WO2014114258A1 - 一种等压分离制取氧氮的空分装置 - Google Patents

一种等压分离制取氧氮的空分装置 Download PDF

Info

Publication number
WO2014114258A1
WO2014114258A1 PCT/CN2014/071341 CN2014071341W WO2014114258A1 WO 2014114258 A1 WO2014114258 A1 WO 2014114258A1 CN 2014071341 W CN2014071341 W CN 2014071341W WO 2014114258 A1 WO2014114258 A1 WO 2014114258A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
liquid
oxygen
refrigerant
air
Prior art date
Application number
PCT/CN2014/071341
Other languages
English (en)
French (fr)
Inventor
王海波
Original Assignee
南京瑞柯徕姆环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京瑞柯徕姆环保科技有限公司 filed Critical 南京瑞柯徕姆环保科技有限公司
Priority to US14/763,708 priority Critical patent/US10060672B2/en
Publication of WO2014114258A1 publication Critical patent/WO2014114258A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种等压分离制取氧氮的空分装置,采用低温端的朗肯循环系统,其中贮罐(18)出来的液态制冷工质(19)经液压泵(20)增压,经回冷器(21)、过冷器(42)形成过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)返回贮罐(18),形成制冷工质的冷力循环,其中制冷工质通过过冷器(42)对空分系统补充冷量。该空分装置,相同制冷量的前提下,较传统先进机组节能30%以上。

