CN203224101U - 一种等压分离制取氧氮的空分装置 - Google Patents
一种等压分离制取氧氮的空分装置 Download PDFInfo
- Publication number
- CN203224101U CN203224101U CN2013200443532U CN201320044353U CN203224101U CN 203224101 U CN203224101 U CN 203224101U CN 2013200443532 U CN2013200443532 U CN 2013200443532U CN 201320044353 U CN201320044353 U CN 201320044353U CN 203224101 U CN203224101 U CN 203224101U
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- air
- liquid
- oxygen
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Images
Landscapes
- Separation By Low-Temperature Treatments (AREA)
Abstract
本实用新型涉及一种等压分离制取氧氮的空分装置,采用低温端的类似的热能动力循环装置的朗肯循环系统,采用液压泵输入功,通过制冷工质对空分装置进行补冷,从而实现空气的等压分离制取氮氧。本实用新型的空分装置,相同制冷量的前提下,较传统先进机组节能30%以上,同时通过空分装置能够实现集中供气,是对传统空分技术及制冷理论的突破,经济、社会、环保效益显著。
Description
技术领域
本发明涉及一种等压分离制取氧氮的空分装置,具体属深度冷冻技术领域。
背景技术
国民经济的高速发展,离不开空气分离装置。所谓空气分离装置(简称空分装置,通称制氧机)是指利用深度冷冻原理将空气液化,然后根据各组分沸点的不同,在精馏塔内进行精馏,最后获得氧、氮,或同时提取一种或几种稀有气体的装置。
1939年,苏联科学家卡皮查院士发明高效率(>80%)径流向心反动式透平膨胀机,为全低压制氧机的诞生创造了条件。卡皮查透平膨胀机是近代世界各国透平膨胀机发展的基础,卡皮查低压液化循环是现代大型制氧机的基础。在低温技术领域是继1852年英国科学家焦耳和汤姆逊发现焦耳-汤姆逊效益为第一里程碑,“克劳特循环”的发明与实现为第二里程碑,“卡皮查循环”及全低压制氧机的问世被称为第三里程碑。
随着钢铁冶金、化工,尤其是煤化工等行业对氧气、氮气等空分产品需求的增长,制氧机已向大型化、超大型化方向发展,国内超大型制氧机已达到90000m3/h等级,制氧的新技术新工艺也层出不穷,国内低温法制氧流程已达到第六代新流程全面普及的程度。制氧单耗已经从原来的大于3kw·h/m3O2降至0.37kw·h/m3O2左右,制氧机的产品也不再是单一的气氧,既有气体产品又有液体产品,而且产纯氧、纯氮、纯氩,以及稀有气体提取。制氧技术和制氧机的发展始终围绕着安全、智能、节能,简化流程、减少投资的方向进行着。
下面是4种典型传统流程的简要说明:
附图1是管式3200m3/h制氧机流程示意图,图1中:1-蓄冷器,2-自动阀箱,3-透平膨胀机,4-膨胀过滤器,5-液化器,6-下塔,7-冷凝蒸发器,8-上塔,9-液氧吸附器,10-液空吸附器,11-液氮过冷器,13-液氧泵,14-二氧化碳吸附器。该类型制氧机采用高效透平膨胀机制冷全低压流程,即以卡皮查循环为基础,用嵌有蛇管的石头填料蓄冷器冻结清除水分和二氧化碳,用中部抽气保证其不冻结性,用中抽二氧化碳吸附器4清除中抽气中的二氧化碳。富氧液空经液空吸附过滤器过滤二氧化碳干冰,吸附液空中的乙炔,设有液氧泵13,将液氧循环经液氧吸附器清除液氧中的乙炔,以保证制氧机 安全运行。装置中采用长管式冷凝蒸发器,以提高传热效率。管内是液氧沸腾,管间气氮冷凝。膨胀机的工质是空气。中抽气由中抽二氧化碳吸附器清除二氧化碳后与下塔来的旁路气汇合一起进入膨胀机,膨胀后气体进入上塔即拉赫曼气。
