过程, 制冷循环的经济性指标是制冷系数, 就是得到的收益和耗费的代价 之比值, 并且以大气环境温度 Γ。与温度为 7^低温热源 (如冷库)之间的一切制冷循环, 以逆向卡诺循环的制冷系数为最高:
' T0 - Tc 上式中的 为制冷系数, q2为循环的制冷量, w。为循环所消耗的净功。
实际循环效率通常采用实际循环的制冷系数与理论循环系数的比值进行描述, 但其 理论基础是以卡诺逆循环对空分过程进行循环分析。
实际上, 卡诺在 "关于热动力的见解" 的论文中, 得出的结论为: "在两个不同温 度的恒温热源之间工作的所有热机, 以可逆热机的效率为最高。" 即被后人称之为卡诺 定理, 按理想气体状态方程进行整理得出的卡诺循环的热效率为: η = 1 -^ (2 )
Ά
公式 (2) 中的高温热源的温度 7;与低温热源的温度为 Γ2均高于大气环境温度 Γ。, 并可以得出以下几点重要结论:
1 ) 卡诺循环的热效率只决定于高温热源和低温热源的温度, 也就是工质吸热和放 热时的温度, 提高 7和 Γ2, 可以提高热效率。
2) 卡诺循环的热效率只能小于 1, 绝不能等于 1, 因为 7; =∞或7 =0都不可能实 现。这就是说,在循环发动机中即使在理想情况下,也不可能将热能全部转化为机械能, 热效率当然更不可能大于 1。
3) 当 7 = 7 时, 循环热效率等于 0, 它表明, 在温度平衡的体系中, 热能不可能 转化为机械能, 热能产生动力一定要有温度差作为热力学条件, 从而验证了借助单一热 源连续做功的机器是制造不出的, 或第二类永动机是不存在的。
4) 卡诺循环及其热效率公式在热力学的发展上具有重大意义。 首先, 它奠定了热 力学第二定律的理论基础; 其次, 卡诺循环的研究为提高各种热动力机热效率指出了方 向, 近可能提高工质的吸热温度和尽可能降低工质的放热温度, 使放热在接近可自然得 到的最低温度即大气温度时进行。卡诺循环中所提出的利用绝热压缩以提高气体吸热温 度的方法, 至今在以气体为工质的热动力机中仍普遍采用。
5) 卡诺循环的极限点是大气环境温度, 对低于环境温度的制冷过程循环, 卡诺循 环并没有给出明确的答案。
由于制冷系数的不完善性, 国内外众多的学者对其进行研究, 并提出了完善建议。 马一太等在 《制冷与热泵产品的能效标准研究和循环热力学完善度的分析》 中结合 Curzon和 Ahlborn把有温差传热这个不可逆过程引入热力循环的分析, 以及由此创建 的有限时间热力学的启发, 结合 CA循环效率, 提出了 CA正循环的热力学完善度, 使制 冷和热泵产品的能效研究有了一定程度的进展。
但是运用热力学的基本理论并不能对空分装置循环过程做出简洁、 明了、 直观的解 释。 爱因斯坦曾对经典热力学做过评价: "一种理论, 其前提越简单, 所涉及的事物越 多, 其适应范围愈广泛, 它给人们的印象就越深刻。"对空分制冷领域的基本理论探索, 也应继承和发扬这个优点。
因此对空分制冷循环进行研究, 真正找到空分装置循环的理论基础, 找到改进空分 流程的正确方向, 并在此理论基础上组织新的空分装置流程, 较大幅度降低空分装置的 能耗, 成为空分技术领域研究的难点。
发明内容
本发明的目的就是为解决卡诺定理应用于空分装置循环理论分析的不完善性,提出 对应于热力学理论的新的制冷理论即冷力学理论,并提出应用该原理设计的新的等压分 离制取氧氮的空分装置。对于低于大气环境温度的环境称之为冷源, 相对于高于环境温 度的热源; 相应于热能、 热量, 提出对应的冷能、 冷量概念; 所述的制冷装置, 是指消 耗机械功来实现冷能从大气环境向低温冷源或者从低温冷源向更低温冷源的转移。在实 现冷能转换时, 均需要某些物质作为制冷装置的工作物质, 称为制冷工质。
制冷过程中冷能的传递遵循能量转化和守恒定律。