Description

一种等压分离制取氧氮的空分装置 技术领域
本发明涉及一种等压分离制取氧氮的空分装置, 具体属深度冷冻技术领域。
背景技术
国民经济的高速发展, 离不开空气分离装置。 所谓空气分离装置 (简称空分装置, 通称制氧机)是指利用深度冷冻原理将空气液化, 然后根据各组分沸点的不同, 在精馏 塔内进行精馏, 最后获得氧、 氮, 或同时提取一种或几种稀有气体的装置。
1939年,苏联科学家卡皮查院士发明高效率(>80%)径流向心反动式透平膨胀机, 为全低压制氧机的诞生创造了条件。卡皮查透平膨胀机是近代世界各国透平膨胀机发展 的基础, 卡皮查低压液化循环是现代大型制氧机的基础。 在低温技术领域是继 1852年 英国科学家焦耳和汤姆逊发现焦耳-汤姆逊效益为第一里程碑, "克劳特循环"的发明与 实现为第二里程碑, "卡皮查循环"及全低压制氧机的问世被称为第三里程碑。
随着钢铁冶金、 化工, 尤其是煤化工等行业对氧气、 氮气等空分产品需求的增长, 制氧机已向大型化、 超大型化方向发展, 国内超大型制氧机已达到 90000m3 /h等级, 制 氧的新技术新工艺也层出不穷,国内低温法制氧流程已达到第六代新流程全面普及的程 度。 制氧单耗已经从原来的大于 3kw * h/m3 02降至 0. 37 kw * h/m3 02左右, 制氧机的产 品也不再是单一的气氧, 既有气体产品又有液体产品, 而且产纯氧、 纯氮、 纯氩, 以及 稀有气体提取。 制氧技术和制氧机的发展始终围绕着安全、 智能、 节能, 简化流程、 减 少投资的方向进行着。
下面是 4种典型传统流程的简要说明:
附图 1是管式 3200m3 /h制氧机流程示意图, 图 1中: 1-蓄冷器, 2-自动闽箱, 3_ 透平膨胀机, 4-膨胀过滤器, 5-液化器, 6-下塔, 7-冷凝蒸发器, 8-上塔, 9-液氧吸附 器, 10-液空吸附器, 11-液氮过冷器, 13-液氧泵, 14-二氧化碳吸附器。 该类型制氧机 采用高效透平膨胀机制冷全低压流程, 即以卡皮查循环为基础,用嵌有蛇管的石头填料 蓄冷器冻结清除水分和二氧化碳, 用中部抽气保证其不冻结性,用中抽二氧化碳吸附器 4清除中抽气中的二氧化碳。 富氧液空经液空吸附过滤器过滤二氧化碳干冰, 吸附液空 中的乙炔, 设有液氧泵 13, 将液氧循环经液氧吸附器清除液氧中的乙炔, 以保证制氧 机安全运行。 装置中采用长管式冷凝蒸发器, 以提高传热效率。 管内是液氧沸腾, 管间 气氮冷凝。膨胀机的工质是空气。 中抽气由中抽二氧化碳吸附器清除二氧化碳后与下塔 来的旁路气汇合一起进入膨胀机, 膨胀后气体进入上塔即拉赫曼气。
附图 2是可逆式换热器自清除 10000m3 /h制氧机流程示意图。 图 2中: 1_可逆式换 热器, 2-自动闽箱, 3-液化器 (污氮), 4-液化器 (纯氮), 5-液化器 (氧气), 6-透平 膨胀机, 7-下塔, 8-冷凝蒸发器, 9-上塔, 10-液空过冷器, 11-液氧过冷器, 12-液氮 过冷器, 13-液氧吸附器, 14-液空吸附器, 15-液氧泵。 该制冷系统是以卡皮查循环为 基础的全低压循环。采用高效透平膨胀机, 膨胀工质为空气, 利用电机制动回收部分膨 胀功。净化系统采用板翅式可逆式换热器对水分、 二氧化碳自清除。设置液空吸附器清 除富氧中的乙炔。用液氧泵使冷凝蒸发器中的部分液氧循环利用液氧吸附器清除液氧中 的乙炔及其他碳氢化合物。装置中的全部换热器都采用高效的板翅式换热器, 因此也可 称全板式万立制氧机。精馏塔为带辅塔的双级精馏塔。膨胀后气体进入上塔, 这股拉赫 曼气使制氧机的制冷系统与精馏系统有机地联系起来。
附图 3是 30000m3 /h外压缩制氧机流程示意图。 图 3中: AC-空气冷却塔, AF-空气 过滤器, AP-液氩泵, TC-空气离心压缩机, ΒΠ-增压机(膨胀机), C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩塔, E1-主换热器, E2-液空液氮过冷器, EH-电加热器, ΕΠ-透平膨胀机, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液化 器, K704-精氩蒸发器, MS1、 MS2-分子筛纯化器; PV701-液氮平衡器, WC-水冷却塔, WPK WP2-水泵。 该制氧机即第六代空分流程。 空气经离心式压缩机压缩后经分子筛纯 化器清除加工空气中的水分、 二氧化碳、 乙炔及其他碳氢化合物。 而后空气进入板翅式 主热交换器冷却至饱和温度进入下塔。液化循环采用卡皮查循环,采用增压透平膨胀机 制冷, 膨胀后空气进入上塔。 上塔为规整填料塔, 下塔采用筛板塔。 保冷箱内设置粗氩 塔和精氩塔,粗氩塔与精氩塔均为规整填料塔, 实现了无氩制氩。气氧出塔压力 21kPa, 气氮出塔压力 8kPa, 采用离心式氧压机和氮压机进行产品压缩。 是典型的外压缩流程, 也可称为 "冶金型"制氧机。 除了采用上述核心技术以外, 还采用双层床分子筛纯化技 术, 双层主冷和氮-水预冷系统的高效蒸发降温 (取消冷冻机) 等技术, 使此类流程的 空分装置进一步节能降耗。