附图2是可逆式换热器自清除10000m3/h制氧机流程示意图。图2中:1-可逆式换热器,2-自动阀箱,3-液化器(污氮),4-液化器(纯氮),5-液化器(氧气),6-透平膨胀机,7-下塔,8-冷凝蒸发器,9-上塔,10-液空过冷器,11-液氧过冷器,12-液氮过冷器,13-液氧吸附器,14-液空吸附器,15-液氧泵。该制冷系统是以卡皮查循环为基础的全低压循环。采用高效透平膨胀机,膨胀工质为空气,利用电机制动回收部分膨胀功。净化系统采用板翅式可逆式换热器对水分、二氧化碳自清除。设置液空吸附器清除富氧中的乙炔。用液氧泵使冷凝蒸发器中的部分液氧循环利用液氧吸附器清除液氧中的乙炔及其他碳氢化合物。装置中的全部换热器都采用高效的板翅式换热器,因此也可称全板式万立制氧机。精馏塔为带辅塔的双级精馏塔。膨胀后气体进入上塔,这股拉赫曼气使制氧机的制冷系统与精馏系统有机地联系起来。
附图3是30000m3/h外压缩制氧机流程示意图。图3中:AC-空气冷却塔,AF-空气过滤器,AP-液氩泵,TC-空气离心压缩机,BT1-增压机(膨胀机),C1-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,E1-主换热器,E2-液空液氮过冷器,EH-电加热器,ET1-透平膨胀机,K1-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液化器,K704-精氩蒸发器,MS1、MS2-分子筛纯化器;PV701-液氮平衡器,WC-水冷却塔,WP1、WP2-水泵。该制氧机即第六代空分流程。空气经离心式压缩机压缩后经分子筛纯化器清除加工空气中的水分、二氧化碳、乙炔及其他碳氢化合物。而后空气进入板翅式主热交换器冷却至饱和温度进入下塔。液化循环采用卡皮查循环,采用增压透平膨胀机制冷,膨胀后空气进入上塔。上塔为规整填料塔,下塔采用筛板塔。保冷箱内设置粗氩塔和精氩塔,粗氩塔与精氩塔均为规整填料塔,实现了无氩制氩。气氧出塔压力21kPa,气氮出塔压力8kPa,采用离心式氧压机和氮压机进行产品压缩。是典型的外压缩流程,也可称为“冶金型”制氧机。除了采用上述核心技术以外,还采用双层床分子筛纯化技术,双层主冷和氮-水预冷系统的高效蒸发降温(取消冷冻机)等技术,使此类流程的空分装置进一步节能降耗。
附图4是化工型52000m3/h制氧机流程示意图,图4中:AC-空气冷却塔,AF-空气过滤器,ATC1-空气离心压缩机,ATC2-空气循环增压机,AP-液氩泵,C1-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,E1-主换热器,E3-过冷器,ET-膨胀机, BC-增压机(膨胀机),EC-水冷塔,SH-蒸汽加热器,K1-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液化器,K703-精氩冷凝器,K704-精氩蒸发器,MS1、MS2-分子筛纯化器;NP-液氮泵,OP-液氧泵。该制氧机为典型的内压缩流程,此流程及配套部机的特点是:(1)原料空压机和空气增压机均采用离心式压缩机,由一台汽轮机拖动,即一拖二;(2)双层床分子筛纯化器,并在切换系统中采用了无冲击切换技术;(3)采用中压增压透平膨胀机制冷,制冷工质为空气,膨胀后的空气进入下塔;(4)主换热器为高效板翅式换热器,分为高、低压两组换热器;(5)该空分装置设置6台产品泵,两台液氧泵、两台液氮泵和两台液氩泵。均为一用一备,即一台运转、另一台在线冷备用。必须强调的该技术采用的内压缩的液氧泵、液氮泵和液氩泵十分值得关注:利用液氧、液氮、液氩接近不可压缩流体的性质,较传统的采用压气机增压的技术(因气体为可压缩流体),显然电机的功耗大幅度下降。
上述4种典型流程均利用了拉赫曼原理,将膨胀后的空气吹入上塔,或者利用从下塔或冷凝蒸发器的顶盖抽出的氮气,一部分经切换式换热器环流通过复热后再汇合进入透平膨胀机,膨胀后的氮气作为产品氮气引出,或者与污氮汇合经切换式换热器复热回收冷量后放空。由于从下塔引氮气,冷凝蒸发器的冷凝量减少,因而送入上塔的液体分量减少,精馏潜力得到利用,这种采用氮膨胀的流程国外的大型全低压空分装置上已被采用。采用空气膨胀、氮气膨胀的方法都是为了减少上塔液体馏分,使精馏时的气液间的温差减少,利用了上塔精馏潜力,使全低压空分装置具有更大的合理性。
上述传统空分装置分离气体的主要基础是热力学,即采用同温差的卡诺逆循环分析空分制冷循环过程,制冷循环的经济性指标是制冷系数,就是得到的收益和耗费的代价之比值,并且以大气环境温度T0与温度为TC低温热源(如冷库)之间的一切制冷循环,以逆向卡诺循环的制冷系数为最高:
上式中的εc为制冷系数,q2为循环的制冷量,w0为循环所消耗的净功。
实际循环效率通常采用实际循环的制冷系数与理论循环系数的比值进行描述,但其理论基础是以卡诺逆循环对空分过程进行循环分析。