为描述制冷过程中冷量传递的方向、 条件和限度, 提出冷力学第二定律: 冷力学第 二定律的实质跟热力学第二定律的实质是一样的, 同样遵循 "能质衰贬原理", 即不同 形式的冷能, 在转换成功量的能力上是有 "质" 的差别的; 即使是同一种形式的冷能, 其存在状态不同时, 它的转换能力也不同的。一切冷能传递的实际过程, 总是朝着能质 下降的方向进行, 一切冷能总会自发向大气环境方向转换。冷能能质的提高过程不可能 自动、单独地进行, 一个能质的提高的过程必然伴随着另一个能质的下降的过程同时发 生, 这个能质下降的过程就是实现能质升高过程的必要的补偿条件, 即以能质下降为代 价、 作为补偿来推动能质升高过程的实现。 在实际过程中, 作为代价的能质下降过程, 必须足以补偿能质升高的过程, 以满足总的能质必定下降的普遍规律。 因此, 在一定的 能质下降的补偿条件下, 能质升高的过程必然有一个最高的理论限度。只有在完全可逆 的理想条件下,才能达到这个理论限度,这时,能质升高值正好等于能质下降的补偿值, 使总的能质保持不变。可见, 可逆过程是纯理想化的能质守恒过程; 在不可逆过程中总 的能质必然下降; 在任何情况下都不可能实现使孤立系统总的能质升高的过程。这就是 能质衰贬原理的物理内涵, 是冷力学第二定律的实质, 也是热力学第二定律的实质, 它 揭示了一切宏观过程必须遵循的、 有关过程进行方向、 条件及限度的客观规律。
描述冷力学第二定律的基本公式为:
τ
η = 1―" ci ( 3)
c τ 公式 (3) 中, Tc2<Tcl <To, To为环境温度, 均为开氏温标。
相对环境温度 To而言, 冷源在 Tcl、 Tc2下的最大冷效率为: τ
η =1 _~ ^ (4)
Figure imgf000008_0001
设为 q2循环的制冷量, w。为循环所消耗的净功, 则在冷源温度为 Tel时:
Figure imgf000008_0002
同样, 在冷源温度为 Tc2时:
Figure imgf000008_0003
从公式 (4)至 (7)不难看出, 冷力学的效率为 0到 1之间, 由于实际过程中不可 逆性的不可避免, 制冷循环效率总是小于 1的;
环境温度 To确定时, 冷源温度越低, 从该冷源输入同样的功, 获得的制冷量越多, 这为构建新的空分装置流程指明了方向。
需要说明的是:
(1) 冷量是自发从低温冷源向环境温度传递的;
(2) 不可能把冷量从低温冷源传到更低的冷源而不引起其他变化;
(3) 冷量从低温冷源传递向环境时, 与外界交换的功量为 W。, 其中包含对环境所 做的无用功 ρ。( 。- ), ρ。为大气压力, Vo为环境温度下的体积, Vc为冷源温度下的 体积,所能做的最大可逆有用功为:
Tc
(^)max = - p0(V0 -Vc) = (l-—)Q0 -Po(V0 -Vc)
To
(4) 冷量从低温冷源传递向环境时, 向环境传递的无用能为:
E —
无用 _ To 向环境传递的无用功为: P。( 。- ^ ) 对应于热量的有用能 "口"、 无用能 "烬", 对热量、 冷量取水火会意, 对于冷量 的有用能, 取名为 "冷量涟" , 冷量向环境传递的无用能称为 "冷量烬" , "W读 音为 "尽" 。
(5)冷能向环境温度传递时, 向外做功的最佳型式为采用塞贝克(Seebeck)效应 的温差发电机, 即冷力发电机;
(6) 冷力学中能量必须、 也必然要符合能量转化和守恒定律;
( 7) 通过借鉴有限时间热力学的构思, 可以发展有限时间冷力学基本理论;
( 8 ) 不能脱离环境来评价冷量的品位;
(9) 冷力学和热力学是能量学中的两个分支, 既存在对立的一面, 又存在着统一 的一面: 低温制冷循环中, 在遵循冷力学第二定律的前提下, 在低温环境下构造的制冷 剂工质的循环过程又遵循朗肯循环原理, 重新又回到卡诺定律, 恰好符合中国传统美学 中阴中有阳、 阴阳相济的原理。
从上述理论基础可以看出, 假设的冷力学具有和热力学对称的理论框架体系, 符合 科学美学的基本原则, 即相反相成、 对称原则。
基于上述冷力学基本原理, 本发明提出不同于传统空分装置的流程组织, 实现空气 等压分离制取氧氮的新途径, 并有效降低空分装置的能耗。
本发明的目的是通过以下措施实现的:
一种空气等压分离制取氧氮的空分装置,该空分装置实现空气等压分离的工艺步骤 如下:
( 1 ) 原料空气 1经空气过滤器 2除去灰尘和机械杂质, 进入压气机, 3中被压缩到 所需压力;
(2) 经预冷的压缩空气进入纯化器 4清除水分、 二氧化碳及少量的乙炔、 碳氢化 合物, 再经主冷交换器 6冷却至液化温度, 进入精熘装置的下塔 8;
(3 ) 下塔 8粗熘得到的富氧液空 11, 经液空吸附器 12脱除乙炔后, 不经节流, 直接送入上塔的中部, 经冷凝蒸发器 9蒸发出氮气, 得到液氧、 氧气;
(4) 冷凝蒸发器 9产生的液氮, 流回下塔 8作回流液; 也可直接引出部分液氮产 品, 另一部分液氮作下塔回流液; 下塔中部或上部引出的氮气 13直接送入上塔或直接 经主冷交换器 6回收冷量后;
( 5 )上塔 10精熘得到的液氧 14, 经液氧泵 15、 液氧吸附器 16脱除乙炔及碳氢化 合物后, 返回上塔, 从而形成液氧循环回路; 或者经液氧泵 15、 液氧吸附器 16脱除乙 炔后的液氧 14直接作为产品 17送出; 或者经液氧增压泵 33增压后, 经主冷交换器 6 回收冷量后, 作为产品高压氧气 34送出;
(6) 污氮从上塔的辅塔底部引出, 经污氮管线 37、 主冷交换器 6回收冷量后, 送 至氮水预冷器或直接放空; ( 7)不经膨胀降压的氧气 35从上塔引出后, 进入主冷交换器 6回收冷量后作为产 品氧气 36输出;
( 8 )主冷交换器 6采用上塔顶部引出的氮气 23、 上塔下部引出的氧气 35、 污氮作 为冷源提供冷量, 使预净化空气 5冷却后进入下塔, 进入精熘装置分离出氮氧;
( 9) 补冷系统的液氮循环过程为:
从液氮贮罐 18出来的液氮 19, 经液氮泵 20增压后, 经回冷器 21、 入塔液氮洗管 线进入上塔, 补入精熘系统需要的冷量, 成为从上塔顶部出来的低温氮气 23的一部分, 经主冷交换器 6过热后抽出,成为过热氮气 24,再经膨胀机 25、回冷器 21、节流阀 27, 返回液氮贮罐 18, 从而形成补冷系统的液氮冷力循环回路。
所述的膨胀机 25的制动设备 26采用风机、 电机、 液压泵或压气机。
( 10 )设有氮气液化器 29: 膨胀机 25的出口氮气 26经氮气液化器 29、回冷器 21, 回到液氮贮罐 18;氮气 23经氮气液化器 29冷凝形成产品液氮 22,或经液氮增压泵 31、 主冷交换器 6回收冷量后, 作为高压氮气 32输出。
( 11 ) 氮气 39可用于回收液化天然气的冷量, 氮气 39经、 冷交换器 41、 氮气液 化器 29冷凝形成液氮 22;液化天然气 40经冷交换器 41释放冷量后成为气态天然气 42 输出。
所述的等压分离, 是指进入空分精熘系统的原料空气, 无需像传统的空分工艺那样 膨胀降压制冷, 压气机出来的空气, 仅有沿程设备及管道的阻力降损失, 可以视为等压 分离过程。
所述的纯化器 4包括分子筛纯化器、可逆式换冷器或石头蓄冷器, 保证工艺的连续 正常运行。
所述的液氮贮罐 18采用必要的绝热保冷措施, 如采用绝热真空容器、 珠光砂等隔 热保冷材料。
所述的主冷交换器 6、 回冷器 21采用管壳式、 板翅式、 微通道或其他型式的换冷 器, 其结构及换冷元件与传统的空分流程中的管壳式换热器、板翅式换热器、微通道换 热器等相同, 只是为了与制冷体系相对应而更换准确的名称。
本发明中未说明的设备及其备用系统、 管道、 仪表、 阀门、 保冷、 具有调节功能旁 路设施等采用公知的传统制冷循环中的成熟技术进行配套。
设有与本发明的制冷循环装置配套的安全、 调控设施, 使装置能经济、 安全、 高热 效率运行, 达到节能降耗、 环保的目的。 本发明相比现有技术具有如下优点:
1、 节能效果显著: 取消传统空分循环的空气膨胀机, 利用液体的接近不可压缩流 体的性质, 采用液氮经液氮泵、 回热器直接补入空分装置的精熘系统进行液氮洗, 补入 精熘系统需要的冷量, 实现空气的等压分离, 再经氮气膨胀机膨胀回收冷量, 返回补冷 系统, 实现补冷系统的内循环回路, 能够有效提高制冷循环的效率, 与传统空分装置相 比, 相同制冷量的节能率达 30%以上。