附图 4是化工型 52000m3 /h制氧机流程示意图, 图 4中: AC-空气冷却塔, AF-空气 过滤器, ATC1-空气离心压缩机, ATC2-空气循环增压机, AP-液氩泵, C1-下塔, C2-上 塔, C701-粗氩塔 I, C702-粗氩塔 II, C703-精氩塔, E1-主换热器, E3-过冷器, ET- 膨胀机, BC-增压机(膨胀机), EC-水冷塔, SH-蒸汽加热器, K1-主冷凝蒸发器, K701- 粗氩冷凝器, K702-粗氩液化器, K703-精氩冷凝器, K704-精氩蒸发器, MS1、 MS2-分子 筛纯化器; NP-液氮泵, OP-液氧泵。 该制氧机为典型的内压缩流程, 此流程及配套部机 的特点是: (1 )原料空压机和空气增压机均采用离心式压缩机, 由一台汽轮机拖动, 即 一拖二; (2 )双层床分子筛纯化器, 并在切换系统中采用了无冲击切换技术; (3 )采用 中压增压透平膨胀机制冷, 制冷工质为空气, 膨胀后的空气进入下塔; (4)主换热器为 高效板翅式换热器, 分为高、 低压两组换热器; (5 )该空分装置设置 6台产品泵, 两台 液氧泵、 两台液氮泵和两台液氩泵。 均为一用一备, 即一台运转、 另一台在线冷备用。 必须强调的该技术采用的内压缩的液氧泵、 液氮泵和液氩泵十分值得关注: 利用液氧、 液氮、液氩接近不可压缩流体的性质, 较传统的采用压气机增压的技术(因气体为可压 缩流体), 显然电机的功耗大幅度下降。
上述 4种典型流程均利用了拉赫曼原理,将膨胀后的空气吹入上塔, 或者利用从下 塔或冷凝蒸发器的顶盖抽出的氮气,一部分经切换式换热器环流通过复热后再汇合进入 透平膨胀机, 膨胀后的氮气作为产品氮气引出, 或者与污氮汇合经切换式换热器复热回 收冷量后放空。 由于从下塔引氮气, 冷凝蒸发器的冷凝量减少, 因而送入上塔的液体分 量减少, 精馏潜力得到利用, 这种采用氮膨胀的流程国外的大型全低压空分装置上已被 采用。采用空气膨胀、氮气膨胀的方法都是为了减少上塔液体馏分, 使精馏时的气液间 的温差减少, 利用了上塔精馏潜力, 使全低压空分装置具有更大的合理性。
上述传统空分装置分离气体的主要基础是热力学,即采用同温差的卡诺逆循环分析 空分制冷循环过程,制冷循环的经济性指标是制冷系数, 就是得到的收益和耗费的代价 之比值, 并且以大气环境温度 Γ。与温度为 7^低温热源(如冷库)之间的一切制冷循环, 以逆向卡诺循环的制冷系数为最高: ec = {COP)^ c = ^ = - ( 1 )
w0 T。 - Tc 上式中的 为制冷系数, q2为循环的制冷量, wQ为循环所消耗的净功。
实际循环效率通常采用实际循环的制冷系数与理论循环系数的比值进行描述, 但其 理论基础是以卡诺逆循环对空分过程进行循环分析。
实际上, 卡诺在 "关于热动力的见解" 的论文中, 得出的结论为: "在两个不同温 度的恒温热源之间工作的所有热机, 以可逆热机的效率为最高。" 即被后人称之为卡诺 定理, 按理想气体状态方程进行整理得出的卡诺循环的热效率为: 公式 (2) 中的高温热源的温度 7;与低温热源的温度为 Γ2均高于大气环境温度 Γ。, 并可以得出以下几点重要结论:
1 ) 卡诺循环的热效率只决定于高温热源和低温热源的温度, 也就是工质吸热和放 热时的温度, 提高 η和 r2, 可以提高热效率。
2) 卡诺循环的热效率只能小于 1, 绝不能等于 1, 因为 7 =∞或 2 =0都不可能实 现。这就是说,在循环发动机中即使在理想情况下,也不可能将热能全部转化为机械能, 热效率当然更不可能大于 1。
3) 当 7 = 2时, 循环热效率等于 0, 它表明, 在温度平衡的体系中, 热能不可能 转化为机械能,热能产生动力一定要有温度差作为热力学条件, 从而验证了借助单一热 源连续做功的机器是制造不出的, 或第二类永动机是不存在的。
4) 卡诺循环及其热效率公式在热力学的发展上具有重大意义。 首先, 它奠定了热 力学第二定律的理论基础; 其次, 卡诺循环的研究为提高各种热动力机热效率指出了方 向,近可能提高工质的吸热温度和尽可能降低工质的放热温度, 使放热在接近可自然得 到的最低温度即大气温度时进行。卡诺循环中所提出的利用绝热压缩以提高气体吸热温 度的方法, 至今在以气体为工质的热动力机中仍普遍采用。
5) 卡诺循环的极限点是大气环境温度, 对低于环境温度的制冷过程循环, 卡诺循 环并没有给出明确的答案。
由于制冷系数的不完善性, 国内外众多的学者对其进行研究, 并提出了完善建议。 马一太等在 《制冷与热泵产品的能效标准研究和循环热力学完善度的分析》 中结合 Curzon和 Ahlborn把有温差传热这个不可逆过程引入热力循环的分析, 以及由此创建 的有限时间热力学的启发, 结合 CA循环效率, 提出了 CA正循环的热力学完善度, 使制 冷和热泵产品的能效研究有了一定程度的进展。
但是运用热力学的基本理论并不能对空分装置循环过程做出简洁、 明了、 直观的解 释。 爱因斯坦曾对经典热力学做过评价: "一种理论, 其前提越简单, 所涉及的事物越 多, 其适应范围愈广泛, 它给人们的印象就越深刻。"对空分制冷领域的基本理论探索, 也应继承和发扬这个优点。
因此对空分制冷循环进行研究, 真正找到空分装置循环的理论基础, 找到改进空分 流程的正确方向, 并在此理论基础上组织新的空分装置流程,较大幅度降低空分装置的 能耗, 成为空分技术领域研究的难点。
发明内容
本发明的目的就是为解决卡诺定理应用于空分装置循环理论分析的不完善性,提出 对应于热力学理论的新的制冷理论即冷力学理论,并提出应用该原理设计的新的等压分 离制取氧氮的空分装置。对于低于大气环境温度的环境称之为冷源,相对于高于环境温 度的热源; 相应于热能、 热量, 提出对应的冷能、 冷量概念; 所述的制冷装置, 是指消 耗机械功来实现冷能从大气环境向低温冷源或者从低温冷源向更低温冷源的转移。在实 现冷能转换时, 均需要某些物质作为制冷装置的工作物质, 称为制冷工质。