实际上,卡诺在“关于热动力的见解”的论文中,得出的结论为:“在两个不同温度的恒温热源之间工作的所有热机,以可逆热机的效率为最高。”即被后人称之为卡诺定理, 按理想气体状态方程进行整理得出的卡诺循环的热效率为:
公式(2)中的高温热源的温度T1与低温热源的温度为T2均高于大气环境温度T0,并可以得出以下几点重要结论:
1)卡诺循环的热效率只决定于高温热源和低温热源的温度,也就是工质吸热和放热时的温度,提高T1和T2,可以提高热效率。
2)卡诺循环的热效率只能小于1,绝不能等于1,因为T1=∞或T2=0都不可能实现。这就是说,在循环发动机中即使在理想情况下,也不可能将热能全部转化为机械能,热效率当然更不可能大于1。
3)当T1=T2时,循环热效率等于0,它表明,在温度平衡的体系中,热能不可能转化为机械能,热能产生动力一定要有温度差作为热力学条件,从而验证了借助单一热源连续做功的机器是制造不出的,或第二类永动机是不存在的。
4)卡诺循环及其热效率公式在热力学的发展上具有重大意义。首先,它奠定了热力学第二定律的理论基础;其次,卡诺循环的研究为提高各种热动力机热效率指出了方向,近可能提高工质的吸热温度和尽可能降低工质的放热温度,使放热在接近可自然得到的最低温度即大气温度时进行。卡诺循环中所提出的利用绝热压缩以提高气体吸热温度的方法,至今在以气体为工质的热动力机中仍普遍采用。
5)卡诺循环的极限点是大气环境温度,对低于环境温度的制冷过程循环,卡诺循环并没有给出明确的答案。
由于制冷系数的不完善性,国内外众多的学者对其进行研究,并提出了完善建议。马一太等在《制冷与热泵产品的能效标准研究和循环热力学完善度的分析》中结合Curzon和Ahlborn把有温差传热这个不可逆过程引入热力循环的分析,以及由此创建的有限时间热力学的启发,结合CA循环效率,提出了CA正循环的热力学完善度,使制冷和热泵产品的能效研究有了一定程度的进展。
但是运用热力学的基本理论并不能对空分装置循环过程做出简洁、明了、直观的解释。爱因斯坦曾对经典热力学做过评价:“一种理论,其前提越简单,所涉及的事物越多,其适应范围愈广泛,它给人们的印象就越深刻。”对空分制冷领域的基本理论探索,也应继承和发扬这个优点。
因此对空分制冷循环进行研究,真正找到空分装置循环的理论基础,找到改进空分流程的正确方向,并在此理论基础上组织新的空分装置流程,较大幅度降低空分装置的能耗,成为空分技术领域研究的难点。
发明内容
本发明的目的就是为解决卡诺定理应用于空分装置循环理论分析的不完善性,提出对应于热力学理论的新的制冷理论即冷力学理论,并提出应用该原理设计的新的等压分离制取氧氮的空分装置。对于低于大气环境温度的环境称之为冷源,相对于高于环境温度的热源;相应于热能、热量,提出对应的冷能、冷量概念;所述的制冷装置,是指消耗机械功来实现冷能从大气环境向低温冷源或者从低温冷源向更低温冷源的转移。在实现冷能转换时,均需要某些物质作为制冷装置的工作物质,称为制冷工质。
制冷过程中冷能的传递遵循能量转化和守恒定律。
为描述制冷过程中冷量传递的方向、条件和限度,提出冷力学第二定律:冷力学第二定律的实质跟热力学第二定律的实质是一样的,同样遵循“能质衰贬原理”,即不同形式的冷能,在转换成功量的能力上是有“质”的差别的;即使是同一种形式的冷能,其存在状态不同时,它的转换能力也不同的。一切冷能传递的实际过程,总是朝着能质下降的方向进行,一切冷能总会自发向大气环境方向转换。冷能能质的提高过程不可能自动、单独地进行,一个能质的提高的过程必然伴随着另一个能质的下降的过程同时发生,这个能质下降的过程就是实现能质升高过程的必要的补偿条件,即以能质下降为代价、作为补偿来推动能质升高过程的实现。在实际过程中,作为代价的能质下降过程,必须足以补偿能质升高的过程,以满足总的能质必定下降的普遍规律。因此,在一定的能质下降的补偿条件下,能质升高的过程必然有一个最高的理论限度。只有在完全可逆的理想条件下,才能达到这个理论限度,这时,能质升高值正好等于能质下降的补偿值,使总的能质保持不变。可见,可逆过程是纯理想化的能质守恒过程;在不可逆过程中总的能质必然下降;在任何情况下都不可能实现使孤立系统总的能质升高的过程。这就是能质衰贬原理的物理内涵,是冷力学第二定律的实质,也是热力学第二定律的实质,它揭示了一切宏观过程必须遵循的、有关过程进行方向、条件及限度的客观规律。
描述冷力学第二定律的基本公式为:
公式(3)中,Tc2<Tc1<To,To为环境温度,均为开氏温标。
相对环境温度To而言,冷源在Tc1、Tc2下的最大冷效率为:
假设为q2循环的制冷量,w0为循环所消耗的净功,则在冷源温度为Tc1时:
同样,在冷源温度为Tc2时:
从公式(4)至(7)不难看出,冷力学的效率为0到1之间,由于实际过程中不可逆性的不可避免,制冷循环效率总是小于1的;
环境温度To确定时,冷源温度越低,从该冷源输入同样的功,获得的制冷量越多,这为构建新的空分装置流程指明了方向。
需要说明的是:
(1)冷量是自发从低温冷源向环境温度传递的;
(2)不可能把冷量从低温冷源传到更低的冷源而不引起其他变化;
(3)冷量从低温冷源传递向环境时,与外界交换的功量为w0,其中包含对环境所做的无用功p0(V0-Vc),p0为大气压力,Vo为环境温度下的体积,Vc为冷源温度下的体积,所能做的最大可逆有用功为:
(4)冷量从低温冷源传递向环境时,向环境传递的无用能为:
向环境传递的无用功为:p0(V0-Vc)
对应于热量的有用能“”、无用能“烬”,对热量、冷量取水火会意,对于冷量的有用能,取名为“冷量涟”,冷量向环境传递的无用能称为“冷量浕”,“浕”读音为“尽”。
(5)冷能向环境温度传递时,向外做功的最佳型式为采用塞贝克(Seebeck)效应的温差发电机,即冷力发电机;
(6)冷力学中能量必须、也必然要符合能量转化和守恒定律;
(7)通过借鉴有限时间热力学的构思,可以发展有限时间冷力学基本理论;
(8)不能脱离环境来评价冷量的品位;
(9)冷力学和热力学是能量学中的两个分支,既存在对立的一面,又存在着统一的一面:低温制冷循环中,在遵循冷力学第二定律的前提下,在低温环境下构造的制冷剂工质的循环过程又遵循朗肯循环原理,重新又回到卡诺定律,恰好符合中国传统美学中阴中有阳、阴阳相济的原理。
从上述理论基础可以看出,假设的冷力学具有和热力学对称的理论框架体系,符合科学美学的基本原则,即相反相成、对称原则。
基于上述冷力学基本原理,本发明提出不同于传统空分装置的流程组织,实现空气等压分离制取氧氮的新途径,并有效降低空分装置的能耗。
本发明的目的是通过以下措施实现的:
一种等压分离制取氧氮的空分装置,该空分装置实现空气等压分离的工艺步骤如下:
(1)原料空气1经空气过滤器2除去灰尘和机械杂质,进入压气机,3中被压缩到所需压力;
(2)经预冷的压缩空气进入纯化器4清除水分、二氧化碳及少量的乙炔、碳氢化合物,再经主冷交换器6冷却至液化温度,进入精馏装置的下塔8;
(3)所述装置的下塔8粗馏得到的富氧液空11,经液空吸附器12脱乙炔、过冷器42过冷后,可节流降压后送入上塔10,或不经节流等压送入上塔10;
所述装置的下塔8引出的氮气23经过冷器42冷凝成液氮22后,可节流降压后送入上塔10,或不经节流等压送入上塔10,或直接进入主冷交换器(6)回收冷量后作为产品氮气39输出;
所述装置精馏系统分离出的氧气35从上塔10引出,经主冷交换器6或经辅助冷交换器41、主冷交换器6回收冷量后作为产品氧气36输出;
所述的装置分离出的氮气23从上塔10顶部引出,经主冷交换器6、或经辅助冷交换器41、主冷交换器6回收冷量后作为产品氮气39输出。
(4)冷凝蒸发器9产生的液氮,流回下塔8作回流液;也可直接引出部分液氮产品,另一部分液氮作下塔回流液;下塔中部或上部引出的氮气13经过冷器42冷凝形成液氮 22,送入上塔10的顶部,参与上塔的精馏过程;
(5)上塔10精馏得到的液氧14,经液氧泵15、液氧吸附器16脱除乙炔及碳氢化合物后,返回上塔下部,从而形成液氧循环回路;或者经液氧泵15、液氧吸附器16脱除乙炔后的液氧14直接作为产品17送出;或者再经液氧增压泵33增压后,经主冷交换器6回收冷量后,作为产品高压氧气34送出;
(6)污氮从上塔的辅塔底部引出,经污氮管线37、主冷交换器6回收冷量后,送至氮水预冷器或直接放空;
(7)不经膨胀降压的氧气35从上塔引出后,进入主冷交换器6或经辅助冷交换器41、主冷交换器6回收冷量后作为产品氧气36输出;
(8)主冷交换器6采用上塔顶部引出的氮气23、上塔下部引出的氧气35、污氮作为冷源提供冷量,使预净化空气5冷却后进入下塔,进入精馏装置分离出氮氧;
(9)辅助冷交换器41采用补冷系统提供冷量,或和上塔顶部引出的氮气23、上塔下部引出的氧气35、污氮作为冷源提供冷量,使空气40冷却至液化温度;
(10)补冷系统的制冷工质循环过程为:
所述装置的补冷系统,是指从制冷工质贮罐18出来的液态制冷工质19,经液压泵20增压后,经回冷器21、或和氮气液化器29、过冷器42、或和辅助冷交换器41形成制冷工质过热蒸汽24,经膨胀机25膨胀降温后,再经回冷器21、节流阀27,返回制冷工质贮罐18,通过过冷器42、或和辅助冷交换器41对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路;通过设置的节流阀27可以方便调节补冷系统的压力。