2、 通过液氮泵、 液氧泵对产品气体增压, 能够节省大量的动力消耗。
3、 通过提高入精熘塔的空气压力, 能够顺利实现节省产品氧、 氮输出的压缩功以 及氧气压缩机、 氮气压缩机等设备, 以及与之配套的冷却水系统,
4、 流程设置更加简洁, 设备及材料用量减少, 精熘系统的潜力得到充分发挥, 操 作弹性大, 运行调节更加灵活方便。
5、 通过等压分离氮氧的空分系统的液氧泵、 液氮泵, 能够对气体氧气、 氮气高效、 节能增压, 能够实现集中供气, 类似于传统的蒸汽集中供热技术, 具有深远的社会和经 济意义。
附图说明
图 1是管式 3200m3 /h制氧机流程示意图:
图 1 中: 1-蓄冷器, 2-自动阀箱, 3-透平膨胀机, 4-膨胀过滤器, 5-液化器, 6- 下塔, 7-冷凝蒸发器, 8-上塔, 9-液氧吸附器, 10-液空吸附器, 11-液空过冷器, 13- 液氧泵, 14-二氧化碳吸附器。
图 2是可逆式换热器自清除 10000m3 /h制氧机流程示意图:
图 2中: 1-可逆式换热器, 2-自动阀箱, 3-液化器(污氮), 4-液化器(纯氮), 5- 液化器(氧气), 6-透平膨胀机, 7-下塔, 8-冷凝蒸发器, 9-上塔, 10-液空过冷器, 11- 液氧过冷器, 12-液氮过冷器, 13-液氧吸附器, 14-液空吸附器, 15-液氧泵。
图 3是 30000m3 /h外压缩制氧机流程示意图:
图 3中: AC-空气冷却塔, AF-空气过滤器, AP-液氩泵, TC-空气离心压缩机, BT1- 增压机(膨胀机), C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩塔, E1-主换热器, E2-液空液氮过冷器, EH-电加热器, ET1-透平膨胀机, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液压器, K704-精氩蒸发器, MS1、MS2-分子筛纯化器; PV701- 液氮平衡器, WC-水冷却塔, WP1、 WP2-水泵。
图 4是化工型 52000m3 /h制氧机流程示意图: 图 4中: AC-空气冷却塔, AF-空气过滤器, ATC1-空气离心压缩机, ATC2-空气循环 增压机, AP-液氩泵, C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩 塔, E1-主换热器, E3-过冷器, ET-膨胀机, BC-增压机 (膨胀机), EC-水冷塔, SH-蒸 汽加热器, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液化器, K703-精氩冷凝器, K704-精氩蒸发器, MS1、 MS2-分子筛纯化器; NP-液氮泵, 0P-液氧泵。
图 5是本发明的空气等压分离制取氧氮的空分装置流程示意图:
图 5中: 1-空气, 2-空气过滤器, 3-压气机, 4-净化器, 5-预净化空气, 6-主冷交 换器, 7-进下塔空气, 8-下塔, 9-冷凝蒸发器, 10-上塔, 11-富氧液空, 12-液空吸附 器, 13-下塔氮气, 14-液氧, 15-液氧泵, 16-液氧吸附器, 17-液氧, 18-液氮贮罐, 19- 液氮, 20-液氮泵, 21-回冷器, 22-入塔液氮洗管线, 23-出塔低温氮气, 24-过热氮气, 25-膨胀机, 26-膨胀机出口氮气, 27-节流阀, 28-制动设备, 29-氮气液化器, 30-液氮, 31-液氮增压泵, 32-高压氮气, 33-液氧增压泵, 34-高压氧气, 35-氧气, 36-产品氧气, 37-污氮管线, 38-污氮, 39-产品氮气, 40-液化天然气, 41-冷交换器, 42-气态天然气。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细描述。
实施例 1:
如图 1所示, 一种空气等压分离氧氮的空分装置, 具体实施例如下:
制冷工质采用液氮, 具体实施步骤如下:
( 1 ) 原料空气 1经空气过滤器 2除去灰尘和机械杂质, 进入压气机, 3中被压缩到 所需压力;
(2) 经预冷的压缩空气进入纯化器 4清除水分、 二氧化碳及少量的乙炔、 碳氢化 合物, 再经主冷交换器 6冷却至液化温度, 进入精熘装置的下塔 8;
( 3 ) 下塔 8粗熘得到的富氧液空 11, 经液空吸附器 12脱除乙炔后, 不经节流, 直接送入上塔的中部, 经冷凝蒸发器 9蒸发出氮气, 得到液氧、 氧气;
(4) 冷凝蒸发器 9产生的液氮, 流回下塔 8作回流液; 也可直接引出部分液氮产 品, 另一部分液氮作下塔回流液; 下塔中部或上部引出的氮气 13直接送入上塔或直接 经主冷交换器 6回收冷量后;
( 5 )上塔 10精熘得到的液氧 14, 经液氧泵 15、 液氧吸附器 16脱除乙炔及碳氢化 合物后, 返回上塔, 从而形成液氧循环回路; 或者经液氧泵 15、 液氧吸附器 16脱除乙 炔后的液氧 14直接作为产品 17送出; 或者经液氧增压泵 33增压后, 经主冷交换器 6 回收冷量后, 作为产品高压氧气 34送出;
( 6) 污氮从上塔的辅塔底部引出, 经污氮管线 37、 主冷交换器 6回收冷量后, 送 至氮水预冷器或直接放空;
( 7)不经膨胀降压的氧气 35从上塔引出后, 进入主冷交换器 6回收冷量后作为产 品氧气 36输出;
( 8 )主冷交换器 6采用上塔顶部引出的氮气 23、 上塔下部引出的氧气 35、 污氮作 为冷源提供冷量, 使预净化空气 5冷却后进入下塔, 进入精熘装置分离出氮氧;
( 9) 补冷系统的液氮冷力循环过程为:
从液氮贮罐 18出来的液氮 19, 经液氮泵 20增压后, 经回冷器 21、 入塔液氮洗管 线进入上塔, 补入精熘系统需要的冷量, 成为从上塔顶部出来的低温氮气 23的一部分, 经主冷交换器 6过热后抽出,成为过热氮气 24,再经膨胀机 25、回冷器 21、节流阀 27, 返回液氮贮罐 18, 从而形成补冷系统的液氮冷力循环回路。
所述的膨胀机 25的制动设备 26采用压气机对产品氧气或氮气进行增压。
( 10 )设有氮气液化器 29: 膨胀机 25的出口氮气 26经氮气液化器 29、回冷器 21, 回到液氮贮罐 18;氮气 23经氮气液化器 29冷凝形成产品液氮 22,或经液氮增压泵 31、 主冷交换器 6回收冷量后, 作为高压氮气 32输出。
所述的液氮贮罐 18采用必要的绝热保冷措施, 如采用绝热真空容器、 珠光砂等隔 热保冷材料。
本发明中未说明的设备及其备用系统、 管道、 仪表、 阀门、 保冷、 具有调节功能旁 路设施等采用公知的传统制冷循环中的成熟技术进行配套。
设有与本发明的空分循环装置配套的安全、 调控设施, 使装置能经济、 安全、 高热 效率运行, 达到节能降耗、 环保的目的。
虽然本发明已以较佳实施例公开如上, 但它们并不是用来限定本发明, 任何熟悉此 技艺者, 在不脱离本发明之精神和范围内, 自当可作各种变化或润饰, 同样属于本发明 之保护范围。 因此本发明的保护范围应当以本申请的权利要求所界定的为准。

Claims

权利 要求 书
1. 一种等压分离制取氧氮的空分装置, 该装置包括空气纯化系统、 预冷系统、 精熘系 统和补冷系统, 其特征在于:
所述空分装置的补冷系统, 是指从液氮贮罐 (18)出来的液氮 (19), 经液氮泵 (20)、 回冷器 (21)、 入塔液氮洗管线进入上塔, 补入精熘系统需要的冷量, 成为从上塔顶部出来的低 温氮气 (23)的一部分,经主冷交换器 (6)过热后抽出,成为过热氮气 (24),再经膨胀机 (25)、 回冷器 (21), 返回液氮贮罐 (18), 从而形成补冷系统的液氮冷力循环回路。
2. 根据权利要求 1所述的装置, 其特征在于:
所述装置的下塔 (8)粗熘得到的富氧液空 (11), 经液空吸附器 (12)脱乙炔后, 可节流降压 后送入上塔 (10), 或不经节流等压送入上塔 (10);