制冷过程中冷能的传递遵循能量转化和守恒定律。
为描述制冷过程中冷量传递的方向、 条件和限度, 提出冷力学第二定律: 冷力学第 二定律的实质跟热力学第二定律的实质是一样的, 同样遵循 "能质衰贬原理", 即不同 形式的冷能, 在转换成功量的能力上是有 "质" 的差别的; 即使是同一种形式的冷能, 其存在状态不同时, 它的转换能力也不同的。 一切冷能传递的实际过程, 总是朝着能质 下降的方向进行, 一切冷能总会自发向大气环境方向转换。冷能能质的提高过程不可能 自动、单独地进行, 一个能质的提高的过程必然伴随着另一个能质的下降的过程同时发 生,这个能质下降的过程就是实现能质升高过程的必要的补偿条件, 即以能质下降为代 价、 作为补偿来推动能质升高过程的实现。 在实际过程中, 作为代价的能质下降过程, 必须足以补偿能质升高的过程, 以满足总的能质必定下降的普遍规律。 因此, 在一定的 能质下降的补偿条件下, 能质升高的过程必然有一个最高的理论限度。只有在完全可逆 的理想条件下,才能达到这个理论限度,这时,能质升高值正好等于能质下降的补偿值, 使总的能质保持不变。 可见, 可逆过程是纯理想化的能质守恒过程; 在不可逆过程中总 的能质必然下降; 在任何情况下都不可能实现使孤立系统总的能质升高的过程。这就是 能质衰贬原理的物理内涵, 是冷力学第二定律的实质, 也是热力学第二定律的实质, 它 揭示了一切宏观过程必须遵循的、 有关过程进行方向、 条件及限度的客观规律。
描述冷力学第二定律的基本公式为:
公式 (3) 中, Tc2<Tcl <T0, To为环境温度, 均为开氏温标。
相对环境温度 To而言, 冷源在 Tcl、 Tc2下的最大冷效率为: (4) c2
(5)
T 假设为 q2循环的制冷量, wQ为循环所消耗的净功, 则在冷源温度为 Tel时:
Figure imgf000007_0001
同样, 在冷源温度为 Tc2时:
Figure imgf000007_0002
从公式 (4)至 (7)不难看出, 冷力学的效率为 0到 1之间, 由于实际过程中不可 逆性的不可避免, 制冷循环效率总是小于 1的;
环境温度 To确定时, 冷源温度越低, 从该冷源输入同样的功, 获得的制冷量越多, 这为构建新的空分装置流程指明了方向。
需要说明的是:
(1) 冷量是自发从低温冷源向环境温度传递的;
(2) 不可能把冷量从低温冷源传到更低的冷源而不引起其他变化;
(3) 冷量从低温冷源传递向环境时, 与外界交换的功量为 WQ, 其中包含对环境所 做的无用功 ^。(^-^), p。为大气压力, Vo为环境温度下的体积, Vc为冷源温度下的 体积,所能做的最大可逆有用功为:
Tc
(Wu )皿 = o - (V0 -Vc) = (\-―) Q0 -Po(V0 -Vc)
To
(4) 冷量从低温冷源传递向环境时, 向环境传递的无用能为:
E - 无用 _ To O
向环境传递的无用功为: )( 。- J 对应于热量的有用能 " "、 无用能 "烬", 对热量、 冷量取水火会意, 对于冷量 的有用能, 取名为 "冷量涟" , 冷量向环境传递的无用能称为 "冷量烬" , 读 音为 "尽" 。
(5)冷能向环境温度传递时, 向外做功的最佳型式为采用塞贝克(Seebeck)效应 的温差发电机, 即冷力发电机;
(6 ) 冷力学中能量必须、 也必然要符合能量转化和守恒定律;
( 7 ) 通过借鉴有限时间热力学的构思, 可以发展有限时间冷力学基本理论;
(8 ) 不能脱离环境来评价冷量的品位;
(9 ) 冷力学和热力学是能量学中的两个分支, 既存在对立的一面, 又存在着统一 的一面: 低温制冷循环中, 在遵循冷力学第二定律的前提下, 在低温环境下构造的制冷 剂工质的循环过程又遵循朗肯循环原理, 重新又回到卡诺定律,恰好符合中国传统美学 中阴中有阳、 阴阳相济的原理。
从上述理论基础可以看出, 假设的冷力学具有和热力学对称的理论框架体系,符合 科学美学的基本原则, 即相反相成、 对称原则。
基于上述冷力学基本原理, 本发明提出不同于传统空分装置的流程组织, 实现空气 等压分离制取氧氮的新途径, 并有效降低空分装置的能耗。
本发明的目的是通过以下措施实现的:
一种等压分离制取氧氮的空分装置, 该空分装置实现空气等压分离的工艺步骤如 下:
( 1 ) 原料空气 1经空气过滤器 2除去灰尘和机械杂质, 进入压气机, 3中被压缩到 所需压力;
(2) 经预冷的压缩空气进入纯化器 4清除水分、 二氧化碳及少量的乙炔、 碳氢化 合物, 再经主冷交换器 6冷却至液化温度, 进入精馏装置的下塔 8;
(3 ) 下塔 8粗馏得到的富氧液空 11, 经液空吸附器 12脱除乙炔后, 经过冷器 42 过冷后, 不经节流, 直接送入上塔的中部, 通过液氮洗, 经冷凝蒸发器 9蒸发出氮气, 得到液氧、 氧气;
(4) 冷凝蒸发器 9产生的液氮, 流回下塔 8作回流液; 也可直接引出部分液氮产 品, 另一部分液氮作下塔回流液; 下塔中部或上部引出的氮气 13经过冷器 42冷凝形成 液氮 22, 送入上塔 10的顶部, 参与上塔的精馏过程;