所述的膨胀机25的制动设备26采用风机、电机、液压泵或压气机。
(11)设有氮气液化器29:从制冷工质贮罐18出来的液态制冷工质19,经液压泵20增压后,经回冷器21、氮气液化器29、过冷器42、回冷器21,回到制冷工质贮罐18;氮气23经氮气液化器29冷凝形成产品液氮22,或经液氮增压泵31、主冷交换器6回收冷量后,作为高压氮气32输出。
所述的等压分离,是指进入空分精馏系统的原料空气,无需像传统的空分工艺那样膨胀降压制冷,压气机出来的空气,仅有沿程设备及管道的阻力损失,可以视为等压分离过程。
所述的精馏系统,包括下塔、冷凝蒸发器、上塔,采用一体式或分体式的结构。
所述的纯化器4包括分子筛纯化器、可逆式换冷器或石头蓄冷器,保证工艺的连续正常运行。
所述的制冷工质的标准压力下的沸点低于或等于氧气,包括但不限于液氮、液氩、液氖、液氦等一种或多种稀有气体,如能确保安全,也可使用液氧或液氢,优选的为液氮。
所述的制冷工质贮罐18采用必要的绝热保冷措施,如采用绝热真空容器、珠光砂等隔热保冷材料。
所述的主冷交换器6、辅助冷交换器41、回冷器21、过冷器42采用管壳式、板翅式、微通道或其他型式的换冷器,其结构及换冷元件与传统的空分流程中的管壳式换热器、板翅式换热器、微通道换热器等相同,只是为了与制冷体系相对应而更换准确的名称。
所述的过冷器42、辅助冷交换器41可设置一个或多个,通过补冷系统分别对氮气13、富氧液空11、液氧进行过冷却。
所述的主冷交换器6可设置一个或多个,对空气5进行预冷处理。
本发明中未说明的设备及其备用系统、管道、仪表、阀门、保冷、具有调节功能旁路设施等采用公知的传统制冷循环中的成熟技术进行配套。
设有与本发明的制冷循环装置配套的安全、调控设施,使装置能经济、安全、高热效率运行,达到节能降耗、环保的目的。
本发明相比现有技术具有如下优点:
1、节能效果显著:取消传统空分循环的空气膨胀机或氮气膨胀机,利用液体的接近不可压缩流体的性质,采用低温液体循环泵进行增压并补充冷量,实现空气的等压分离,能够有效提高制冷循环的效率,与传统空分装置相比,相同制冷量的节能率达30%以上。
2、通过液氮泵、液氧泵对产品气体增压,能够节省大量的动力消耗。
3、通过提高精馏塔的操作压力,能够顺利实现节省产品氧、氮输出的压缩功以及氧气压缩机、氮气压缩机等设备,以及与之配套的冷却水系统,
4、流程设置更加简洁,精馏系统的潜力得到充分发挥,操作弹性大,运行调节更加灵活方便。
5、设备及材料的备用量有较大幅度的减少。
6、通过等压分离氮氧的空分系统的液氧泵、液氮泵,能够对气体氧气、氮气高效、节能增压,能够实现集中供气,类似于传统的蒸汽集中供热技术,具有深远的社会和经济意义。
附图说明
图1是管式3200m3/h制氧机流程示意图:
图1中:1-蓄冷器,2-自动阀箱,3-透平膨胀机,4-膨胀过滤器,5-液化器,6-下塔,7-冷凝蒸发器,8-上塔,9-液氧吸附器,10-液空吸附器,11-液空过冷器,13-液氧泵,14-二氧化碳吸附器。
图2是可逆式换热器自清除10000m3/h制氧机流程示意图:
图2中:1-可逆式换热器,2-自动阀箱,3-液化器(污氮),4-液化器(纯氮),5-液化器(氧气),6-透平膨胀机,7-下塔,8-冷凝蒸发器,9-上塔,10-液空过冷器,11-液氧过冷器,12-液氮过冷器,13-液氧吸附器,14-液空吸附器,15-液氧泵。
图3是30000m3/h外压缩制氧机流程示意图:
图3中:AC-空气冷却塔,AF-空气过滤器,AP-液氩泵,TC-空气离心压缩机,BT1-增压机(膨胀机),C1-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,E1-主换热器,E2-液空液氮过冷器,EH-电加热器,ET1-透平膨胀机,K1-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液压器,K704-精氩蒸发器,MS1、MS2-分子筛纯化器;PV701-液氮平衡器,WC-水冷却塔,WP1、WP2-水泵。
图4是化工型52000m3/h制氧机流程示意图:
图4中:AC-空气冷却塔,AF-空气过滤器,ATC1-空气离心压缩机,ATC2-空气循环增压机,AP-液氩泵,C1-下塔,C2-上塔,C701-粗氩塔I,C702-粗氩塔II,C703-精氩塔,E1-主换热器,E3-过冷器,ET-膨胀机,BC-增压机(膨胀机),EC-水冷塔,SH-蒸汽加热器,K1-主冷凝蒸发器,K701-粗氩冷凝器,K702-粗氩液化器,K703-精氩冷凝器,K704-精氩蒸发器,MS1、MS2-分子筛纯化器;NP-液氮泵,OP-液氧泵。
图5是本发明的一种等压分离制取氧氮的空分装置流程示意图:
图5中:1-空气,2-空气过滤器,3-压气机,4-净化器,5-预净化空气,6-主冷交换器,7-进下塔空气,8-下塔,9-冷凝蒸发器,10-上塔,11-富氧液空,12-液空吸附器,13-下塔氮气,14-液氧,15-液氧泵,16-液氧吸附器,17-液氧,18-制冷工质贮罐,19-液态制冷工质,20-液压泵,21-回冷器,22-液氮,23-低温氮气,24-制冷工质过热蒸汽,25-膨胀机,26-膨胀机出口乏汽,27-节流阀,28-制动设备,29-氮气液化器,30-液氮,31-液氮增压泵,32-高压氮气,33-液氧增压泵,34-高压氧气,35-低温氧气,36-产品氧气,37-污氮管线,38-污氮,39-产品氮气,40-空气,41-辅助冷交换器,42-过冷器。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细描述。
实施例1:
如图1所示,一种等压分离制取氧氮的空分装置,制冷工质采用液氮,具体实施例如下:
(1)原料空气1经空气过滤器2除去灰尘和机械杂质,进入压气,机3中被压缩到所需压力;
(2)经预冷的压缩空气进入纯化器4清除水分、二氧化碳及少量的乙炔、碳氢化合物,再经主冷交换器6冷却至液化温度,进入精馏装置的下塔8;
(3)下塔8精馏得到的富氧液空11,经液空吸附器12脱除乙炔后,经过冷器42过冷后,不经节流,直接送入上塔的中部,经冷凝蒸发器9蒸发出氮气,得到液氧、氧气;
(4)冷凝蒸发器9产生的液氮,流回下塔8作回流液;
(5)上塔10精馏得到的液氧14,经液氧泵15、液氧吸附器16脱除乙炔及碳氢化合物后,返回上塔下部,从而形成液氧循环回路;或者经液氧泵15、液氧吸附器16脱除乙炔后的液氧14直接作为产品17送出;或者再经液氧增压泵33增压后,经主冷交换器6回收冷量后,作为产品高压氧气34送出;
(6)污氮从上塔的辅塔底部引出,经污氮管线37、主冷交换器6回收冷量后,送至氮水预冷器或直接放空;
(7)主冷交换器6采用上塔顶部引出的氮气23、上塔下部引出的氧气35、污氮作为冷源提供冷量,使预净化空气5冷却后进入下塔,进入精馏装置分离出氮氧;
(7)辅助冷交换器41采用补冷系统提供冷量,或和上塔顶部引出的氮气23、上塔下部引出的氧气35、污氮作为冷源提供冷量,使空气40冷却至液化温度;
(8)补冷系统的制冷工质循环过程为:
所述装置的补冷系统,是指从制冷工质贮罐18出来的液态制冷工质19,经液压泵20、回冷器21、氮气液化器29、过冷器42、辅助冷交换器41形成制冷工质过热蒸汽24,经膨胀机25膨胀降温后,再经回冷器21、节流阀27,返回制冷工质贮罐18,通过过冷器42、辅助冷交换器41对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路;所述的膨胀机25的制动设备28采用压气机,用于对气体产品氧气或氮气增压。
氮气23经氮气液化器29液化形成产品液氮22,或经液氮增压泵31增压后,经主冷交换器6回收冷量后,作为高压氮气32输出。
所述的制冷工质贮罐18采用必要的绝热保冷措施,如采用绝热真空容器、珠光砂等 隔热保冷材料。
本发明中未说明的设备及其备用系统、管道、仪表、阀门、保冷、具有调节功能旁路设施等采用公知的传统制冷循环中的成熟技术进行配套。
设有与本发明的空分循环装置配套的安全、调控设施,使装置能经济、安全、高热效率运行,达到节能降耗、环保的目的。
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明,任何熟悉此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,同样属于本发明之保护范围。因此本发明的保护范围应当以本申请的权利要求所界定的为准。
Claims (10)
1.一种等压分离制取氧氮的空分装置,该装置包括空气纯化系统、预冷系统、精馏系统和补冷系统,其特征在于:
所述装置的补冷系统,是指从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)增压后,经回冷器(21)、过冷器(42)形成制冷工质过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)返回制冷工质贮罐(18),通过过冷器(42)对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路。
2.根据权利要求1所述的装置,其特征在于:
设有辅助冷交换器(41):液态制冷工质(19)经辅助冷交换器(41)形成制冷工质过热蒸汽(24);通过过冷器(42)、辅助冷交换器(41)对空分系统补入所需的冷量。
3.根据权利要求2所述的装置,其特征在于:
所述装置的下塔(8)粗馏得到的富氧液空(11),经液空吸附器(12)脱乙炔、过冷器(42)过冷后,可节流降压后送入上塔(10),或不经节流等压送入上塔(10);
所述装置的下塔(8)引出的氮气(23)经过冷器(42)冷凝成液氮(22)后,可节流降压后送入上塔(10),或不经节流等压送入上塔(10),或直接进入主冷交换器(6)回收冷量后作为产品氮气(39)输出;
所述装置精馏系统分离出的氧气(35)从上塔(10)引出,经主冷交换器(6)或经辅助冷交换器(41)、主冷交换器(6)回收冷量后作为产品氧气(36)输出;
所述的装置分离出的氮气(23)从上塔(10)顶部引出,经主冷交换器(6)、或经辅助冷交换器(41)、主冷交换器(6)回收冷量后作为产品氮气(39)输出。
4.根据权利要求3所述的装置,其特征在于:
设有氮气液化器(29):从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)增压后,经回冷器(21)、氮气液化器(29)、过冷器(42)、回冷器(21),回到制冷工质贮罐(18);氮气(23)经氮气液化器(29)冷凝形成产品液氮(22),或经液氮增压泵(31)、主冷交换器(6)回收冷量后,作为高压氮气(32)输出。
5.根据权利要求1至4之一所述的装置,其特征在于:
所述的膨胀机(25)的制动设备(28)采用风机、电机、液压泵或压气机。
6.根据权利要求5所述的装置,其特征在于:
设有节流阀(27):
从制冷工质贮罐(18)出来的液态制冷工质(19),经液压泵(20)、回冷器(21)、或和氮气液化器(29)、过冷器(42)、或和辅助冷交换器(41)形成制冷工质过热蒸汽(24),经膨胀机(25)膨胀降温后,再经回冷器(21)、节流阀(27),返回制冷工质贮罐(18),通过过冷器(42)、或和辅助冷交换器(41)对空分系统补入所需的冷量,从而形成制冷工质的冷力循环回路;
通过设置的节流阀(27)可以方便调节补冷系统的压力。
7.根据权利要求6所述的装置,其特征在于:
设有液氧增压泵(33):上塔(10)精馏得到的液氧(14),经液氧泵(15)、液氧吸附器(16)脱除乙炔及碳氢化合物后,再经液氧增压泵(33)增压后,经主冷交换器(6)回收冷量后,作为产品高压氧气(34)送出。
8.根据权利要求7所述的装置,其特征在于:
所述的精馏系统包括下塔(8)、冷凝蒸发器(9)、上塔(10),采用一体式或分体式的结构。
9.根据权利要求8所述的装置,其特征在于:
所述的空气纯化系统包括纯化器(4),采用分子筛纯化器、可逆式冷交换器或石头蓄冷器,保证空分装置连续稳定运行。
10.根据权利要求9所述的装置,其特征在于:
所述的主冷交换器(6)、氮气液化器(29)、过冷器(42)、辅助冷交换器(41)可设置一个或多个,对空气(5)、氮气(23)、富氧液空(11)进行过冷处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013200443532U CN203224101U (zh) | 2013-01-27 | 2013-01-27 | 一种等压分离制取氧氮的空分装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013200443532U CN203224101U (zh) | 2013-01-27 | 2013-01-27 | 一种等压分离制取氧氮的空分装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203224101U true CN203224101U (zh) | 2013-10-02 |
Family