所述装置的下塔 (8)引出的氮气 (13), 可节流降压后送入上塔 (10), 或不经节流等压送入 上塔 (10), 或直接进入主冷交换器 (6)回收冷量后作为产品氮气 (39)输出;
所述装置精熘系统分离出的氧气 (35)从上塔 (10)引出, 经主冷交换器 (6)回收冷量后作为 产品氧气 (36)输出;
所述的装置分离出的氮气 (23)从上塔 (10)顶部引出, 经主冷交换器 (6)回收冷量后作为产 品氮气 (39)输出。
3. 根据权利要求 1所述的装置, 其特征在于:
设有氮气液化器 (29): 膨胀机 (25)的出口氮气 (26)经氮气液化器 (29)、 回冷器 (21), 回到 液氮贮罐 (18); 氮气 (23)的一部分经氮气液化器 (29)冷凝形成产品液氮 (22), 或经液氮增 压泵 (31)、 主冷交换器 (6)回收冷量后, 作为高压氮气 (32)输出。
4. 根据权利要求 3所述的装置, 其特征在于:
设有冷交换器 (41): 氮气 (39)经冷交换器 (41)、 氮气液化器 (29)冷凝形成液氮 (22); 液化 天然气 (40)经冷交换器 (41)释放冷量后成为气态天然气 (42)输出。
5. 根据权利要求 1至 4之一所述的装置, 其特征在于:
设有液氧循环回路: 从上塔 (10)精熘得到的液氧 (14), 经液氧泵 (15)、 液氧吸附器 (16)脱 除乙炔及碳氢化合物后, 返回上塔, 从而形成液氧循环回路。
6. 根据权利要求 5所述的装置, 其特征在于:
设有液氧增压泵 (33): 上塔 (10)精熘得到的液氧 (14), 经液氧泵 (15)、 液氧吸附器 (16)脱 除乙炔及碳氢化合物后, 再经液氧增压泵 (33)、 主冷交换器 (6)回收冷量后, 作为产品高 压氧气 (34)送出。
7. 根据权利要求 6所述的装置, 其特征在于: 所述的膨胀机 (25 ) 的制动设备 (28) 采用风机、 电机、 液压泵或压气机。
8. 根据权利要求 1至 4之一所述的装置, 其特征在于:
设有节流阀 (27):
从液氮贮罐 (18)出来的液氮 (19), 经液氮泵 (20)、 回冷器 (21 )、 入塔液氮洗管线进 入上塔, 补入精熘系统需要的冷量, 成为从上塔顶部出来的低温氮气 (23 ) 的一部分, 经主冷交换器(6)过热后抽出, 成为过热氮气(24), 再经膨胀机(25 )、 回冷器(21 )、 节流阀 (27), 返回液氮贮罐 (18), 从而形成补冷系统的液氮冷力循环回路。
9. 根据权利要求 1至 4之一所述的装置, 其特征在于:
所述的精熘系统包括下塔 (8)、 冷凝蒸发器 (9)、 上塔 (10), 采用一体式或分体式的 结构。
10. 根据权利要求 1至 4之一所述的装置, 其特征在于:
所述的空气纯化系统包括纯化器(4), 采用分子筛纯化器、可逆式冷交换器或石头蓄冷 器, 保证空分装置连续稳定运行。
11. 根据权利要求 3所述的装置, 其特征在于:
所述的主冷交换器 (6)、 氮气液化器 (29) 可设置一个或多个, 分别对空气 (5 )、 氮气 (23 ) 进行过冷处理。
PCT/CN2013/088195 2013-01-27 2013-11-29 一种等压分离制取氧氮的空分装置 WO2014114138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310029678.8 2013-01-27
CN201310029678.8A CN103148676B (zh) 2013-01-27 2013-01-27 一种等压分离制取氧氮的空分装置

Publications (1)

Publication Number Publication Date
WO2014114138A1 true WO2014114138A1 (zh) 2014-07-31

Family

ID=48546891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088195 WO2014114138A1 (zh) 2013-01-27 2013-11-29 一种等压分离制取氧氮的空分装置