(5 )上塔 10精馏得到的液氧 14, 经液氧泵 15、 液氧吸附器 16脱除乙炔及碳氢化 合物后, 返回上塔下部, 从而形成液氧循环回路; 或者经液氧泵 15、 液氧吸附器 16脱 除乙炔后的液氧 14直接作为产品 17送出; 或者再经液氧增压泵 33增压后, 经主冷交 换器 6回收冷量后, 作为产品高压氧气 34送出;
(6) 污氮从上塔的辅塔底部引出, 经污氮管线 37、 主冷交换器 6回收冷量后, 送 至氮水预冷器或直接放空;
(7)不经膨胀降压的氧气 35从上塔引出后, 进入主冷交换器 6或经辅助冷交换器 41、 主冷交换器 6回收冷量后作为产品氧气 36输出;
( 8 )主冷交换器 6采用上塔顶部引出的氮气 23、 上塔下部引出的氧气 35、 污氮作 为冷源提供冷量, 使预净化空气 5冷却后进入下塔, 进入精馏装置分离出氮氧;
(9) 辅助冷交换器 41采用补冷系统提供冷量, 或和上塔顶部引出的氮气 23、 上 塔下部引出的氧气 35、 污氮作为冷源提供冷量, 使空气 40冷却至液化温度;
( 10) 补冷系统的制冷工质循环过程为:
所述装置的补冷系统, 是指从制冷工质贮罐 18出来的液态制冷工质 19, 经液压泵 20、 回冷器 21、 或和氮气液化器 29、 过冷器 42、 或和辅助冷交换器 41形成制冷工质 过热蒸汽 24, 经膨胀机 25膨胀降温后, 再经回冷器 21、 节流闽 27, 返回制冷工质贮 罐 18, 通过过冷器 42、 或和辅助冷交换器 41对空分系统补入所需的冷量, 从而形成制 冷工质的冷力循环回路; 通过设置的节流闽 27可以方便调节补冷系统的压力。
所述的膨胀机 25的制动设备 26采用风机、 电机、 液压泵或压气机。
( 11 )设有氮气液化器 29: 从制冷工质贮罐 18出来的液态制冷工质 19, 经液压泵 20增压后, 经回冷器 21、 氮气液化器 29、 过冷器 42、 回冷器 21, 回到制冷工质贮罐 18; 氮气 23经氮气液化器 29冷凝形成产品液氮 22, 或经液氮增压泵 31、 主冷交换器 6回收冷量后, 作为高压氮气 32输出。
所述的等压分离, 是指进入空分精馏系统的原料空气,无需像传统的空分工艺那样 膨胀降压制冷, 压气机出来的空气, 仅有沿程设备及管道的阻力损失, 可以视为等压分 离过程。
所述的精馏系统, 包括下塔、 冷凝蒸发器、 上塔, 采用一体式或分体式的结构。 所述的纯化器 4包括分子筛纯化器、可逆式换冷器或石头蓄冷器, 保证工艺的连续 正常运行。
所述的制冷工质的标准压力下的沸点低于或等于氧气, 包括但不限于液氮、 液氩、 液氖、 液氦等一种或多种稀有气体, 如能确保安全, 也可使用液氧或液氢, 优选的为液 氮。
所述的制冷工质贮罐 18采用必要的绝热保冷措施, 如采用绝热真空容器、 珠光砂 等隔热保冷材料。
所述的主冷交换器 6、 辅助冷交换器 41、 回冷器 21、 过冷器 42采用管壳式、 板翅 式、微通道或其他型式的换冷器, 其结构及换冷元件与传统的空分流程中的管壳式换热 器、 板翅式换热器、 微通道换热器等相同, 只是为了与制冷体系相对应而更换准确的名 称。
所述的过冷器 42、 辅助冷交换器 41可设置一个或多个, 通过补冷系统分别对氮气 13、 富氧液空 11、 液氧进行过冷却。
所述的主冷交换器 6可设置一个或多个, 对空气 5进行预冷处理。
本发明中未说明的设备及其备用系统、 管道、 仪表、 闽门、 保冷、 具有调节功能旁 路设施等采用公知的传统制冷循环中的成熟技术进行配套。
设有与本发明的制冷循环装置配套的安全、 调控设施, 使装置能经济、 安全、 高热 效率运行, 达到节能降耗、 环保的目的。
本发明相比现有技术具有如下优点:
1、 节能效果显著: 取消传统空分循环的空气膨胀机或氮气膨胀机, 利用液体的接 近不可压缩流体的性质,采用低温液体循环泵进行增压并补充冷量, 实现空气的等压分 离, 能够有效提高制冷循环的效率, 与传统空分装置相比, 相同制冷量的节能率达 30% 以上。
2、 通过液氮泵、 液氧泵对产品气体增压, 能够节省大量的动力消耗。
3、 通过提高精馏塔的操作压力, 能够顺利实现节省产品氧、 氮输出的压缩功以及 氧气压缩机、 氮气压缩机等设备, 以及与之配套的冷却水系统,
4、 流程设置更加简洁, 精馏系统的潜力得到充分发挥, 操作弹性大, 运行调节更 加灵活方便。
5、 设备及材料的备用量有较大幅度的减少。
6、 通过等压分离氮氧的空分系统的液氧泵、 液氮泵, 能够对气体氧气、 氮气高效、 节能增压, 能够实现集中供气, 类似于传统的蒸汽集中供热技术, 具有深远的社会和经 济意义。
附图说明
图 1是管式 3200m3 /h制氧机流程示意图:
图 1 中: 1-蓄冷器, 2-自动闽箱, 3-透平膨胀机, 4-膨胀过滤器, 5-液化器, 6- 下塔, 7-冷凝蒸发器, 8-上塔, 9-液氧吸附器, 10-液空吸附器, 11-液空过冷器, 13- 液氧泵, 14-二氧化碳吸附器。
图 2是可逆式换热器自清除 10000m3 /h制氧机流程示意图: 图 2中: 1-可逆式换热器, 2-自动闽箱, 3-液化器 (污氮), 4-液化器(纯氮), 5- 液化器(氧气), 6-透平膨胀机, 7-下塔, 8-冷凝蒸发器, 9-上塔, 10-液空过冷器, 11- 液氧过冷器, 12-液氮过冷器, 13-液氧吸附器, 14-液空吸附器, 15-液氧泵。
图 3是 30000m3 /h外压缩制氧机流程示意图:
图 3中: AC-空气冷却塔, AF-空气过滤器, AP-液氩泵, TC-空气离心压缩机, ΒΠ- 增压机(膨胀机), C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩塔, E1-主换热器, E2-液空液氮过冷器, EH-电加热器, ΕΠ-透平膨胀机, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液压器, K704-精氩蒸发器, MS1、MS2-分子筛纯化器; PV701- 液氮平衡器, WC-水冷却塔, WP1、 WP2-水泵。
图 4是化工型 52000m3 /h制氧机流程示意图:
图 4中: AC-空气冷却塔, AF-空气过滤器, ATC1-空气离心压缩机, ATC2-空气循环 增压机, AP-液氩泵, C1-下塔, C2-上塔, C701-粗氩塔 I, C702-粗氩塔 I I, C703-精氩 塔, E1-主换热器, E3-过冷器, ET-膨胀机, BC-增压机 (膨胀机), EC-水冷塔, SH-蒸 汽加热器, K1-主冷凝蒸发器, K701-粗氩冷凝器, K702-粗氩液化器, K703-精氩冷凝器, K704-精氩蒸发器, MS1、 MS2-分子筛纯化器; NP-液氮泵, 0P-液氧泵。
图 5是本发明的一种等压分离制取氧氮的空分装置流程示意图:
图 5中: 1-空气, 2-空气过滤器, 3-压气机, 4-净化器, 5-预净化空气, 6-主冷交 换器, 7-进下塔空气, 8-下塔, 9-冷凝蒸发器, 10-上塔, 11-富氧液空, 12-液空吸附 器, 13-下塔氮气, 14-液氧, 15-液氧泵, 16-液氧吸附器, 17-液氧, 18-制冷工质贮罐, 19-液态制冷工质, 20-液压泵, 21-回冷器, 22-液氮, 23-低温氮气, 24-制冷工质过热 蒸汽, 25-膨胀机, 26-膨胀机出口乏汽, 27-节流闽, 28-制动设备, 29-氮气液化器, 30-液氮, 31-液氮增压泵, 32-高压氮气, 33-液氧增压泵, 34-高压氧气, 35-低温氧气, 36-产品氧气, 37-污氮管线, 38-污氮, 39-产品氮气, 40-空气, 41-辅助冷交换器, 42- 过冷器。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细描述。
实施例 1 :
如图 1所示, 一种等压分离制取氧氮的空分装置, 制冷工质采用液氮, 具体实施例 如下:
( 1 )原料空气 1经空气过滤器 2除去灰尘和机械杂质, 进入压气,机 3中被压缩到 所需压力;
(2) 经预冷的压缩空气进入纯化器 4清除水分、 二氧化碳及少量的乙炔、 碳氢化 合物, 再经主冷交换器 6冷却至液化温度, 进入精馏装置的下塔 8;
(3 ) 下塔 8精馏得到的富氧液空 11, 经液空吸附器 12脱除乙炔后, 经过冷器 42 过冷后, 不经节流, 直接送入上塔的中部, 经冷凝蒸发器 9蒸发出氮气, 得到液氧、 氧 气;
(4) 冷凝蒸发器 9产生的液氮, 流回下塔 8作回流液;
(5 )上塔 10精馏得到的液氧 14, 经液氧泵 15、 液氧吸附器 16脱除乙炔及碳氢化 合物后, 返回上塔下部, 从而形成液氧循环回路; 或者经液氧泵 15、 液氧吸附器 16脱 除乙炔后的液氧 14直接作为产品 17送出; 或者再经液氧增压泵 33增压后, 经主冷交 换器 6回收冷量后, 作为产品高压氧气 34送出;
(6) 污氮从上塔的辅塔底部引出, 经污氮管线 37、 主冷交换器 6回收冷量后, 送 至氮水预冷器或直接放空;
(7)主冷交换器 6采用上塔顶部引出的氮气 23、 上塔下部引出的氧气 35、 污氮作 为冷源提供冷量, 使预净化空气 5冷却后进入下塔, 进入精馏装置分离出氮氧;
(7) 辅助冷交换器 41采用补冷系统提供冷量, 或和上塔顶部引出的氮气 23、 上 塔下部引出的氧气 35、 污氮作为冷源提供冷量, 使空气 40冷却至液化温度;
( 8 ) 补冷系统的制冷工质循环过程为:
所述装置的补冷系统, 是指从制冷工质贮罐 18出来的液态制冷工质 19, 经液压泵 20、 回冷器 21、 氮气液化器 29、 过冷器 42、 辅助冷交换器 41形成制冷工质过热蒸汽 24, 经膨胀机 25膨胀降温后, 再经回冷器 21、 节流闽 27, 返回制冷工质贮罐 18, 通 过过冷器 42、 辅助冷交换器 41对空分系统补入所需的冷量, 从而形成制冷工质的冷力 循环回路; 所述的膨胀机 25的制动设备 28采用压气机, 用于对气体产品氧气或氮气增 压。
氮气 23经氮气液化器 29液化形成产品液氮 22, 或经液氮增压泵 31增压后, 经主 冷交换器 6回收冷量后, 作为高压氮气 32输出。
所述的制冷工质贮罐 18采用必要的绝热保冷措施, 如采用绝热真空容器、 珠光砂 等隔热保冷材料。
本发明中未说明的设备及其备用系统、 管道、 仪表、 闽门、 保冷、 具有调节功能旁 路设施等采用公知的传统制冷循环中的成熟技术进行配套。 设有与本发明的空分循环装置配套的安全、 调控设施, 使装置能经济、 安全、 高热 效率运行, 达到节能降耗、 环保的目的。
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明, 任何熟悉此 技艺者, 在不脱离本发明之精神和范围内, 自当可作各种变化或润饰, 同样属于本发明 之保护范围。 因此本发明的保护范围应当以本申请的权利要求所界定的为准。