ID=49251104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013200443532U Withdrawn - After Issue CN203224101U (zh) | 2013-01-27 | 2013-01-27 | 一种等压分离制取氧氮的空分装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203224101U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014114258A1 (zh) * | 2013-01-27 | 2014-07-31 | 南京瑞柯徕姆环保科技有限公司 | 一种等压分离制取氧氮的空分装置 |
-
2013
- 2013-01-27 CN CN2013200443532U patent/CN203224101U/zh not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014114258A1 (zh) * | 2013-01-27 | 2014-07-31 | 南京瑞柯徕姆环保科技有限公司 | 一种等压分离制取氧氮的空分装置 |
US10060672B2 (en) | 2013-01-27 | 2018-08-28 | Nanjing Reclaimer Environmental Teknik Co., Ltd | Air separation apparatus to produce oxygen and nitrogen through isobaric separation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103162512B (zh) | 一种等压分离制取氧氮的空分装置 | |
CN103148676B (zh) | 一种等压分离制取氧氮的空分装置 | |
CN203454607U (zh) | 一种等压分离制取氧氮的空分装置 | |
CN107940896B (zh) | 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法 | |
CN103148673B (zh) | 一种天然气等压液化装置 | |
CN203224100U (zh) | 一种等压分离制取氧氮的空分装置 | |
WO2021043182A1 (zh) | 一种利用lng冷能的空分装置和方法 | |
CN100472159C (zh) | 一种空气分离装置及其方法 | |
CN111043833B (zh) | 一种具有储能和发电功能的内压缩空分工艺流程 | |
CN101846436A (zh) | 利用lng冷能的全液体空气分离装置 | |
CN103148674B (zh) | 一种天然气等压液化装置 | |
CN102230403A (zh) | 利用深冷技术实现低温热能发电的方法和设备 | |
CN105066587A (zh) | 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法 | |
CN103162511B (zh) | 一种天然气等压液化装置 | |
CN101915495B (zh) | 利用液化天然气冷能的全液体空气分离装置及方法 | |
CN203224101U (zh) | 一种等压分离制取氧氮的空分装置 | |
CN203224099U (zh) | 一种天然气等压液化装置 | |
CN103148677B (zh) | 一种空气等压分离制取氧氮的空分装置 | |
CN208443098U (zh) | 大液体量制取的空分装置 | |
CN1038514A (zh) | 生产高压氧和高压氮的空气分离流程 | |
CN205536890U (zh) | 中压氮气的低温精馏制取系统 | |
CN203240840U (zh) | 一种变换工段废热回收与低温甲醇洗工艺冷冻站集成的节能系统 | |
CN203224098U (zh) | 一种天然气等压液化装置 | |
CN101464085B (zh) | 一种超低压单塔深冷空分工艺 | |
CN107270655A (zh) | 一种单塔制氮半负荷工况增产液氮制取装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20131002 Effective date of abandoning: 20150610 |
|
RGAV | Abandon patent right to avoid regrant |