Country Status (2)

Country Link
CN (1) CN103148676B (zh)
WO (1) WO2014114138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105329089A (zh) * 2014-08-06 2016-02-17 江洪泽 车船增储冷能的方法装置及实用动力系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148676B (zh) * 2013-01-27 2016-03-30 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN104165495B (zh) * 2014-06-11 2016-04-20 西亚特工业气体科技(杭州)有限公司 富氧助燃技术新工艺
CN106123489A (zh) * 2016-06-29 2016-11-16 苏州制氧机股份有限公司 一种混合塔制氧方法
CN106958987B (zh) * 2017-03-06 2019-04-09 浙江大学 一种用于空气分离的空气预除湿及预冷系统
AU2018269511A1 (en) * 2017-05-16 2019-11-28 Terrence J. Ebert Apparatus and process for liquefying gases
CN109865177A (zh) * 2019-03-20 2019-06-11 徐建秀 一种内科呼吸输液综合护理装置
CN113670003B (zh) * 2021-07-29 2022-08-09 北京科技大学 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN113686099B (zh) * 2021-08-09 2022-08-09 北京科技大学 一种基于内压缩空分储能装置的物质回收方法
CN115790077B (zh) * 2023-02-03 2023-05-23 杭氧集团股份有限公司 一种制造高纯氮和超纯氧的装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096095A (zh) * 1993-05-13 1994-12-07 波克股份有限公司 在大于大气压力下生产氧气的单柱方法及其设备
JPH0882476A (ja) * 1995-09-25 1996-03-26 Daido Hoxan Inc 高純度窒素ガス製造装置
JPH11142054A (ja) * 1997-11-04 1999-05-28 Nippon Sanso Kk 液化天然ガスの冷熱を利用した空気液化分離装置及び方法
CN1789868A (zh) * 2005-12-16 2006-06-21 苏州市兴鲁空分设备科技发展有限公司 一种利用液化天然气的空气分离方法
CN102032756A (zh) * 2011-01-07 2011-04-27 苏州市兴鲁空分设备科技发展有限公司 空气分离方法
CN103148676A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203454607U (zh) * 2013-01-27 2014-02-26 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096095A (zh) * 1993-05-13 1994-12-07 波克股份有限公司 在大于大气压力下生产氧气的单柱方法及其设备
JPH0882476A (ja) * 1995-09-25 1996-03-26 Daido Hoxan Inc 高純度窒素ガス製造装置
JPH11142054A (ja) * 1997-11-04 1999-05-28 Nippon Sanso Kk 液化天然ガスの冷熱を利用した空気液化分離装置及び方法