Claims

权利 要求 书
1. 一种等压分离制取氧氮的空分装置, 该装置包括空气纯化系统、 预冷系统、 精熘系 统和补冷系统, 其特征在于:
所述装置的补冷系统, 是指从制冷工质贮罐 (18)出来的液态制冷工质 (19), 经液压泵 (20) 增压后, 经回冷器 (21)、 过冷器 (42)形成制冷工质过热蒸汽 (24), 经膨胀机 (25)膨胀降温 后,再经回冷器 (21)返回制冷工质贮罐 (18),通过过冷器 (42)对空分系统补入所需的冷量, 从而形成制冷工质的冷力循环回路。
2. 根据权利要求 1所述的装置, 其特征在于:
设有辅助冷交换器 (41): 从制冷工质贮罐 (18)出来的液态制冷工质 (19), 经液压泵 (20)增 压后, 经回冷器 (21)、 过冷器 (42)、 辅助冷交换器 (41)形成制冷工质过热蒸汽 (24), 经膨 胀机 (25)膨胀降温后, 再经回冷器 (21)返回制冷工质贮罐 (18), 通过过冷器 (42)、 辅助冷 交换器 (41)对空分系统补入所需的冷量, 从而形成制冷工质的冷力循环回路。
3. 根据权利要求 2所述的装置, 其特征在于:
所述装置的下塔 (8)粗熘得到的富氧液空 (11),经液空吸附器 (12)脱乙炔、过冷器 (42)过冷 后, 可节流降压后送入上塔 (10), 或不经节流等压送入上塔 (10);
所述装置的下塔 (8)引出的氮气 (23)经过冷器 (42)冷凝成液氮 (22)后, 可节流降压后送入 上塔 (10), 或不经节流等压送入上塔 (10), 或直接进入主冷交换器 (6)回收冷量后作为产 品氮气 (39)输出;
所述装置精熘系统分离出的氧气 (35)从上塔 (10)引出, 经主冷交换器 (6)或经辅助冷交换 器 (41)、 主冷交换器 (6)回收冷量后作为产品氧气 (36)输出;
所述的装置分离出的氮气 (23)从上塔 (10)顶部引出, 经主冷交换器 (6)、 或经辅助冷交换 器 (41)、 主冷交换器 (6)回收冷量后作为产品氮气 (39)输出。
4. 根据权利要求 3所述的装置, 其特征在于:
设有氮气液化器 (29): 从制冷工质贮罐 (18)出来的液态制冷工质 (19), 经液压泵 (20)增压 后, 经回冷器 (21)、 氮气液化器 (29)、 过冷器 (42)、 回冷器 (21), 回到制冷工质贮罐 (18); 氮气 (23)经氮气液化器 (29)冷凝形成产品液氮 (22), 或经液氮增压泵 (31)、 主冷交换器 (6) 回收冷量后, 作为高压氮气 (32)输出。
5. 根据权利要求 1至 4之一所述的装置, 其特征在于:
所述的膨胀机 (25 ) 的制动设备 (28) 采用风机、 电机、 液压泵或压气机。
6. 根据权利要求 5所述的装置, 其特征在于:
设有节流阀 (27): 从制冷工质贮罐 (18) 出来的液态制冷工质 (19), 经液压泵 (20)、 回冷器 (21)、 或 和氮气液化器(29)、过冷器(42)、或和辅助冷交换器(41 )形成制冷工质过热蒸汽(24), 经膨胀机(25)膨胀降温后, 再经回冷器(21)、节流阀(27), 返回制冷工质贮罐(18), 通过过冷器 (42)、 或和辅助冷交换器 (41) 对空分系统补入所需的冷量, 从而形成制 冷工质的冷力循环回路;
通过设置的节流阀 (27) 可以方便调节补冷系统的压力。
7. 根据权利要求 6所述的装置, 其特征在于:
设有液氧增压泵 (33): 上塔 (10) 精熘得到的液氧 (14), 经液氧泵 (15)、 液氧吸附 器(16)脱除乙炔及碳氢化合物后, 再经液氧增压泵 (33)增压后, 经主冷交换器(6) 回收冷量后, 作为产品高压氧气 (34) 送出。
8. 根据权利要求 7所述的装置, 其特征在于:
所述的精熘系统包括下塔 (8)、 冷凝蒸发器 (9)、 上塔 (10), 采用一体式或分体式的 结构。
9. 根据权利要求 8所述的装置, 其特征在于:
所述的空气纯化系统包括纯化器(4), 采用分子筛纯化器、可逆式冷交换器或石头蓄冷 器, 保证空分装置连续稳定运行。
10. 根据权利要求 9所述的装置, 其特征在于:
所述的主冷交换器 (6)、 氮气液化器 (29)、 过冷器 (42)、 辅助冷交换器 (41)可设置 一个或多个, 对空气 (5)、 氮气 (23)、 富氧液空 (11) 进行过冷处理。
PCT/CN2014/071341 2013-01-27 2014-01-24 一种等压分离制取氧氮的空分装置 WO2014114258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/763,708 US10060672B2 (en) 2013-01-27 2014-01-24 Air separation apparatus to produce oxygen and nitrogen through isobaric separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030923.7 2013-01-27
CN201310030923.7A CN103162512B (zh) 2013-01-27 2013-01-27 一种等压分离制取氧氮的空分装置

Publications (1)

Publication Number Publication Date
WO2014114258A1 true WO2014114258A1 (zh) 2014-07-31

Family

ID=48585817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071341 WO2014114258A1 (zh) 2013-01-27 2014-01-24 一种等压分离制取氧氮的空分装置

Country Status (3)