CN1789868A (zh) * 2005-12-16 2006-06-21 苏州市兴鲁空分设备科技发展有限公司 一种利用液化天然气的空气分离方法
CN102032756A (zh) * 2011-01-07 2011-04-27 苏州市兴鲁空分设备科技发展有限公司 空气分离方法
CN103148676A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105329089A (zh) * 2014-08-06 2016-02-17 江洪泽 车船增储冷能的方法装置及实用动力系统
CN105329089B (zh) * 2014-08-06 2020-08-14 江洪泽 车船增储冷能的动力系统

Also Published As

Publication number Publication date
CN103148676B (zh) 2016-03-30
CN103148676A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2014114138A1 (zh) 一种等压分离制取氧氮的空分装置
WO2014114258A1 (zh) 一种等压分离制取氧氮的空分装置
US9879905B2 (en) Natural gas isobaric liquefaction apparatus
WO2021043182A1 (zh) 一种利用lng冷能的空分装置和方法
CN203454607U (zh) 一种等压分离制取氧氮的空分装置
CN111043833B (zh) 一种具有储能和发电功能的内压缩空分工艺流程
US10006696B2 (en) Natural gas isobaric liquefaction apparatus
RU2680285C2 (ru) Станция для снижения давления и сжижения газа
CN104807289A (zh) 利用lng冷能空分制取液氧液氮的方法
CN203224100U (zh) 一种等压分离制取氧氮的空分装置
CN105066587A (zh) 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
CN102230403A (zh) 利用深冷技术实现低温热能发电的方法和设备
CN108759311A (zh) 大液体量制取的空分装置及方法
CN102269509B (zh) 与余热驱动制冷相结合的co2压缩液化系统
CN103162511B (zh) 一种天然气等压液化装置
CN208443098U (zh) 大液体量制取的空分装置
US20230212768A1 (en) Device and method for producing hydrogen and byproduct oxygen by using green electricity electrolyzed water
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
JPH0545050A (ja) 液化天然ガスの寒冷を利用した永久ガスの液化方法
CN203224099U (zh) 一种天然气等压液化装置
CN103148677B (zh) 一种空气等压分离制取氧氮的空分装置
CN212202152U (zh) 一种超临界布雷顿循环旁路除杂质系统
CN203224101U (zh) 一种等压分离制取氧氮的空分装置
JP2004150685A (ja) 窒素製造設備及びタービン発電設備
CN104006570B (zh) 基于正逆循环耦合的吸收-压缩复合式制冷系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13873133

Country of ref document: EP

Kind code of ref document: A1