Country Link
US (1) US10060672B2 (zh)
CN (1) CN103162512B (zh)
WO (1) WO2014114258A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968705A (zh) * 2017-05-10 2017-07-21 河南理工大学 一种煤层抽采钻孔热冷冲击破煤增透装置及增透方法
CN113865265A (zh) * 2021-10-08 2021-12-31 华陆工程科技有限责任公司 一种利用液氢冷能的空气分离方法
CN114812097A (zh) * 2022-04-22 2022-07-29 杭州特盈能源技术发展有限公司 一种跨流程高契合度耦合低能耗高氮制取工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162512B (zh) * 2013-01-27 2015-06-10 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN107560320B (zh) * 2017-10-18 2022-11-22 上海宝钢气体有限公司 一种生产高纯氧和高纯氮的方法及装置
CN114718680B (zh) * 2022-04-06 2024-01-19 西安热工研究院有限公司 一种集成多级压缩热泵的超临界co2热电联产系统及方法
CN114688828A (zh) * 2022-04-25 2022-07-01 西安热工研究院有限公司 一种基于lng冷能利用的空气分离装置及系统
KR20240028594A (ko) * 2022-08-24 2024-03-05 현대자동차주식회사 장치
CN115854653B (zh) * 2023-02-27 2023-05-12 河南心连心深冷能源股份有限公司 一种采用同一热泵生产贫氪氙和超纯氧的装置及生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220798A (en) * 1990-09-18 1993-06-22 Teisan Kabushiki Kaisha Air separating method using external cold source
CN1789868A (zh) * 2005-12-16 2006-06-21 苏州市兴鲁空分设备科技发展有限公司 一种利用液化天然气的空气分离方法
CN102072612A (zh) * 2010-10-19 2011-05-25 上海加力气体有限公司 N型模式节能制气方法及n型模式节能制气装置
CN103162512A (zh) * 2013-01-27 2013-06-19 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN203224101U (zh) * 2013-01-27 2013-10-02 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112550A (en) * 1998-12-30 2000-09-05 Praxair Technology, Inc. Cryogenic rectification system and hybrid refrigeration generation
US6053008A (en) * 1998-12-30 2000-04-25 Praxair Technology, Inc. Method for carrying out subambient temperature, especially cryogenic, separation using refrigeration from a multicomponent refrigerant fluid
FR2801963B1 (fr) * 1999-12-02 2002-03-29 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US6230519B1 (en) * 1999-11-03 2001-05-15 Praxair Technology, Inc. Cryogenic air separation process for producing gaseous nitrogen and gaseous oxygen
US6357258B1 (en) * 2000-09-08 2002-03-19 Praxair Technology, Inc. Cryogenic air separation system with integrated booster and multicomponent refrigeration compression
US7143606B2 (en) * 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
CN203224100U (zh) * 2013-01-27 2013-10-02 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220798A (en) * 1990-09-18 1993-06-22 Teisan Kabushiki Kaisha Air separating method using external cold source
CN1789868A (zh) * 2005-12-16 2006-06-21 苏州市兴鲁空分设备科技发展有限公司 一种利用液化天然气的空气分离方法
CN102072612A (zh) * 2010-10-19 2011-05-25 上海加力气体有限公司 N型模式节能制气方法及n型模式节能制气装置
CN103162512A (zh) * 2013-01-27 2013-06-19 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN203224101U (zh) * 2013-01-27 2013-10-02 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968705A (zh) * 2017-05-10 2017-07-21 河南理工大学 一种煤层抽采钻孔热冷冲击破煤增透装置及增透方法
CN106968705B (zh) * 2017-05-10 2023-04-07 河南理工大学 一种煤层抽采钻孔热冷冲击破煤增透装置及增透方法
CN113865265A (zh) * 2021-10-08 2021-12-31 华陆工程科技有限责任公司 一种利用液氢冷能的空气分离方法
CN114812097A (zh) * 2022-04-22 2022-07-29 杭州特盈能源技术发展有限公司 一种跨流程高契合度耦合低能耗高氮制取工艺
CN114812097B (zh) * 2022-04-22 2023-02-03 杭州特盈能源技术发展有限公司 一种跨流程高契合度耦合低能耗高氮制取工艺

Also Published As

Publication number Publication date
US10060672B2 (en) 2018-08-28
US20150354888A1 (en) 2015-12-10
CN103162512B (zh) 2015-06-10
CN103162512A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2014114258A1 (zh) 一种等压分离制取氧氮的空分装置
WO2014114138A1 (zh) 一种等压分离制取氧氮的空分装置
US9879905B2 (en) Natural gas isobaric liquefaction apparatus
CN104061757B (zh) 一种液氧及液氮制取装置及方法
US3083544A (en) Rectification of gases
CN104807286B (zh) 回收利用lng冷能的氮气液化系统
WO2021043182A1 (zh) 一种利用lng冷能的空分装置和方法
CN203454607U (zh) 一种等压分离制取氧氮的空分装置
CN111043833B (zh) 一种具有储能和发电功能的内压缩空分工艺流程
CN104807289B (zh) 利用lng冷能空分制取液氧液氮的方法
US10006696B2 (en) Natural gas isobaric liquefaction apparatus
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN109341193A (zh) 一种峰谷电生产液氧液氮装置及方法
CN105066587A (zh) 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
CN203224100U (zh) 一种等压分离制取氧氮的空分装置
US3118751A (en) Process and installation for the production of refrigeration thru high-pressure gas
CN106871576B (zh) 工业合成气低温前脱甲烷方法及系统
CN208443098U (zh) 大液体量制取的空分装置
US20230212768A1 (en) Device and method for producing hydrogen and byproduct oxygen by using green electricity electrolyzed water
CN105115244B (zh) 一种低纯度氧空气分离的装置及方法
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN114777412B (zh) 一种具有热虹吸式氢过冷器的氢气液化装置
JPH0545050A (ja) 液化天然ガスの寒冷を利用した永久ガスの液化方法
CN103148677B (zh) 一种空气等压分离制取氧氮的空分装置
CN203224101U (zh) 一种等压分离制取氧氮的空分装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14763708

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14743289

Country of ref document: EP

Kind code of ref document: A1